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FLOW SURFACES IN ROTATING AXIAL-FLOW PASSAGES 

By J ohn D. Stanitz and Gaylord O. Ellis 

SUMMARY 

In order to investigate the deviation of flow surfaces from their 
assumed orientation in the usual type of two-dimensional solution , three­
dimensional, incompressible , nonviscous, absolute irrotational fluid 
motion is determined for flow through rotating axial -flow passages 
bounded by straight blades of finite spacing and infinite axial length 
lying on meridional planes. Solutions are obtained for five passages 
with varying blade spacing and hub -tip ratio. The results are presented 
in such a manner as to apply f or all ratios of axial veloc ity to passage 
tip speed . It is concluded that, for conditions in typical axial-flow 
blade rows, the deviation of flow surfaces from their assumed orienta­
tion in two-dimensional solutions is small. 

INTRODUCTION 

A flow surface in the passage between two blades of a compressor 
or turbine is generated by the motion through the passage of any fluid 
line consisting of the same fluid particles and extending from one, 
boundary to another in a plane normal t o the axis of rotation. In two­
dimensional analyses of flow i n compressors and turbines, the fluid 
motion i s usually assumed to occur on flow surfaces that are: (1) sur ­
faces of r evolution about the axis of the turbomachine (blade - to -blade 
solutions, references 1 and 2, for example) or (2) mean passage surfaces 
that are congruent with the mean blade surfaces (hub -to-shroud solutions, 
references 3 and 4, for example) . Actually, the flow surfaces deviate 
from the orientation assumed for the two-dimensional solutions and, in 
the direction of flow, become progressively more tilted and distorted . 
This deviation of the flow surfaces from their assumed orientation is 
caused by spanwise variations of blade loading and, in rotating blade 
rows, by rotation of the fluid particles relative to the passage in a 
plane normal to the axis of the blade row. This rotation is required 
to maintain the rotational or irrotational character of the absolute 
fluid motion . 
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The deviation of flow surfaces is considered in reference 5, but no 

attempt is made to estimate the magnitude of this phenomenon. An ana­

lytical investigation has therefore been made at the NACA Lewis labora­

tory in order to determine the magnitude of this deviation in rotating 

axial-flow passages . The axial-flow passages in this investigation are 

bounded by straight blades of finite spacing and infinite axial length 

lying on meridional (axial- radial) planes. The solutions have been made 

for three - dimensional, i ncompressible, nonviscous, absolute irrotational 

fluid motion over a range of blade spacings and hub-tip ratios. These 

solutions do not i nvestigate the effect of spanwise distribution of blade 

loading, which was considered of secondary importance. (Note that, as in 

rectangular elbows with potential flow, uniform spanwise loading has no 

effect on the deviation of flow surfaces.) Likewise, the effects of· 

compressibility have not been investigated because , as clearly indicated 

by the correlation equations in reference 1, the eddy flow, which causes 

the flow surfaces to deviate, is little affected by compressibility. 

The results are presented in such a manner as t o apply to any ratio of 

b lade - tip speed to axial velocity of the fluid . 

METHOD OF SOLUTION 

The method of solution, i ncluding the relaxation solution of the 

differential equation of flow and the superposition of solutions, is 

deve loped in this section . 

Preliminar y Considerations 

Assumptions . - The absolute flow is assumed to be irrotational. 

The fluid is assumed to be nonviscous and incompressible . The fluid 

motion is three dimensional and is steady r elative to the rotating 

passage . 

Coordinate system and velocity components. - The cylindrical 

coordinate system r, 8, z is shown in figure 1. (All symbols are 

defined in appendix A) . The linear coordinates rand z are expressed 

as ratios of the blade-tip radius . Thus , f or example , the radius r 

at the blade tip is unity. The coordinate system is fixed relative to 

the passage which r otates about the z-axis in the positive direction 

according to the right - hand rule . 

The velocity components u, v, w relative to the coordinate system 

in the r, 8, z directions, respectively, are also shown i n figure 1. 

The velocity components and the blade speed are expressed as ratios of 

the blade - tip speed . Thus, for example, the blade speed at any radius 

is equal to r and the absolute tangential velocity component becomes 

(v + r ) . 
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Type of passage geometry. - The rotating axial-flow passages in 
this investigation are infinitely long . Each passage is bounded by a 
hub and casing of constant radius) respectively) and by straight blades 
of finite spacing and infinite length lying on meridional (axial-radial) 
planes . The blade inlet is considered to be at minus infinity in the 
z-direction and the blade exit at plus infinity. Under these circum­
stances the flow is uniform in the z -direction at the region investi­
gated (near the origin) z = 0) and the blade loading is zero. Thus) 
effects of blade loading on deviation of the flow surfaces are not inves­
tigated in this report . These effects are considered of secondary 
importance. 

Superposition of solutions. - For the passage geometry just 
described) the incompressible flow s olution can be separated into two 
parts: (1) the rotating or eddy- flow solution in the rotating passage 
with no through flow and ( 2 ) the through-flow solution in the station­
ary passage with no eddy flow. The eddy-flow solution does not change 
in the z-direction and is therefore two dimensional. The through-flow 
solution is a uniform axial velocity w· Various percentages of the 
two solutions can be combined by linear superposition t o obtain new 
solutions for different ratios of axial velocity to blade -tip speed) 
that is) f or different values of w. 

Eddy-Flow Solution 

The eddy-flow solution is two dimensional and lies in the re-plane. 

Continuity. - A fluid particle on the 
From continuity considerations 

d ( ) dV dr ru +d"B = 0 

r e -plane is shown i n figure 2 . 

A stream functi on * satisfies equation (1) if defined as 

ru ( 2a) 

(2b ) 

Irrotational absolute motion . - For irrotational absolute motion) 
the circulation of the absolute velocity around the fluid particle i n 
fi gure 2 is zer o) and t her efor e 
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or 

dV v 1 dU 
dr + r - r de = - 2 

which, after substitution of equation (2), becomes 

1: d1jr + J:... d
2

1jr = 2 
r dr r2 de2 
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( 3a) 

(3b) 

Equation (3b) is the differential equation of flow that determines the 
distribution of 1jr for the eddy-flow solution in the re -plane. 

Transformation of coordinates . - In order to solve equation (3) by 
relaxation methods, it is convenient t o transform the re-plane onto the 
~ e -plane by means of 

~ = In r ( 4) 

from which equation (3b) becomes 

(5) 

Relaxation s olution . - Equation (5) is solved by relaxation methods 
(references 6 and 7, for example) to satisfy the specified boundary 
conditions . For the eddy-flow solutions, there is no flow through the 
passage so that ~ is zero along the hub, shroud, and blade surfaces . 
In the ~e -plane these boundaries for m a rectangle within which is placed 
a grid of equally spaced points . At each of these grid points the value 
of 1jr requir ed to satisfy equation (5) in finite diff erence f orm is 
determined by relaxation methods . The size of the grid spacing var ies 
among examples and will be indicat ed later . The values of 1jr at the 
grid points wer e relaxed to a unit change in the fifth decimal. The 
velocity components are obtained from the distribution of 1jr according 
to equation ( 2) . The streamlines of the eddy flow in the re -pLane are 
lines of constant 1jr . 

Combined Solutions 

For the eddy-flow solutions on the r e -plane, the fluid r otates 
r elative t o the passage walls in a direction oppos ite to that of the 
blade r otation . This fluid motion is the same f or all planes normal to 
the z -axis. For the through- flow solution the axial ve l ocity w is 
everywhere constant . These two linear solutions can be superposed t o 
obtain solutions for three -dimensional flow through r otating axial-flow 
passages . 

• 
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It is desired to determine the flow surface generated by the 
motion of any fluid line that extends between boundaries in the re-plane 
and always consists of the same fluid particles. This fluid line 
r otates with the fluid in the r e -plane and the surface that it generates 
depends on the velocity w with which it moves in the axial direction 
through the passage . Examples of s uch flow surfaces are shown in fig­
ure 3. The shape of these surfaces can be indicated on the re-plane 
alone by plots of the intersections of these surfaces with the re-plane 
at equal increments of z. These intersections are the positions of the 
fluid lines on the rB -planes at these values of z. If7 instead of 
increments of Z7 however, fluid lines are plotted on the re -plane for 
increments of the absolute angle ~ that the passage has r otated about 
the z -axis, these fluid-line positions apply f or all values of w. For 
a given value of ~, the value of z then depends on wand this rela­
tion is given by 

z = ~w (6) 

Thus the r esults of the combined solutions are plotted as fluid-line 
positions ' in the rB-plane for equal increments of ~ and these results 
(fig. 4(a), for example) apply for all ratios w of through-flow velocity 
to blade - tip speed. The three -dimensional flow surfaces in figure 3 
correspond to the fluid-line positions shown in figure 4(a) for w 
equal to 0 ·6. 

NUMERICAL EXAMPLES 

The results for three-dimensional flow through five rotating axial­
flow passages are presented in figures 4 to 8. The results are pre­
sented in the re-plane by str eamlines ~. of the eddy-flow solution and 
by fluid - line positions ~ of the three-dimensional flow surfaces. The 
streamlines are designated by ~ .) which is defined as 

(7) 

where the subscript min refers to the algebraic minimum value of ~ 

so that ~* varies from zero along the boundaries to 1 . 0 at the point of 
minimum ~. The fluid - line positions in the re-plane are indicated for 
various values of the absolute angle ~ that the passage has rotated 
about the z-axis from its initial position (~ = 0) at which the fluid­
line positions are radial or circumferential lines. In conformity with 
reference 5) flow surfaces with initial fluid-line positions that are 
circumferential or radial lines are designated Sl- or S2-surfaces7 
respectively. 

~ ----- ----- ~-----



6 NACA TN 2834 

Passage configurations. - The geometry of the five axial-flow 
passages investigated is described in table I. 

TABLE I - GEOMETRY OF AXIAL-FLOW PASSAGES 

Example Hub-tip Blade spacing Grid 
ratio D.B spacing 

rh radians deg 

I( standard) 0 . 70000 0 .17834 10013' (D.e/8) = 0 . 02229 
II . 70000 . 08917 50 7' (D.e/8) = . 01115 

III . 70000 . 35667 20026' (D.e!8) = .04458 
IV . 50105 . 17834 10013' (D.e!8) = .02229 

V .89453 .17834 10013' (D.e!16)= . 01115 

The results of the standard solution) example I) are compared with the 
results of examples II and III to determine the effect of varying the 
blade spacing D.~ with constant hub -tip ratio rho The results of 
example I are also compared with examples IV and V to determine the 
effect of varying rh with D.e constant. The grid spacings used in 
the relaxation solutions are given in the last column of the table. 

Standard s olution . - Results f or the standard solution (example I) 
are presented in figure 4 . In figure 4(a) are shown fluid-line posi­
tions of the central flow surfaces f or various values of the angle a. 
The central flow surfaces are defined as those surfaces for which the 
fluid lines pass through the point of minimum w) that is) W* = 1.0 . 
At this point) values of u and v are both zero so that the central 
flow surfaces pivot about a straight line in the z -direction through 
this point. 

In figure 4(b) are shown the fluid - line positions of off - center 
Sl- surfaces for various values of the angle a. For any off-center flow 
surface ) the envelope of the fluid-line positions for various values of 
a is a streamline . This fact is clearly shown by the upper Sl-surface 
in figure 4(b) which is tangent t o the streamline 0.8 . 

Fluid- line positions of off - center S2- surfaces for various values 
of a are shown in figure 4(c) . Finally) in figure 4(d)) are shown 
fluid - line positions of the centr al Sl - surface f or a wide range of a. 
As a increases) the surface becomes progressively more distorted because 
its velocity in the re -plane along the boundaries near the corners is 
low) becoming equal to zero at the cor ners) whereas the velocities along 
most of the other eddy-flow str eamlines approach a wheel-type distribu­
tion with zero velocity at W* = 1 . 0 . It is concluded that) f or large 
values of the absolute angle a) the flow surfaces become greatly 
distorted. 
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Solutions for effect of blade spacing. - Examples II and III are 
presented in fi gures 5 and 6 . These figures, together with fi gure 4(a), 
indicate the shapes of the central flow surfaces for three blade spacings 
68 with the same hub - tip ratio rh o The general appearance of the 
central Sl - surfaces is similar for examples I and II, and in example III 
the Sl- and S2-surfaces are similar. Reasons for these similarities are 
given in DI SCUSSION OF RESULTS . 

Solutions for effect of hub - tip ratio . - Examples IV and V are 
presented in figures 7 and 8. These figures) together with figure 4(a), 
i ndicate the shapes of the central flow surfaces for three hub - tip ratios 
rh with the same blade spacing 68 . T0e general appearance of the 
central Sl- surfaces of examples I and I V is similar, and the 8 1- and 
S2-surfaces of example V are similar to the S2 - and Sl-surfaces, respec ­
tively, of example I . Also) i t is noted that the central Sl- and S2 -
surfaces of examples II and I V are similar in general appearance. Rea ­
sons for these similarities are given in DISCUSSION OF RESULTS . 

DISCUSSION OF RESULTS 

Some of the results presented i n figures 4 to 8 are discussed, and 
the deviations of the flow surfaces f r om their initial positions for a 
equal to zero in the r8-plane are investigated . 

Typical value for a · - The results in figures 4 to 8 are presented 
as fluid - line positions in the r 8-plane for even increments of ~. As 
already define~, a is the absolute angle that the axial-flow passage 
has rotated about the z-axis) with a equal to zero when the initial 
position of the fluid line is a circumferential line (Sl- surface) or 
radial line (S2-surface) in the r 8-plane. This angle a is related to 
the geometr y and operating conditions of the axial- flow passage by 
equation (6 ) . In order to determine a typical value for a, an axial­
flow stage is considered with 

w ' == 550 ft/sec 

z' == 0 . 12 ft (1 . 44 in . ) 

w ' == 838 radians/sec (8000 rpm) 

wher e the pr ime superscript indicates dimensional quantities. Equa­
tion (6) becomes 

-~~--- - -------

z 'w' 
a ==~== 0.183 
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so that a typical value for ~ is approximately 0.2. From figures 4 to 
8 it is therefore concluded that the deviation of flow surfaces in 
typical axial-flow blade rows is not large. This conclusion is further 
strengthened if the fluid- line position for ~ equal to zero is con­
sidered to occur halfway through the blade row· Then the maximum 
deviation of the surface from its position at ~ equal to zero is 
reduced by approximately one half . 

For blade rows (not necessarily axial flow) with relatively large 
dimensions in the direction of flow, such as radial- and mixed-flow 
impellers, the deviations of the flow surfaces must be large. However, 
even these large deviations do not invalidate the two-dimensional solu­
tions completely, because, as shown in reference 8, at many positions 
in the passage the velocity components of major importance are much the 
same f or two- and three -dimensional solutions. 

Deviation of flow surfaces. - The deviation of flow surfaces from 
their initial orientation, given by fluid-line positions in the rB-plane 
at ~ equal zero, can be described by three factors (fig. 9) : (1) 
displacement, in the rB -plane , of the tangent point between the fluid 
line and the tangent streamlinej (2) rotation, in the rB-plane, of the 
fluid line about this tangent pointj and (3) distortion or bending of 
the fluid line in the rB-plane. The displacement of the tangent point 
is determined by i~s motion in the rB-plane along the streamline with 
which the fluid line is tangent. This displacement for off-center Sl­
and S2-surfaces is indicated in figures 4(b), 4(c), and 9 and will not 
be discussed further. For central flow surfaces, which will be con­
sidered exclusively hereinafter, the tangent point (center point) does 
not move and the displacement is zero. 

The r otation of central flow surfaces will be measured by' the angle 
~ - ~ O which the tangent to the fluid line at its center point rotates 
in the r B-plane from its initial position ~O at ~ equals zero 
(fig. 9) . The angle ~ i s measured clockwise from the radial direction 
so that ~ O is 900 f or Sl-surfaces and 00 for S2-surfaces. 

The distortion of the flow surfaces will be discussed qualitatively. 

Rotation of flow surfaces. - The rotation of central flow surfaces 
is measured by the angle ~ - ~O introduced i n the preceding section. 
This angle can be measured in figures 4(a) and 5 to 8. However, an 
equation has been developed (appendix B) by which the r otation ~ - ~O 
can be determined directly fr om ~ and a parameter A, which is the 

d2'\r value of --- at the center point . 
dr2 

---~ - ---

, 
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For central Sl-surfaces 

( 7a) 

and for central S2-surfaces 

tan( 13 - 130) 2 = - ~ 2 ~ A tan [ex, tV A( 2 - A)] ( Th) 

so that the rotations of the two types of central flow surface are 
related by , 

In particular} for A equal to 1.0} 

( 7d) 

so that the rotation of both flow surfaces are equal to the rotation ex, 
of the passage about the z-axis. 

As will be discussed later 
In rh 

primarily a function of ~. 

1.0 and 6e is finite} v and 

equation (3a) gives 

in 

If 
dU 
de 

this section, the 
In rh 

is 
~ zero, 

are zero at the 

dV 
dr = - 2 

from which 

A 

parameter 

that is} if 

center point 

Also} if 
In r

h 
~ is infinite, that is} if 6e is zero and ~ 

than 1.0} dV is at the center point that dr zero so 

d
2 dV _ 

A= ~= 0 
dr2 - dr-

A is 

r h is 

and 

is less 

Thus, the parameter 

between -00 and O. 

In rh 
A varies between 0 and 2.0 as ~ varies 

For A equal to O} equations (7a) and (Th) become 
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tan(f3 - 13 0)1 -20, ( 7e) 

and 

tan(f3 - 13 0)2 = 0 ( 7f) 

Likewise) for A equal to 2 .0) equations (7a) and (7b) become 

tan(f3 - 130) 1 = 0 ( 7g) 

and 

tan(13 - 130)2 = -20, ( 7h) 

The rotation (13 - 13 0)1 of central Sl-surfaces has been computed 

by equations (7a)) (7e)) and (7g) and is plotted in figure 10 as a func­
tion of a for various values of A. The rotation (13 - (3 0)2 of 

central S2 - surfaces is also given by figure 10 if the curves of constant 
A are numbered in reverse order . Thus) discussions relating to the 
rotation of central Sl-surfaces with parameter A equal to x also 
apply to the rotation of central S2-surfaces with A equal to (2 - x). 

In figure 10 the curve for A equal to zero is asymptotic to ~/2) 
or 1.5708. For this value of A) the passage width is zero (6e = 0)) 
and the central Sl- surface cannot rotate more than ~/2 radians. For 
A equal to 2 . 0) the rotation (13 - 13 0)1 is zero at all values of o,. 

For this value of A) the passage height is zero (rh = 1.0)) and the 

central Sl-surface cannot r otate . As indicated by equation (7d)) a 
linear relation exists between (13 - (3 0)1 and a for A equal to 1.0. 

As will be shown later in this section, for this value of A the average 
passage width is approximately equal to the passage height (example III) 
fig. 6)) and both the central Sl- and S2-surfaces rotate at the same 
rate as the passage itself) but in the opposite direction. For the 
remaining values of A) the curves in figure 10 have inflection points 
at (13 - (3 0)1 equal to ~/2 )~) and so forth. for values of A less 

than 1.0) the rate of change of (13 - 13 0)1 with a is minimum at 

(13 - 130)1 equal to ~) ~) and so forth) and is maximum at ' (13 - (30)1 
equal to ~,2~, and so forth. For values of A greater than 1.0, the 
reverse is true. In all cases) the rate of change of (13 - (3 0)1 with 

a is greatest When the tangent to the fluid line at its center point is 
oriented in the direction of minimum distance between passage walls and 
is least when the tangent is oriented normal to the direction of minimum 
distance . This observation is reasonable because, as indicated by the 
streamline spacing for examples I to V) the gradient of the velocity 
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component normal to the tangent of the fluid line at its center point, 
which velocity gradient causes the fluid line to rotate about its center 
pOint, is maximum when the tangent is oriented in the direction of min­
imum distance between passage walls and is minimum when the tangent is 
oriented normal to the direction of minimum distance. 

The parameter A, which determines the r otation of the central flow 
In rh 

surfaces, is primarily a function of the ratio ~e' The values of A 
for examples I to V have been obtained from the relaxation solutions and 
are given in table II together with the values of 

TABLE II - VALUES OF PARAMETER A 

These values of 

Example A 

I 0.314 
II .134 
III 1.020 

IV .240 

V 1.535 

In rh 
A and 

~e 
parameter A 

In rh 
-;sa 

-2 
-4 
-1 

-?J 8 
5 
8 

are plotted in figure 11. 

is equal to 2 and zero for 

As 

previously discussed, the 

In rh 
equal to zero and _00, respectively. It can be shown analytically 

~ lnrh 
that the curve in figure 11 has zero slope for Ae equal to zero. 

In rh u. 
As ~ varies from zero to _00, the passage geometry in the re-plane 

varies from a wide shape with zero height in the r-direction to a tall 
In r

h shape with zero width in the e-direction. For ~ equal to -1. 0 , 

the passage geometry is square in the te-plane and the average passage 
width in the re-plane is approximately equal to the passage height 
(example III, fig. 6). 

In rh 
The parameter A is a function of ~e because passages with 

In rh 
the same value of ~ have geometrically similar boundaries in the 

~e -plane, where the solution of equation (5), which solution determines 
A, is obtained. The right side of equation (5) indicates, however, that 
the solution of equation (5), and therefore the value of A, depends not 

In rh 
only on the passage shape in the te -plane, that is on ~,but also 

on the corresponding values of r at each value of ~. Thus, the 
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value of A must also depend on the hub - tip radius ratio rh o However, 

figure 11 shows that rh has only a small effect on A f or the range 

of r h i nvest i gated. 

For the r a nge of ~ i nvestigated by the numerical examples 
(0 ~ ~ ~ l . O) , figure 10 shows that the variation in (~ - ~ O ) l with ~ 
is similar for 0 < A < 0 . 3 (also compare examples I, II, and IV in 
figs . 4 (a) , 5 , a nd 7 , r espect i vely) ; and, if the ~urves of constant A 
are number ed in r ever se order, figure 10 indicate s the variation in 
(~-~0 ) 2 with ~ is similar for 1 . 7 < A < 2 . 0. Inbothcasesthe 

r otation of the centr al flow surf aces is similar f or the specified range 

of A because f or this range the corresponding values of 
In r h 

6e 
(fig . 11) a r e such that the passage walls parallel to the initial posi­
tions (~ = 0 ) of the centra l flow surfaces are too far removed to 
exer t an i mpor tant influence on the r otation (~ - ~O)' which is theref or e 
affected primarily by the angl e ~ , It is therefore concluded that: 

In r h 
(1) For values of ~ algebr aically l e ss than - 2, the r otation of 

centr a l Sl - s urfaces is about t he same f or ~ less than 1.0; and (2) for 
In r h 

values of 6e algebraicall y gr eater than - 0 . 5, the r otation of cen-

tral S2 - s urfaces is about the same for ~ less than 1 . 0 . 

Di stortion of flow surfaces . - Factors affecting the distortion of 
the flow surfaces ar e evident from figures 4 to 8 . In general, a sur ­
f a ce becomes distor ted if (1) the flui d line that gener a tes the surface 
approaches the vicinity of a corner in the re- p lane and (2) the cent er, 
or tangency point of the fluid line , moves closer t o one of the passage 
b oundaries . The r elative impor t a nce of these factors depends on the 
par ticular passage ge ometry and the or i ent a tion of the flow surface . 
From figure 4(b ) , if the fluid line of the off - center flow surfa ces is 
initially oriented (~ = 0) normal to the longer side of the pa ssage 
boundary, the fir st factor is of major importance. From fi gure 4(c), if 
t he fluid line of the off - center flow surfaces is initially oriented 
par allel to the longer side , the second factor is most important . For 
central flow surfaces, only the first f a ctor exists . 

It is clear ly evident fr om fi gure 4(d) that f or va lues of ~ con­
siderably lar ger th~n 1 . 0 the flow surfaces become grea tly distorted . 

Effect of 
In rh 
~. - Table II and figure 11 

----------------
correlati on of the par ameter A with the r atio 

indicate 
In r h 
~. 

an approximate 

Because A is 

an important parameter in the calculation of the r otation (~ - ~O) by 

N 
I--' 
(}l 
.....J 
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In r
h 

equation (7), this correlation suggests that ~ is an important 

parameter affecting the shape of the flow surfaces. 
In r

h 
~ 

In table .11 the value of is nearly the same for examples II 

and IV, and a comparison of these examples in figures 5 and 7 indicates 
great similarity in the shape of the flow surfaces. Also, in table II, 
ln rh ~e 

6e f or example I and In ~ for example V are of the same general 

order of magnitude. A comparison of the 81- and 82-surfaces of example I 

in figure 4(a) with the 82 - and 81-surfaces, respectively, of example V 

in figure 8 indicates considerable similarity. It is therefore concluded 

th t f th 1 f In rh . t . . 1 fl a) or e same va ue 0 6e ' or l s lnverse, aXla - ow passages 

of the type investigated have similar shapes of flow surfaces. 

SUMMARY OF RESULTS AND CONCLUSIONS 

Three-dimensional, incompressible, nonviscous, absolute irrotational 
fluid motion is investigated for flow through rotating axial-flow pas­
sages bounded by straight blades of finite spacing and infinite axial 
length lying on meridional planes. Solutions are obtained for five pas­
sage geometries described by various ratios of the logarithm of the hub -

In rh 
tip ratio divided by the blade spacing ~e' and the results are 
presented in such a manner as to apply for all ratios of axial velocity 
to passage tip speed. 

The solutions are used to determine the deviation of flow surfaces 
from their assumed orientation in the usual type of two-dimensional 
solution. This deviation is shown by the flUid-line pOSitions (inter­
sections of the flow surfaces with the re-plane) for equal increments of 
the angle a that the passage rotates about the z-axis as the flow 
surface deviates from its initial orientation. The deviation is con­
sidered to consist in (1) displacement in the re-plane of the center 
point of the fluid line, (2) rotation in the r8-plane of the fluid line 
about its center point, and (3) distortion of the fluid line in the 
r8-plane. 

Two types of flow surface are considered: Sl- and S2-surfaces 
initially oriented along circumferential and radial lines, respectively, 
in the r8-plane. The surfaces are central flow surfaces if they pass 
through the point of zero relative velocity at the passage center in the 
r8-plane; otherwise, the surfaces are off-center flow surfaces. 

- -------
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Some results of the numerical examples are: 

1. The centra-l flow surfaces rotate relative to the passage about 
a straight axial line through the point of minimum stream function near 
the center of the passage in the rB-plane. 

2 . For any off-center flow surface the envelope of the fluid-line 
positions in the rB-plane for various values of ~ is a streamline. 

Some conclusions resulting from the numerical examples are: 

1 . For values of ~ corresponding to conditions in typical axial­
flow blade rows, the deviation of flow surfaces is not large. 

2 . For values of ~ less than 1 . 0 radian, the rotation of 

central Sl-surface is about the same in all passages for which 
is algebraically less than - 2.0. 

3. For values of less than 1 . 0 radian, the rotation of the 
In rh 

central S2 - surface is about the same in all passages for which 
is algebraica lly greater than - 0 . 5. 

-xB 

4 . In general, a flow surface becomes distorted if (a) the fluid 
line that generates the surface approaches the vicinity of a corner in 
the rB-plane and (b) the center point of the fluid line moves closer to 
one of the passage boundaries . 

5. For values of ~ considerably greater than 1.0 radian, the flow 
surfaces become greatly distorted. 

6. For the same value of 
In rh 
-xB' axial-flow passages of the type 

investigated have similar shapes of flow surfaces. 

Lewis Flight Propulsion Laboratory 
National Advis ory Committee for Aeronautics 

Cleveland, Ohio, August 1 , 1952 
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APPENDIX A 

SYMBOLS 

The following symbols are used in this report. All symbols are 
dimensionless, unless otherwise specified. Velocities are expressed as 
ratios of the passage-tip speed; distances are expressed as ratios of 
the passage-tip radius. 

A 

r,6,z 

8 

s 

u,v,w 

02'1f 
parameter, which is the value of at the center point 

or2 
('If. = 1.0) about which the central flow surfaces rotate, 
equation (B3a) of appendix B 

cylindrical coordinates relative to rotating passage (fig. 1) 

flow surface generated by motion through passage of any fluid 
line consisting of the same fluid particles and extending 
from one boundary to another in r6-plane 

arc length along flow surface in r6 -plane 

relative velocity components in r, 6, z directions, respectively, 
(fig. 1) 

absolute angle that passage has rotated about z-axis from 
initial position at which fluid lines for 81- and 82-surfaces 
are circumferential and radial lines, respectively, in 
r6-plane 

~ angle of tangent to fluid line at its center point in r6-plane, 
measured clockwise from radial direction 

66 blade spacing in r6-plane 

t transformed coordinate, equation (4) 

* stream function in r6-plane, equation (2) 

stream function divided by ,I, equation (7) 
"'min' 

n r elative angular velocity of elemental arc ds, of central flow 
surface, rotating about point 'If. = 1.0 in r6-plane, expressed 
as ratio of ill' 

m' absolute angular velocity of passage about z-aXiS, dimensional 
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Subscripts : 

h hub (so that rh is hub - tip ratio) 

min minimum 

o initial position, when Q equals zero 

1 flow surface with circumferential line for initial position of 
fluid line in r8-plane 

2 flow surface with radial line f or initial position of fluid line 
in r8-plane 

Superscript: 

dimensional quantities 
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APPENDIX B 

ROTATION OF CENTRAL 81- AND 82-8URFACE8 ABOUT THEIR CENTER POINT 

IN re-PLANE 

If n is the relative angular velocity, expressed as a ratio of 
the absolute angular velocity of the passage about the z-axis, of an 
elemental arc length ds rotating about the point ~* = 1 . 0 in the 
rB-plane, then from figure 12 

n ds = dV ds cos ~ _ dU ds sin ~ 
ds ds (El) 

where 

dV = dV dr + dV de _ dV 1 dV 
ds dr ds de ds - dr cos ~ + r dB sin ~ (Bla) 

and 

dU dU 1 dU 
d'S = dr cos ~ + r dB s in ~ (Blb) 

At the point for ** = 1.0, however, u and v are equal to zero and, 
because the streamlines are normal to the passage center line, 

(B2a) 

so that the continuity equation (1) gives 

(B2b) 

and equation (3a) becomes 

(B2c) 

From equations (El) and (B2) 

or, from equation (2b), . 

(B3) 
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where 

Also) it can be shown from the definition of Q that 

Q=dJ3 
da. 

so that) f r om equation (B3) } 

or 

For central Sl - surfaces) ~O equals 900 so that 

~ A tan [~_ a,~A(2 - A)l 
2 - A 2 'J 

and 

For central S2 - surfaces) ~o equals 0 so that 

tan ~2 = ~2 ~ A tan [- a,tJA(2 - AU 

and 

tan(~ - ~oh = - ~ A tan [ a, 'V' A (2 - A)] 
2 - A 

- - -------

NACA TN 2834 

( 7a) 

( Th) 
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w 
u 

r----~V 

Direction 
of rotation 

z-axis 

Figure 1 . - Cylindrical coordinates and velocity 
components relative to rotating passage. 

rd8 

r 
Figure 2. - Fluid particle 

in rB - plane. 
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S, -surface 
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Dirc;ct':on of 
rotat':'on 

~ 
CD ·2656 

Figure 3 . - Centra l 81 - and 82- surfaces for example I with axial velocity w 
equal to 0 .6 . 
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(c) Off_center S2_surfaces. Figure 4 . _ continued. Fluid-line positions of flow 

surfaces for example 1 . Hub-tiP ratiO , rh' 0 . 700
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-----------

Direction or rotation 

-;* 

Sl - surrace 

. 80 

. 75 

Figure 5 . - Fluid- line positions of central 

Sl - and S2 - surfaces for example II. Hub ­

ip ratio, rh ' 0 . 7000 ; blade spacing , 6B , 

S
0

7' ; minimum value of -;, - 0 . 00157 . 
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r1rection of rotation -

Sl_surface 

NACA TN 2834 

Angle , 9/ t;9 
F1gure 7 . _ Fluid- line positions of central Sl - and 

S2- surfaces for example IV . Hub- tip ratio , rh ' 
0 . 50105 ; blade spacing, t;9 , 10ol~' ; minimum value of V, _0 .00544 . 

---------- ------
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Direction of rotation 

Angle , el M} 

Figure 8 . - Fluid- line positions of central Sl - and S2- surfaces 
for example V. Hub - tip ratio, rh ' 0.89453 ; blade spacing, 6e , 
100 13' ; minimum value of t, - 0 . 00231. 
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Tangent to fluid 

line of Sl - surface 

Tangent 

POint Orientation 

for a == 0 

Detail A ShoWing 

rotation (~ - ~O)l 

at tangent POint of 

fluid - line for 

ex > 0 

-

Direction of rotation 
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Fluid-line POsitions 

of Sl-surface~
 

DiSPlacement 

Of tangent 
POint 

+ 
Center 
POint 

Streamline 

Figure 9. - Definitions of terms uSed to describe deViation 

or flow surfaces from initial orientation in rG-plane at 

ex - 1 . 0. 
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Figure 10. - Variation in rotation (~ - ~O)l of central Sl-surfaces with angle u. 

Equation (7a). 
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dU 
ds ds 

dv 

rde 
ds ds 

dr 

n 
1V.= 1.0--

r 

Figure 12. - Elemental arc ds of a fluid line rotating about 
point at which stream function 1V. = 1.0 in re-plane. 
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