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SUMMARY

The actual buckling stress Oc.r can be calculated from the first
author's exact theory as well as by his method of split rigidities. Both
methods yield practically identical results. By the latter method simple
formulas are obtained which express the actual buckling stress Ocp
directly in terms of the column and local or plate buckling stresses.
Columns with box, I-, H-, and T-sections and angles are considered
seperately. Interaction of practically significant magnitude occurs only
in cases of flexural and torsional buckling. In these cases the addi-
tional effect of distortion of the cross section is also taken into
account. The theory includes buckling in the plastic range. No post-
buckling phenomena are considered in the theoretical part of the paper.

Tests were carried out for a considerable range of ratios of cor-
rected free length to radius of gyration on two sections, for one of
which the local buckling stress was in the plastic domain, and for the
other, in the elastic domain. The experimental buckling stresses are
in excellent agreement with those predicted by the theory.
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It is customary to consider that a column may buckle in either one
of two ways: (a) By deflection of the entire column in a half wave of
length equal to the effective column length (column buckling) or (b) by
plate buckling of its component webs and flanges in shorter or longer
half waves (local or plate buckling). In the first case it is tacitly
assumed that no distortion of cross section occurs, while in the second
the lines of intersection of the midplanes of the various plates are
assumed to remain straight. For a given column, buckling is supposed
to occur at the lower of the two critical stresses, column or local.

In reality, however, there is an interaction of these two modes of
buckling, so that the real buckling stress Ocy will be smaller than

either of the buckling stresses for column or local buckling.
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With column buckling the buckling stress o, 1is determined by the
Fuler or Engesser load. In figure 1 oy is plotted against the ratio

B = a/b of the half wave length a to the web width b, for example,
for a column section like that in figure 2(a). On the other hand, with
local buckling, which assumes the lines of intersection of the middle
planes of the plates to remain straight, the buckling stress 1s given
by oo in figure 1. The latter becomes minimum for a ratio B = a/b
of order of magnitude 1. If no interaction is taken into account for

B < B, in figure 1 the minimum plate buckling stress (02)min is
smaller than o07. Hence for an I-section with an effective buckling
length a, where a/b< B,, the plate buckling stress op 1is governing
and web and flanges will buckle in relatively short waves. If a/b > o
the column buckling stress o0, governs and the column buckles as a

whole in a single half wave.

Actually the buckling deflection consists of a deflection “wy of
the member as a whole, as it occurs with column buckling, and a deflec-
tion wp of the web, as it occurs with plate buckling (fig. 2(b)).
Assuming first an infinite rigidity against column buckling, w; will
be zero and a buckling of the web will occur at a stress op with a
maximum deflection wp and in waves with a half wave length a of the
order of magnitude of the web width b (a/b = B 1in fig. l). This web
deflection Wy will cause an external moment in the column as a whole.
Tt will result in an entirely negligible internal moment in the column,
however, since the latter is practically exclusively caused by the
deflection of the flanges alone. Hence, assuming the column again to
have a finite rigidity, this deflection wp has the same effect as an
initial deflection w3 < Wp of the entire column, causing an external
but not an internal moment. It is well-known that an initial deflec-
tion w; of a column causes an extra deflection of about EC/(OE - ccﬂ'wi,
where g is the actual compressive force and o 1is the elastic buckling
stress of the column (see reference 1). Since, for the very small half
wave length a of the deflection wp, the column buckling stress 04
for multiple-wave buckling is in most cases very high as compared with
the plate buckling stress 0Jp (compare o7 and op for a/b =By in
fig. 1), this means that the deflection w, causes a column deflection wq
which is smaller than [be/(cl - céﬂ Wo and hence very small as compared

with w,. This extra deflection vy increases the deflecting forces
-to, dx dy(agw/axe) that act on an element t dx dy of the web, while
it increases only slightly the restraining forces acting on that element.

Since wl«<< Y5 the increase of the deflecting forces will be relatively
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small, so that the actual buckling stress Ocy Will be only slightly

less than op (compare Opy and: o “for -afb ='gy - iIn ¥ig, l).

If, on the other hand, the I-section has an effective buckling
length a which is larger than the limiting value ap = Pob, so that

B =a/b 1is larger than Bo 1in figure 1, buckling will occur in a single
half wave. In this case, besides the deflection wp of the member as a
whole, a small deflection wp of the web (fig. 2(b)) will also occur
because of the deflecting forces -toy dx dy(62w/6x2) that act on each
element t dx dy.

In this case, in a similar way as above, the extra deflection Wo
will be of the order of magnitude [07/(0p - 01)) ¥; which is small as

compared with w; because for a/b 2 Bp, in most cases, 0o 1is very
much larger than 01 (fig. 1). The deflection Wo 1increases the
external moment in the colwan while it practically does not increase its
internal moment. Since, however, wp is small with respect to W1, the
actual buckling stress oc, will be only slightly smaller than 0y

The qualitative conclusions above are fully worked out quantitatively in
the theoretical part of the paper and are confirmed, in particular, by
study of the interaction equations (T4) and (75).

Considerable interaction occurs and governs the actual buckling
stress only if the individual buckling stresses 01 and o0p have their
smallest value for a half wave length about equal to the effective column
length. This happens, for example, with angles and T-sections, where for
flexural buckling as well as for torsional buckling (which is a simplified
form of plate buckling) both individual buckling stresses o, and op
are the smaller the larger the length of the column. In the latter case
?nteraction actually occurs between three individual modes of buckling

Tig.3).

In the theoretical part of the paper the exact theory for determining
the actual buckling stress ocr of arbitrary plate assemblies is given.
It leads to transcendental buckling conditions for Ocr which have to be
solved by trial and error. Furthermore, by the first author's method of

split rigidities design formulas are derived which express 0., directly
in the individual buckling stresses o] and 0o and for a column with
T-section in 01, 0o, and 3. As is customary, in all derivations

column deflections by shear were neglected.

In the experimental part of the investigation stress-strain tests
were carried out on square tube columns. Column tests were then carried

out using the stress-strain data to study the interaction of local and
column buckling.
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SYMBOLS

a half wave length of buckling

L column and plate length

b plate width

Gk constants

e = (E/Bg) - 1

n=s + 6qr

P number of waves (used in section entitled "Exact
Theory")

Py equivalent load, including influence of twisting

moments, transferred by plate to beams

q = a12 - CBXQ/D> in plastic range (used in section entitled "Exact

Theory")

q = a12 - W2 in elastic range (used in section entitled "Exact
Theory")

r = a22 + (BXQ/D) in plastic range (used in section entitled "Exact
Theory")

rh= agg + we in elastic range (used in section entitled "Exact
Theory")

r radius of gyration

TS polar radius of gyration about shear center

2
A o) :
51,0 = —T—(Bl,gx = A1,2“cr> in plastic range
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i 2 ; ;
51’2 = TFCBI:QX - Al’eoca in elastic range

15
=S - 9r2

v=28 -60qg°

X,¥52
yO

A,B,D,F,G,H,K

Ao

plate thickness

(used in section entitled "Exact Theory")

(used in section entitled "Exact Theory")
deflection

coordinates

distance between shear center and center of gravity

constants in theory of plastic plate buckling (used
in section entitled "Exact Theory")

cross section of beams (used in section entitled
"Exact Theory")

total cross section of columns

total cross section of webs situated perpendicular
to direction of buckling

total cross section of flanges situated perpendicular
to direction of buckling

flexural rigidities of beams (used in section entitled
"Exact Theory")

constants

warping constant

deflecting force in method of split rigidities
modulus of elasticity

secant modulus

tangent modulus

modulus of rigidity

moment of inertia
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IP polar moment of inertia about shear center

Iy Saint Venant torsion constant

M bending or torsional moment

N plate flexural rigidity

Q transverse shear

R resisting force in method of split rigidities
S shear center

Vv energy

XXy Z coordinate axes

al,E’al,Q' given by equations (8), (11), (27), and (28)
3 ratio between half wave length a and plate width b

a,y,e,n,n3,6,u,¢ coefficients in method of split rigidities

A

. n reduction coefficient for plasticity
=" par/L (used in section entitled "Exact Theory")
% Poisson's ratio
(o] normal stress
T=q+r (used in section entitled "Exact Theory")
¥ o= bVEE;;7ﬁ (used in section under "Buckling of I-Section in

Direction Perpendicular to Plane of Web" entitled
"Comparison with Exact Theory")

v = Ipw/Ip, where Ip is polar moment of inertia of web about shear
center (used in section under "Buckling of Columns with
T-Section" entitled "Critical Stress for T-Section with
Fixed Shear Center Axis")

s reciprocal spring constant of restraining plate
(used in section entitled "Exact Theory")
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EIDV (used in section entitled "Exact Theory")

@
Il

1=
|

= to../EI (used in section entitled "Exact Theory")
THS FEOSRS LSS GAATT STV RIS SRS S G AT S @81
EXACT THEORY

The exact general theory of elastic as well as plastic buckling of
plate assemblies was published by the first author (references 2 and 3).
It will be summarized here to the extent that it is used in this paper.

Consider an asymmetric column, consisting of a web plate with
width b and thickness +t, which is supported at both unloaded edges
by flanges of different width 2b' and thickness t' (fig. 4(a)). Let
the web plate be the "buckling" plate which is restrained at both edges
by the flanges, the "restraining" plates.

The X-axis is chosen in the longitudinal direction of the column,
while for the buckling plate the Y- and Z-directions are chosen as shown
in figure 4. Hence the differential equation for the buckling plate is,
for the general case of plastic buckling (references 3 and L4),

L L
3w W o'w d%w
EIE\ SCh + 2(B + QF)ax2ay2 + D " S i 0 (1)

where I = t3/12 and Ocy 1s the buckling stress oy. .For pure com-

pression, as occurs here, A, B, D, and F, if expressed in terms of
the secant modulus Eg, the tangent modulus Ei, and Poisson's ratio V,

are (reference L4):
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Vo = 2 - 2(1 - 2v) (Ey/E) L (2)
Y3 = b

W, = (5 - bV + 3e) - (1 - 2v)2(By/E)
F =1/(2 + 2V + 3e)

e = (E/Bg) - 1

/
With VvV = 0.5 these values reduce to those used by Stowell (reference 5):

A

I

(1/3)(Bs/E) + (B¢/E)
(2/3)(Eg/E)
D = (4/3)(Eg/E)
F = (1/3)(Eg/E)

B

In the elastic domain in equations (2) e =0 and Eg = By =B, g0 that
equations (2) yield:

a=0=1/(1-v9
= v/(l - v2) \ (3)
1/[2(1 + v)]

lov}
|

=
1l

J

With sufficiently long members and a plate length L it may be
assumed that

w = Y sin(pnx/L) (&)
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in which Y is a function of y only and' p is the number of half
waves in the X-direction. Insertion of equation (4) in equation (1)
yields

2
D QEI - 2(B + 2F)a2 &% (Ax2 4 ¢2)x2Y =0 (5)
ay™ dy©
in which
A = pr/L
(6)
$° = tocp/EI

With Y = €™ +this leads to

W o= (Cl cosh uy + C2 sinh a;y + C3 cos apy + C) sin agy)cos Egz Gir)

with

o0 p = VéGxe + AWHAS + Kg° (8)

in which
N
G = B + 2F
D
2
g, Bt @H) - 4D : (9)
D2
S
K= 3 J

On the other hand for the restraining plates, with thickness t',
a similar equation such as equation (1) also applies. Considering, for
example, the lower half of a flange, as sketched in figure 5, this leads,
analogous to equation (7), to the general equation of the deflection
surface
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= (Cl' cosh al'y' + C,' sinh o ‘¥ F C3' cos qg'y' +

C)' sin ag'y')cosG%?g (10)
with
o0, = V4Gx2 « D2 + k(g2 (11)

in which (¢')2 = t'0.p/EI' and I' = (t')3/12.

Since the buckling and restraining plates are rigidly connected,
» = pn/L has, of course, to be the same for all plates.

Dealing first with the restraining plates, for the sections dealt
with in this report it is only necessary to consider the case of figure Dl
Let the buckling plate exert a moment My' = M cos(pnx/L) on the
restraining plate. In the plastic domain the bending and twisting
moments in the restraining plate are (references 3 and k4)

— - =
d2y! d2y!
' = .BI'|A —— + B ———
E i R
[ 32 32y
' = -BEI'|B —% + D ——5
! My e (59)2
I Al 6 (12)
bt ; D%y
My = -2BLF so=ov
= -M_)qy'
J

Hence at y' = 0, where w' =0 and 32w /3x? = 0, the boundary condi-
tions are, from equations (12),

w' =0 (13a)
and

el M cos XX (13b)
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At y' =Db' (fig. 5) the plate is free, so that ' = 0 and the so-
called equivalent load py' = 0. Choosing the positive directions in

the same way as in reference 6, figure 160, page 295, and using the
equation for the transverse shear from reference 6, page 297,

Pl == '-M:-.B_I&'_-FBMW'_BWX'
VA Qy ox ox

oy!' ox

or from equations (12)

33w 3w
' =EI'|D ——= + (B + bF)——— (1k)
5 dx°dy 'J

Hence from equations (12) and (14) at y' = b' +the boundary condi-
tions My' = 0 and py' =@ are

250 28
Baw2+D 5W2=o (13c)
ox (oy")
3 By
D—al-§+(B+l;F)-—aél”——=o (134d)
(dy*) 0x<dy"

Inserting equation (10) in the four boundary conditions (13a) to (13d)
yields the constants Cq', Co', C3', and C)' in equation (10), so
that the angular rotation at y' = O can be computed from equation (10),

ow'
dy "

1l

pIX
(Cg'al' + Ch'qgo cos T

(My") o (15)

The value 1/V = (Myf>y.=o/(8w'/8y')y,=o may be called the spring

constant of the restraining plate. Hence

(O}
Il

EIDV

EID(3w' /3y") /My (16)




which value will be used in the boundary conditions of the buckling plate, may be computed,
yielding (reference 3, equation (56), p. 60)

o (t)3 [(al')Q(r')z - (0.2') 2(q‘)2:|sinh al'b' sin ay'd' - al'ae' [(q')2 + (r')2:|cosh cx,l'b' cos c12'b' - 20y 'ay'q'r!

& (17)
i [(c,l’)z 4+ (ae')ﬂ [al'(r')ecosh al'b' sin a,'d' - ae'(q')esinh o 'b' cos 02'b':]
where
q' = (a,")® - (2A2/D)
rt = (ap') + (222/p) (18)
A =tpa /L
If a,' becomes imaginary, with @t = a;" and ap' = iay’,
3. <_§_>3 [(aln)z(rn)z = (agll)2(qll)2]sinh alllb! sinh (lg"b' = 0‘:]_"(1'2" [(qn)z i (r")2JCOBh (Il"b' cosh QQ"b’ - 2(11"(12"(1"1'" (l7a)
3 [(@1")2 = (@2")2] @1"(r")2cosh a,l"b' sinh ay"b' - a2"(q")281nh o.l"b' cosh ag"bzl
where
q" = («,")" - BAE/D
(18a)
T = -(a2">2 + BXE/D

If more than one restraining plate like that of figure 5 meets at y' = 0 the total spring

constant
1. z I (19)
V. v

& 4 * s « '

ot

0h92 NI VOVN
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so that for a symmetrical flange l/‘\lrt = 2/¢ and Yyt = W/Q, or from
equation (16)

64 =" /2)8 (20)

Considering now the buckling plate (fig. 4(b)), the restraining
plates are at the same time the "beams" by which the buckling plate is
supported. At y = 0 (fig. 4(b)) the difference between the transverse
shearing forces acting on an element dx of the left beam will have to
be in equilibrium with the equivalent load Py transmitted by the
buckling plate and the resultant of the compressive forces A 0., acting
on the beam element dx. Here Al is the cross section of the left

beam. The pertinent equilibrium condition is given by the equation
(reference 6, p. 346):

N
B Q_W=p -Alccré’_a"’5 (21)

Lok ¥ ox

in which By 1is the flexural rigidity of the left beam about its major
axis. At y =0

py:Qy“Lh

)
ox

a_Ml/.__ah-g-%

T dy ox ox

or, from equations (12),

N 33w 33w
Bt -EIE) ay—3 + (B + hF)Bxeéy] (22)

so that from equation (21) one of the boundary conditions of the buckling
plate at y = 0 1is (reference 3, equation (I), p. 61)

L 3 3 2
o'W |E)a_w+(B+1+F)aW:|+Alccraw=O

B + EI =
134 dy3 Oxdy dx2

The other boundary condition at y = 0 follows from equation (15).
: o 1
Figures 4(b) and 5 show that for a one-sided flange Myl = (My )y'=0
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and (Bw/By)y=o = (aw'/ayr)y,=o, so that equation (15) becomes

%;‘ =i Mylwl (23)

From figure 4(b) M.yl is a negative moment. By equation (16) ¥, may

be expressed in terms of 91. For a symmetrical flange 6, 1is given
by 64 in equation (20), where 6 follows from equations (17) or (19a)..

The subscript 1 refers to the left flange (fig. k(a)). Hence from
equations (12) and (16) equation (23) yields as second boundary condition
for y = O (reference 3, equation (II), p. 61)

ow (é >%w 62w> 2

In the same way the boundary conditions for y = b become

L ! 3 e
o'w o w o~w )
B - EI|D — + (B + UF) + ArO.pn —= =0
s 5XH [ 3 8x25¥] i d%°

dw (5 38w 52w> o

Lo l=E——C et =
oy D 3x2  dy°

The subscript 2 refers to the right flange. Insertion of equation (7
in the four boundary conditions for the buckling plate leads to four
linear homogeneous equations, which yield only values of the constants
different from zero if the denominator determinant vanishes. This leads
to the general buckling condition (reference 3, equation (61), p. 62)
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: £) 4
{%12[;152 - a2272 s (6152 2 9281>r + 616,r ] -
Sela- Ba = (0185 + Ong 2+99u+GQSSTPSinhabSin b -
2% [s182 - (6182 + O281)a 1829 “eCain 1 %
2
Xy [25152 - (91 + 92) (Sl + SE)T + 2(9152 + ezsl) qr +
29162q2r2jlcosh a7b cos anb + aQT{a.lE [sl + sy - (91 ¥ 62)1"2] -
(9 iy >s 5, + 610,(8; + 5.\ g2 sinh aib cos asb + alle, + 8o -
i 2 R 2( 1+ 8p)a 1 i R R s L

2 :
cosh alb sin a,gb +

(61 + 92)q2] + (91 + 92) S18p - Qleg(sl + sg)r

|
o
" ae 3
o
L

20“1“2 l:sls2 + (9182 + Qgsl)qr + 9192q2r2:|

in which

n
1

(322/p)

Pl (222/p)

- (25)

OAMEAZ + K@°

i 2 B
81,2 = Eip L2 = 84,200y
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For the elastic range

that from equations (9)

NACA TN 2640

A, B, D, and F are given by equations (3), so

G =1
H=0
K=1- v

(26)

The same buckling condition (24) obtains here, in which, consequently,

while in equation (17)

a0 = V@XE + Moy /N

_‘
Il
N
>J
P
Q
(@)
H \
\
=

o o' = V&xe + Mt oo /N

q' = (al|)2 - V)\,E

= Qxev 24 vxz
n ET'

o e

3

/

For an I- or H-section where both flanges are alike 61 = 6p

and s; = sp = 8 by which equation (24) transforms to

(28)




3Q

NACA TN 2640 LT
(a12u2 - a22v2 - Q12G22T2 ot QESETE)Sinh a;b sin agb -
2ala2<w2 - 29s72) cosh o.'lb cos asb +
2a2T(012u - Gsv>sinh alb cos anb +

2T <a,22v + esu) cosh alb sin asb + 2ala2n2 =0 (29)

in which

u=s—9r2

Il

vV =8 - E)q2 (30)

n=s + 0qr
while 6 1is given by 64 from equations (20) and (17).

If the deflections of the beams (the flanges) in their own plane
are neglected, so that s = o, equation (29) reduces to (reference 3,

pp. 59 and 63):

a, tanh (cclb/E) + ap tan (a2b/2) + 61t =0 (3%)

This condition applies for any symmetrical rotational restraint of the
web. In reference 3 the pertinent expressions for 6 were derived for
several cases. For I- or H-sections 6 is given by 6 from equa-
tions (20) and (17).

With relatively narrow and thin flanges, the rotational restraint
exerted by the flanges on the web may be neglected, so that 6 = o and
equation (29) transforms to

(0,12:('u - c:n22ql1L - sarg) sinh a;b sin asb - 2ala2q2r2 (cosh cnlb cos apb - l) +

2

2a,q“sT sinh a;b cos a2b - 2alr2s1' cosh alb sin a2b =0 (32)

For a T-section, where the web may be considered as the buckling
plate, at the free edge of the web 8> = 0 and 62 = o. Denoting 81




18 NACA TN 2640

and 67, which refer to the restrained edge, by s and 6, equation (2k)
transforms to (reference 2, equation (34))

(alerzu - mgzqgv)sinh alb sin a2b - alae(qzu + rev)cosh a,b cos apb +

a27<m12r2 - qu% sinh aqb cos a2b +

o, T (as2g2 + 68T°) cosh aqb sin asb - 2oqa =0 (33)
il e 1 2 ety 33

where 6 is given by equations (20) and (17).

For an angle with equal legs the legs may be assumed to transfer no
bending moments to each other, so that 6 = «. Consequently from
equation (33) the buckling condition for each flange becomes (reference 7,
equation (40)):

(alerl+ - aggqg sinh a;b sin agb - 2a1a2q2r2<cosh aqb cos agb - 1) +

2 2

a,q°sT sinh b cos azb - ajrsT cosh aqb sin asb = 0O (34)

In case of a T-stiffener or a column of a section as given by fig-
ure 6, at edge 1 sy = » and 6; = ®, so that, denoting sy, and 6p

at edge 2 as s and 6, equation (24) transforms to

2

6sT= + almeTecoth alb cot agb -

a2T<6q2 = % cot agb - alT(Gr2 - % coth ajb = 0 (35)

This case was completely worked out in reference 8, chapter 2.2. It

was found that in case of a T-shaped steel sheet stiffener, which buckles
at the yield stress, the interaction between the two modes of buckling,
that is, torsional and local buckling, was negligible.
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DERIVATION OF INTERACTION FORMULAS BY METHOD OF

SPLIT RIGIDITIES

The method of split rigidities divides the elastic or elasto-plastic
behavior of a composite structure into its component parts. After the
individual buckling stresses for these component parts are calculated,
an interaction formula, which combines the individual critical stresses,
gives the actual critical stress of the composite structure.

This method was previously applied to the calculation of the critical
stresses of built-up columns (references 8 and 9) and to flexural and
torsional buckling of angles (references 7, 8, and 10) and open sections
in general (reference 10) as well as to the calculation of critical
stresses in sandwich plates (references 1 and 11). The application to
sandwich plates was very extensively explained in reference 1. In its
application to the interaction of column and local buckling the method
has to be used in a more generalized form. If two or more modes of
deformation are involved in the buckling process, such as column buckling
on the one hand and plate buckling of the web on the other in the case of
an I-section, these two types, denoted as cases (1) and (2), respectively,
are first considered separately. While one type is considered, the
rigidity against the deformation of the other type is assumed temporarily
ok bedintinite.

In considering cases (1) or (2) separately, an equation may be
established between the internal reactions and external actions. For
case (1) above, for example, it is appropriate to compare the internal
and external bending moments. In other cases, for example, case (2)
above, it is convenient to establish an equation between the restraining
and deflecting forces acting on a small element of the plate. In general
for each case the most appropriate internal and external actions should
be compared, which may, for other cases, differ from those mentioned
above. For each separate case the external actions (bending moment,
deflecting force, or otherwise) are directly proportional to the buckling
stress for that case (07 or op for cases (1) or (2), respectively) and
to the deflection with buckling (wp or wp, respectively). Hence these
external actions may be expressed in these values: 01, W; Or Jdp, Wo.
Since during incipient buckling the internal actions are equal to the
external ones, the former are also expressed in 015 Wy and 0Jp, Wy

for cases (1) and (2), respectively.

For the actual combined case, with buckling stress Oc.r and deflec-
tion w = wy + w,, the deflections wy; and w, are of form similar to

those for the separate cases or are assumed to be so. Consequently the
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internal actions caused by these deflections are assumed to be also
equal to those for the separate cases. Hence the total internal action
mey be expressed in terms of 0y, 0p, Wy, and wp.

On the other hand the total external action with actual combined
buckling is proportional to the actual buckling stress 0., and may be
expressed in terms of 0., and of a linear function of the deflections
w1 and wp. Writing down the equalities of internal and external

actions, firstly for the particular actions considered in case (1) (in
the chosen example the bending moments) and secondly for those considered
in case (2) (here the restraining and deflecting forces acting on a

small element) two homogeneous linear equations in wp and w, are

obtained, from which the buckling condition is found by equating the
denominator determinant of these equations to zero. Since this deter-
minant contains oy, 0p, and 0, this gives a formula which expresses

Ocy 1in terms of the known individual buckling stresses o; and O0p.

In order to show more directly how this method is applied, the
explicit case of an I-section column will be considered first. In the
section entitled "General Case of Columns with One or Two Planes of
Symmetry" the general case of sections which are symmetrical with one or
two axes will then be dealt with. In the sections entitled "Buckling of
Tubes with Square Cross Section" and "Buckling of Columns with H-Shaped
Cross Sections" cases of special sections, that is, tubes and H-sections
which show some special features, are examined. It follows that for all
these sections the interaction is in general negligible.

The interaction is important only if the web that is perpendicular
to the direction of column buckling is simply supported or elastically
restrained at one side and free at the other side, so that a combination
of flexural and torsional buckling occurs. This case occurs with
T-section columns and with angles. These sections are dealt with in the
sections entitled "Buckling of Columns with T-Sections" and "Buckling of
Angles with Equal Legs."

Buckling of I-Section Column in Direction Perpendicular
to Plane of Web
Derivation of interaction formula.- First an I-section with com-
paratively narrow and thin flanges is considered (fig. T7(a)) so that,

when the web buckles, practically no rotational restraints are exerted
on it by the flanges.

If the column buckles in a direction perpendicular to the plane of
the web, its deformation may be split into two parts: (1) Buckling as a
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column, without distortion of the cross section (fig. 7(b)) and (2) dis-
tortion of the cross section (fig. T(c)).

If only case (1) occurs with buckling in a half wave of length a
the buckling stress is

nQE
b i 6
S (a/r)z (36)

where E; 1is the tangent modulus and r 1is the radius of gyration of
the cross section. In the elastic range, Ei = E.

With a deformation according to case (2) alone, where, as stated
above, the web is practically simply supported at the unloaded edges,
for the same half wave length a the buckling stress would be (refer-
ence 3, equation (37) or reference 1, equation (34))

a5 = ﬂEEI'B@/BE) + 2(B 42F) + DB%] (37)

bet

or in the elastic domain

neN il >2
Shm. LR 8
% b%(ﬁ (38)
where
J
B = a/b (39)

In order to obtain the interaction formula, an equation will first
be derived which expresses the equality between the external moments and
the internal moments in the cross sections of the column.

If only a deformation according to case (1) occurs, involving at an
arbitrary point a deflection wy (figs. 7(a) and 7(b)) it follows from

the equality of internal and external moments denoted by M; and Mg,
respectively, that M; = M, or

Mll = PlWl = Accrlwl ()4'0)
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in which A. 1is the cross-sectional area of the column. This equation
holds in all cases where the deformation Wy has the shape of a sine
wave, no matter whether it is produced by an actual critical load Py

or by some other agent which causes the member to deflect in this shape.
This is so because the internal moment is merely a function of the
curvature. For the case of sine-wave deflection this curvature is
proportional to the deflection itself at all points, so that internal
moments are given by equation (L40), no matter what the cause of the
sine-wave deflection.

This will also hold true for the plastic range, if P; or o7 are

calculated from equation (36) by using the tangent modulus corresponding

to the actual axial stress Gas in the column.

Assume now that a complete deformation according to figure 7(a)
occurs by buckling with a half wave length a. Then by the deformation
according to case (1) the internal moment is given by equation (40). By
the deformation according to case (2) (fig. 7(a)) the deflection of the
web will vary in the Y-direction according to a curve which may be
approximated sufficiently accurately by a sine wave. (This would actually
hold true for w; = 0.) Hence the average deflection of the web from

case (2) is about (2/n)wp, With concentric cylindrical buckling of
the single web with a half wave length a the buckling stress for the
elastic range would be

02c 2

or from equation (38)

Il
=
Q
N
—
=
no
N’
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Hence, in the same way as shown above, it follows from the equality of
internal and external moments that, with a cylindrical deflection wo.,

N eoT
M; = AySoc¥oc
= AWT)UEW2C (18)
where is the cross-sectional area of the web. Therefore the

average deflection (2/n)w, from case (2) causes an internal moment
TP g (44)
0. = g NS te

Consequently with buckling according to figure 7(a) the total internal
moment is, from equations (40) and (44) M; = My; + My, or

My = A <crlwl + 2 A_W. n02w2> (45)
T A
From equation (L42)
r="ij{ kAl (46)

With the additional notation

o Ay
p== A (&7)
Equation (45) becomes
My = M;y + M5
= AC (lel 7+ T]¢O'2W2> (48)

If the actual critical stress is o© deflection w1 from case (1)

cr’?
causes an external moment M.y = A, 0.,W; while deflection w, from
case (2) causes an external moment Mo = A 0cp % wo. Hence the total

external moment is
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Mg = Meg + Mep
= AcOcr¥Wy + Aycr % w2 (L9)
or, using equation (47),
Mg = Acoep(vy + fvp) (=0

Since M, and Mj have to be equal, equations (48) and (50) yield,
since A. cancels,

Oep(W1 + Pup) = oqwy + n¢02w2 (51)

which gives one equation for finding the interaction formula. Another
equation can be obtained by expressing the equality of the deflecting
and restraining forces acting on a small element of the web.

If only a deformation according to case (2) occurs (fig. T(c)),
that is, 1f w; in figure 7(a) were zero, the critical stress in the
elastic domain is o0, from equation (38). For the equilibrium shape
of the middle plane in case (2) at an arbitrary point P of the plate
the deflecting force acting on a small element +t dx dy is
Dy, = -top dx ay(92w/3x?) .

Since for the same shape of the middle plane at that particular
point P +the second derivative d°w/dx2 is proportional to the maximum
deflection wp, of the plate, Do is proportional to op and to Yo

and hence it may be denoted by copwp. Here ¢ 1is a proportionality

factor which is a constant only for the given point P and for the same
shape of the deflection surface, but is different for different points of
the plate. Since the restraining force R, acting on the element and
caused by the transverse shear stresses is equal to the deflecting

force D2 it follows from the equation

R2 = D2
that
R2 = C02W2 (52)

In the elastic domain the restraining force depends only on the
shape of the middle plane of the plate. In the plastic range the ratio
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of internal moment to curvature depends on the modulus and thus on the
magnitude of the average compressive stress. Hence equation (52) remains
true in the plastic domain even if the compressive stress differs from
Op, provided that in calculating 0o from equation (37), values A, B,
D, and F are calculated for the actual compressive stress o.p.

Considering again the actual deformation of the column during
buckling according to figure T(a), it follows that the deflection w
from case (2) causes a restraining force Rpo according to equation %52).
The deflection w; from case (1) causes a cylindrical bending of the

web. If only this cylindrical bending occurs, the buckling stress of

the web is equal to o0p. from equation (42). In that case the average
deflection force D acting on various elements of the web would be

greater than CO,.Wq because the proportionality factor c¢ for a given

point P of the web, as stated above, applies to a shape of the deflec-
tion surface similar to that of wp, (fig. T(a)). The influence of the
deflecting forces is the greater the greater the distance of the elements
on which they act is from the edges of the web. Hence their influence
may be expressed fairly well by comparing it with that of continuously
distributed loads (proportional to W] or wp) on the bending moment

in the middle of a simply supported beam with span b. For a uniform
load q representing a distribution like W1, in the middle (y =0 ta

fig. 7(a)) this bending moment is % gb2. Tt is jE gb2 for sinusoidal
T
distribution like Vy. Therefore as an average the deflecting force Dy

on an element in case only deflection W1 occurs may be expressed as

D, = (n2/8)c02Cwl. With the notation

y = 12/8 (53)

it follows then from the equality of restraining and deflecting forces,
or Ry = Dy, that

Rl = C7O'2CW1 (54)

Consequently the total restraining force acting on an element of
the web with buckling according to figure T(a) is, from equations (52)
and (54), R =Ry, + Ry or

R = C02W2 o C702CW1 (55)
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or, using equation (L2),
R = cop(wp + nYwp) (56)

With the actual critical stress 0.y deflection W, causes a
deflecting force co.,Wp while deflection W, causes a deflecting
force c70.,W]- Hence the total deflecting force is

D = cOp(Wp + 7V (G

Equating this deflecting force to the restraining force from
equation (56) yields, since c cancels,

Ocp(¥2 + IM1) = 9p(Vo + M7¥1) (58)

Equations (51) and (58) are two equations with three unknowns,

Ocys  W1» and wp. This is necessary and sufficient, since wy and wp

have a common arbitrary factor, so that only the ratio w2/wl has to
be known. Writing equatiaons (51) and (58) as follows:

|
o

(01 - Ocp)wWy - ¢(°cr = Moo )Ws =
(59)

7(Ocy - M0p)Wy = (02 - Ocp)Wp = O

the buckling condition is obtained by equating the denominator deter-
minant of these eguations to zero, yielding

AL

Ser = BT gyt (2 - P2 -

Vﬁ?l + (1 - 27¢n)0é]2 - k(1 - 7¢)<Gl - 7¢n202>02 (60)

in which, from equations (46), (47), and (53)

2 (46)

e
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¢=§% (47)
7 = %E (53)

so that
"8 = g% 0. 78A‘: (61)

while o, and o0, are given by equations (36) and (37) or (38).

Comparison with exact theory.- In order to check the accuracy of
equation (60) its results will be compared with those of the exact
calculation, according to which the buckling condition for this case
is given by equation (32). It is glven also, though in different nota-
tions, by equation (t), page 347 of reference 6. For several channel
sections with narrow flanges figure 182, page 348, of the same reference
gives values of V against the ratios a/b = B. With the notations of
the present report

tccr
V=Y (62)

A check of this graph shows, however, that the moment of inertia of the
supporting beams, the flanges, with a width d and a thickness t,

has been erroneously assumed for these channels to be equal to EE td3

instead of to half of that of the entire cross section with respect to
the axis of inertia parallel to the web. Hence the curves actually
apply to I-section columns with flanges of width d rather than to
channels. The curves for d = 4 inches and d = 2 inches are reproduced
here in figure 8, where also the pertinent cross section is given. The
Euler curves for the same I-sections, plotting 0 according to equa-

tion (36) with E; = E, are given in figure 8 by the dashed curves. All
curves refer to the elastic range.

Although the web width b should theoretically be measured between
the middle planes of the flanges by which it is supported, for a correct
comparison it will be measured here between the inner faces of the flanges,
as was done in the exact calculation in reference 6. According to equa-
tions (36) and (38)5 with E{ = E and for a flange width d = 4", a

web width b = 15 13? , & plate thickness t = 5/16", and Poisson's
ratio Vv = 1/k.
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o1 /E = 4.50/a2 (63) .

0p/E = o.ooo3u5<s + %)2 (64)

while from equation (61)

=052 (65)

For several ratios B = a/b values of 7, o07/E, and 62/E have been

calculated from equations (L46), (63), and (64), respectively. Hence
GCT/E is computed from the approximate interaction equation (60). The

results for d = L4 inches are given in the table below. Corresponding
approximate values 1 from equation (62) have been computed and inserted
in the table as V.p. These values have to be compared with the exact

values according to figure 182 of reference 6 or figure 8 of this

Vex
report, which values are also given in the table.

a
(ii.) B = -~ n °1/E % /5 Ocr/E | Ver | Vex PZ?;E?t ;
L 1 ON25 0.0181 | 0.00138 | 0.001338| 6.20 | 6.20 0
2 ollt L0052 | .00215 | .00166 | 6.90 | 6.90 0
2.5 .019 .00289 | .00290 | .001706 | 6.99 | 7.00 -1k
3 .01 .00201 .00383 .001522 | 6.60 | 6.70 | -1.50
3.5 | (.0057) .00148 | .ook95 | .001246 | 5.98 | 6.05 | -1.15
6 (.0007) .00050 | .01312 | .0oOk69 | 3.67 | 3.72 | -1.35

Tt follows that equation (60), derived by the method of split
rigidities, is very accurate and deviates but slightly to the safe side.

For an I-section with d = 2 inches, according to equations (36)

and (38),

o1/ = 0.73/a2 (66)

2
Op /B = o.ooogh5(e + %> (67)

while from equation (61)

g = 0.62 (68) P
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REeortthis
same way

cross section the pertinent values have been calculated in the
and are given in the table below. Values of V., have been

obtained from figure 182 of reference 6 or figure 8 of this report.

d =8 o o s s Percent
[dn.) P b i B = Ocr/P = £ error
2 il 025 0.00294 0.00138 10.00014T7] 5.73 115.685 -2.2
2 .0k .000735 | .00215 | .000611| 4.18 | 4.08 2.5

L4 (.0035) .000184 | .0062% | .000176| 2.2k | 2.24 0

Here, too, the agreement between V., and Vox 18 very satisfactory.

In figure 8 values V., from equation (60) are given by circles showing

the excellent agreement with the curves. The cross section of figure 8
is unusual, since the moment of inertia with respect to the minor axis
is very low as compared with the cross-sectional area.

Simplified, more approximate interaction formula.- For normal
I-sections or channels the values of 07, 0p, and Ogp, if plotted

against the ratio B = a/b of half wave length a to web width b,
will vary as in figure 1. The buckling stress is governed by the
horizontal line AB for ratios B between B; and B, and by the

curve for o.,. for about B >Bo. At A, for B = B1s
high as compared with op. For B =2 Bs, on the other hand,
very high with regard to oy. Equation (60) may be written as

o, 1is very
0'2 is

Aol 7¢n202)0é

_0p + (1 - 29Pn)op : )
[cl ¥ {1 - 27;2571)02:]

= 2(1 - 79) (69)

a

If now oy is much higher than O, such as is the case for B = Bl, the

last term under the radical is very much smaller than unity. Denoting
this term by ¢, the term in the braces can be written as follows:

1l - Vl -€=1 - (1 - % € - % 62 s .)

(70)

Il
ol f o
m
/T_]\
+
=
m
+
T
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in which

W e
P (1 - 78)(op - 780 0p)0s ep
[o1 + (1 - 27¢n)0é]2

From the derivation of equation (69) it follows that conservative values

for o., are obtained if n 1is equated to zero, so that from

equation (71)

N 4L(1 - y@)oqop )
(Ul * 02)2

Hence from equations (69), (70), and (72)

g0 (1 - 7P)o1%0p

o e (73)

cr & 0 + Op

Since 0y >> 0o, in the last term in the brackets 012/(01 ot 02)2 may
be equated to unity, so that equation (73) reduces to

o
Tey ™ (1 - 79 oy + 0y e

o, + (1 - 78)o
- A (7%)
0, + 0p

In the same way at B 2 B,, where as a rule o, >> 0p, it is
found that

O
O%cr ~ (l - 79 oy + 02>01

o, + (15 7¢)cl

s (75)
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Since 7@ 1is always smaller than unity, this yields for B = By as
well as for B 2 Bo the conservative values

S
cr oy + 02

? (cl-l A 02'1)‘1 (76)

Criterion for range of negligible interaction.- From equation (74)
for B =B, the decrease of 0. p with respect to o0, due to interac-
tion is

Q
Il

(A0)p = 05 - Ocy

B (77)

Ul+0'2

From equation (75) for B = Bo the decrease of 0., with respect to
ol ks

(A0)y = 07 - O¢r

3 _07‘?5210 o) (78)
2 i

At B = Bl value o, 1is equal to oy for B =Bo (fig. 1), so that
from equation (77)
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It should be noted that this equation, as well as equation (36),
neglects the influence of shear deformations, as is customary. However,
for such small buckling lengths as considered here (for B = By the
buckling length a =% Db) the shear deformations may substantially decrease
the buckling stress o7. It was shown in an unpublished paper that this
does not influence the resulting governing interaction as expressed in
equation (93). From equations (79) and (80)

(a0)p = —28 (81)
e (B2/B1)® + 1 ’

On the other hand, at B = 82 the value o; 1is equal to op for
B =8, (fig. 1), so that from equation (78)

79(92) 4
(80), = L (82)
(02)B=32 = (02)B=Bl
From equation (38)
_ (1/82) - 82_]2 (83)

=gy = [(1/p1) + p1 | (2e=py

so that from equation (82)

= g 8l
“e (1/82) + Be|® & o

+ 1
(1/81) + B

The stress o, from equation (38) is minimum for B = By = 1. Assuming,

for an example, the rather low ratio Bg/Bl = 10, so that 82 = 10, and
using equation (61), equation (81) for B = By yields

0. 784, /Ac

Gl Tol 2

Il

0.0077 %g o5 (85)
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Equation (84), for B = Bp, gives

1l

O.TSAWZAC .
20.5 2

A,
0.030 T oy (86)

(a0)

With A, /A. = 1/3 or 2/3, equations (85) and (86) give decreases
(Ac), and (Ac); of 0.00260, or 0.00520, and 0.0lo; or 0.0207,

respectively, and thus maximums of 1/2 and 2 percent, respectively.
From equations (81) and (84) the interaction is the smaller the greater

the ratio Bp/B1, so that for Bp/B; 2 10 it is negligible. In the
elastic range PBp 1is determined by the condition (fig. 1):

(1) o RO S (87)

From equation (38), since o, is minimum for B =B =1, with v = 0.3

= L N
(92)5p, b2t
2
2 3.6%(%) (88)
so that from equations (87) and (36)
2 2
E _ 3.60E[L (89)
(a/r)® 2
B=Bo

or

(a/r)B=Bg = 1.65b/t (90)
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or

Bo/B1 = Bp

(a/)g_g,,

1.65r/t (91)

Hence, since for BQ/Bl 2 10 the interaction is negligible, it is also
negligible for

r/t > 7oz > 6 (92)

Approximate formula for maximum amount of interaction.- If 52/51

is of the order of magnitude of 10, it is seen from equations (81)
and (84) that for other ratios B2/B; than 10 the discrepancies (Ao) 2

and (Ac)l will vary practically proportionally to (81/82)2 or, from

equation (91), to (t/r)z. From equations (85), (86), and (92) for
Bp/By = 10 or r/t = 6 the governing discrepancy Ac 1is 3(Aw/Ac) per-

cent. Hence in general the maximum decrease of o or 0op by intera-
tion will be

Ay

= 2
(60); = 3 A—(?/-{) percent (93)
C

Tt was assumed above that the rotational restraints offered by the
flanges to the web could be neglected. It may be shown, however, that
equation (93) remains valid if the web is substantially rotationally
restrained. From the derivation of equations (51) and (58) it is evident
that these equations and hence the resulting buckling condition (60) and
its further elaboration apply for that case as well. Only @, 7, and 7
change in value in that case. But even equation (61) for 7P remains
practically the same. Indeed, the restraints cause a decrease of
but an increase of 7, so that a calculation shows 78 to be practically
independent of the rotational restraints. Even for negative restraints
(see the section entitled "Buckling of Columns with H-Shaped Cross
Section") and also for the quite different case of the web of a T-section
(see section entitled "Buckling of Columns with H-Shaped Cross Section")
y$ from equations (118) and (176) is 0.8Ay/A. and 0.75Ay/Ac, Tespec-

tively, and thus practically equal to 7¢ = 0.78AW/AC from equation (61}
In calculating the individual buckling stress 0p of the webs the
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restraints at their unloaded edges have, of course, to be taken into
account. In this case n will have a value different from that of
equation (46). However, 7 may always sufficiently accurately be
equated to zero, as was done from equation (72) on.

Finally equation (93) is based on equations (86) and (92). To see
whether equation (92) remains valid for rotationally restrained web
edges the most extreme case of built-in web will be considered. For
this case (reference 6) the minimum value of oo is

= 7r2N
(92)ppy = T oz
2
= 6.32E(L
s2=(3)
and occurs for a/b = By = 0.7. Hence now, instead of equation (89)
ngE £)2
Ao i) R 6.32E(-) (9%)
2 b
o
or
(a/r)B=B2 = l-25b/t
or
Br = bHEe = 1.2 t 9
2 = (a/blgg B (95)

With r/t = 6 equation (95) yields Bp = 7.5, so that
Bo/B1 = 7.5/0.7 = 10.7, and hence it is but slightly higher than
Bo/By = 10 for r/t = 6 and simply supported web edges.

Furthermore, for a given ratio B2/B1, (Ac)2/02 from equations (79)

and (36) is independent of the rotational restraints of the web. On the
other hand (Ac)j/0; from equation (82) will decrease with increasing

restraint. From reference 12 for fully clamped edges

2
oo = ,El/ﬁz) + 2.5 + 55%,% (96)
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Hence for r/t =6, Bp =7.5 and By = 0.7, and, using equation (61},
equation (82) yields

0.78A,,/A
(Ad)l = —H.%/——C = 0.019 %—: 0q (97)

Consequently from equations (86) and (97) for r/t = 6 the governing
discrepancy Ac = (Ac)l for varying amounts of web restraint will vary
between 3(A,/A.) percent and 1.9(Ay/Ac) percent, so that for any posi-

tive rotation restraints equation (93) yields safe results. Apparently
with negative web restraints, such as occur in H-sectioms, for r/t = 6,
Ac may be larger than 3(Ay/A.) percent, so that equation (93) errs

on the low side. This will also become apparent from the section
entitled "Buckling of Columns with H-Shaped Cross Section."

If o.yr 1is in the plastic range, for simply supported web edges
from equations (87), (36), and (37) one has, instead of equation (89),

l:(:ji)e . = 3.62?]]3(%>2

or, instead of equation (91),

E

G
Br = 1.65 = + (98)
2 E t

Here Ei 1is the tangent modulus and 7 is the reduction coefficient

for plastic plate buckling (references 3 and %), both referring to the
actual buckling stress o.p. Since Et/E 1is smaller than n, for

equal ratios r/t the value of B, 1is smaller than in the elastic
range. However, B, 1is likewise smaller than its value f; =1 1in

the elastic domain (reference 3). Nevertheless, Bg/Bl may be somewhat
smaller than in the elastic domain.

Equations (79) and (82) apply also to the plastic domain, where o7
and op are given by equations (36) and (37), respectively. Equa-

tions (80) and (81) also remain valid so that for the same ratio Bo/Bqy
the ratio (AG)2/02 for Bi= Bl is the same as in the elastic domain.
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Because in equation (37) factors (B + 2F) and D are always higher
than factor A, the ratio between the values of o, for B =Py

and B = By, for the same ratio 82/31: is even higher than that

expressed by equation (83) for the elastic domain. Hence for equal
ratio Bp/By the ratio (Ac)j/o; from equation (82) is still smaller

than in the elastic domain.

Moreover all discrepancies between 0., and 07 or o, are
greatly reduced in the plastic range because with decreasing o.p the

pertinent plastic values Et, A, B, D, and F increase. This may
reduce (Ao); from equation (93) many times, in the same way as a
relative difference in elastic buckling stress may be reduced many times
in the plastic range. For steel columns or plates of which the buckling
stress is, for example, at the yield stress (in the sense that the
tangent modulus is zero) an increase in the elastic buckling stress by
100 percent will result in no increase in the actual plastic buckling

stress.

Therefore in the plastic domain equation (93) will yield safe
values for (Ac);.

General Case of Columns with One or Two Planes of Symmetry

From the preceding derivations for columns with an I-section it is
evident that it makes no difference whether the symmetrical support of
the web is effected by symmetrical flanges or otherwise. Therefore
formula (93) applies in general for any column of which the pertinent
web is symmetrically supported and positively rotationally restrained
at both unloaded edges and which buckles in the plane of symmetry and
in a direction perpendicular to that web. Examples are columns with
an I-section, channels, and box sections. In the latter case (£ig. 9),
which will be dealt with more extensively in the section entitled
"Buckling of Tubes with Square Cross Section" in the case of buckling
in the mode of figure 10, Ay refers to the joint cross section of the
two horizontal webs, which buckle individually in the same direction as
the entire column.

Moreover, from the derivation of the interaction formulas (Tk),
(75), and (76) it follows that they apply as well for columns which
buckle in the plane of the web, and which are symmetrical with respect
to that web. Examples of this kind are H- and T-sections. The plate
buckling stress op in the above-mentioned formulas refers here to the
buckling stress of a plate which is clamped at one unloaded side and
free at the other. For this case 7¢ follows from equations (157),
(160), (166), (167), and (175) and is equal to 0.69Af/A. where Ar is
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the total cross section of the flanges. For these cases too the interac-
tion between column and plate buckling is generally negligible.

The interaction is important only if the pertinent web, that is,
that perpendicular to the direction of column buckling, is elastically
restrained at one side and free at the other, so that a combination of
flexural and torsional buckling occurs. This case is dealt with in the
section entitled "Buckling of Columns with T-Section.”

Buckling of Tubes with Square Cross Section

In the square tube the four plates act as if they are simply supported
at the unloaded sides, so that their buckling stress in the elastic domain,
from equations (38) and (88), is

oo = k4 ng E 3.62E(3)2 (88)

In this case condition (92) is certainly satisfied so that the
interaction will be very small. However, in connection with the tests
on these sections reported later herein, they will be studied in some
more detail.

The following two cases will be discussed separately: (a) The
plates buckle at about o,. One has then to investigate whether such
plate buckling induces column deflections and consequent interaction.
(p) The member buckles by column deflection at about o3, that is, at
B 2 82 in figure 1. In this case one has to investigate whether such

column buckling induces plate deflections and, if so, what their effect
is on interaction.

(a) The plates buckle symmetrically with respect to the vertical
and horizontal axes of inertia of the tube (fig. ll), so that the total
equivalent load py which they transfer to the column as a whole is

zero, in the vertical as well as in the horizontal direction. Hence

no bending of the column as a whole is induced by local buckling of the
plates. It is as if the column were infinitely rigid against bending,
so that in figure 1 at B =Py = 1 the situation is the same as if o
were infinite. Hence at B = By in figure 1 oc, 1is not smaller than
0, 80 that

Oepe = 05 = 3'62E<%>2 (99)
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and no interaction occurs. (Of course, a very slight deflection of the
unloaded edges of, for example, the horizontal plates occurs because
the vertical plates in figure 11 will compress very slightly in the
transverse (vertical) direction by the loads transferred to them by the
buckling (horizontal) plates, but the resulting deformations may be
neglected. )

At B =Bp (fig. 1) likewise the buckling stress o7 of the

column is not diminished by a buckling of the cross section according to
figure 11 because this does not change the position of the center of
gravity of the cross section. Hence it does not cause an extra external
moment. Neither does it cause a change of the internal moment. Con-
sequently it does not affect the buckling stress of the column, so that

at B = Bp

neE

i, (100)
(a/r)"

g =0'l

and no interaction occurs.

Interaction may occur, though, with buckling of the webs according
to figure 12. Here, however, 0, is much higher than according to
equation (88). The plate buckling stress in this case is the same as
for a section according to figure 12 with b* = b/2. The buckling
stress for this case was calculated (reference 3) from equation (31),
where, as was derived in reference 3

t3cﬁ'c%hafb'—a§ mtagb'
o =0t (__>
a 1
e (all)2 T4 (0.2')2

and al’ and a2' are given by equation (11) above. The ratio b/t

at which the horizontal plate buckles at a given stress is expressed in
terms of those ratios (b/t)yp and (b/t)ss at which plates with both

sides fixed or both sides simply supported, respectively, would buckle
at the same stress. This relation is expressed in reference 3 by

equation (62)
- ), [, B o

1
where 71 for several ratios U = %33 is given in figure 13 of that

reference. It follows from equation (88) that
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b ‘/ E
= =|/3.62 — = 1.90 102
(tl*; ‘ g2 9 Vé% ( )

For a plate with both unloaded sides fixed from equation (9k)

b E E
(E)FF =1/6.32 i 2.52Vg; (103)

Hence from equation (101)

% = (2.52 - o.6271)¢§g‘ (104)
or
t\2
gp = ((2.52 = 0.6271)2E<€> (105)

For the section of figure 12, with t!' =t and b* = b/2,
[ = tb'/t'b = 0.5, whence from figure 13 of reference 3 one finds
7, = 0.52. Thus equation (105) yields

op = u.8hE(%>2 (106)

Since the factor 70 for the horizontal plate in figure 12 is about

midway between those for simply supported (77 = 1) and for fully
clamped plates (77 = 0), the optimum half wave length will be about

the same as for a plate with one side clamped and the other simply
supported, namely, 0.80b. Hence here B1 in figure 1 is 0.80.

For a square tube (fig. 9) the moment of inertia and the cross-
sectional area are I = f;(Bh - Ah) and A, = = A2, respectively, so
that the radius of inertia is

r=\/iBu_Au= Sl (107)
2R 12
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To take an example, with B = 2.5 inches and t = 0.062 inch,

A = 2.376 inches and r° = 0.991 square inch. With

a = 0.80b = 0.80(B - t) = 0.80 X 2.438 inches = 1.952 inches, equa-
tion (36) yields

ﬂ2
o = 2 E = 2.56E
(1.952)2/0.991
While from equation (106)
X o.o62)2 Y
Upi= u.SA(mg B = 0.0031)-|-E

Since equations (74) and (76) from the section entitled "Buckling of
I-Section in Direction Perpendicular to Plane of Web" apply in the present
case, from the more conservative equation (76) at B = Bq

~ 230 - 108
Ok o 0.00314E = 0.003136E (108)

It is apparent that the interaction is negligible even for the mode of
figure 12. Moreover, since for the mode of figure 11 o., from equa-
tion (99) is smaller than for that of figure 12, buckling according to
figure 12 will not occur in the first place and oqpr 1is given by
equation (99), resulting in

Il

2
Oop = 3.62(9f%§§) E = 0.00235E (109)

(b) With buckling as a column at B = Bo +the deflection wp of

the column causes deflective forces —tcagw/3x2 (fig. 10) which cause
a similar deformation of the cross section as in figure 12. For an
equally distributed vertical load q on the horizontal plates of fig-
ure 10 the moments M 1in the corners C follow from the equation

b’ _Mb M2 M
oIN 2N 3N 3 N
yielding
ile
M= 18 qb2
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or 3/4 times the clamping moments for a fully clamped plate. Hence a
conservative value for the buckling stress is obtained by using the
average of a simply supported and a fully clamped plate. Thus from
equations (38) and (96)

o, = K?/BQ) + 2.25 + 3@%]§;§ (110)

At B = BE the value of o1 is equal to 0o for B =By so that from
equations (88), (89), and (90)

= 1.65

H|®
o

and

B =a/b=1.65 (s

=

As A=Db-t and B =D +t, from equation (107), since t/b 1is small,
r = 0.41b, so that from equation (111)

b
Bp = 0.678 £ (112)

or with the dimensions giveﬁ above

By = 0.678 %f%%% = 26.6

Hence from equation (110), for B = Bp

. ﬂ2
= 2129.25 N = 1.244E

2.4382 x 0.062

0o

In figure 1 at B = B,, from equations (88) and (109)

51 = (%)gp, = 0.00235E

so that from equation (76) a conservative value for o.pr at B =Bp is

_ 1.2k _
Sor s Sfrs 0.00235E = 0.002346E
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Hence the effect of dnteraction is here less'than 0.2 percent. ‘According
to the more accurate equation (75), since 7P is here about
0.75Ay/Ac = 0.75 X 0.5 = 0.38

. 1Rh5h5 e
UCI‘ = m 0.00235E = 0.0023)-¥8E

Hence the more accurate effect of the interaction is only 0.l percent.

The approximate formula (93) yields an effect of

3 6 e 2 Eae
5\0 L1 /E/)  peveent = 5(1 0.0Gs) Percenmt = 0.2 percent

This formula gives values which are too high because the mode which
yields the minimum value o0,, that is, plate buckling according to
figure 11, does not govern the interaction in this case of buckling
according to figure 10.

Thus for concentric buckling the effect of the interaction between
column and local buckling in square tubes may be neglected.

Buckling of Columns with H-Shaped Cross Section

Somewhat more-pronounced interaction between column and plate
buckling may occur in H-sections where the width of the flanges is such
that they are rotationally restrained from buckling by the web (fig. 13).
In that case the optimum half wave length of buckling will be larger than
the width b of the web, so that in figure 1 B; > 1. Thus the
ratio Bp/B; on which the interaction depends may be smaller here than
if the web were simply supported or elastically rotationally restrained
by the flanges and therefore more interaction may occur.

Let the H-section have the dimensions given in figure 13, so that
b =4 -1 =2.875 inches, Db' = 0.5B = 2.3125 inches, and t = 1/8 inch.
The buckling condition is given by equation (29), but it may more easily
be obtained by using equations (T4) and (75), which, according to the
section entitled "Buckling of I-Section Column in Direction Perpendicular
to Plane of Web," apply here.

The plate buckling stress op follows from reference 13 from the
condition

rs =5V + 28Tl _ g
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which, using the pertinent tables (reference 14), is satisfied for a
minimum stress

oy = 0.002008E = 21,500 psi (113)

for a half wave length a = 2b = 5.75 inches. Thus here By = 2 (Fig. 1).
The radius of gyration of this section with respect to the middle plane
of the web (fig. 13) is given by

I e
= tR> = A= t
2_L1_6 i 12 6 1 p’
T hE, T (@B + A - 2t)t 62B+A-2t

2 ( 2
or numerically r® = 1.375 square inches, so that 95 = i';?; = 24,
I. Ll
Hence from equation (36), with E. = E, at B = p; (fig. 1)

nEE

(a/r)2 = 0.411E (11k)

Ul:

The same value 7P as found in equation (61) for the case of figure T
will approximately apply here, so that

A -t

mra-m - 0

79 ~ 0.78

Hence equation (74) yields

- 0.411 + 0.815 x 0.002
cr — 0.413

g2

0.41263

0.002006E (115)

so that at B = B, the interaction is negligible.




At B=E’2

n2E

& W i (02)B=Bl = 0.002008E (116)

e

so that, with r2 = 1.375 square inches, from equation (116)

a =fi920r® = 82.3 in.

Hence
e 188.3
32 af -l ——2.875 = 28.6
- _ 8 . 82.3 o e
Ba b' 2.3125 32

Since for these high B values tables are not available, the plate buckling stress oo
for B = B,, and hence for the case where the deflections of the beams are neglected, was
calculated directly from the pertinent equation (31)

o) tanh(agb/2) + a, tan(agb/2) + 6r = 0 (31)

in which 6 1is given by 64 from equations (20) and (17),

<t >3 (al'er'z - ag'gq'g) sinh o, 'b' sin cxg'b' - al'ae' (q'e + r'2> cosh al'b' cos aa'b’ -~ 204'as'g's’

<a1'2 + a2'2)(al'r'ecosh onl'b' sin ay'd' - aE'q'gsinh al'b' cos az'b')

By trial and error it was found that equation (31) is satisfied for go = 0.0675E.

0792 NI VOVN

Gt
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Moreover, this case may also be calculated by the method of split
rigidities. This method yields a buckling stress of 0.0665E. Assuming
thus

o, = 0.0675E (117)

the actual critical stress can be calculated from equation (75). Since
with the assumed large half wave length in the X-direction the web is
bent approximately according to a parabola by the moments My exerted

on it by the more unstable flanges, it follows from the derivation of
equations (47) and (53) that here

¢ = % Ay/Ac = 0.16
7 = 1.2

7P = 0.8 Ay/A. = 0.192 (118)
Hence from equations (75), (116), and (117),

Or + (1 - g
Gcr=2 ( 7¢)ld

02+01

_ 0.0675 + (0.808)(0.002)
0.0695 1

0.001996E

Even here the interaction diminishes 07 only by 0.5 percent. Since

here Ay/A. = 0.2% and r/t = V1.375 0.125A= 9.4 2& rough estimate from

equation (93) would yield a decrease of 3 _E< ) percent = 0.3 percent.
A r/t

That equation in the section entitled "Buckling of I-Section in Direction
Perpendicular to Plane of Web" was derived for webs with no restraints

or with positive rotational restraints only. It was already remarked
there that for negative web restraints it will give values for (Ac)i
which are too small. In the present case, however, the order of magnitude
is correctly indicated by equation (93).
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Buckling of Columns with T-Section

In the stability of such sections it is best to distinguish two
cases: (a) The flange has a relatively small torsional rigidity or is
not significantly more stable than the web (fig. 14) or, more generally,
the web is not substantially rotationally restrained by the flange, and
(b) the flange has a relatively large torsional rigidity and is much
more stable than the web, so that the web is substantially rotationally
restrained.

On the basis of a numerical example it will first be shown that in
case (a) the interaction from cross-sectional distortion is practically
nil. Case (b) will then be discussed in greater detail.

(a) If the ratio b/t of the web is not much greater than the
ratio b'/t' of the flange and the flange is relatively weak (fig. 1k4),
so that the web is only slightly rotationally restrained by the flange,
both web and flange remain practically straight in cross section; that
is, the cross section is not distorted during buckling. Hence in that
case a column with T-section buckles approximately in the way that it
is assumed to buckle in the analysis of flexural and torsional buckling.
The interaction formula for the buckling stress for this case was derived
by Kappus (reference 15) from three simultaneous different equations of
the fourth order and also by Lundquist and Fligg (reference 16). It was
also derived by the first author according to this method of split
rigidities (reference 10). The exact solution for this problem was
given by the first author in references 2 and 3, including the influence
of distortion of section, while in the present report it is given by
equation (33).

In reference 10 the buckling stress for a steel column with an
effective length L of TOO centimeters and with the cross section of
figure 15 was calculated from the interaction formula of flexural and
torsional buckling (without regard to cross-sectional distortion) as
well as from the exact equation (33). The corresponding buckling stresses
were 948 and 942 kilograms per square centimeter, respectively. (In
reference 10 the first stress is also given as 942 kg/cm2, which value
was due to a computational error.) Hence in this case the exact buckling
stress is only 2/3 percent less than that found from the assumption that
the cross sections of the plates do not bend.

It was stated in reference 10 that this is due to the high value of
the critical stress of a plate which is clamped at one unloaded side and
free at the other for a half wave length of many times its width, as
compared with the buckling stress of the T-section. The additional
influence of this plate buckling stress can be taken into account in the
following manner: The torsional-flexural buckling stress 010 is first
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computed according to the interaction formula for this case. If, in
analogy to the derivation of equation (76) in the section entitled
"Buckling of I-Section in Direction Perpendicular to Plane of Web, "
this mode with o7_, 1is regarded as case (1), case (2) is represented
by the above buckling of the web clamped at one unloaded side and free
at the other, with a corresponding buckling stress 03- This is true
because such buckling is the only deformation which could occur if the
column were infinitely rigid against the deformation of case (1). The
transverse bending of the flange may be neglected. Hence, as will be
shown in detail later, an interaction formula results which is again
approximated conservatively by a formula similar to equation (76). The
actual combined buckling stress is then given by

o
3
Seri= 53 ¥ o015 995 (119)

in which o0y_p = 948 kilograms per square centimeter = 13,460 psi and
03 is the buckling stress of a plate that is clamped at one unloaded

side and free at the other (reference 12).

12N 2 2 .ﬂ
gy = — ll1/B=) + 0.1258< + 0.5 (120
37 0% o/ ) )

where B = a/b = L/b. In this example the width b of the web, which is
actually supported in the middle plane of the flange, is 30.5 centimeters,

(fig. 15), so that B = 700/30.5 = 22.9, yielding, with v = 0.3,

(L 527\ 1N _ N
a3 = (527 + 0.57 + —8—>b2t = 66.472 3,

3
= 66.472 i = 0.0645E
12(1 - vA)p2t

- 0.0645 x 2,100,000 kg/cm? = 135,500 kg/cm®
J J )

= 1,925,000 psi

Hence from equation (119)

135,500 2 2 = i
Oy = 135,506 o3 948 kg/cm® = 941 kg/cm® = 13,360 psi
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which checks the exact buckling stress of 942 kilograms per square
centimeter = 13,375 psi found from equation (33).

It is seen that for this particular example: (1) The interaction
formula, equation (119), is accurate within about 1/10 percent, and
(2) the interaction between torsional-flexural and plate buckling
amounts to about 2/3 percent, that is, is negligible.

(b) If the flange has a relatively large torsional rigidity and is
much more stable than the web, as, for example, for the dimensions of
figure 16, the web is rather strongly constrained rotationally by the
flange. 1In this case the influence of plate buckling, with a buckling
stress 03, is more pronounced, especially for small half wave lengths.
At the extreme, with a flange which is infinitely rigid, only pure plate
buckling could occur.

The deflection of the cross section consists here of a translation w1,
a rotation with respect to the shear center S, denoted by the deflec-
tion wpo at the lower side of the web and a plate buckling of the web
with a maximum deflection w3 (fig. 17). The shear center may be

assumed sufficiently accurately to be situated at the intersection of
the middle planes of flange and web. Again, the transverse bending of
the flange is negligible.

_ If only the deflection W) occurs, that is, flexural buckling only,
the critical stress is
naEt

L™ o/ P

or in the elastic domain

n2E

L7 (a/ry)2

This case will be called case (1). If only the deflection Wp occurs
(case (2)), the critical stress is (reference 10)

(122)

6, = —=(EFI, + E,C e (123)
2T T Sl 3

or in the elastic domain (reference 17)
ik

n2>
O5= = \GTys & Bl — 12k
2 Ip(t v 3 (12k)
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where Ip, GIL;, and EC, are the polar moment of inertia about S,

the torsional rigidity, and the warping rigidity, respectively. Equa-

tion (123) follows directly from equation (124) since in the plastic
domain, if during buckling infinitesimal shear stresses Txy' are
superimposed on pure compressive stresses, the ratio Txy'/7xy' between
excess shear stresses and excess shear strains, which is G in the elastic
domein, is replaced by EF (reference 3). Furthermore, in equation (124)
the elastic modulus E refers to excess bending stresses, so that in the
plastic domain it changes to the tangent modulus Eg.

The deflection of the web with a maximum w3 (case (3)) would, if the

column were infinitely rigid with respect to the other deflections,
correspond to a critical stress in the plastic domain:

2
oy = " EIfA 0.125DI32 + 1.84F - 0'25B> (125)
bet ]32

In the elastic range equation (125) reduces to equation (120). The
critical stress in the plastic domain according to eguation (125) may
be found by the energy method of equating the internal work Vi to the
external work Vg, hence

(126)

in which (reference 3)

I RS R o S
and
V, =+ t03\j(/P<§K>2dx dy (128)
2 ox
Assuming

W = w3[l - cos (my/2b)] sin (mx/a) (129)

equations (126), (127), and (128) yield

TeEI[ A o
g 7357(55 + 0.138DR“ + 2.2F - 0.355 (130)
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This gives for the elastic domain, where, from equations (3),

A=D=1/(1-v2), B=v/(1-v2), and F=1f[2(1 +v)],
with v = 0.3,

>
o, =XM1 . 5.13882 + 0.68 (131)
3 b2t<£32

instead of the more-accurate value from equation (120). This is due to
the fact that the energy method yields values which are too high. Hence
equation (130) may be improved by adjusting it to the more-accurate
known value in the elastic range. This is done by multiplying the coef-
ficients of D by 0.125/0.138 and those of B and F by 0.57/0.68.
This is how equation (125) was obtained.

Some years ago the first author derived the interaction formula for
the critical stress 0., as expressed in terms of the critical
stresses 0y, 0y, and 03 for the component modes. This was done by

considering successively (1) the equilibrium between external and internal
bending moments, (2) that between external and internal torsional moments,
for the entire column, and (3) the equilibrium between external and
internal torsional moments acting on the web alone. This leads to a
system of three linear homogeneous equations in Wy, Wp, and w,, from

which the buckling condition follows by equating the determinant of the
system to zero, yielding a cubic equation in Ocps

In order to check this equation, during the summer of 1948 Mr. C. D.
Maussart, the first author's assistant at the Institute of Technology at
Delft, Holland, calculated 0. exactly for the elastic range from equa-
tion (33), where a; and a, are given by equations (27), for the
T-section of figure 16 with b = 31 centimeters, b' = 15 centimeters,

t = 1 centimeter, and t' = 2 centimeters. The freely supported length
was assumed to be 700 centimeters and O.r Wwas calculated for elastic

buckling in 1, 2, 4, 8, and 12 half waves and hence for half wave

feligtihe «a' of 700, 350, 175, 8T.5; and.58,38 centimeters, respectively.
The exact critical stresses o,.,. 1in pounds per square inch thus found
are plotted in figure 3 against the half wave length a. In table 1 they
are given in kilograms per square centimeter as well as in pounds per

"

square inch under the column heading "o, from equation (33)."

The stresses o 0p, and o0, from equations (122), (124), and
38 25 3 ) )

(120) for the component cases (1), (2), and (3) are likewise given in
figure 3 and table 1. The above-mentioned cubic interaction formula
in O.r Wwas found to yield results which deviate less than 1 percent
from the exact values. This proved the accuracy of the method, but did
not yet provide a simple and direct way of computation, since the coef-
ficients of the cubic equation are rather involved.
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In the following discussion simpler interaction formulas are derived
for this type of buckling and are checked against the accurate values from
equation (33).

In order to find explicit interaction formulas for the specific case
off B Bl (fig. l), the critical stress 0p_3 will first be calculated

for wy = 0, that is, for fixed shear-center axis, so that 0o_3 follows

directly from a quadratic equation like equation (60) in the section
entitled "Buckling of I-Section in Direction Perpendicular to Plane of
Web." Since o, 1is here very large (in fig. 3 for a = 60 cm), so that

- - will be only slightly smaller than 0o_3s it will subsequently be
sufficiently accurate to express the interaction of Op_3 and 07 in

a simple formula of the type of equation (76). On the other hand, at

B =Bo (fig. 1), hence, in figure 3 at a = 600 centimeters, w3 is
first assumed to be zero, so that the critical stress 0;_o for flexural
and torsional buckling is obtained as interaction of cases (1) and (2).
Subsequently the small interaction between 0o and the very high plate
buckling stress 03 may again be expressed by a formula of the type of
equation (76).

Critical stress for T-section with fixed shear-center axis.- Although
actually the shear center is situated slightly below the middle plane of
the flange it is sufficiently accurate to assume the shear-center axis at
the intersection of the middle planes of flange and web.

In a similar way to that done in the section entitled "Buckling of
I-Section in Direction Perpendicular to Plane of Web" the entire section
is considered first. Since, however, twisting about the shear axis occurs
here instead of free bending, no equilibrium between bending moments can
be considered. The best procedure is to compare the moments about the
shear-center axis S of the deflecting and restraining forces acting on
2 small slice of length dx of the column (fig. 18).

Assume first a deformation according to case (2) to occur which
corresponds to Wp. At buckling the deflecting force -tcg(agw/axz)dx dy
acting on a small element t dx dy of the slice in the web is propor-
tional to 0o and to w, so that it may be denoted by cogowt dy. Since
t dy represents a small element dA. of the cross section of the column,
the deflecting forces on elements in the web as well as the flange may be
denoted by co,Ww dA..

Hence, since from figure 18 for case (2) the displacement w of any
point of the cross section is % LOY if r 1is its distance from S,

.
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thestotal moment ‘about. 'S of the, detlecting: forces acting on the'slice

Ac dx tis
Md2 = f @ ngr dAC

o w.I (132)

o'lo
no
no

o)

where IP is the polar moment of inertia about S.

Consequently the moment Mf about S of the restraining forces

acting on the slice, that is, of the transverse shearing stresses acting
In its end cross sections, is likewise

Mpp = = ogvpl g

Assume now a deformation according to case (3) alone (corresponding
to wg, fig. 18) or, in other words, assume the column to be infinitely

rigid against a deformation of case (2). Since here the web alone
deforms, if this deformation were of the same shape as in case (2) the
deflecting moment about S would be given in equation (132), where Ip
would be replaced by the polar moment of inertia Ipw of the web

about S and Oows by o3w3. However, since with equal deflection

at y =b the deflection at other points is less in case (3) than in
case (2), the deflecting moment is also less, so that here

M (134)

.
ag -5 3oy

where « < 1. The restraining forces are exerted here by shearing
stresses in both end sections of the slice but also by the bending
moment My exerted by the flange on the web at its built-in unloaded

edge. This is an internal moment so that it does not add to the
restraining forces acting on the slice as a whole. In equation (120)
for 03, My is accounted for by the factor 0.12582. Omitting it for
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the reasons just stated, the restraining moment for this case is
i G
Mg =a = N31pwI3¥3 (f135)

in which, from equation (120),

oy = (1/62) + 057 (136)
: (1/32) + 0.125p2 + 0.57

Hence, with both cases (2) and (3) occurring simultaneously, the
restraining moment about S 1is

Mp = Mpp o+ Mg

1 c
<02w2 « an, T c3w3>g I, (137)

At the moment of buckling, with a buckling stress op_3, the

deflecting moment about S follows from equations (132) and (134) by
replacing o, and 03 by 02_3, so that

Mg = Mgo + M3

]

it
02_3(w2 +a j%; ws)%—lp (138)

Hence from equations (137) and (138) the condition of buckling My = M.
is given by the equation

I i
0p_3 (w2 + a —II;—W w3> = OpWp + @ IL: n303W3 (139)

In order to obtain a second equation in Vo and w3 the equilibrium

of a slice bt dx of the web alone is considered by comparing again the
moments of deflecting and restraining forces about S.
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If a deformation according to case (2) alone occurs, the critical
stress of the web is, analogous to equation (124) for the entire section,

it 2
Opy = T (g, HECS (1%0)
W a

where the second subscript w refers to the web. The deflecting

moment, using the same proportionality factor as in equation (132),
would be

G

(1k1)
which follows directly from equation (132) by replacing 05 and Ip

by 0o, and I Hence the restraining moment in this case is likewise

v’

- < .
M., = - ogwngpw (1Lk2)

With a deformation according to case (3) alone the deflecting moment
is already given by equation (134). Since at this stage the equilibrium
of the web is considered, the restraining moment exerted by the
flange must also be taken into account, so that now the moment about S

of the restraining forces acting on a slice bt dx of the web is equal
to Md3 in equation (134)

G
MI‘3W = .E 03W3Ipw (lh'3)
whence the total restraining moment
My = Mpoy + Mr3w
= s
= <02ww2 + a03w3>b Ipw (14k)

At the moment of buckling, with a buckling stress op_3, the deflecting
moment about S follows from equations (142) and (lh3§ by replacing
Op, and 03 by 0p_3s SO that
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May = Mgo + Mg3
_ c
Hence the condition of buckling
aw rw
is here
02_3(w2 + aw3) = OpWp + QO3W3 (146)
Collecting terms in w, and w3, equations (139) and (146) become
(02 - 02_3)w2 + (n303 - 02_3)Waw3 =0
(147)
(°2w - 02_3)w2 + (03 = 02_3)aw3 =0
where

v = Ipw/Ip (148)

The buckling condition is obtained by equating the determinant of
equations (147) to zero, from which

1
23 aE -y |2 8 ¥ (oo + n393) -

VTEQ + o3 - W(Ugw + n3c3E]2 = (= W)U3(02 - wn302w> (149)

where for the elastic range oo, 03, Opys n3, and V{ are given by

equations (124), (120), (140), (136), and (148), respectively. The
stress 02_3 has been calculated for the T-section of figure 16 for

several half wave lengths a. The result is given in table 1 and
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figure 3. It follows clearly from figure 3 that 02_3 approaches oo
for larger wave lengths, where 03 is very high.

Buckling stress of column with T-section for B =~ Bl (Eige sy

In order to find the real buckling stress o the influence of a
deflection w; of the column (fig. 17) has still to be considered.

Sinces fior B = Bl (fig. 1) o, is very high, this influence is rather

ik
small. The stress ocy will be calculated from the interaction of
case (1) with deflection Al (fig. 17) and the combined case (2-3),
considered in the previous section, with a buckling stress 02_3 and

a deflection wp_g (£ig. 19).
This case is similar to that of the I-beam in the section entitled
"Buckling of I-Section in Direction Perpendicular to Plane of Web."

Considering first the equilibrium between external and internal moments
analogous to equation (40) the internal moment from the deflection Wy

from case (1) is here

Mj; = Acoqwy (150)

Analogous to equations (43) and (44) the internal moment from the
deflection Wo_3 of the web would be found here as

in which
02
e (152)
2-3
where o, is given by equation (4¥1). The average deflection of the
web from“case (2-3) is WW,_,. However, this internal moment M; (2-3)

is somewhat ambiguous. In case (2), where a pure rotation of the section
with respect to the shear center occurs, according to the definition of
the shear center no internal bending moments will originate. But equa-

tion (151) indicates internal moments for this case. This is a consequence

of the fact that the center of shear S was assumed at the intersection
of the middle planes of flange and web, while in reality it is slightly
lower. Therefore it is better and safe to neglect Mi(2—3) Hnexesgiche

more so since it is extremely small in comparison with Mil from equa-
tion (150). Hence
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(153)

With actual combined buckling the external moment resulting from wjp is

Moj = ALOopWp (154)
From Wwp_3 analogous to equation (151)
Me(po3) = AudcrH¥p_s (155)

To find K it is noted that for a deflection of the web from case (2),
where the cross section remains straight, the average deflection
Hwy = O.5w2, so that Hp = 0.5. For case (3) the cross-sectional distor-

tion of the web may sufficiently accurately be approximated by that of
a cantilever beam with uniform load gq (fig. 20). Thus

= 1 2
M= - (b - 3)
> q Y

W= - u/l/\M dy dy

so that ws = (w)y= = E%E»bh and
Lo Yoy + 6bye
w o= i by h+ Lo (156)
3 >
Hence
b
J; w dy
PEf=sme e = 0.4 (157)
bw3

Thus in equation (155)

0.5.2 i > 0.4 (158)
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From equations (154) and (155) the total external moment is

Me = M1 + Mg(2.3)
e very)
= A Capl|W, + L —W (159)
&) CI‘( i AC 2-3
or with the notation
f = Pl /h (160)
M, = Acccr(wl + ¢w2_3) (161)

Hence from equations (153) and (161), since M, = M;

Ucr(wl ot ¢W2_3) = lel (162)

Next, in the same way as in the section entitled "Buckling of
I-Section in Direction Perpendicular to Plane of Web," a second relation
is obtained by considering deflecting and restraining forces acting on
an element t dx dy = dA dx of the web. If only case (2-3) occurs the
deflecting force may be written as c02_3w2_3 so that, analogous to

equation (52), the restraining force in that case is also

Ry = cop_3Wp_3 (163)

If only deflection w;p occurs, the deflecting force is CY0p5cW s

where 7 accounts for the fact that with equal maximum deflection at

y = b, a larger average deflecting force results with w = w; = Constant
than with a variation of w with y as in case (2-3). A good measure
of this influence is the moment of the deflecting forces with respect

to S. As a matter of fact, this means that the moments about S of the
deflecting and restraining forces acting on a slice bt dx of the web
are considered and equated. Denoting the deflecting forces on an
element dA, dx by kow dAy, the deflecting moment is for case (1)

My ko E w1y dA,

0.5kb%towy (164)
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For case (2), where w = % Vo,

b
M, = ko wy dhA
0

2

0.333kb tow, (165)

I

For case (3), where w is approximately given by equation (156),

b
3 ko J; wy dA,

O.289kb2tcw3 (166)

=
Il

Hence from equations (164), (165), and (166)

0D 0)5'5)
0.289 =/ ~0.333

or

L3 =9 1.5 (167)
Thus analogous to equation (54), the restraining force R; =D; or

Ry = cy0p. W] (168)

so that the total restraining force is, from equations (163) and (168),
R = R2 + Rl or

R = cOp_gWp_3 + CY0p Wy (169)
or from equation (152)

R

cop3(Vp_3 *+ W) (170)

With actual combined buckling the deflecting force is COcrWo_3
for case (2-3) and cyo.,.w; for case (1), so that its total is

D= cccr(w2_3 + 7wl) (171)
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Hence from the equality of D and R

0cr(“2-3 + 7wl) = 02_3(w2_3 4 nywl) (172)

Collecting terms with w; and wj, 5 in equations (162) and (172), they
become

(061 = Ocp)wy - ¢°ch2-3 =0
(173)

7(°cr = q02_3)w1 - (02_3 - Ucr)w2_3 =5
These equations are nearly identical with equations (59). The only

difference is that here Wpo_3 occurs instead of wy, and that in the
first of equations (173) 1n has been equated to zero because Mi(2—3)

from equation (151) is negligible. From equations (173)

1
a7 Exif:—;ﬁy{%l + (1 - 7¢q)02_3 &

\/Efl il E 7¢n)<72-3]2 GRS 7¢)6102_3} (174)

Here 1 1is given by equations (152), (41), and (149), while from
equations (158), (160), and (167) one can only conclude

A
-5 ;ﬁ >7$ >0.69 (175)
(& (&5

To decide which value 7§ to use it is noted that o, is the smaller
the larger 7¢. (The quantity 7¢ is an interaction factor, which is

equal, for example, to unity in the case of sandwich plates). Hence a

safe and only slightly conservative value is

A
7% = 0.75 (176)

C

In the same way as was stated in elaborating equation (60), con-
servative and sufficiently accurate values of 0., are obtained if 1q
is equated to zero. With 71 = O equation (174) is identical in form
with equation (60), if op is replaced by op_3. Hence, for the
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particular case of B = Bl, that is, for very large o0y (fig. 1) equa-
tion (174) may be written, in analogy to equation (Tk4), as

op + (1 - 7¢)02_3
oy = o] + 0y_g Oo.3 (177)

or more simply and conservatively, analogous to equation (76), as

%
o = — _ ( 178)
cr ol + 02_3 2-3

Here o7 1is given by equation (122), 053 by equation (149) and

y$ by equation (176). For the particular section of figure 16

) = 0.75 8% = 0.25. (Comparing equations (177) and (178) it follows
that the sandwich-plate formula (reference 1) is indeed obtained if the
interaction factor 79 = 1.)

In table 1, 0., 1is computed for the T-section of figure 16 from
equation (177) as well as from equation (178) and given under the
headings "o., from equation (177)" and "0., from equation (178),"
respectively. Comparing these values of 0., with the exact values
obtained by using equation (33), it is seen that the governing value

of 0., that is, for B = By (fig. 1), corresponding here to a value a

of about 58.33 centimeters, may be computed more accurately from the
simpler formula (178). The results from equation (178) for a = 58.33
and a = 62 centimeters are indicated in figure 3 by circles, and are
seen to fit almost exactly the exact curve for o.,.. For a = 85
and a = 135 centimeters, the more-accurate equation (177) has to be

used, since here the difference between 0., and o0p_3 becomes more

important. However, in these cases 0., for buckling in one half wave
has no practical value, since buckling in more than one half wave results
in smaller buckling stresses. The resulting values are indicated in
figure 3 by crosses. The agreement with the exact curve 1s excellent.

Computation of critical stress o, _, for flexural and torsional

buckling of T-section.- Although the more general derivation of 0;_p
according to the method of split rigidities was given in reference 10,
the pertinent critical stress for the special case of a T-section Wil
be derived here directly. 1In a computation of flexural and torsional
buckling it is assumed that no distortion of the cross section takes
place. Hence only deformations according to cases (1) and (2) occur,
while in an approximate sense the column is supposed to be infinitely
rigid against a deformation from case (3).
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i The bending with respect to the Y-axis is considered first. If
only case (1) occurred, a deflection wq would cause an external

moment Acolwl, so that this deflection entails an internal moment

M = AC clwl ( 179)

ael
Since it is a property of the shear center S that a rotation with
respect to S yields a torsional moment only and no flexural moments,

the internal flexural moment from case (2) is zero. Hence the total
internal flexural moment is

My = My = Aogwy (180)
The external flexural moment is found by multiplying the critical
thrust Ac°l-2 for flexural and torsional buckling by the displace-

ment CC' of the center of gravity C. '‘From figure 21 this is equal
N
to vy 4+ 7? W5, so that

Y
e (wl e we) (181)

Equating M, and M; yields the condition

Yo
B <wl Wi WQ) = 0yw; (182)

Torsion with respect to the center of shear S is next considered.
Here a slice of length dx of the column is considered, as under the
section entitled "Critical Stress for T-Section with Fixed Shear-Center
Axis," where it was found in equation (133) that for case (2) the moment
with respect to S of the restraining forces acting on the slice dx
can be represented by the formula

©
Mo = ¢ oWl
Again, from the definition of the center of shear it follows that the
deflection Wy from case (1) causes no internal torsional moments, so
that the resisting moment as above defined, for the combined cases (1)
and (2), is
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c

M, = M, = = GEWEIP (183)

From equations (132) or (183) it follows directly that at the critical
stress 0o the deflecting forces from the deflection w, cause a

moment

(&
Myo = p 91-2¥21p (184)

From the second member of equation (132) the deflecting moment from Wy

is found as
Mj = J[\ccl_gwr dh.

- coy_jwihevo (185)
so that the total deflecting moment is
a = Max + ¥go
I
=c0y 5 Acyowl + T Vo (186)
Equating My and M, yields
rol ro°
O1o\Yo"1 F T Y2) T 92 7 Y2
or
byo
°1-2<;‘§ Ll W2> = CEie (187)
o
Collecting terms in equations (182) and (187),

(cl - dl_g)wl - %? 01_o¥Wp =0

(188)
byo >

72 12" (o2 - o12)¥p = ©
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from which

Ciey 2[1 s (;02/1”02)_—[ El e /(Gl N L“’lceyog/rog] (189)

where Yy, 1is the distance between the centers of gravity and shear and

r, 1is the polar radius of gyration about S, while 01 and 02 are

given by equations (122) and (124). For the T-section of figure 16
O1j.p 1is given in table 1 and by the curve o1 o in figure 3.

Buckling stress of column with T-section for B 2 Bo (fig. 1) .=

For B 2 Bo the critical stress o3 for case (3) is very high (fig. 3),
so that the exact critical stress Ocy Will be only slightly lower than
01_p- Hence it may be expected that the sandwich formula, where

100-percent interaction is involved, provides a sufficiently accurate
and safe approximation, so that O.p may be calculated from the formuls

SRS - e (119)
cr 03 + 91 5 1-2

ifndeed=for ‘g = 700 centimeters, where from equation (33) the exact value

of the buckling stress is 1880 kilograms per square centimeter = 26,700 ped,

equation (119) yields I 1883 kilograms per square centimeter

= 26,740 psi. .This value as well as that for a = 620 centimeters is
also given in table 1, while in figure 3 both values are indicated by
circles and fit the theoretical curve of 0., exactly.

To check the method of calculation in general, Oy Will be
calculated more accurately. Considering first the bending moments in
the column with respect to the Y-axis, according to equation (153) in the
subsection entitled "Buckling Stress of Column with T-Section for B =~ By
(fig. 1)" the total internal moment is

Mi = ACUlWl (190)

The total external moment by deformation according to cases (1) and (2)
is, analogous to equation (181),

yo>
Me(l—e) = AcOcp(\Wp + Ty V2 (191)
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In equation (157) in the subsection mentioned above it was found that

in case (3) the average deflection of the web is ¢
b
5 w dy

so that for case (3)

Me3 = chcr(o.u)w3 (192)

yielding a total external moment

=
|

e = Me(l—E) I Me3

i
Acccr<wl + 2w, + 0.4 %’C— w3> (193)

In order to 1limit to two the number of unknown deflections and thus the
necessary number of equations and the degree of the buckling condition,
it is observed that from equation (182) of the preceding subsection

Yo 2
Wt Wp = 0 Wy (194)
so that, with the notations =
o
o = —L
Sl
(195)
6 - v
2%
=
equation (193) becomes
M, = Acocp(wn + 0.bow.) (196)

Hence from equations (190) and (196)

Ucr(awl 55 O.h‘eW3) = lel (197)
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Next a slice bt dx of the web is considered. From equations (164),
(165), apd (166) of the subsection entitled "Buckling stress of a column
with T-section for B ~ B (fig. 1)" the moments about S of the

deflecting forces acting on the slice may be represented as

M, = 0.5kbZtow; (16L)
My = 0.333kb2tow, (165)
M; = 0.289Kb“tow3 (166)

for cases (1), (2), and (3), respectively. The internal moment origi-
nating from a deflection Wy of the web is negligible for the large
half wave length at B 2 Pos Efsonly W, occurs, the buckling stress

is o0y, from equation (140), while with w3 alone, it is o3 from equa-

tion (120). These stresses result in deflecting moments, which, from
equations (165) and (166), may be denoted as

and
Ma3y = O.289c03w3 (199)

respectively. Hence the total restraining moment is

Mpy = Moy + Mo3w

=M

30w + M

d3w

or
M = c(0.33302ww2 + 0.28903W3> (200)

Similarly from equations (164), (165), and (166) the total deflecting
moment with actual buckling may be represented as

My = cccr(0.5wi + 0.333w, + O.289w3) (201)
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so that from equations (200) and (201)

(O'5W1 + 0.333w, + 0.289»13)00r = 0.3330p,, + 0.28903w3  (202)

From equations (194%) and (195)
b
Wy = (@ - 1)— Wy (203)
Yo

On the other hand, the position of the center of gravity € (fig. 2L)
is determined by the equation

Ay % = AcYo
so that from equation (195)
s el (204)
s A, ©
and from equation (203)
W, = 2 = é = Wy (205)

Hence from equation (202)

ik

OoyWy + O.28903W3
(206)

Ucr|:<o'5 + 0.667 & - l)wl % O.289w3:l - 0.667 & =

Collecting terms in w; and W3, equations (197) and (206) become

S
(Ul - accr)wl - O.heccrw3 =0

{1.33(a - Doy - [0 + 1.33(a - 1)] Gcr}wl +0.5780 (03 - ocr>w3 =0
7 (207)
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from which

= l I.l
Erie B(0.33 +0.10 - @) |

o uua(ol_g + c3> - 1.33(a - 1)op, -

‘/El.MCL(cl_E + 03) - 1.33(a - 1)0%]2 - 5.760103(1.33 % OelldG - e)}
(208)

in which a and 6 are given by equation (195). Using in equation (70)
the first term only, equation (208) simplifies to

(o}
o 3 i (209)
1 0'3 + O o= 0.9250'2.WE_ - (0'1_2/0'1)] s

which results conservatively in equation (119) as given before; that is,

a
PR G (119)
0'3 -+ O'l_2

The stress o, has been calculated from equations (208) and (119)
for a = 350, 620, and 700 centimeters, respectively, and is denoted in
table 1 by "ocr from equation (208)" and "o.,. from equation (119),"
respectively. It is seen that for a = 620 and 700. centimeters, where
Ocr 1s the governing stress, equation (119) yields even more exact
results than equation (208). TIts values are indicated in figure 3 by
circles. For a = 350 centimeters, where the difference between 01_o
and 0., 1is much larger, equation (208) gives accurate results, while
equation (119) is somewhat too conservative, as could be expected. The
value for o from equation (208) for a = 350 centimeters is indicated

cr
by a cross in figure 3.

Buckling of Angles with Equal Legs

For reasons of symmetry the legs do not rotationally restrain each
other, so that the exact buckling condition for this case is given by
equation (34). On the other hand the buckling stress for flexural and
torsional buckling (reference 10) is given by equation (189). To illustrate
the use of the interaction formula, the exact and the approximate buckling
stresses will be computed for a specific example.

Assuming a steel angle with a length L = 40 inches, a width
bi= 2inches, and s thickness t = 0.1 dnch, b/t = 20,80 that it
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buckles in the elastic domain. The flexural rigidity B of a flange
against bending in its own plane, for use in equation (27), is here

Eb3t/3 instead of Eb3t/12, since the axial strain ex from the deforma-

tion by bending, which results in the deflection w1 (fig. 22), is here
zero for the fibers at the shear center axis S. By trial and error
equation (34) yields the exact buckling stress o., = 0.000875E (refer-
ences T and 8).

In the approximate equation (189), as applied to this case, o; 1is

the critical stress for flexural buckling about the Y-axis (fig. 22),
since with torsional buckling of the section the center of gravity
displaces in the direction of the Z-axis, resulting in bending about
the Y-axis. The stress o, 1is given by equation (124).

Since the flanges are not rotationally restrained, they remain
practically straight in cross section, so that, in contradistinction to
the case of the T-section in the section entitled "Buckling of Columns
with T-Section," case (3) does not occur here.

For an angle, y, = b/(2V2) and Iy = 2tb%/3, so that

ro2 = Ip/(2bt) = b2/3 and yOE/QOE = 3/8. Hence equation (189) for
the case of an angle reduces to

Oup = 0.8[}; + 0y - V(ol = 02)2 + l.5cloé] (210)

With I, = (1/12) (+y2) (bV2)3 = (1/3)b3t and ry2 = (1/6)b°, from equa-
tion (122) for the particular angle quoted above, with a = L,

ngE
) = s 0.00411E

(a/Ty)

From equation (124), with I, = % bt3, while the last term is negligible,

1 2
B L4 Bt _
02 = G -I—— = ﬂ(b) = 0.0009625E

so that from equation (210) Oop = 0.000879E. This is in close agree-
ment with the exact result 0., = 0.000875E from equation (34).
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Buckling according to the considered mode governs only if it yields
smaller critical stresses than for buckling of the angle with respect to
its minor axis. PFor the latter mode the interaction is negligible and
the pertinent moment of inertia is

1 o o Moy

e ag il (= = =6y

12( V_)<{§> 12
and hence Iy/4, so that the column buckling stress is o;/L = 0.00103E.
Since this value is higher than that previously computed. for torsional

buckling, 0., = 0.0008T9E governs.
THEORETICAL RESULTS

Comparison between the exact and approximate methods of calculations
leads to the conclusion that the interaction between column and local
buckling may be computed very accurately by the method of split rigidities
in the following manner:

(a) For columns where the web plates are supported at both unloaded
sides, such as columns with I-, H-, or box sections or with channels, for
buckling in a direction perpendicular to the web or webs the interaction
between column and local buckling is always practically negligible. As
a way of estimating roughly the effect of the interaction, formula (93)

may be used, which states that o_,. is at most about 3<AW/AC)[§/(r/ti]2

percent less than the column or plate buckling stress, o7 or (GQ)min’

whichever is smaller. The total cross section of the web or webs located
perpendicular to the direction of buckling is Aw' The total cross
section of the cclumn is denoted by Ac. The radius of gyration referring
to the above-mentioned direction of buckling is 1r, while t 1is the web
thickness.

The critical stress o., may be calculated from equations (7h4)
and (75) more directly. For B = B (fig. 1)

oy #d ~ig e
- ¢202 (74)
Cl+02

0'CI‘

where 0) and 0y are the column and plate buckling stresses, respec-
tively, for the considered half wave length of buckling. This half wave
length has to be chosen such as to make g minimum. It can practi-

cally always be taken equal to the half wave length that makes 0o
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minimum. The value (o] 3 thus obtained governs as long as P 1is
CI')mln &
smaller than about Bo (Egs 1)

For B 2 [32

_ oo+ (1 - 78)oy ;

(75)

where both 0y and 0, have to be calculated for a half wave length

equal to the effective length of the column. The value of 7¢ is about
0.75Ay/A-~. More conservatively, in general

91%

O'l+0'2

Ocr

(?l_l + 02'1)_1 (76)

Equations (T4), (75), and (76) obtain also for the plastic domain,
if the plastic values Et/E, A, B, D, and F from equations (36)
and (2) are calculated for the actual buckling stress Oape Moreover,
equations (T4), (75), and (76) apply for buckling in the plane of the
web for columns which are symmetrical with respect to the web, as for
example H- and T-sections. In that case oo refers to the plate buckling
stress of the flanges which, for the considered direction of buckling,
behave as plates which are free at one unloaded side and clamped at the
other. 1In this case 7§ is about O.7TAr/A., where Af 1is the total
cross section of the flanges.

In all above-mentioned cases the interaction is practically always
" negligible.

(b) The interaction between column and plate buckling is important,
however, if the pertinent plate subtends a significant angle to the
direction of buckling and is elastically rotationally restrained at one
side and free at the other side, such as in T-sections and angles. In
this case a combination of column buckling and twisting occurs. This
follows directly from the conservative formula (76), because in this
case both the flexural and torsional buckling stresses 07 and 0p
have their smallest value for the largest possible half wave length,
that is, the effective length of the column. For many practical sections
these two stresses are of the same order of magnitude. For example,
with o7 = 0p, equation (76), though too conservative in this case, yields
Ocy = 0.507 = 0.505, which shows how significant interaction can become.
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If the plates do not restrain each other significantly rotationally,
as in T-sections with rather weak flanges or in angles, the interaction
is rather accurately accounted for by the formulas for flexural (column)
and torsional (plate) buckling. Then

Jeri=

A ) | flor - o2 + hessinyec?)

where Ul and 02

respectively, both calculated for a half wave length a equal to the
column length L. The stress 03 refers here to buckling in the

are the column and torsional buckling stresses,

Z-direction (figs. 17 and 22). 1In particular, in the elastic range

g

0; = Z—/r_)g- (122)
e
and
1 G
g, = E(GLC + ECy ;3) (12k)

where Ip, GI;, and EC, are the polar moment of inertia about the

shear center S, the torsional rigidity, and the warping rigidity,
respectively.

In the plastic range

2
n“E
Gl i A W (12n)
i R o
(a/ry)
and
2
L T
o, = I—I;<EFLG + Bely a_9> (123)

where F 1is given by equation (2) and Et 1is the tangent modulus.

Values r, and y, 1in the above equation for 0., are the pclar radius

of gyration about the shear center S and the distance between shear center
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and center of gravity, respectively (figs. 21 and 22). This buckling
stress 0., governs only if it is smaller than the column buckling
stress for buckling in the Y-direction (figs. 17 and 22), for which
case the interaction is practically always negligible.

If the web of a T-section is substantially rotationally restrained

by the flange the critical stress has to be calculated from equa-
tions (178), (149), (119), and (189). For B =B, (fig. 1)

a1

Frey 20 B (178)
&F ~loh Up.3 2-3
where
_ il
%2-3 ~ m—.—w%g * 93~ V(% * M3°%) -
ngé + 05 - V(“Ew + n303i]2 - W(1 - W)03(02 = Wﬂ302ma (1L9)
while
n2E
e (122)
£ (a/ry)2
2
GO I_t(GIt + EC,, %) (124)
2
i 10
Opy = ’I'I;,‘(GI‘GW + ECy ;5> (1k0)
_— N1 + 0.1258° + O 57) (120)
S
(1/32) + 0.57 (136)

S (1/82) + 0.1256% + 0.57

Vo= In/Ip (148)
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The second subscript w in equations (1L40) and (148) refers to the web
alone.

In the plastic domain

2
o) = _EJ§§7§ (121)
(a/ry)
it 72
0y = (EFL; + E.Cy Is (123)
P a
2|
oy = “£§I<l% + 0.125DB° + 1.8LF - o.25§> (125)
Torie A\

while instead of equations (140) and (136)

Gor e e iy 55)
2w Ipw tw tww a2

(4/82) + 1.84F - 0.25B
(a/82) + 0.125DB2 + 1.84F - 0.25B

T]3=

All plastic values Ei, A, B, D, and F refer to the actual buckling
stress Ocpe The latter four values are given in equations (2).

The stress Oep from equation (178) has to be calculated for that
half wave length a = Bb for which it is minimum. This is practically
the half wave length for which Bpis is minimum. The value (Ocr)min
thus obtained governs up to about a value B = a/b = By (fig. 1).

Bond fie By

Yol =i v e 18 (119)
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where

-~ 1 = = 3

while 07, 0Op, and o0, are given by equations (122), (124), and (120)

or equations (121), (123), and (125), for the elastic or plastic domain,
respectively, and are calculated for a = L. The symbols r, and Yy,

are the polar radius of gyration about the shear center S and the dis-
tance between shear center and center of gravity, respectively (fig. 21).

EXPERIMENTAL INVESTIGATION

STRESS-STRAIN TESTS

Description of Specimens

Square tube specimens used for this series of tests are 61S-T6 alu-
minum alloy with the following nominal dimensions:

2 by 2 inches by 0.063 inch designated "B"
2% by 2% inches by 0.047 inch designated "D"

A1l tubes are special drawings of the Aluminum Company of America with
square corners and slight thickening of the walls on the inside near
the corners.

Deviations from flatness, straightness, and squareness are well
within tolerable limits, increasing as expected with wall width and
diminishing wall thickness. The "D" tubes, in particular, show maximum
deviation from squareness of about 50, from flatness equal to the wall
thickness, and a twist not exceeding 50 per 15 feet of length. One-
third of the specimens are thus affected. Deviation from straightness
is negligible. Variation from nominal wall thickness for all tubes is
0.0010 to -0.004%0 inch.

Instrumentation

In order to determine the compressive stress-strain characteristics
of the tube material, it was necessary to prevent premature local buckling “
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of the tube wall. The walls were supported by blocking inside and out-
side, such that the unsupported portion of wall had a b/t ratio not
exceeding 12.5. Ascertainable buckling was prevented at least as far
as a strain corresponding to a secant modulus of O.TE.

The external blocking arrangement consisted of three square clamping
frames which held vertical steel supporting blocks one against each face
of the tube, as shown in figure 23.

Small internal clearance of the tubes made it necessary to design
a special expanding fixture operable from the ends of the specimens.
The device, consisting of two supporting blocks and the screw-driven
wedge system, is shown in figures 24 and 25. The range of expansion is
about l/h inch, requiring the use of auxiliary blocks for the larger
tubes. TFigure 23 shows the expansor as applied to a specimen.

Strain measurements were made with SR-U4 electrical resistance
strain gages, type A-1, in connection with standard Wheatstone bridge
strain recorders of both Baldwin and Young manufacture. Eight gages
were used, two to a face outside the supporting blocks, located near
the corners at the midlength of the specimen.

Test Procedure

All stress-strain specimens were 8 inches long to avoid end effects
and to provide a convenient size for handling. Nearly perfect flatness
of ends was obtained by squaring and sanding of the sawed specimens on
a disk sander, followed by hand-lapping on a surface plate with oil and
emery.

The internal expansor, slightly shorter than the specimen, was
inserted first with necessary auxiliary blocking, and centered on the
length of the tube. All block surfaces contacting the tube were
lubricated with medium-weight cup grease to avoid frictional restraints.

The external blocking was next applied. The steel supporting blocks,
lubricated with cup grease, were centered vertically and laterally,
supported at the base on sponge-rubber pads, and held in place by the
center clamping frame. All blocking was then drawn up to the tube, a
light seating load was applied, and the other two clamping'frames set
in place.

Preliminary tests were made to check the effect of varying clamping
pressures. On the basis of these tests, it was decided that slight
clamping pressure corresponding to a quarter-turn tight on all screws
would not be detrimental. More than this showed definite gage "lag" in
repeated load cycles, while less resulted in premature local buckling.
The pressure so selected was used in all tests.
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Centering the specimen, that is, providing uniform stress distribu-
tion, was perhaps the most difficult and persistent problem encountered
in this series of tests. To correct for nonparallelism of ends and/or
machine heads, use was made of tissue paper shims 0.0015 inch thick
slipped between the upper machine head and the corners of a hardened-
steel bearing block on the upper end of the specimen. Shims were applied
or relocated until strain readings on the eight gages showed a total
high-to-low deviation of less than 3 percent. Usually it was possible
to hold this to less than l% percent at each of three widely separated

loads in the elastic range.

Beyond this point no unusual problems were encountered. During the
stress-strain tests precautions were taken to observe closely beginning
of buckling and adequacy of the blocking and to keep a running load-
strain curve.

Summary of Stress-Strain Data

Eight stress-strain specimens involving the two sizes of tube have
been tested. Representative stress-strain curves are presented in
figure 26. Comparison of the test results showed consistent and similar
characteristics for the two sizes of tube, with negligible deviation
from the average for each series, a yield stress of about &h,OOO psi,

and an elastic modulus of 10.7 X 10~ psi.

In the course of testing, 23 stress-strain tests on three other
sizes of similar tubing were run, and they gave results completely-con-
sistent with those of the "B" and "D" series.

As a further check on consistency of results, the Ramberg-Osgood
formula (reference 18) was used for comparison with the experimental
data and found to agree almost exactly with the average of the "B" and
"D" series. In addition, the curves of worst deviation from the average
were calculated and compared with the group average for stress-strain
characteristics, tangent modulus, and secant modulus. In all cases the
agreement was quite favorable.

COLUMN TESTS

Description of Specimens

The two sizes of square tube specimens used for this program are
described under "Stress-Strain Tests" and were chosen so as to have the
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critical plate buckling stress fall in the plastic range for one series
("B") and in the elastic range for the other ("D"). Specimens were
selected to cover a wide range of L/r ratio, encompassing the interaction
specimens; that is, those specimens for which the critical'plate-buckling
stress and primary column-buckling stress are identical. The interaction
specimens in this instance are those designated I in tables 2 to 4 and
have a ratio L/r = 45.95 for the "B" series and L/r = 85.80 for the

"D" series. Including duplicate and triplicate specimens, 14 "B" columns
and 7 "D" columns were tested, as given in tables 2 to k4.

Procedure for Determining Effective Length of Interaction
Column with Box Section

(1) For series "D" specimens for which plate buckling stress oo is
in the elastic range: For the interaction column,

?£;§§5 = 3.62Q§>2

from whence L/r = l.65b/t where b 1is the plate width center-to-
center of adjacent plates.

(2) For series "B" specimens for which plate buckling stress oo is
in plastic range: The length of the interaction specimen should be such
that

2
¢ E_t

L e

(o} —0'2

(a) Given the stress-strain curve, compute the curve for plastic
buckling stress op as follows. Assume several values of O2p and

for each calculate the parameters E., Eg, and

Opp/0oe = 0.455(VAD + B + 2F), where Ope 1s the elastic plate buckling
stress. (See reference 4, table 5.) The parameters A, D, B, and F
are given by equations (25. Further, compute for each selected value of
OQP the corresponding value of 02e/E according to the relationship
e Yep. 0
E (62p/02e)E
Oop against Uge/E for each value of O2p selected.

This establishec a point of the required curve
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(b) Having found the curve for Opps calculate

Ooe t)g
< = 3'62(15

With this value as abscissa, pick the corresponding OEP from the curve,

and the corresponding Et to the stress-strain curve at that stress.
Then calculate the required L/r ratio as defined above.

(c) The curve for 02p may be plotted on the same coordinate system

as the stress-strain curve, as shown in figure 27.

It will be noted that E; and Opp are interdependent, which

necessitates the trial-and-error procedure as given in order to find the
values satisfying the interaction criterion.

Since Gge/E is immediately known and the curve for UEP is

usually near to the stress-strain curve, it is necessary to select only
the values of Oop that narrowly encompass the stress corresponding

to this value of UQe/E‘

(8) The specimen length may be determined by correcting the effective
length just computed for the particular end-support conditions used.

Instrumentation

In order to study properly the interaction of local and Euler
buckling, it was necessary to develop means of measuring separately the
two types of buckling. It was felt that electrical resistance strain
gages on the column faces would not accomplish this by virtue of
difficulty in "sorting out" the proportionate effects of the two types
of deformation. In terms of mechanical gages, it was recognized that
a device to measure plate deflections due to local buckling must be
attached to and "ride" with the column during primary deflection in
order to exclude the effects of the latter. The primary column deflec-
tions are measurable by any one of several simple devices referred to
the ends of the column.

A collar to fit on the column and carry a local buckling gage without
affecting the local buckling characteristics has been developed.

The local buckling gage developed for these tests shown in figure 28
is based in principle on the type of gage described in reference 20 and
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has the advantage of being independent of buckle location. It makes use
of a suspended blade in contact with the column face and measures the
blade movement resulting from buckle formation by means of dial gages.
(The gages were Federal No. C21 with 0.0001-in. divisions and Oa8=1n.
range and were full-jeweled.) The blade suspension is 1/2 by 0.002-inch
stainless spring steel, combining high resistance to breakage and
negligible blade restraint.

Gages of this type were applied (at two different levels) on the
column faces parallel to direction of primary buckling in order to avoid
effect of primary curvature of the column.

Euler deflections were measured by means of 0.00l-inch dial gages at
midlength and both quarter points, in combination with a 0.0l-inch
division scale at midlength read simultaneously for correlation with
reset readings of the dial gages and for large deflections beyond the
range of the dial gages.

Columns were supported at the ends by knife edges, with appropriate
adjustment for centering. Carboloy knife edges, with corresponding flat
bearing surfaces, were loaned by the National Bureau of Standards.

A general view of the testing arrangement is given in figure 29.

Test Procedure

The ends of all columns were squared, sanded, and hand-lapped in
a manner similar to that for the stress-strain specimens.

The centering procedure made use of both strain readings and lateral-
deflection readings. Eight Tuckerman optical strain gages were applied
to the corners of the column at two stations, generally 12 to 15 inches
outside the upper and lower quarter points, and always at a distance
from the ends of at least twice the plate width to avoid end effects.

The two sets of strain readings made a simple matter of determining
required centering adjustments and in particular of deciding whether
eccentricities of the column ends were in the same or opposite directions.

Final centering, at about two-thirds of the predicted critical load,
was done by adjusting the column ends until lateral deflections at mid-
length and both quarter-points were negligible, and then making a final
check of strain distribution. Centering by deflection proved to be
considerably more accurate than strain readings for the final ad justment.
Differences in the average strain on opposite faces of the column were
held to a maximum of 1 percent in the direction of primary buckling and
two percent in the other less critical direction.
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Local buckling gages were then applied to the centered column, and
the test proceeded by reading local and Euler deflections at each load
increment to failure.

Evaluation of Experimental Data

Ultimate stress for each column is given in tables 3 and 4 and also
is plotted in relation to the tangent-modulus column curves in figures 30
and 31.

The method of obtaining the tangent modulus from the stress-strain
curve may be of interest here. A semitransparent mirror with a one-to-
one transmission-reflection ratio was used. It was placed perpendicular
to the curve at the desired point and perpendicularity was checked by
casting the reflected image of a short portion of curve in front of the
mirror onto a short portion of the curve seen through the mirror. A
line - the normal to the curve - was then scribed along the face of the
mirror. The method proved to be more accurate than drawing the tangent
by eye, especially in the sense that several operators with little
experience could obtain precisely the same value of modulus.

Local buckling data were evaluated by means of the "top-of-the-
knee" method as developed by the NACA (reference 19) and critical plate-
buckling stresses thus obtained are plotted on the "D"-series column
curve, figure 31. Typical curves of load against local deflection for
the "D"-series columns are shown in figure 32. No local buckling data
were obtainable for the "B" series, since the critical plate stress was
in the plastic range with the result that beginning of plate buckling
was immediately followed by complete collapse of the column. Consequently,
the ultimate load for the column coincided with the plate buckling stress,
and no postbuckling strength was indicated. This observation is in
accordance with results given in reference (21). 1In contrast, the
"D"_geries columns had considerable postbuckling strength as shown in
table L4 and figure 31.

C'ONBLUDING-REMARKS

The following results were observed from an investigation made to
determine the interaction of column and local buckling in compression
members.

1. The test results do not show any noticeable interaction effect
for the square tubes tested. This seems to substantiate the theory,
which shows the order of stress reduction due to interaction effect to
be so small that it cannot be differentiated experimentally from the
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reduction of concentric buckling stress occurring as a result of inherent

eccentricities.

2. The interaction effect is negligible for box sections, as
indicated by both theory and experiment. As stated in the paper, the
same conclusion applies to the common sizes of I-, H-, and channel
sections, but not to sections for which torsional instability is an
important factor, such as T and angle shapes.

3. Tests confirm the known fact that appreciable postbuckling
strength beyond the critical plate stress is possible when the latter
is well within the elastic range. Conversely, when the critical plate
stress 1s in the plastic range, complete collapse of the column accom-
panies beginning of plate buckling.

Cornell University
ikGhacay No Yoo Maneh 2351951




8L

10.

0L,

NACA TN 2640

REFERENCES

Bijlaard, P. P.: Analysis of the Elastic and Plastic Stability of
Sandwich Plates by the Method of Split Rigidities. Preprint
No. 259, Sherman M. Fairchild Pub. Fund, Inst. Aero Sci., Jan. 1950.

Bijlaard, P. P.: Afleiding van eenvoudige gebruiksformules en
grafieken ter bepaling van het plooigevaar van de wanden van
vloeistalen staafprofielen. De Ingenieur Ned. Indie, val. 0,
no. 10, 1939, Pp. F. 839-T1.256.

. Bijlaard, P. P.: Theory of the Plastic Stability of Thin Plates.

Pub. Int. Assoc. Bridge and Structural Eng., vol. 6, 1940-41,
pp. 45-69.

Bijlaard, P. P.: Theory and Tests on the Plastic Stability of Plates
and Shells. dJour. Aero. Sci., vol. 16, no. 9, Sept. 1949, pp. 50695111

. Stowell, Elbridge Z.: A Unified Theory of Plastic Buckling of Columns

and Plates. NACA Rep. 898, 1948. (Formerly NACA TN 1556.)

Timoshenko, S.: Theory of Elastic Stability. First ed., McGraw-Hill
Book Co., 1936.

Bijlaard, P. P.: Nauwkeurige berekening van de plooispanning van
hoekstalen, zoowel voorhet elastische als voor het plastische gebied.
De Ingenieur Ned. Indie, vol. 6, no. 3, 1939, pp. . 35-1.45.

Bijlaard, P. P.: Some Contributions to the Theory of Elastic and
Plastic Stability. Pub. Int. Assoc. Bridge and Structural Eng.,
vol. 8, 1947, pp. 17-80.

. Bijlaard, P. P.: Berekening van de knikspanning van gekoppelde

profielen volgens een nieuwe methode. De Ingenieur Ned. Indie,

vol. 6, no. 3, 1939, pp. I.45-I.L6.

Bijlaard, P. P.: On the Torsional and Flexural Stability of Thin
Walled Open Sections. Verhand. Kon. Ned. Akad. Wetensch. (Amsterdam),
vol. LI, no. 3, 1948, pp. 31Lk-321.

Bijlaard, P. P.: On the Elastic Stability of Sandwich Plates.
I. Verhand. Kon. Akad. Wetensch. (Amsterdam), vol. L, no. 1,
1947, pp. 79-87.
On the Elastic Stability of Sandwich Plates. II. Verhand. Kon.
Akad. Wetensch. (Amsterdam), vol. L, no. 2, 1947, pp. 186-193.




12.

13

1k.

i1

16,

176

18.

i

20.

il

NACA TN 2640 85

Biledeh, I.: Theorie und Berechnung derieiseriien Brucken. Julius
Springer (Berlin), 192k.

Lundquist, Eugene E., Stowell, Elbridge Z., and Schuette, Evan H.:
Principles of Moment Distribution Applied to Stability of Structures
Composed of Bars or Plates. NACA Rep. 809, 1945. (Formerly NACA
ARR 3K06.)

Kroll, W. D.: Tables of Stiffness and Carry-Over Factor for Flat
Rectangular Plates under Compression. NACA ARR 3K27, 19L43.

Kappus, Robert: Twisting Failure of Centrally Loaded Open-Section
Columns in the Elastic Range. NACA TM 851, 1938.

Lundquist, Eugene E., and Fligg, Claude M.: A Theory for Primary
Failure of Straight Centrally Loaded Columns. NACA Rep. 582, 1937.

Niles, A.*S., and Newell, J. S.: "Airplane Structures. Vol. IL.
John Wiley & Sons, Inc., 1943.

Ramberg, Walter, and Osgood, William R.: Description of Stress-Strain
Curves by Three Parameters. NACA TN 902, 1943.

Hu, Pai C., Lundquist, Eugene E., and Batdorf, S. B.: Effect of
Small Deviations from Flatness on Effective Width and Buckling
of Plates in Compression. NACA TN 112k, 19L46.

Pride, Richard A., and Heimerl, George J.: Plastic Buckling of
Simply Supported Compressed Plates. NACA TN 1817, 1949.

Heimerl, George J.: Determination of Plate Compressive Strengths.
NACA TN 1480, 1947.




TABLE 1.- VAIUES OF ¢ FROM THEORETICAL INVESTIGATION

fccr facr f(’cr f"cr fUcr
a o o o o o o rom rom rom rom rom § X
(cm) n F - = e e equation|equation|equation|equation |equation P
(33) (177) (178) (208) (119)
50 2,440 kg/cm?
34,650 psi
58.33| 304,670| 6,030/ 2,553 1,323 2,b10| 2,375 | 2,405 | 2,391 kg/cn®
274 ,325,0001 85,600 36,220 {18,800 34,240| 33,750 | 34,170 | 33,950 psi
6o 269,800 5,917 2,607| 1,267| 5,889 | 2,427 o lio1 1 2,405 kg/cm?
3,830,000{ 84,000 37,000 {18,000 |83,600 {34,460 34,380 | 34,150 psi
87.5 135,580| 5,483 3,333 |1, oz s bItea s e = 2055 2, T4l 2,700 kg/cm?
*” 11,925,000} 77,900 47,350 |14,800177,250 |39,120{ 39,120 | 38,920 | 38,350 psi
135 56,900| 5,230 5,907| 910 3533 30715 8,396 kg/cm?
807,500] T4, 300 84,000 12,910 50,200 49,400 | 47,220 psi
175 33,870 5,156 9,043 4,961 3,855 kg/cm?
480,%00] 73,300] 128,300 70,500 54,750 psi
350 8,467 5,067 32,600 830| 4,289]| 4,613 4,030 4,019 | 3,790 [kg/cm?
120,100| 72,000| 463,000 |11,790]60,900 |65,500| 57,250 575100 153 ;650 psi
- 2,699| 5,052| 99,800 819 2,341 2,325 | 2,287 [kg/cm?
38,300| 71,800] 1,417,200|11,630(33,250 33,000 | 32,500 psi
700 2RI, 0501 NS 2T 1000 817| 1,911| 4,925 1,880 1,904 1,883 |kg/cm?
30,050| 71,800( 1,804,000 }11,600 (27,170 |70,000| 26,700 27,040 | 26,750 psi
:NA(A;

98
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TABLE 2.- PROPERTIES OF TUBE SPECIMENS

@eries "B" tubes are 2 by 2 by 0.062 in. with av. r = 0.792
in.; series "D" tubes are 2% by 2% by 0.047 in. with
av. r = 1.001 in.]

Corrected
Cut 3 free
Bapard PPl a o pWadahl, f (RESR SIS Ser T
umn e (grams) {(sq in.) I

(in.)

Series "B" tubes

BU.ALgs-n] 8.051 171.7 [F0481 11.82 1%.95
4] Be st § RS V0 bl AR Tale L 470 11.88 15.00
B3l ES<1|-37.38]4238.9 L7k 1523 19.25
"B"_o|ES-2| 11.39] 238.6 A3 | 15.2h (| 19.25

SBI N SE L L8 3685 T 476 20 i (A5
npo_ol 8.2 17.49} 366.6 b7k 21.46 a5
HED 31 M=11 265001 5518 478 30.02 37.95
PEYLI] M=21-26.00] 549.2 476 30.02 .95
TpBl TO 32 .30 SBT3 4T3 3637 45.95
i tel B8 ST B 473710864397, 1 U5.95
PRU.OY T3] 32,86 ) B76:2 Lo 36.39 45.95
SR IMLLT 36535 Rk 479 40.38 51.00
PR B0 00.2317853.0 179 L 26 56.00
FRlead et o oRY 850.2 . it Ll 26 56.00
Series "D" tubes
“puzites-1] 17.31] 346.2 | 0452 21525 21593
"prox] 8-1| 38.88}1 780.0 L52 43.03 43.00
"D"-2|RM-1]| 67.00{1349.7 1455 71.09 102
"D"_4|MS-1| 72.16|1446.0 e 7625 T 1T
DreEw ToodnEl, 7831635 ,8 52 85.87 85.78
DR I-1p81.81 116410 A5 85.90 85.81
st 1T 23,89 125450 k65 [ 19T 568 NoThs
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TABLE 3.- TEST RECORD OF SERIES "B" TUBES

[pimensions: 2 by 2 by 0.062 ini

Designation Theoretical Experimental

Plate |Column P P
Tube |Column (" %€ |MOMHN o | Puyy | oype utt/ Per
"B"-1| Ss-1 |37,250|43,500|17,900|17,850 (37,150 0.997
"B"-2| 8s-2 |37,250|43,500|17,500|17,700|37,650| 1.010
"B"-1| ES-1 |37,250(42,700|17,630]17,900|37,800| 1.015
"B"-2| ES-2 |37,250|42,700 (17,600 |17,400 (36,800 .988
"B"-1| S-1 |37,250|40,900 |17,T720|17,750(37,270| 1.001
"B"-2| S-2 |37,250|L40,900 (17,630 (17,450 (36,810 .988
"B"-1| M-1 |37,250(38,500 17,800 17,500 |36,600| .983
"B"-1| M-2 |37,250]|38,500 |17,720|17,250|36,200] .972
"B"-2| I-1 |37,250|37,250 17,600 [16,900 |35,750| .960
"B"-2| I-2 |37,250|37,250 |17,600|17,400 (36,800 .988
"B'=2| ‘I-3 |37,250|37;250|17,590]17,150|36,350| .975
"B"-3| ML-1 |37,250|36,500 [17,470(17,150 |35,800| .980
"B"-31 L-1 [|37,250]33,600 (16,100 |15,400 132,200} .9959
"B"-3| L-2 |37,250|33,600 |16,030 {15,400 |32,350| .963

*‘!ﬂ‘;’!"




TABLE k.- TEST RECORD OF SERIES "D" TUBES

Eﬁmﬁnsions: 2

2

% by 24 by 0.047 in

Ratio of experimental

Designation Theoretical Experimental to theoretical values
Plate Column o Plate
Tube [ Column Oer = Per | Pult | ouit (;g Pult/Pcr Ecr/acr
"D"-4f §S-1 | 14,325 | 42,000 | 6470| 9670 | 21,390 | 14,290 1.491 Q.S
"D"-1f 8-1 | 14,325 | 37,650 | 6470 | 9200 | 20,350 | 14,200 1.420 991
"D"-2 | RM-1 | 14,325 | 20,700 | 6520 | 6800 14,920 | 13,850 1.042 .967
"D"-4 ) MS-1 | 14,325 | 18,000 | 6470 | 6525 | 14,420 | 14,260 1.80F .995
"D"-3 | I-2 }ik,305 | 14,305 | 6480 | 6230 f 13,790 | —asmms 963 | -----
0 T O 1i,395 | 14,325 16500 16050 | 13330 | =tain 50 Sl oot
T 5) L-1 | 14,3251 6,500 3020, 2900 | 6,240 | ———- e M

®Experimental plate o.p

bryo tests on same column.

as determined by NACA top-of-knee method.
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Figure 1l.- Diagram of buckling stresses plotted against ratio of half
wave length to web width B = a/b.
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(a) Cross-sectional sketch of column.
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= (b) Cross-sectional sketch of web showing interaction of column and
plate buckling.
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(c) Sketch of column showing axis notation.

Figure 2.- I-section column showing various notations.
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Figure 3.- Calculated buckling stresses of T-section of figure 16 for
several half wave lengths a.
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(a) Cross-sectional sketch of column.
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(b) Cross-sectional sketch of web showing instability.

Figure 4.- Asymmetric column supported at both unloaded edges by flanges
of different width and thickness.

’ Figure 5.- Sketch of lower half of flange.
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Figure 6.- Sketch of T-stiffener and column made of T-sections.

(a) Sketch of column showing various notation.

(b) Buckling as column without distortion of cross section.

w2 S_NACA

(c) Buckling as plate with distortion of cross section.

Figure T7.- Sketch of I-section with narrow and thin flanges.
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Figure 8.- Curves of V¥ against B in elastic range for I-section

columns with flanges of 4- and 2-inch width.
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Figure 9.- Diagram of square tube or box section.

2
Figure 10.- Deflective forces -to é—%
ox

section.

caused by deflection w; of box
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Figure 11.- Square tube with plates buckling symetrically with respect
to vertical and horizontal axes.
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Figure 12.- Square tube showing alternate mode of web buckling.
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Figure 13.- H-section where width of flanges is such that they are
rotationally restrained from buckling by web.
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Figure 14.- Sketch of T-section showing notations.
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Figure 15.- T-section with small rotational restraint of web.
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Figure 16.- T-section where flange has relatively large torsional
rigidity and is much more stable than the web, so that web is
substantially rotationally restrained.
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3
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Figure 17.- Deflection of cross section in figure 16 consisting of
translation w;, rotation with respect to shear center S, and plate
buckling of web with maximum deflection w3.
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Figure 18.- Deflections of case (2) (wp) and case (3) (WB).
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Figure 19.- Deflections of case (1) and of combined case (2-3).

Figure 20.- Distortion of cantilever beam under uniform load gq.
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| Figure 21.- Flexural and torsional buckling of T-section showing
‘ displacement CC' of center of gravity C.
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Figure 22.- Flexural and torsional buckling of angle section.
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Figure 23.- Stress-strain test blocking assembly.

Figure 24.- Internal expansor for tube specimens, assembled.
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Figure 26.- Typical stress-strain curves for square-tube specimens.
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Figure 27.- Curve for GEP plotted on same coordinate system as stress-
strain curve.

Figure 28.- Local buckling gage and supporting collar.
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General view of test arrangement

Figure 29
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Figure 30.- Test results for series "B" specimens.
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Figure 31.- Test results for series "D" specimens.
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Figure 32.- Local buckling curves for square tube specimen "D"~2-RM1.

NACA - Langley Field, Va.




