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SUMMARY 

A vector study of the partial-differential equation of steady 
linearized supersonic flow is presented . General expressions, which 
relate the velocity potential in the stream to the conditions on the 
disturbing surfaces, are derived. In connection with these general 
expressions the concept of the finite part of an integral is discussed. 

A discussion of problems dealing with planar bodies is given and 
the conditions for the solution to be unique are investigated. 

Problems concerning nonplanar systems are investigated, and methods 
are derived for the solution of some simple nonplanar bodies. The sur
face pressure distribution and the damping in roll are found for rolling 
tails consisting of four, six, and eight rectangular fins for the Mach 
number range where the region of interference between adjacent fins 
does not affect the fin tips. 

INTRODUCTION 

In the presentation of the theory of the flow of an idealized 
incompressible fluid, vector methods can be used to reduce greatly the 
mathematical manipulations involved. The study of steady linearized 
supersonic flow may also be aided by the use of vector methods. Two 
types of approaches, however, can be used. Perhaps the more obvious is 
to make use of common vector methods as was done in reference 1. The 
other vector method, which was introduced by Robinson in reference 2 
and is used in this paper, appears to be more suited to the study of 
the linearized partial-differential equation of steady supersonic flow. 
This method allows a derivation of a hyperbolic scalar potential and a 
hyperbolic vector potential along lines analogous to the derivation 
sometimes used (reference 3, ch. VIII) in dealing with common scalar 
and vector potentials. 
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The present paper presents a vector derivation of many general 
results which have been found by various methods and are given in the 
published literature on the linearized partial-differential equation 
of supersonic flow and also presents some results which are not found 
in the literature . The gener al results of Hadamard (reference 4, 
p . 207), Puckett (reference 5), and Heaslet and Lomax (reference 6) 
are found as special cases of a general expression for a scalar poten
tial, and the results found by Robinson (reference 2) are obtained by 
the use of a vector potential. The derivation of the scalar potential 
doubtlessly helps to clarify the concept of the finite part of an 
integral. 

A discussion of problems dealing with planar bodies immersed in a 
supersonic flow is given, and the conditions necessary for the solution 
to be unique are investigated . 

Problems dealing with nonplanar systems are also discussed, and 
methods are derived for the solution of some simple problems dealing 
with nonplanar bodies. The surface pressure distribution, the span
wise loading, and the damping in roll are found for rolling tails con
sisting of four, six, and eight rectangular fins for the Mach number 
range where the region of interference between adjacent fins does not 
effect the fin tips . 

SYMBOLS 

A hyperbolic vector potential 

A aspect ratio of tail fin 

a positive constant 

arbitrary constants 

c chord 

E,F arbitrary vector fun ctions 

f scalar function define d by equation (19) 

G vector function associated with vector function F 

H vorticity vector 

span of t ail f in 
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i,j,k unit vectors in x-, y-, and z-directions, respectively 

M Mach number 

n unit vector normal to element of area da 

nh .~2 = -1 Vl + jV2 + kV3 

- , _i~2v ' + jV
2 
, 

+ kV
3 
, 

~ 1 

Db* 2 * jV2 
* + kV

3 
* =: -i~ V1 + 

Q 

q 

R' 

pressure-difference coefficient 

rate of roll 

function used in equation of surface of discontinuity 

part of velocity vector which is made up of hyperbolic 
curl of vector potential 

total perturbation velocity 

small constant 

r ,I. 2 4 )2 4( )2 V( x -;) + ~ (y - T) + ~ z - S 

s 

8
1

,82 ,8
3

,84, 

8
5

,86,T,T 1 

v 

area of tail fin 

surface ot discontinuity 

surfaces of integration 

free - stream velocity 

volumes of integration 

- 1 ¢ r/,;, -Rl W = R V' - y;v 

x,y,z Cartesian coordinates (x-axis parallel to free-stream 
direction) 
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(3 = vM2 - 1 
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E 

B,p 

T 

CI 
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spanwise circulation (21T
•
E

. 

L.E. i
T.E. 

¢x dx = ¥ 6C p 
L.E. 

small positive quantity 

Cartesian coordinates (s-axis parallel to free-stream 
direction) 

polar coordinates 

scalar functions 

given volume 

direction cosines of outward normal to element of area da 

direction cosines of normal (directed away from point 
(x,y,z)) to surface So 

direction cosines of normal to element of ~rea da used 
in equation (45) 

slope of deflected area 

area of integration 

rolling-moment coefficient per fin 

~
ROlling moment per fin) 

1pv2gE 
2 2 

indicates integration over closed line or surface 

denotes finite part of integral 

1 

./ 
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THEORY 

This paper deals with the linearized partial-differential equation 
of steady supersonic flow. This equation is given by 

+ ¢ + ¢ = 0 yy zz 
( 1) 

The potential is assumed to be continuous in the stream direction, and 
the potential is assumed to be always finite. Assuming the potential 
to be finite and continuous in the stream direction has the effect of 
requiring the aerodynamic lift and moment (calculated by use of the 
linearized pressure) of f i nite bodies to be finite since the linearized 
pressure is related to the derivative of the potential in the stream 
direction. The expression "linearized pressure" refers to the pressure 
obtained by neglecting all powers of the perturbation-velocity compo
nents above the first. 

Vector Operators and Identities 

Certain operators, which are closely associated with the linearized 
hyperbolic partial-differential equation of supersonic flow (the two
dimensional wave equation), are added to the vector operators commonly 
used. The basic operators have been used previously in references 2 
and 7. 

The gradient operator is defined by 

\7 = 

The analogous hyperbolic gradient operator defined by Robinson in 
reference 2 may be expressed as 

h oQ2 do d k d 
\7 = -l,., dx + J dy + dz 

The hyperbolic divergence of an arbitrary vector E is given by 

\7b . E 

Similarly, the hyperbolic curl of the vector E is given by 

\7h X E 

- - - - --=--- -~---------- - ---
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The divergence of the gradient operator is sometimes denoted by 

The analogous divergence of the hyperbolic gradient operator is denoted 
by 

The following identities are needed. Let E be a vector and Wand A 
be scalar functions of x, y, and z. Then, 

Vw . VA = VA . VW (2a) 

V . WE = WV . E + E • W ( 2b ) 

V x (V x E) = V(V . E") - v2E" (2c) 

V • (V x E) = 0 (2d) 

VhW . VA = Vh/\ . Vw (2e) 

Vh . WE = Wh . E + E . Vh w (2f) 

Vh x (V x E") = V (Vh E") - V2bE 

Vh . (Vh x E) = 0 

These identities can be proved by direct expansion. 

The divergence theorem may be expressed as 

i E . Ii da = J V . E dv 

where n is the normal unit vector to the element of area da. The 
vector n is expressed mathematically as 

(2g) 

(2h) 

(2i) 

• 
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where V17 V27 and V3 are the direction cosines of the outward drawn 

normal to the element of area da. 

A theorem more general than the divergence theorem is given by 
(this theorem follows from the results of reference 8, p. 87) 

where the subscripts 
tor E, and Cl , C2, 
C ~ C = C = 1 the 
123 

x, y, and z refer to components of the vec
and C3 are arbitrary constants. Note that if 

preceding equation reduces to equation (3). If 

the preceding equation reduces to 

or 

f E . Dh da = J 'Vh . E dv 

where 

(4 ) 

If the divergence theorem as expressed by equation (3) is applied 
to a volume throughout which 

then the surface integral over the bounding surface is 

1 E . Ii da = 0 
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provided that no surfaces exist inside the volume of integration across 
which the normal component of E is discontinuous. Similarly, if 
equation (4) is applied to a volume throughout which 

\7h'E=O 

then the surface integral over the bounding surface is 

provided that there are no surfaces inside the volume of integration 
across which E . llh is discontinuous. It is interesting to note, 
however, that surfaces exist inside the volume of integration across 
which E· n can be discontinuous while at the same time E' Dh 
remains continuous. It follows that for such a surface nand llh 
must satisfy the relation 

ll' llh = 0 

Let Q(x,y,z) = 0 be the equation of such a surface. 

Then, 

1 \7Q n 

y~2 2 Qz2 + Qy + 

and 

Dh 
1 \7hQ 

VQx
2 

+ ~2 + Q 2 
z 

where the subscripts indicate differentation. Substituting the 
preceding expressions for nand nh into equation (5) yields 

(5) 

o (6) 

Any solution of equation (6) set equal to zero is the equation_of a 
surface across which \7 . E may be discontinuous while Vb' E remains 
continuous. The fact that the Mach cone from any arbitrary point satis
fies equation (6) can be easily verified. The equation of the envelope 

._- -- - -- -----

, . 

• 
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of the Mach cones from an arbitrary line also satisfies equation (6) 
(reference 9, p. 106). 

Finite Part of Integrals Which Arise 

in Steady Supersonic Flow 

9 

In. the following sections use is made of the concept of the finite 
part of an infinite integral. This concept was introduced by Hadamard 
(reference 4) and has been used by a number of other investigators. 
The finite part is, however, sometimes confusing. This section was 
therefore included in an attempt to give a realistic picture of the 
finite -part concept.and also to present the first steps of the deriva
tion of the scalar and vector potentials. 

The concept of the finite part of double integrals as defined by 
Hadamard and used in this paper is different from the concept of the 
finite part of double integrals as defined in reference 10. The essen
tial difference between these two definitions lies in the manner in 
which the singular points along the Mach cone are treated. 

In reference 3, page 183, a vector function is used in the deriva
tion of the common scalar and vector potentials. The analogous vector 
function based on equation (1) is 

W 
1 1 - v¢ - rj5J R R 

where 

~, 

The hyperbolic divergence of vector 
~,and S is given by 

W with respect to variables 

The preceding equation indicates that the hyperbolic divergence of the 
vector W set e qual to zero yields the partial-differential equation 
of linearized supersonic flow. A mathematical derivation of W can be 
obtainedj however, for the purposes of this paper such a derivation is 
not needed. 

I 
I 

I 

I 

I 

I 

I 

I 
I 

-----~---~ 
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The result of applying equation (4) to the vector W is 

When ¢ satisfies equation (1) throughout the volume of integration, 
the right side of equation (7) is zero; thus, 

( 8) 

when 

Equation (7) is applied to a volume (denoted by vO) enclosed in 
the forward Mach cone from the point (x,y,z). This volume is bounded 
by the surface given by R = R', where R' is a small constant, and an 
arbitrary surface Sl enclosed in the forward Mach cone from the point 
(x,y,z). A cross section of the region of integration is shown in fig
ure 1. Note that this region is analogous to the region that is some
times used in calculating the potential function satisfying Laplace's 
equation (reference 3, pp. 151-153). For regions such as the one shown 
in figure 1, equation (7) may be written as 

where T represents the area of integration when R = R'. 

The integral over the area T may be reduced to 

where r is given by 

1 l{n¢ n
h 

+ ~2r¢)da 
T R'\V . (10) 

(11) 

. ' 
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Since R' is a constant , equation (10) can be written as 

1 r (,,'" -nh + 13
r

2¢) da if' J T v'P' 

Equation (9) can now be written as 

11 

(11) 

-R~ Ir (v¢ . iih + ~:¢)da + L( (} V¢ - ¢V~) . iih da ~ ~o ~ V2h¢ dv 

(12) 

If ¢ is required to satisfy the linearized partial-differential 
equation of steady supersonic flow, then 

and equation (12) reduces to 

(13) 

If R' is made smaller and smaller the integrand of the integral over 
the area T in equation (13) remains finite except on the small area 
close to the point (x,y,z). In anticipation of taking the limit of 
equation (13 ) as R' approaches zero, the small area close to the 
point (x,y,z) is removed from the area T. The area T is divided 
into two parts. One part is the area of T which is downstream of the 
surface given by 

~ = x - E 

where E is small but larger than R'. This area is denoted by T. 

The remaining part of T (denoted by T') is the area of T which is 
upstream of the surface 

~ = x - E 

A cross section of the region of integration with T divided into T 

and T' is shown in figure 2. Equation (13) can now be expressed as 
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1 1 ( - ~2¢) 1 1 (1 1) R' T V¢ . nh + r da + R' T' R v¢ - ¢V R 

where R' is smaller than E. 

Since ¢ is continuous and therefore its values over Tare 
approximately constant for small values of E, the integral over the 
area T can be written as 

~J n¢" Ii da + /32¢(x,y,z) J 
R' V · h R' 

T T 

da 
r 

(14) 

(15) 

When the second integral of expression (15) is integrated, equation (14) 
becomes 

1 J ¢ 2 1fE ¢ ( x, y, z ) R' V . nh da + R' 
T 

If R' is made to approach zero, equation (16 ) applies even to the 
limit where R' is zero . 

(16) 

The limit of equation (16) as R' approaches zero may be written 
as 

G
l 1 - d 21fE¢(X,y , z) /3

21 ~ 
lim R' T V¢ . nh a + R' - 21f¢(x,y,z) + R' T' r da + 

R' ---?- 0 

(17) 

The integrands of the integrals over the areas T and T' are always 
fi nite and it can be shown that their first derivatives with respect 
t o R' approach zero as R' approaches zero; therefore, the product 
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of l/R' and these integrals either approaches zero in at least the 
order of R' or approaches infinity as R' approaches zero. Thus it 
follows that the integrals over the areas T and T' have no finite 
terms remaining after the limit (R' ~ 0) has been taken. The sum of 
the terms of equat~on (17) must be zero; thus the singularities 
resulting from the integrals over the areas T and T' must cancel 
the singularities which arise from the integral over the area 81' 

From the preceding considerations it follows that one method of 
evaluating the finite part of infinite integrals of the type appearing 
in equation (17) is to evaluate the integral when R' is small but not 
zero and neglect the terms multiplied by powers of l/R'. Other infinite 
integrals sometimes arise, however, for which the finite part cannot be 
obtained by neglecting powers of l/R'. For example, if equation (17) 
is differentiated with respect to one of the variables (x, y, or z) 
an equation containing the velocity component is obtained. In some 
cases, when the point (x,y,z) lies on the surface 81 the inf~nite 
terms are of the order (In R')/R' and of the orders (l/R,)n. In these 
cases, the finite part of the infinite integrals can be obtained by 
evaluating the integrals when R' is small and neglecting the terms 
multiplied by powers of l/R' and (In R')/R'. 

The process of removing the infinite parts of an integral, however, 
has been derived by Hadamard (reference 4, book III, ch. I). Hadamard 
used his methods of evaluating the finite part of integrals in finding 
solutions to certain hyperbolic equations including the linearized equa
tion of steady supersonic flow. Perhaps a fact worth noting is that 
the integrals of equation (17) are double integrals and when the methods 
given by Hadamard are used the methods given for multiple integrals 
should be used. In the past, the sin~ar points £points on the Mach 
cone where the derivative of (x - s) - ~2(y -~) - ~2(z - s)2 with 
respect to the variable of integration is zero) have caused some con
fusion; as Hadamard points out (reference 4, p. 147), these singular 
points must be removed from the area of integration before the finite 
part is taken. Particular attention should be given to paragraph 92 
of reference 4 since the special type of integrals discussed therein 
sometimes arises in dealing with planar problems. 

Robinson (reference 2) has shown that when using Hadamard's methods 
the order of integration may be changed without affecting the finite 
part and that it is permissible to differentiate under the integral 
sign of a multiple integral without considering the variable limits 
which lie along the boundary where the integrand is singular, provided 
that only the finite part is taken. Both Hadamard and Robinson have 
shown that in differentiating an improper integral which has an integrand 
that has a one-half power s ingularity along variable limits the variable 
limits may be neglected provided the finite part of the resulting 
integral is taken. 

I 

~---~.~-----~ 
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The term "finite part" is somewhat misleading since the finite 
part of an integral can be infinite. In certain cases the integral 
is infinite even after the terms which approach infinity as R' 
approaches zero have been neglected. 

Scalar Potential 

The preceding arguments show that the finite parts of equation (17) 
can be equated to zero; thus, 

where the symbol f before the integral denotes that only the finite 
part is to be taken. The preceding equation may be solved for the value 
of the potential at the point (x,y,z); the result of this operation is 
given by 

(18) 

It should be remembered that surfaces can exist inside the forward Mach 

cone from the point (x,y,z) across which ~V¢ - ¢V ~ can be discon

tinuous and across which (~V¢ - ¢V~) . lih remains continuous. 

Equation (18) is an expression for the scalar potential at the 
point (x,y,z) in terms of the potential and its derivatives with respect 
to nh on the surface Sl ' A more general expression for the scalar 
potential than that given by equation (18) can be obtained. If within 
the volume enclosed by the forward Mach cone from the point (x,y,z) and 
the surface Sl equation (1) is not satisfied and V2h operating 
upon ¢ yields 

then equation (10) becomes 

1 1 ( - ~) 1 (1 1) If' v¢. nh + r da + R V¢ - ¢V if 
T Sl 

f( ~,Tl, ~) dv 
R 

(20) 
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Provided that f(~,~,S) is always finite, the right side of equation (20) 
is finite; furthermore, the right side of equation (20) remains finite 
as R' approaches zero. If in equation (20) R' is made to approach 
zero and only the finite parts of the integrals are retained, then the 
resulting expression is 

¢( ) 1 fl (1 ¢ ¢ 1) __ 1 f f( ~,~, U dv (21) x,y, z = 2rc 8 R \j - \1 R . nh da 2 rc R 
1 vl 

where vl represents the volume Vo when R' is equal to zero. Equa
tion (21) is equation (58) of reference 4 where ~2 has been set equal 
to one. Note that the volume integral in equation (21) has the appear
ance of the integral for the potential resulting from a volume distribu
tion of sources in an incompressible flow. 

The assumption has been made that ¢ is continuous throughout the 
volume vl. It is also assumed that no surfaces exist inside vl 
across which a¢/anh is discontinuous. If equation (21) is applied to 
a volume v, which has surfaces across which ¢ and/or the derivative 
of ¢ in t~e direction of llh is discontinuous, these surfaces of dis
continuity can be removed from the volume of integra tion by allowing the 
arbitrary surface 81 to envelop them (see fig. 3). For volumes of 
integration where the surfaces of discontinuity have been removed in 
this manner, the scalar potential can be written a s 

1 f r (1 a¢ a 1) 
dv + 2rc J 8 R 6. dnh' - 6.¢ dnh I R da + 

o 

(22) 

where 80 denotes the surface of discontinuity, and 6.¢ is the poten
tial difference across the surface 80. The notation a/anh' is used 
to denote the operator 

2 a 
- (3 v ' + v ' 1 df 2 + v ' 

3 

For the cases where no surface of discontinuity exists inside the 
volume vl and ¢ and V¢ are zero on the surface 81 - 8

0
, equa-

tion (22) reduces to 

I 

---~ - -- ---------~~-~----~ 
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¢(x,y,z) 

From equation (19) 

Note that equation (23) is a solution of the partial-differential 
equation (24). 

(24) 

For most problems in linearized supersonic flow, f(~,~,S) is zero 
and ¢ is zero upstream of the disturbing body. For such problems, the 
surface Sl - So can be taken to be located upstream of the disturbing 
body where ¢ and V¢ are zero. In this case, equation (22) reduces 
to 

1 fl (1 d ¢(x,y,z) = 2rr R 6:. 2lnh' ¢ 
So 

d 1) 
- 6:.¢ 2lnh' R da 

If the surface So is confined to the ~ = 0 plane, equation (25) 
reduces to equation (10) of reference 6. In this reference the boundary 
conditions for airfoils are discussed. 

Components of Vector Field 

Let F be a vector which is finite and integrable in a given 
volume (denoted by A) and is zero outside the volume A. To each 
point in the volume associate the vector 

(26) 

where v2 denotes the part of the volume A enclosed in the forward 
Mach cone from the point (x,y,z). 

From equations (24) and (26), it follows that each component of G 
satisfies the relation 

where the subscript i refers to any component of the vector field. 
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Let ~O(x,y,z) be a scalar and A(x,y,z) be a vector defined by 
the equations 

2mVO == Vh • G :::: 

and 

2M == V x G 

Equation (2h) indicates that 

1 
F(S,11,S) • Vh if dv 

\7h X (V X G) :::: V(\7h • G) - v2hG 

(28) 

(29) 

Substituting the expressions for V X G, \7h G, and V2hG as given 
by equations (27), (28), and (29), respectively, into equation (30) and 
solving for F yields 

F(x,y,z) :::: -~O(x,y,z) + \7h X A(x,y,z) (31) 

Since F is an arbitrary vector, equation (31) indicates that any 
finite integrable vector field can be expressed in terms of the gradient 
of a scalar and the hyperbolic curl of a vector. Equation (31) has the 
appearance of the Helmholtz theorem (reference 3, p. 18(7); however, 
since ~O and A are found by integration only in the forward Mach 
cone from the point (x,y,z), equation (31) hardly seems to be a state
ment of the Helmholtz theorem as is commonly given. The result given 
by equation (31) was obtained by Robinson in reference 2. 

Hyperbolic Vector Potential 

Equation (31) indicates that the perturbation velocity vector can 
be divided into two parts. One part is the gradient of a scalar func
tion, and the other is the hyperbolic curl of a vector function. The 
vector fUnction is analogous to the common vector potential (reference 3, 
pp. 104 and 188); therefore, the vector function is referred to as the 
hyperbolic vector potential. Thus, if q' is the total perturbation 
velocity vector, then 

q' :::: V¢ + Vh X A 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

1 

I 
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where ¢ is the scalar potential and A is the hyperbolic vector 
potential . The part of the velocity vector which is made up of the 
hyperbolic c~l of the vector potential is denoted by q. 

By direct expansion it can be shown that 

Vh " ql = Vh " V¢ + Vh·" (Vh x A) = V2h¢ + Vh " (Vh x A) o 

Equation (33) indicates that the hyperbolic divergence of the perturba
tion velocity vector is zero. 

The vorticity vector is given by 

Therefore, from equation (32), 

H = V X (\7h X A) 

or 

From equations (2d) and (29), the divergence of the hyperbolic 
vector potential is zero; thus, 

(34) 

Each component of equation (35) is a partial-differential equation 
of the form of equation (24); thus, from equation (23) each component 
of equation (35) has a solution given by 

dv 

where the subscript_ i refers to any component of the vector H. 
each component of A is given by equation (36), then 

-( ) = J:.J H(~,T],O dv A x,y,z 2rr R 
vl 

Since 

The velocity vector resulting from the hyperbolic vector potential is 
therefore given by 



NACA TN 2641 19 

q = Vb. x A = 2~ l Vb. x ; dv 
vl 

or 

(32 J (y - T))Hz - (z - 1; )Hy 
u 2rr R3 

dv 
vl 

(39a) 

(32 '11 

(z - UHx - (x - S )Hz 
V 2rr R3 

dv (39b) 

w = (32 i (x - S)Hy - (y - T])Hx 
2rr R3 

dv 
vl 

(39c) 

where the subscripts refer to the components of the vector H. The 
results given by equations (39) were obtained by Robinson in reference 2. 

Vortex 8heets 

If the vorticity is confined to a surface 821 equation (37) 
becomes 

I( x y z) = ~ 1 if ( s, T) J 1;) da 
"2rr R 

82 

(40 ) 

Equation (40) is an expression for the hyperbolic vector potential 
resulting from a surface of vorticity. Note that if the vorticity is 
zero except on the surface 82, then equation (35.) reduces to 

v2h"A = 0 

By removing the surface 82 from the volume of integration each com
ponent of A can be expressed as (from equation (25)) 

( 41) 

- ----- - - -- - - - ---~-



20 NACA TN 2641 

where the subscript i refers to any component of the vector A. 
Since each component of A is given by equation (41), then 

A(x,y,z) 

Note that if 6A is zero, equation (42) reduces to 

( 42) 

- 1 1 1 oA 
A(x,y,z) = 2~ S2 R 6 dn

h
' da (43) 

By comparing equations (40) and (43) it follows that, on the surface S2, 

if - 6 oA (44) - drl,' 
h 

Equation (44) indicates that across a surface of vorticity the 
derivative of the hyperbolic vector potential in the direction of uh l 

is discontinuous. Thus, a lifting surface can be represeuted by a 
continuous hyperbolic vector potential, while it can be shown that a 
thickness effect can be represented by a discontinuous hyperbolic 
vector potential. Wote the contrast with the scalar potential, which 
uses a continuous potential to represent a thickness effect and a dis
continuous potential to represent a lifting surface. 

Further Development of Scalar Potential 

The scalar potential can be expressed in forms other than those 
already presented. Equation (8) is applied to the region bounded by 
the arbitrary surface Sl, the forward Mach cone from the point (x,y,z), 
and a second arbitrary surface S3 enclosed in the forward Mach cone 
from the point (x,y,z) and upstream of the surface" Sl. A cross section 
of such a region is shown in figure 4. The result of applying equa
tion (8) to this region is 

f r (1 o¢' r 0 1) J
S 

R dnff - ¢ dnh* R da + 
1 

provided that ¢r is a solution of equation (1). Note that the scalar 
potential as given by equation (18) is independent of ¢' so that ¢r 
is arbitrary so long as it satisfies equation (1) throughout the proper 
volume. 
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If for a finite distance upstream ¢. is zero and remains zero 
for greater distances upstream, the surface 83 may be chosen in this 
region so that the integral over 83 in equation (45) is zero; thus, 

( 46) 

Equations (18) and (46) can be combined to yield 

1 f1 G (d¢ d¢') d ~ ¢(x,y,z) = 2n: if dIh:" - drh:* - (¢ - ¢')drh:* if da 
8} h h h 

The only restrictions placed on ¢r at this point are that it satisfy 
equation (1) and be zero at a finite distance upstream. In many cases 

¢. may be chosen so that ~ - ~ or ¢ - ¢. is zero; therefore, 
onh onh~ 

in these cases, ¢ can be expressed as 

( 48a) 

or 

1 fJ 2J 1 
¢(x,y,z) = -2n: 81 (¢ - ¢r )anh if da ( 48b) 

Equations (48) are quite useful; however, remember that they apply only 
when ¢r can be chosen so that ¢r does not violate any of its 
restrictions. 

Note that equations (48) can be applied to problems where either ¢ 
or 2J¢/2Jnh is given on the surface Sl. The application of these 
equations to most nonplanar problems of either type, however, lead to 
quite unwieldy integral equations. 

1 

I 

I 

I 

I 
I 
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APPLICATIONS 

Planar Problems 

Many problems in linearized supersonic flow deal with the surface 
of discontinuity confined to a plane surface parallel to the x-axis. 
In this section a general discussion of this type of problem is given. 
The coordinates are located so that the surface of discontinuity is in 
the t = 0 plane. 

The scalar potential at an arbitrary point (x,y,z) above the 
~ = 0 plane is (from equation (47)) 

¢ (x, y , z) = _ 2... fl r7(¢ _ ¢ ,)! + (¢ _ ¢') (3 
2 ~ d ~ dl) 

2 rc Sl lS z z R R3J 

In this case, the surface Sl is the ~ = 0 plane. 

If ¢'(x,y,O) is chosen equal to ¢(x,y,O) the potential becomes 
symmetric with respect to the t = 0 plane. Thus, for z = a 

¢(x,y,a) = ¢'(x,y,-a) 

and 

¢ (x,y,a) = -¢ '(x,y,-a) z z 

For this case, equation (49) reduces to 

Equation (50) was given by Puckett in reference 5. 

If ¢'(x,y,O) is chosen equal to -¢(x,y,O) 
becomes antisymmetric with respect to the t = 0 

and 

¢(x,y,a) = -¢'(x,y,-a) 

¢ (x,y,a) z ¢ '(x,y, -a) z 

(50) 

the potential 
plane. In this case, 

- - - - -- ~------
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Thus, equation (49) is reduced to 

Note that for surface Sl not confined to a plane parallel to the 
x-axis, a choice of ¢'(x,y,z) at the surface Sl to equal ¢(x,y,z) 

at Sl does not cause ~(x,y,z) at the surface Sl to equal 

_~~~*(X'y,z) at 81. 8i:~larlY, choosing ¢,(xJy,z)( at th)e surface 

Sl equal to -¢(x,y,z) at Sl does not cause ~ x,y,z at Sl to 

equal ~(X'YJz) at Sl. nh* 

Provided the discontinuities are restricted to the S = ° plane, 
the scalar potential can also be expressed as follows (from equation (18)): 

1 fl [¢z(£,1'),O) ¢( )~2Z~ ~d'n ¢(x,y,z) = - 211: R + £,1'),0 3 ds ' I 

Sl R 

for positive z. A comparison of equations (50) and (51) with equa
tion (52) shows that the two terms of the integrand of equation (52) 
contribute equal amounts to the potential at any point (x,y,z). 

(52) 

Since the terms of the integrand of equation (52) contribute equal 
amounts to the potential at the point (x,y,z) as z approaches zero, 
equation (52) must reduce to 

The preceding e quation can also be obtained by examining the limit of 
equation (52) as z approaches zero. If this procedure is done the 
entire contribution of the second term of the integrand of equation (52) 
is found to come from the point at the apex of the hyperbola formed by 
the intersection of the Mach cone from the point (x,y,z) and the 
~ = ° plane. Note that if the integration is performed first with 
respect to 11 then, when the methods of Hadamard are used, the point 
at the apex of the hyperbola is a singular point and must be removed 
from the area of integration by a process such as is given in refer
ence 4, page 147. 
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If ¢z is prescribed over the S = 0 plane, then the potential 
is given uniquely by equation (50). Similarly, if the potential is 
prescribed over the S = 0 plane, then the derivative of ¢ with 
respect to z is determined over the z = 0 plane. This result fol
lows from equation (51) since prescribing ¢ over the z = 0 plane 
determines the potentials in the space above the z = 0 plane; there
fore, it also determines ¢z in the space above the z = 0 plane and 
the limit of ¢z as z approaches zero from the positive Qirection. 

The question that arises is whether ¢(x,y,z) is uniquely deter
mined in the space above the z = 0 plane if ¢ is prescribed over 
certain areas of the z = 0 plane and ¢z is prescribed over the 
remalnlng areas. If the assumption is made that ¢ is not determined 
uniquely, then at least two potential functions satisfy the condition 
that either ¢ or ¢z is prescribed in all regions on the z = 0 plane 
and that ¢ is identically zero upstream of a given point. Let ¢l 
and ¢2 denote two potential functions which satisfy the same boundary 
conditions, and let ¢O denote the potential function formed by taking 
the difference between ¢l and ¢2' Mathematically, the potential 
function ¢O is given by 

Since ¢l and ¢2 have the same values in certain regions in the 
z = 0 plane then ¢O is zero in these regions. Similarly, since 
d¢~Z and d¢~Z have the same values in the remaining regions of 
the z = 0 plane, then d¢O~Z is zero in these remaining regions. 
The potential function ¢O has the boundary conditions that either ¢O 
or d¢O/dZ is zero in all regions of the z = 0 plane and that ¢O is 
identically zero upstream of a given point. 

Consider the case where all the boundaries between the regions are 
supersonic. (The slope of the boundaries are such that the component 
of the free stream perpendicUlar to the boundary is always supersonic.) 
The potential function ¢O can be evaluated by use of equations (50) 
and (51) for points in areas which are far enough upstream to be affected 
only by a region where ¢ or ¢z is prescribed. For all points in 
these areas ¢O is zero as indicated by equations (50) or (51). It 
follows from equations (50) and (51) that ¢O is also zero inside the 
volume above the z = 0 plane, which is affected by these areas alone. 
Thus, the volume where ¢O is identically zero has been moved downstream. 
The same argument can be repeated until the complete z = 0 plane has 
been covered . The preceding arguments cannot be applied to cases where 
the regions have subsonic boundaries; however, if it is permissible to 
distort the boundaries within a strip of infinitesimal width these sub
sonic edges can be converted into supersonic edges by replacing every 
element of the subsonic boundaries by a broken line made up of supersonic 
segments. Such a procedure is illustrated in figure 5. If the 
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assumption is made that the subsonic boundaries may be distorted an 
infinitesimal amount, then ¢o is zero over the z = 0 plane and also 
in the space above the z = 0 plane. Equation (53) now reduces to 

Since ¢l and ¢2 are any two potential functions with the same values 
in certain regions of the z = 0 plane and with the same partial deriva
tives with respect to z in the remaining regions, proof has been given 
that only one potential function exists for which the potential is 
prescribed over certain areas in the z = 0 plane and the partial 
derivative with respect to z 1s prescribed over the remaining areas. 

The boundary conditions for a zero-thi'ckness lifting airfoil with 
a given local angle-of-attack distribution are not of the type discussed 
in the preceding paragraph. The conditions prescribed in the z = 0 plane 
for this type of problem are: The potential function ¢ is identically 
zero upstream of the airfoil; ¢(x,y,O) is zero except on the plan form 
or in the wake; the partial derivative of the potential with respect 
to z, ¢z, is given on the plan form; and ¢x(x,y,O) is zero in the 
wake. The preceding boundary conditions do not specify that ¢ or ¢z 
be prescribed in all regions on the z = 0 plane since not ¢ but ¢x 
is given in the wake. For airfoils which have trailing edges which are 
always supersonic, the requirement that ¢ be continuous in the stream 
direction necessitates the potential in the wake to have the value of 
the potential at the trailing edge of the airfoil. In this case, the 
potential function is uniquely determined. For airfoils which have sub
sonic trailing edges the Kutta-Joukowski condition is generally applied 
to the trailing edges to determine ¢ uniquely. If the assumption is 
made that the trailing edge can be distorted within a strip of infini
tesimal width, then the requirement that ¢ be continuous in the stream 
direction can be used to determine ¢ uniquely. If the assumption is 
made that the subsonic trailing edge is distorted within the infini
tesimal strip so that each segment of each line element of the trailing 
edge is always supersonic (see fig. (6)), then ¢ is determined 
uniquely. It is well-known that for airfoils with subsonic trailing 
edges there are an infinite number of solutions which satisfy the 
boundary conditions as stated at the beginning of this paragraph. The 
preceding arguments however prove that there is but one solution for an 
airfoil which has had its subsonic edges replaced by broken lines which 
are always supersonic. Note that it has not been proved that the solu
tion obtained by distorting the subsonic trailing edges corresponds to 
the solution satisfying the Kutta-Joukowski condition, nor has it been 
proved that the solution of the distorted trailing edge is independent 
of the manner of distortion. 

----- ----~---
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Nonplanar Problems 

The scalar potential resulting from the disturbances caused by a 
nonplanar body can be found from equation (18) provided that both ¢ 
and d¢/dnh are known on some surface 81. Unfortunately, ¢ and 
d¢jdnh are not generally known on a surface which fills the requirement 
of the surface 81 ; therefore, equation (18) appears to have little 
value in the calculation of the potential functions for nonplanar systems 
in general. Cert ain properties of equation (18) are, however, worth 
investigating. 

The problem of evaluating the potential on the upper surfaces of a 
long rectangular body is discussed. The assumption is made that the 
body extends upstream to i nfinity and that the sides are parallel to the 
free -stream direction except for small local variations which cause 
small disturbances in the stream. Figure 7 (a) shows the forward Mach cone 
from a point on the upper surface of such a rectangular body . This ~ig
ure also shows that there is a certain part of the surface of the rec
tangular body in the forward Mach cone from the point (x,y,z) that can
not possibly affect the potential at the point (x,y,z). If the surface 
81 in equat~on (18) is t aken to be the surface of the rectangular body, 
then equation (18) indicates that the values of ¢ and d¢/dnh in the 
region which cannot possibly affect the potential at the point (x,y,z) 
should be used in evaluating the potential at the point (x,y,z). The 
only possible explanation of this consideration is that the integral 
of ¢ and d¢/ dnh caused by the disturbances in the "blind spot" add 
to zero . This consideration can be shown mathematically as follows. 
Let *0 denote the potential function resulting from the disturbances 
inside the blind spot . From equation (46), it follows that 

o 

Equation (54) indicates that the potential at the point (x,y,z) can be 
evaluated by applying equation (18) to the surface of the rectangular 
body regardless of the blind spots . The same argument holds for other 
bodies with blind spots. 

The preceding arguments can be clarified by a simple illustration 
of the affect of a blind spot . Consider an infinite rectangular body 
such as shown in figure 7 where the only disturbances are caused by a 
small deflected area with a constant slope cr with respect to the free
stream direction located on the lower surface of the body. The leading 
edge of the deflected area is chosen perpendicular to the free-stream 
direction so that the potential in the region not affected by the 
vertical sides is of a two - dimensional nature . Figure 7(b) illustrates 
such a disturbing surface . 
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The disturbance potential in the two - dimensional region is given 
by 

¢(x,Z ) 
crvGc - x2 + 13(z - Z2~ 

13 

where the lower surface of the body lies in the Z = z2 plane and the 
leading edge of the deflected area is in the x = x2 plane. 

A point on the upper surf ace which has only the two-dimensional 
flow in its forward Mach cone is illustrated in figure 7(c). The dis
turbance potential for this point is (from equation (18)) given by 

~ J lav 13 2crV (~ - x2)( Z - z2)l 
¢(x,y,z) = 21! [R + R3 Jd~ dT) 

Upon per forming the indicated integrations the preceding expression 
becomes 

¢(x,y,Z) 

which reduces to 

crV [x - x2 - 13 (z - z2) ] 

213 + 

¢(x, y,Z) = 0 

crV ex - x2 - 13 (z - z2) ] 

213 

This result is a demonstration that the disturbances in blind spots do 
.not contribute to the potential. 

The scalar potential resulting from the disturbance produced by a 
nonplanar body can also be obtained by use of equations (47) and (48 ) 
provided that the necessary values of ¢, d¢/dnh' ¢', and d¢'/dnh 
are known . In dealing with planar bodies ¢' could be chosen so that 

¢ - ¢' = 0 

and thus equation (47) is reduced to equation (50). Similarly, ¢' 
could also be chosen so that 

and thus equation (47 ) is reduced to equation (51). Unfortunately, for 
nonplanar bodies, choosing ¢' equal to ¢ does not make d¢ ,/dnh* 

~-- -~-- ---- --.-- - - ----~- -- --~--' 
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known as was the case for planar problems and, similarly, choosing 
o¢;/onh* equal to -o¢;dnh does not make ¢t known. Certain problems 
exist in which ¢t can be chosen so that ¢ can be written as a simple 
integral. 

Intersecting Planes 

Many problems concerning nonplanar bodies deal with disturbances 
produced by two intersecting planes parallel to the free - stream direc
tion . In this section, meth0ds of solutlons for two planes intersecting 
at various angles are given . The component of velocity normal to the 
surface is assumed to be known . 

Perhaps the simplest case of two intersecting planes occurs when 
the planes intersect at right angles . It is desired to find the poten
tial in space resulting from the disturbances produced by the two inter 
secting planes. This type of problem could represent an isolated cruci
form tail with supersonic leading edges undergoing various motions . 
Problems of this type have been solved in references 11 and 12 . The 
axes are chosen so that y = 0 and z = 0 are the disturbing planes 
(see fig . 8) . When y and z are positive, equation (:8) becomes 

¢ ( x, y, z) = _ J:..l ~ d¢ ( S ,0+ , 0 da _ (32y fl ¢ ( S ,0 +,0 da _ 
2 n: 8 R dT] 2 n: 8 R 3 

3 3 

The surface 81 has been taken to be the disturbing surface; thus, .83 
is the part of the y = 0 plane (z positive) bounded by the z = 0 line 
in the y = 0 plane and the forward Mach cone from the point (x,y,z). 
Similarly, 84 is the part of the z = 0 plane (y positi~e) bounded by 

the y = 0 line in the z = 0 plane and the trace of the forward Mach 
cone from the point (x,y,z) (see fig. 9). 

The assumption is made that d¢(S,O+,~) and d¢(~,ryzO+) are known 
dTj d~ 

and that ¢(S,O+,~) and ¢(s,Tj,O+) are unknown. The integrals con-
taining ¢(s,O+,~) and ¢(s,Tj,O+) can be eliminated by several appli
cations of equation (46). Equation (46) is applied to the volume on 
the left -hand side of the y = 0 plane enclosed by the forward Mach 
cone from the point (x,y,z), the y = 0 plane, the z = 0 plane, and 

- -- -~---~ 
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an arbitrary surface upstream of the disturbance (see fig. lO). The 
result of applying equation (46) to this volume is 

(56) 

The surface 8l has been taken to be the y = 0 plane (z positive) and 
the z = 0 plane (y negative); thus, 85 is the part of the 
z = 0 plane in the forward Mach cone from the point (x,y,z) (see fig. lO). 
Adding equations (55) and (56) yields 

The potential function ¢I( ~,~,S) is chosen so that 

¢ I (~ , - a, s) = ¢ ( ~ , a, S ) 

where a is positive. In thi s case , 

----~~ 

__ J 
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and e quation (57) reduces to 

(58) 

Since ¢'(£,~,S) is related to ¢(s , ~,~) the only unknown in the 
preceding equation is ¢(£,~ , o+) . The region of integration S5 
becomes the part of the z = 0 plane (z negative) in the forward Mach 
cone from the point (x,y,z) obtaiNed by reflecting the disturbing surface 
in the z = ° plane (z positive ) through the z = ° plane (see 
fig . 10). 

The problem being considered is one in which the normal derivatives 
of the potential function are known on two planes parallel to the x-axis 
and are intersecting at right angles. The pOint (x,y,z) has been 
restricted to positive values of y and z . For the present, consider 
the problem of finding t he potential above the z = ° plane when the 
derivative of the potential function with respect to z is known on 
the z = 0 plane, the derivative of the potential function with respect 
to y is discontinuous across the y = 0 plane, and the potential is 
zero a finite distance upstream of a given point . From equation (22), 
the potential for this problem is given by 

rf..( ) =-~ 1 ~ A d¢(£, o, O ,da 11' ~ d¢(S,~,O+)da_ 
~ x,y,z 2 R u ~ - 2--

:J{ So a~ :J{ Sl R d~ 

(59) 

where So is the part of the y = ° plane above the z = 0 line 
inside the forward Mach cone from the point (x,y,z), and Sl is the 
part of the z = 0 plane inside the forward Mach cone from the 
point (x,y,z) . For positive values of y and z equation (59) reduces 
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to equation (58) if ¢,(~,~,O+ ) is assumed to be the true value 
of ¢(£,~ , O+) when ~ is negative . Since in the original problem 
¢(£,~,Q was not defined when ~ was negative, nothing is violated if 
it is now defined as being ¢'(~,~,s) in the region where ~ is nega 
tive and ~ is positive . The problem in which the normal derivative 
of the potential function is known on two planes parallel to the x-axis 
and intersecting at right angles has, therefore, been changed to the 
problem i n which the derivative of the potential has a known discon
tinuity . across the y = 0 plane (z positive) and the normal derivative 
of the potential is known on the z = 0 plane . Note that the poten
tial function still remains undefined below the z = 0 plane. 

Since the potential function is undefined below the z = 0 plane, 
it can now be defined so that the resulting potential function is sym
metric with respect to the z = 0 plane. Defining the potential below 
the z = 0 plane so that 

yields the desired symmetry . 
the region below the z = 0 
the point (x,y,z) is 

The result of applying equation (46) to 
plane inside the forward Mach cone from 

o (60) 

where S6 is the part of the y = 0 plane (z nega~ive) inside the 
forward Mach cone from the point (x,y,z) . In applying equation (46) to 
the region below the z = 0 plane, the surface 81 had to be folde d 
over the part of the y = 0 plane (z negative) across which d¢/~ 
was discontinuous in order to be able to apply equation (46) to this 
region . Equations (58) and (60) can be combined to yield 

(61) 

I 

~.~J 
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Equation (61) contains only integrals of known expressions, and it 
is, therefore, the solution to the problem of two planes intersecting 
at right angles parallel to the x-axis where the normal derivative of 
the potential function is known on both planes. Figure 11 shows the 
cross section of the distribution of velocity normal to the surfaces 
for a problem as represented by equation (55) and its solution as given 

by equation (61). Note that d¢(S,~,O+) (~ negative) in 85 is the 
d~ 

reflection of d¢(S,~,o+) in 84 (~ positive) across the ~ 
dS 

o ,plane 

and that d¢ (s,O+,~) in 8 (s negative) is the reflection of 
d~ 6 

d¢(S~O+,s) in 8
3 

(s positive) across the plane. This condi-
.- ~ tlon suggests that the result given by equation 

c = 0 

(61) could also be 
obtained by utilizing the concept of reflecting surfaces. 

The mathematical derivation required for finding solutions to 
problems consisting of two planes parallel to the x-axis intersecting 
at various angles can be reduced by making use of the concept of the 
reflecting surfaces. For this reason, the result given by equation (61) 
is obtained by use of reflecting surfaces. The potential function can 
be separated into two parts, ¢l and ¢2' satisfying the following 
boundary conditions on the disturbing surfaces: 

d¢2 (S, ~,O+) 

dS 

d¢2 (S,O+,O 

(j~ 

o 

o 

A cross section of these boundary conditions is shown in figure 12. 
Only the potential function ¢l is treated in detail since the boundary 
conditions for ¢l and ¢2 are of the same type. The normal deriva
tive of ¢l is zero on the ~ = 0 plane; thus, the ~ = 0 plane can 
be considered as a reflecting plane. The potential function ¢l is, 

therefore, the potential resulting from a distribution of 

which is symmetric with respect to the ~ -= 0 line and has the value 
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of 
d¢l ( ~ ,1) ,0+) 

dS when is positive. Figure 

¢l has 
equation 

13 illustrates such a 

been reduced to a planar distribution. The problem of finding 
problem which can be solved by use of (50) . 

Equation (50) was obtained by defining the potential below the 
z = 0 plane so that the total potential function was symmetric with 
respect to the z = 0 plane . This result caused the derivative of the 
potential function with respect to z to be antisymmetric with respect 
to the z = 0 plane . Figure 14 illustrates the distribution of the 
normal derivative of the function across the z = 0 plane. The problem 
of evaluating the potential fUnction ¢l has been reduced to a planar 
problem. Similarly, the problem of evaluating the potential function ¢2 
can be reduced to a planar problem. Figure 15 illustrates such a pro
cedure . The original potential function is the sum of ¢l and ¢2' 
Equation (61) follows from the preceding results for ¢l and ¢2' The 
addition of ¢l and ¢2 is illustrated by figure 16. 

The concept of reflecting surfaces is now utilized to find the 
potential r~sulting from two disturbing surfaces parallel to the x-axis 
and inter secting at an angle of 450

• The axis is chosen so that the 
x-axis lies along the intersection of the disturbing surfaces and one 
of the disturbing surfaces lies in the z = 0 plane (see fig. 17) . 
The potential function ¢ is divide"d into two parts, ¢l and ¢2' The 
boundary conditions on ¢l and ¢2 are similar to the corresponding 
potential functions used for the disturbing surfaces intersecting at 900 • 

Figure 18 illustrates the boundary conditions for ¢l and ¢2' The 
surfaces on which the normal derivative of ¢l is zero can be con
sidered as a reflecting surface . This consideration leads to the same 
distribution of the normal derivative of ¢l on the TJ = 0 plane as 
is given on the S = 0 plane . Figure 19 illustrates such a distribu
tion. The problem of finding ¢l for two disturbing surfaces inter
secting at 450 has been reduced to a problem of two surfaces inter
secting at 900 . The solution of ¢l can be obtained from equation (61) . 
Figure 20 shows the surfaces across which the normal derivative of ¢l 
is discontinuous. Since ¢l and ¢2 have the same type of boundary 
conditions, then ¢2 has a solution as illustrated in figure 21. The 
original potential function ¢ is the sum of ¢l and ¢2; therefore, 
¢ can be found by considering surfaces of discontinuity as illustrated 
in figure 22 . The potential fUnction ¢ can be evaluated by use of 
equation (22), because no surfaces across which ¢ is discontinuous 
exist and the values of 6 d¢/dnh are known across all surfaces of 
discontinuity. 

Another simple case of two disturbing surfaces parallel to the 
x - axis occurs when the surfaces intersect at an angle of 600 • The 
potential function ¢ is divided into two parts, 01 and ¢2' The 
boundary conditions on ¢l and ¢2 are similar to the corresponding 
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functians used previausly . Figure 23 shaws a crass sectian .of these 
baundary canditions. By use of a reflecting surface, the functian ¢l 
can be represented by the baundary canditians as shawn in figure 24 . 
The functian ¢l is undefined far 240.0 .of the tatal angle araund the 
x-axis . The function ¢l is defined as shawn in figure 25. Since na 
surfaces exist acrass which ¢l is discantinuaus, the functian ¢l 
can be evaluated by using equation (22). Similarly, 02 can be defined 
as shawn in figure 26 . The sum .of 01 and 02 is illustrated by fig
ure 27. The patential functian ¢ can be faund by using equatian (22). 

In the preceding paragraphs, methads have been faund far deter
mining the patential resulting fram twa plane disturbing surfaces 
parallel ta the stream directian int ersecting at certain angles. The 
same methad can be used ta f i nd methods far determining the patential 
resulting fram twa plane disturbing surfaces intersecting at variaus 
ather angles . 

ROLLING TAILS WITH MULTIPLE RECTANGULAR FINS 

The methads derived in the preceding sectian are used ta find the 
surface velacity patential, the pressure distributian, and the damping 
in rall .of ralling tails cansisting .of four, six , and eight rectangular 
fins . Far camparison, these same quantities are alsa presented far the 
planar tail canfiguratians cansisting .of .one and two rectangular fins. 
An illustratian .of the tails treated is shawn in figure 28. The analysis 
is limited ta tail canfiguratians having surfaces .of vanishingly small 
thickness and .of zera camber. The investigatian is alsa limited ta the 
range .of Mach numbers far which the region .of interference between the 
adjacent fins daes nat affect the fin tips. 

Tail Cansisting .of One Fin 

The pressure distributian and the velacity patential an the surface 
.of ralling tails made up .of .one and twa rectangular fins can be .obtained 
from the results .of reference 13 . The pressure and patential far the 
tail cansisting .of .only .one fin can be found by transfarming the axis 
.of rall .of the tail cansisting .of twa rectangular fins . 

The tail cansisting .of .one fin is divided inta regians as shawn in 
figure 29 (a) . The velacity patential an the surface facing the negative 
y-directian'is given by: 
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For region I, 

¢(x,z) - z -

( 62a) 

For region II, 

¢(x,z) = p~z (62b) 

For region III, 

(62c) 

For region IV (note that the potential in region IV is the potential in 
region I plus the potential in region III minus the potential in 
region II), 

¢(x,z) 2P~Z . _l~Z xz . -1 J~(~ -z) 1 (2X = - - Sl.n - + - Sl.n + - - + 11:(3 X (3 x 3(3 

H2~X - z - b) J(~ -z) (z - ~ + ~) - ~~ ( 62d) 

The pressure-difference coefficient is given by: 

For region I, 

6Cp = ~v~ Sin-1i(~ ~ z) -V(~ -z)(z - ~ + ~ ( 63a) 

For region II, 

--- - - -- - - - --- -- - -
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For region III, 

8p r , - 1 · rr;;: J (X r = 1Tf3V ~ Sl n y~ + Z ~ - ZLJ ( 63c) 

For region IV, 

A~ _ §L rZ Sl' n-1J ~ (~ -z) + Z Sl' n - l flixz + 
LJvp - 1Tf3V t x V x 

/z (~ - z) - /(~ - z) (z - ~ + ~) - ~~ ( 63d) 

Tail Consisting of Two Fins 

The tail consisting of two fins (fig. 29(b)) has the same potential 
and pressure distribution as a rectangular rolling wing and can, there
fore, be obtained from the results of reference 13. For each tail con
sisting of two fins divided into regions as shown in figure 29(b) the 
pressure and potential in regions I and II are the same as the pressure 
and potentials in the corresponding regions for tails consisting of one 
fin . 

Tail Consisting of Four Fins 

Each fin of the tail consisting of four fins is divided into 
regions as shown in figure 29(c) . The pressure and potentials in 
regions I and II are the same as the pressure and potentials in the 
corresponding regi ons for tails consisting of either one or two fins. 
The regions III and IV are affected by the interaction between adjacent 
fins . The potential in region IV is made up of a combination of the 
potentials of regions I, II , and III . Thus, the only real p~oblem is 
the determination of the potential in region III. 

The potential in region III is not affected by the tip and is, 
therefore, the same potential as would be obtained if the fins were 
infinitely long. With the coordinate axes chosen as shown in figure 28(c) 
the point (x,y,z) is restricted to values of y which are negative 
while the values of Z are restricted to positive values. Note that 
for a tail with finitely long fins, the potential at a point (x,y,z) 
in the region of interaction is independent of the disturbances produced 
at points located so that their projection on the yz-plane does not lie 
in the second quadrant. The general method previously derived for 
finding the potential resulting from two plane surfaces intersecting at 

- - --- - ----- -- - --
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right angles can thus be used to find the potential in the part of the 
region of interaction which is not affected by the tip. 

The velocity component normal to the fin in the z 
given by 

o plane is 

and the velocity component normal to the fin in the y 0 plane is 
given by 

Figure 30 illustrates this type of normal-velocity distribution, and 
figure 31 illustrates a cross section of the surfaces of normal-velocity 
discontinuity, which previous results show can be used to obtain the 
potential in the part of the region of interaction which is not 
affected by the tips. 

Note that in figure 32 the discontinuity in the normal velocity 
across the z = 0 plane is the same type as the discontinuity in the 
y = 0 plane. Thus, if the potential resulting from this type of dis 
continuity (see fig. 32) is known, then the potential resulting from 
any combination of discontinuities of this type can be found. The 
potential for this type of distribution is denoted by ¢O. By the use 
of cylindrical coordinates , as shown in figure 32, the potential at the 
point (x,p,e) can be expressed in terms of ¢O by 

¢(x,p,e) = ¢O(x,p,e) - ¢O(x,p,e - ;) ( 64) 

Equation (64) follows from figures 31 and 32 . 

The potential function ¢O was evaluated by use of equation (50) 
and is given by: 

For 0 < e < ;, 

_ ~2p2 + ~2p2(1 _ 2 cos2e)ln ~p 
x + Jx2 _ (12p2 

+ 

(65a) 

--- ------ -- ---
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For 

+ 

2x13p cos e sin- l ( I3p cos e :1 + 
VK2 - 13 2p2 sin2e) 

213 2p2 sin e cos e tan-l (- x cot e ~ 
\yx2 - 132pLJ 

(65b) 

From equations (64) and (65), the potential function in the region 
of interaction, which is not affected by the tips, is given by the 

following equation for ~ < e < 1\': 

¢(xJPJ e) 

2x13p Eos e sin- l ( \3p cos e ~ _ 
.1 2 2 2 . 2 yx - \3 P Sln e 

sin e 

xlcot el 
Vx2 _ 13 2p2 

(66) 

The potential in region III of the fin surface is a special case 

(e = ~) of the preceding equation. Thus, the potential in region III 

is given (in Cartesian coordinates) by 

¢(x,O- ,z) = ;:z t sin-1 ~: - (67) 
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From equation (67) the pressure-difference coefficient is found 
to be 

8pz . -1 f3z 
= -- Sln -

nVi3 x 
( 68) 

As previously stated, the potential in region IV (see fig. 29) is 
a combination of the potentials in regions I, II, and III. Assume that 
the fins are infinitely long. In this case only two regions (II and III) 
exist since regions I and IV are affected by the tip. The effect of the 
tip can be taken into account by adding a potential which has zero 
normal velocity on the fin and the negative of the pressure of the 
infinite fin in the plane of the fin outboard of the tip. The value of 
such a potential on the fin is given by the difference between the 
potential of region I and the potential of region II. (This potential 
is only the effect of the tip on a semi-infinite rolling wing). Thus, 
the potential in region IV is the potential in region III plus the dif
ference between the potential of region I and the potential of region II. 
Mathematically, the potential in region IV is given by 

¢(x,O-,z) 2p Exz -1 I3 z 
- - - cos -- + 
rr f3 x 

From equation (69) 

= 8p Cz cos-l f3z + 
nVf3L' x 

the pressure-difference coefficient is given by 

z Sin-1J~(~ ~ z) _ ~ z)(z _ ~ + ~~ (70) 

Tail Consisting of Six Fins 

The pressure and potentials on the surface of the tail consisting 
of six fins can be obtained in a manner similar to that used for the 
tail consisting of four fins. The pressure and potentials in regions I 
and II are the same as the pressure and potentials in the corresponding 
regions for tails consisting of one, two, or four fins. Regions III 
and IV are affected by the interaction between adjacent fins. The 
potential in region IV is made up of a combination of the potential in 
regions I, II, and III; therefore, the main problem, as for the case of 
four fins, is the determination of the potential in region III. 

I 

j 

I 

I 

I 

I 

I 

I 

I 
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The potential in region III is the same as the potential for a 
tail consisting of six infinitely long fins. The induced velocities 
normal to two of the planes of the fins are illustrated in figure 33. 
For two plane surfaces parallel to the stream direction and inter
secting at an angle of 600

, the potential in region III can be obtained 
by a distribution of discontinuities in velocity as illustrated in fig
ure 34. Note that the potential in region III can be made up of a com
bination of the potentials from a velocity discontinuity as shown in 
figure 35. The potential from this type of discontinuity is denoted 
by ¢o. By use of cylindrical coordinates as shown in figure 35, the 
potential at the point (x,p,e) can be expressed in terms of ¢o by 

¢(x,p,e) = ¢o(x,p,e - i) - ¢o(x,p,e - ;) - ¢o(x,p,e + i) (71) 

Equation (71) follows from figures 34 and 35. 

The potential function ¢o was evaluated by use of equation (50) 
and is given by the following equation for 0"':;; e < ": 

pp cos 
- - e(x ) - I3P sin e 

From equations (71) and (72) the potential function in the region 
of interaction, which is not affected by the tips, is given by the 

following equation for ~ < e < 5": 2= =1) 

¢(x,p,e) = p~2 [(3(1 - 2 cos2e) + 2 cos e sin ~ 

The potential in region III of the fin surface is a special case 

(e = ~) of equation (73). The potential in this region is given (in 
Cartesian coordinates) by 

_ pz2f3 
¢(x,O ,z) = ---2---

From equation (74) the pressure-difference coefficient in region III 
is found to be zero. 

The potential in region IV is a combination of the potentials in 
regions I, II, and III; this can be shown in the same way as the poten
tial in region IV of the tail consisting of four fins was shown to be a 
combination of potentials from other regions. Specifically, the 
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potential in region IV for the tail consisting of six fins is the 
potential in region III plus the difference between the potentials of 
r egion I and of region II. Mathematically, the potential in region IV 
is given by 

¢(x,o-,z) ~ ~~13 _ x; 008-1 ~ _ 

H~ - z - b) J (~ -Z)( Z + ~ - ~TI 
From equation (75) the pressure-difference coefficient is given by 

Tail Consisting of Eight Fins 

The pressure and potential on the surface of the tail consisting 
of eight fins can be found by utilizing the potential functions ~o 
used in finding the pressure and potentials on the surface of the tail 
consisting of four and six fins . The pressure and potentials in 
regions I and II are the same as the pressure and potentials for the 
corresponding regions of the other tails. The potentials in regions III, 
IV, V, and VI (see fig. 29(e)) are affected by the interaction between 
adjacent fins. Since the potentials in regions V and VI are combinations 
of the potentials in the remaining regions, the main problem is to find 
the potentials in regions III and IV. 

The potentials in regions III and IV are the same as the potential 
for a tail of eight infinitely long fins. The induced velocity normal 
to two of the planes of the fins is illustrated in figure 36. From the 
results for two plane surface s inter secting at an angle of 450

, the 
potentials in regions III and IV can be obtained by a distribution of 
discontinuities in velocity as illustrated in figure 37. The potential 
resulting from the distribution of discontinuities in velocity as 
illustrated in figure 37 can be obtained from a distribution of dis
continuities as possessed by the potential function ¢o used in con
nection with the four - finned tail . The potential function ¢o used in 
connection with the four-finned tail was evaluated only in the region 
affected by the root sections of the fins . For the case of the eight
finned tail , interaction occurs between adjacent fins in regions which 
are not affected by the root sections of the fins. The potential func
tion ¢o of the four - finned tail in the region not affected by the root 
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section must be known. In this region, the potential functions ¢O 
for the four- and six-finned tails are the same . 

From figures 32 and 37 the potential function in the region of fin 
interaction which is affected by the root sections of the fins is, 

for ~ < e ~ 3rr 
2 = -4' 

¢(x,p,e) -¢o(x,p,e) + ¢o(x,p,e - H) - ¢o(x,p,e -~) + ¢o(xJpJe +~) 

where ¢O is given by equations (65). 

The potential in the part of the region of interaction which is 
affected by the root section is (from equations (65) and (77)), 

rr 311' 
for 2" ~e ~4' 

¢(x,p,e) = - ~~p fx cos e sin-1 ~p cos e 
+ 

yx2 _ ~2p2 sin2e 

x cos (e - H)sin-1 ~p cos(e - i) 
yx2 _ ~2p2 sin2 (e - ~) 

x cos (e + 
~p cos (e + ~) 
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The potential in region III is a special case ~ = ;) of equa

tion (78). Setting e = g in equation (78) yields (in Cartesian 

coordinates) 

43 

~ x,O ,z = ~ x Sln - xvc Sln + ~z tan rI.( - ) 2pz ~ . -1 ~z .h. -1 ~z -1 x ~ 
"I-' x V2x2 _ ~2z2 VX2 _ f32 z2 

From equation (79) the pressure-difference coefficient is found to 
be given by 

(80) 

By inspection of figures (35) and (37) the potential function in 
the region of fin interaction, which is not affected by the root seGtions 

of the fins, is, for 

(81) 

where ¢o is given by equation (72). Substituting equation (72) into 
equation (81) yields (remember that ¢o is zero upstream of the Mach 

cone from the y-axis), for ; < e < ~, 

0; if x< f3P(sin e - cos e) 
{2 

p~~(cos e + sin e) 
f3v2 

x - I3p (sin e 
V2 

- cos e); if x > f3p (sin e - cos e) 
V2 

sin e; if x > f3p 
(82) PP cos 

(3 
e 10; if 

~ - f3p 

x < f3p sin e 
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The potential in region IV is a special case (8 = ~) of equa

tion (82) . Setting 8 =; in equation (82) yields (in Cartesian 

coordinates) 

From equation (83) the pressure-difference coefficient is found to 
be given by 

6Cp = 4pZ(1 - 12) 
f.3x (84) 

The potential in region V is the potential in region IV plus the 
difference between the potential in region I and the potential in 
region II; thus, from equations (62a), (62b), and (83), the potential 
in region V is found to be given by 

¢ - 2p f:z ( xv'2) xz . - l i (~ -z) 
(x,O ,z) =rt~Z --f.3- +l3 sln x-

H2; -z - b))(~ - z)(z + ~ - ~~ (85) 

From equation (85) the pressure-difference coefficient is found to 
be given by 

(86) 

The potential in region VI is the potential in region III plus the 
difference between the potential in region I and the potential in 
region II; thus, from equations (62a), (62b), and (79), the potential 
in region VI is found to be given by 

¢(x,O-,z) 

z - ~) J (~ - z) (z (87) 
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From equation (S7), the pressure-difference coefficient in 
region VI is found to be given by 

t:£p = - Sp E cos -1 f3 z + 
rcf3V x 

Discussion of Results for Rolling Tails 

45 

(SS) 

Illustrative plots of the chordwise and spanwise pressure distribu
tions across one fin for tails with various numbers of fins are shown 
in figure 3S. Figure 39 shows illustrative plots of the spanwise loadings 
on one fin for tails made up of various numbers of fins. 

The potential function ¢o used in finding the pressures and 
potentials for the tails consisting of four, six, and eight fins could 
be used in finding pressures and potentials for tails consisting of any 
even number of fins provided that the region of interaction between 
adjacent fins does not affect the tip. The restriction on the region 
of interaction causes the range of validity to decrease as the number 
of fins is increased. The range of validity could be ~xtended, however, 
by use of a pressure or potential cancellation method such as given in 
references 14 and 15. 

From the potential, the damping in roll per fin was calculated. 
Table I presents the results of these calculations. Figure 40 presents 
the variation of the damping in roll per fin with Af3 for tails made 
up of various numbers of fins. For a given Mach number (f3 constant), 
figure 40 shows the variation of the damping with aspect ratio. Fig
ure 41 presents the variation of the damping in roll per fin with Mach 
number for tails consisting of various numbers of fins with a fin aspect 
ratio of 1.5. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., October 25, 1951 
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TABIE I 

DAMPING-IN-ROLL COEFFICIENT PER FIN 

Number of f3 C2p per fin Valid 
fins for 

1 1 + 4A \3 - 24A2\32 + 32A3\33 
A\3 ~ l ' -

24A3f33 

2 
1 + 8Af3 - 48A2\32 + 64A3f33 

Af3 > 1: -
48A3f3 3 = 2 

4 - _4_ t~ + --'L (1 + 8A~ - 48A2~2 + 64A3~3 ~ 
1{A3 f33 9 192 

Af3 ? 1 

6 - _4_ t~ + 2-(1 + 8A~ - 48A2~2 + 64A3~3~ 
A3\3 3 9~3 192 

Af3 > ~ 
= f3 

8 - _4_ t -'-"- -~ + 2- (1 + 8A~ - 48A2~2 + 64A3~3 ~ 
A3f33 9rt 6 192 Af3 ? f2 
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z 

Figure 1 .- Cross section of the r egion of integration used in connection 
with equat i on (9). 
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z 

X~------------------------------------~~~--~-------r--

Figure 2 .- Cross section of the region of integration used in connection 
with equation (14). 
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z 

ts 
o 

x ~--------------------------------------~~----r--------J--

Figure 3.- A cross section of the region in the forward J'ilach cone from 
the point (x,y,z ) showing the surface Sl enveloping a surface of 
discontinuity S . 
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z 

x ~----------------------------------~~--~------~--

Figure 4.- Cross section of the region of integration used in connection 
with the potential funct.ion ¢'. 

-- - -- -- -------
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(a) Subsonic element within 
infinitesimal strip . 

(b) Broken line replacing 
line element . 

53 

Figure 5.- An illustration of a method of replacing a subsonic line ele 
ment with a broken line made up of supersonic segments . 

line 

(a) Wing with subsonic edge . 

Subsontc traIling 
edge 

(b ) Line element at a break in a 
subsonic trailing edge . 

DIstorted froliing 
edge 

(c) Possible distortion of a subsonic trailing edge at a break in a sub
sonic trailing edge. 

Figure 6.- Methods of distorting a subsonic trailing edge to determine the 
potential function uniquely. 

- - ------ - -
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body 
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Ca) The forward Mach cone from a point on the upper surface of a rectangular 

body. 

Figure 7.- Rectangular body parallel to free-stream direction . 
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DEFLECTED AREA 
Y 

---;--------~ X 

(b) Bottom view of rectangular body with deflected area on the lower 
surface. 

Z 

- .... ---_ .... ~x 

--FORWARD MACH CONE 

(X ,Y,Z) 

DEFLECTED AREA 

'---- INTERSECTION OF THE FORWARD 
MACH CONE WITH THE SIDE OF 
THE BODY 

(c) Side view of rectangular body and the forward Mach cone from the 
point (x,y,z). 

Figure 7.- Concluded. 
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z 

Disturbing 
surf ce 

(Y=Oplone) 

Disturbing 
surface (Z = 0 plane) 

~--~-----------~~------------~ 

x 

~ 
Figure 8.- Two disturbing surfaces intersecting at right angles. 

y 
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x 

Disturbing 
surface (Z=O plane) 

Figure 9.- Regions of integration for equation (55). 

Mach cone 
from the 

point (X,y, Z) 
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Reflection of the 
disturbing surface 
in the Z =0 planes 
through the y=O planes 
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Disturbing 
surface 

(y= plane) 

"--Mac cone 
from the 

point{X,y,Z) 

i 

x 

y 

Figure 10.- Regions of integration for equation (56). 
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z 

y 

(a) Original problem (equation (55»). 

z 

(b) Solution to problem as given by equation (61). 

Figure 11.- A cross section of the distribution of the velocity component 
normal to the z = 0 and the y = 0 planes represented by equations (55) 
and (61). 

- - - -- -- ~---
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z z z 

= + 
y y 

Figure 12.- A cross section of the distribution of velocity normal to 
the disturbing surfaces for the potential functions ¢, ¢l' and ¢2. 

z z 

:= 

y y 

Figure 13.- The reduction of ¢l to a planar problem. 

z z 

:= 
y 

Figure 14.- The normal derivative of the potential function across the 
z = 0 plane obtained by applying equation (50) to a planar problem. 



-~-- --- --- - - - "-

NACA TN 2641 61 

~ 
N . 

~ 
Q) 
r-l 
,D 
0 
H 
p. 

H 

2! 
C1l 
r-l 
P. 

" 
C1l 

0 
+> 

N 
"&. 

'H 
0 

I=:: 
0 

·rl 
+> 
() 

~ 
N '"d 

Q) 

H 
Q) 

..c:: 
+> 
'H 
0 

I=:: 
0 

·rl 
+> 
C1l 
H 

+> 

" 
CJ) 

~ 
r-l 
r-l 
·rl 

I=:: 
oe:x: 

. 
'l1\ 
r-l 

C\2 Q) 

"tSt 8 
b.O 

·rl 
~ 



62 NACA TN 2641 

z 

z 

-------+~----~ y 

z 

Figure 16.- An illustration of the addition of ¢l and ¢2' 
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z 

z 

Disturbing surfaces 

y 

Velocity distribution normal to surface 

Figure 17.- Position of coordinate axes for disturbing surfaces 
intersecting at 45° . 

z z 

+ 
y y 

Figure 18 .- A cross section of the velocity distribution on the disturbing 
surfaces for the functions ¢l and ¢2 for the disturbing surfaces 
inter secting at 45°. 

y 
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z z 

y 

Figure 19.- Reflection of the normal derivative of ¢l on the 
y = 0 plane. 

z z 

y 

y 

Figure 20.- A cross section of the surfaces of discontinuity which can 
be used to evaluate the potential function ¢l for two surfaces 
intersecting at 450

• 
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Figure 21.- A cross section of the surfaces of discontinuity which can 
be used to evaluate the potential function ¢2 for two planes 
intersecting at 45°. 
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Figure 22.- The addition of ¢l and ¢2 to obtain the potential func
tion ¢ for two surfaces intersecting at 45°. 
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Figure 23.- A cross section of the boundary conditions of the functions ¢l 
and ¢2 for two disturbing surfaces intersecting at 600
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Figure 24.- The reflection of ¢l through one surface. 
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z z 

Figure 25 .- A method of defining ¢l so as to eliminate discontinuities 
in the potential function . 

z z 

__ ~L-____________ ~ Y 

Figure 26 .- A method of defining ¢2 so as to eliminate discontinuities 
in the potential function . 
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, -

68 NACA TN 2641 

. 
C\J 

"tSl.. 

II '0 s:: » cd 

~ 
"tSl.. 

'H 
0 

s:: 
0 

.,-1 
~ 
.,-1 
'0 
'0 
cd 

Q) 

t5 
. 

r--
C\J 

Q) 

~ 
+ b.D 

.,-1 
rx-, 

» 



- - ---

NACA TN 2641 

z z 

(A) ONE FIN. (S)TWO FINS. 

Z Z 

1-----. Y 

(C) FOUR FINS. (0) SIX FINS. 

z 

~-...... y 

(E) EIGHT FINS. 

Figure 28.- Types of tails treated . 



70 

z z 

~ 1'" " I I " / " 
" v " 

/ "-"- '\ 
II /~~ N 

II 
, 

/ 
, 

/JlI " " "- " / 
V --"x 
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(c) Four fins. (d ) Six fins. 
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Figure 29.- Regions of similar disturbances for tails consisting of 
rectangular fins. 
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z 

y 

Figure 30.- A cross section of the 
normal-velocity distribution on 
two plane surfaces representing 
the region of interaction for a 
rolling tail with four fins . 

e 
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Figure 31.- A cross section of the 
velocity discontinuity distribu
tion used to find the potential 
in part of the region of inter
action for a tail of four fins. 

~. 

Figure 32.- A cross section of the velocity discontinuity distribution 
associated with the function ¢o for a tail with four fins. 
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Figure 33.- A cross section of the 
velocity distribution normal to 
the planes of two fins of a 
rolling tail consisting of six 
fins. 
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Figure 34. - A cross section of the 
velocity discontinuity distribu
tion used to find the potential 
in part of the region of inter
action for a tail of six fins. 

Figure 35.- A cross section of the velocity discontinuity distribution 
associated with the function ¢o for a tail of six fins. 
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Figure 36.- A cross section of the normal velocity induced on the planes 
of two fins of a rolling tail consisting of eight fins. 

Figure 37.- A cross section of the velocity discontinuities which can be 
used to obtain the potential in the region of interaction between 
adjacent fins for a tail consisting of eight fins. 
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Figure 38.- Chordwise and spanwise pressure distributions on a fin of 
aspect ratio 1.5 at a Mach number of V2 for tails consisting of 
rectangular fins. 
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Figure 38.- Continued. 
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Figure 38.- Continued. 
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Figure 38.- Continued. 
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Figure 38 .- Concluded. 
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Figure 39.- Spanwise loading on a fin of aspect ratio 1.5 at a Mach number 
of ~ for tails consisting of rectangular fins. 
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Figure 40.- The damping in roll per fin for tails consisting of rectangular 
fins . 
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Figure 41.- An illustrative variation of C1 per fin with Mach number p 
for tails consisting of rectangular fins with a fin aspect ratio of 1.S. 
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