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SOLUTIONS IN A ROTATING IMPELLER PASSAGE 

By Gaylord O. Ellis and John D. Stanitz 

SUMMARY 

A solution is presented for three - dimensional, incompressible, non­
viscous, potential flow in a rotat i ng impeller passage with zero through 
flow. The solution is obtained for a conventional impeller with 
straight blades but with the inducer vanes removed and the impeller 
blades extended upstream parallel to the axis of the impeller. By supe~ 
position of solutions two additional examples are obtained for different 
ratios of compressor flow rate to impeller tip speed. The three­
dimensional solutions are compared with corresponding two - dimensional 
solut i ons and it is concluded that, at least for the type of impeller 
geometry investigated, two - dimensional solutions can be combined to 
describe the three-dimensional flow in rotating impellers with suffi­
cient accuracy for engineering analyses. 

INTRODUCTION 

As an aid to better understanding of flow conditions in rotating 
impeller passages, methods of analysis have been developed in t he past 
for potential nonviscou8 flow . In order to achieve solutions with a 
reasonable expenditure of effort, all methods are based on two­
dimensional assumptions, in that the flow is restricted, by assumption, 
to specified flow surfaces in space . Either of two t ypes of surface 
are usually assumed for the flow: first, the mean blade (or passage) 
surface on which flow conditions vary from hub to shroud but are con­
sidered constant in the circumferential direction (axial-symmetry solu­
tions, references 1 and 2), or, second, surfaces of revolution on which 
flow conditions vary from one blade to the next, but normal to which 
the flow conditions are considered constant (blade-to-blade solutions, 
references 3 and 4). 

I f the streamlines of an axial symmetry solution are used to 
generate surfaces of revolution around the axis of the impeller, the 
totality of the blade - to -blade solutions on these surfaces of revolution 
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constitute a quasi-three-dimensional solution (reference 5) because the 
solutions indicate variations in flow condit ions throughout the impeller 
passage. However, because the flow is constrained to surfaces of revo­
lution, the solution is not three dimensional in the exact sense of the 
word. No complete three-dimensional solutions for rotating impeller 
passages exist in the literature , and a solution has therefore been 
obtained at the NACA Lewis laboratory. The solution is presented in 
this report and is compared with the results of axial-symmetry and 
blade-to-blade solutions in order to evaluate these two -dimens ional 
methods of analysis. 

The t hree-dimensional solution was obtained for incompressible non­
viscous flow in a rotating impeller passage with straight blades and 
with the inducer vanes located far upstream of the impeller. By super­
position of solutions, results are obtained for several ratios of flow 
rate t o impeller t ip speed . 

GENERAL METHOD OF ANALYSIS 

A partial differential equation for three - dimensional flow in a 
rotating impeller passage is, developed from considerations of continuity 
and absolute irrotational fluid motion . 

Assumptions. - The fluid i s a ssumed to be inviscid and incompres­
sible . The flow is assumed to be steady relative to the rotating 
impeller passage, and in t he absence of viscosity the absolute motion 
of the fluid is assumed to be i rrotational. It is assumed that the 
phenomenon be ing investigated , that is, the deviation of' three­
dimensional flow from the restricted mot ion of two-dimensional solu­
tions, is qualitatively the same for compressible and incompressible 
solutions . This deviation is a perturbation resulting primarily from 
rotation of the impeller; and in refer ence 6 it is shown that at least 
for two-dimensional solutions this type of perturbation is independent 
of compressibility, which affects only the average velOCity. 

Cylindrical coordinate system and velocity components. - The cylin­
drical coordinates R, e, and Z relative to the impeller are shown in 
figure l(a) . (All symbols are defined in appendix A.) These coordi­
nates are dimensionless, the linear coordinates Rand Z having been 
divided by the impeller tip radius ( so that R is equal to 1.0 at the 
impeller tip ). 

The absolute· ve locity Q has components QR, Qe, and QZ in the 

R, e, and Z directions, respectively (fig . l(a)). These velocities 
are dimens i onless, having been divided by t he impeller t ip speed (so 
that, for example , the dimensionless blad'e speed.. at any radius R 1s 
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equal to R). If W is the velocity of the fluid relative to the impeller, 
expressed as a ratio of the impeller tip speed, then 

(1) 

Potential function ~. - For absolute irrotational fluid motion 

\7XQ = 0 

where the bar indicates a vector quantity. A potential function ~ 

satisfies equation (2) identically if defined by 

from which 

and 

l~ 
Rd8=Qe 

Differential equation of flow . - From continuity 

so that, from equation (3)} 

which in cylindrical coordinates becomes 

NUMERICAL PROCEDURE 

(2) 

(3 ) 

(3a) 

(3b) 

(3c) 

(4a) 

(4b) 

A numerical procedure is outlined for the solution of the partial 
differential equation (4) . for flow in a rotating impeller passage with 
special type of geometry. 

J 
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Preliminary Considerations 

Special type of impeller geometry . - The three-dimensional solutions 
presented are for a straight-bladed impeller of conventional design 
except that the inducer vanes are removed and the straight impeller 
blades are extended indefinitely upstream parallel to the axis of the 
compressor. This idea lized entrance condition along with straight 
blades results in substantial simplification of the numerical procedure. 

Superposition of solutions. - As a result of the special type of 
impeller geometry just discussed, the boundary conditions for flow 
through a rotating impeller are equal to the sum of the boundary condi­
tions for zero flow through the rotating impeller and for finite flow 
through the stationary impeller . Therefore, because the boundary con­
ditions can be added and because the differential equation (4) is 
linear, the velocity potential ~ for flow through the rotating impeller 
passage can be expressed as 

(5 ) 

where ~l satisfies equation (4) and the boundary conditions for the 
rotating impel ler with zero net through flow and ~ satisfies the same 

equation but for the boundary conditions associated with flow through 
the stationary impeller . The solution for ~l is called the "eddy-flow 

solution" and corresponds to ideal flow conditions in the rotating 
impeller with the throttle closed so that no through flow occurs. The 
solution for ~2 is called the "through-flow solution" and, for the 

special type of impeller geometry being conSidered, this solution is 
axially symmetric and corresponds to flow with zero whirl through an 
annulus with the same hub-shroud profile and no impeller blades. Solu­
tions for various ratios of flow rate to impeller tip speed are obtained 
directly for various values of k in equation (5). 

Eddy-Flow Solution 

The eddy-flow solution for the rotating impeller passage with zero 
net through flow is considered first. 

Transformation of coordinates . - It is convenient for purposes of 
the numerical solution by relaxation methods to transform the RZ-plane 
to one on which the coordinates are , the streamlines ~ and velocity 
potent ial lines t for flow through the compressor annulus without 
blades. Because the hub and shroud contours are streamlines in the 
RZ-plane, these contours become straight parallel lines in the 
t~-plane . In terms of the new transformed coordinates, equation (4b) 
fo r the eddy-flow potential ~l becomes (appendix B) 

r­
eo 
If) 
C\J 
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(6) 

where the subscript 2 refers to the solution for axially symmetric 
flow through the compressor annulus with no blades or, which is the 
same thing, through the stationary impeller passage of the special type 
considered in this report. 

The new coordinate system introduces two additional velocity compo ­
nents (appendix B) 

and 

and an angle a2 defined by 

all of which are shown in figure l(b) . From this figure it is seen 
that 

and 

QR cos ~ - Qz sin ~ 

or, conversely, 

and 

% = Q ~ cos ~ - QT) sin ~ 

(7a) 

(Th) 

(8) 

( 9a) 

(9b) 

(lOa) 

(lOb) 

Boundary conditions. - For the eddy-flow solution of equation (6) 
the boundary condit i ons that must be satisfied for the special type of 
impeller geometry considered in this report are: 
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(1) The flow direction must be tangent to the hub and shroud in the 
impeller and diffuser so that Q~ is zero, or, from equation (Tb), 

(ll) 

(2) Along the blade the relative flow is tangent to the blade sur­
face so that for straight radial blades the relative tangential velocity 
We is zero and from equations (1) and (3b) 

( 3) Boundaries are established in the diffuser on meridional planes 
extending from the blade tips. For a rotating impeller with no through 
flow the radial velocity component is zero on these boundaries so that 
the potential function is constant along radial lines on these surfaces. 
Variations in velocity potential cp with Z at the impeller tip of 
constant radius indicate the presence of a vortex sheet shedding from the 
trailing edge of the blade and passing downstream. It is assumed that 
the strength of this sheet is weak and can be ignored in the solution of 
equation ( 6). For impeller blades with constant tip radius the variation 
in work input from hub to shroud at the impeller tip is negligible and 
the assumption therefore appears to be reasonable . The Joukowski condi­
tion at the blade tip is automatically satisfied by condition (2). 

(4) The domain of the solutions is extended in the upstream and 
downstream directions until flow conditions are uniform in a plane normal 
to the direction of through flow. For the eddy-flow solution this con~ 
dition is achieved when (Ql)t is zero, that is, when ~/ct is zero, 

everywhere on a plane normal to the ~ coordinate. 

(5) The idealized inlet of the special impeller geometry considered 
in this report results in symmetry of flow about the mean plane between 
blades in the rotating impeller with no through flow. The flow is 
directed normal to this plane and ~ is therefore everywhere constant 

(zero) on it . 

Relaxation solution. - The differential equation (6) is solved by 
relaxat i on methods (reference 7) to satisfy the boundary conditions just 
described. The velocity components are then determined by equations (3) 
and (7) in finite difference form. For the numerical examples of this 
report, a three-point system was used for expressing the differential 
equations in finite difference form. 

"' 
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Flow paths. - Any three velocity components determine the flow direc­
tion at a point so that flow paths relative to the impeller passage can 
be determined from the velocity components ~'We' and Qz, or Qt, We' 
and ~. On the hub, shroud, and blade surfaces the path lines can be 
constructed graphically from lines of constant flow direction on these 
surfaces . 

Accuracy. - For the numerical examples of this report, the impeller 
channel includes a total of 5400 grid points at which the velocity poten­
tial was relaxed to a unit change in the filth decimal. (Because <:Pl 

is constant on the mean plane and the flow is symmetrical about this 
plane, the number of grid points at which it was necessary to relax is 
reduced to 2400.) 

In order to check the accuracy of the graphical construction of the 
path lines, these lines were obtained on a plane normal to the through­
flow direction far upstream of the impeller where a direct two-dimensional 
solution for the stream function is known and valid. Figure 2(a) compares 
the path lines with the streamlines. It is noted that the graphically 
constructed path lines agree well with the streamlines. It should be 
pointed out, however, that the path-line spacing is not sufficiently 
accurate to be indicative of the velocity distribution. In figure 2(b) 
the velocities obtained from the three-dimensional solution for the 
velocity potential are compared with the velocities obtained from the 
two-dimensional solution fo~ the stream function. The comparison indi­
cates much better agreement in the velocity distributions than was indi­
cated by the path-line spacing in figure 2(a). 

A check on the accuracy of the three-dimensional solution will be 
given in connection with a discussion of the numerical examples. This 
check indicates approximately the same accuracy that is shown by the 
comparison of velocities in figure 2(b). 

Combined Solutions 

After the eddy-flow solution has been obtained, various percentages 
of a through-flow solution may be added to obtain solutions for different 
ratios of compressor flow rate to impeller tip speed. 

Through-flow solution. - The through-flow solution is obtained by 
methods outlined in reference 1, for example. As already discussed, the 
velocity potentials for the two types of solution can be added or, as 
indicated by partial derivatives of cp in equation (5), t he veloc ity 
components themselves can be added directly. The latter procedure avoids 
the necessity of computing the distribution of <:P2 from the distribution 

of stream function determined by reference 1. 

___ J 
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Flow path . - The procedure for graphicall y determining the flow path 
for the combined solut i on s i s ident i cal with tha t outlined f or the eddy­
flow sol ution . 

NUMERICAL EXAMPLES 

Three - dimensional solutions f or f l ow through an impeller with 
straight blades and with t he inducer vanes located far upstr eam of the 
impeller are presented for : (1 ) zero flow through the rotat ing impeller 
passage , (2) flow t hrough the stat ionary impeller passage, and ( 3) com­
binations of (1) and ( 2) for various rat ios of thr ough flow to impeller 
tip speed. 

Impeller Geometry 

The impeller geometry f or t he numerical examples is the same as 
that in ref erences 1 and 4 wi th the i nducer vanes located far upstream 
of the impeller . The hub - shroud profi le of the impeller is described 
in figure 3. The b lade spac i ng is 32 . 800 as i n r eference 4. 

The results of the solutions are pr esented on the channel surfaces 
and on the nine meridional planes i ndicated in figure 4(a). The ~ ,'I) 

coordinates on the meridi onal p lane s are shown in figure 4(b) . The line s 
of constant t are spaced at intervals corresponding to equal increments 
of the t coordinate used i n reference 4 . 

Solut ion f or Zero Net Flow Through Rotating Impeller Passage 

Vel ocity pot ential ~l. - Lines of constant velocity potential on 

the mer i dional planes are shown in f i gur e 5. The center plane E ( see 
fig . 4 (a) ) is not shown because , a s d i scussed previously, ~l is zero 

everywhere on t his plane. Note t hat l i nes of constant ~l intersect the 

hub - shroud profil e a t right angles, as r equired by equation (11) . The 
meridional velocity component mu st b e directed normal to the lines of 
constant ~l in the meridional p l ane s and has magnitude s inversely pro -

por t ional t o the l ine spacings . 

Veloc ity component s . - Velocity components of the eddy- flow solution 
are shown in figures 6 to 8 . These velocity components are directly 
r elated by equation (3) t o the loca l partial derivatives of the velocity 
pot ential ~l given in figure 5 . For the impeller geometry being inves -

t i gated, all t hes e eddy-flow velocity components would be neglected by 
axial -symmetry-type s olutions (ref erence 1) . 

., 
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Lines of constant (Ql)t on the meridional planes are shown in 

figure 6. This velocity component of the eddy-flow solution is tangent 
to the streamlines (constant ~), and therefore to the velocities, of the 
axially symmetric flow through the stationary impeller, The velocity 
component (Ql)t has maximum values on the blade surfaces (planes A 
and A') and is zero on the center plane E. This velocity component 
also becomes zero upstream and downstream of the impeller proper. 

Lines of constant velocity component (Ql)~ are shown on the 

meridional planes in figure 7. This velocity component of the eddy-flow 
solution is normal to the streamlines, and therefore to the velocities, 
of the flOW through the stationary impeller. The velocity component 
(Ql)~ has maximum values on the blade surfaces and is zero on the center 

plane E. This velocity component must also be zero along the hub and 
shroud boundaries, and becomes zero downstream of the impeller. Note 
that the velocity component (Ql)~ would be completely neglected in two-

dimensional solutions on surfaces of revolution (reference 4) generated 
by streamlines of axial- symmetry-type solutions. 

Lines of constant tangential velocity component (Wl)e relative to 

the impeller are shown in figure 8. For the impeller geometry investiga­
ted, this velocity component has maximum values on the center plane E 
and is zero on the blade surfaces. Negative values of (Wl)e indicate 

flow across the meridional planes in the direction opposed to impeller 
rotation (into the page), and positive values of (Wl)e indicate flow 

across the meridional planes in the direction of rotation (out of the 
page). From continuity considerations the integrated weight flow into the 
page (exclusive of the fluid that remains in the diffuser) must equal the 
integrated weight flow out of the page. These integrations have been 
carried out for the center plane E and weight flows agree within 

1 22 percent. This agreement indicates approximately the same accuracy as 

that obtained from the integrated weight flows across the center line in 
figure 2(b). Thus it seems reasonable to conclude that the error through­
out the domain of the three-dimensional solution is not greater than that 
indicated by the velocities in figure 2(b). 

Path lines. - Path lines of fluid particles on the passage surfaces 
are shown for the eddy-flow solution in figure 9. The fluid remains in 
the impeller passage and rotates in the opposite direction to that of the 
impeller . 

Solution for Flow Through Stationary Impeller Passage 

Flow through a stationary impeller with straight blades has zero 
tangential velocity and is equivalent to flow through the annulus formed 
by the hub and shroud surfaces . In reference 1, it is shown that for 
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incompressible flow the distributions of stream function and veloc ity 
components in the meridional plane for flow through an annulus are the 
same as the distributions for axially symmetric flow through a rotating 
impeller wi th an infinite number of straight impeller blades. Therefore) 
example II of reference 1 is used in this report as the solution for flow 
through the stationary impeller passage. 

Streamlines . - St reamline s for flow through the stationary impeller 
passage are shown in figure 10. These lines are also the ~ coordinates 
(fig . 4 (b)) used in the relaxation solution for the eddy flow. 

Velocit y distribution . - For flow through the stationary impeller 
passage) (Q2)e) (W2 )e) and (Q2 ) ~ are zero. Lines of constant velocity 

(Q2 )~ (equal to Q2) are shown on a meridional plane in figure 11. As 

for the eddy-flow solution) this velocity is expressed as a ratio of the 
tip speed of the rotating impeller) and the solution presented was 
obtained for (Q2) ~ equal to 0.3429 far upstream of the impeller proper . 

The distribution of (Q2)~ is the same for all meridional planes . 

Flow direction . - Lines of constant f l ow direction a2 are shown on 

a meridional plane in figure 12 . These values of a2 can be used t o com­
pute t he velocity components QR and QZ by equation (10). 

Solutions f or Flow Through Rotating Impeller Passage 

Solutions for various r a tios of flow rate to impeller tip speed are 
obtained by superposition of various percentages (k in equation ( 5 )) of 
the through- flow solution on the eddy- flow s olution. Either the velo c ­
ity potential or the velocity components may be superposed . Two solu­
tions are presented for f low through the rotating impeller with values 
of the axial inlet velocity Qz ( equal t o (Q2 )~) upstream of the 

impeller equal to 0.1372 and 0.3429) that is) f or k equal to 0. 4 and 
1 .0) respectively. 

Solution for k = 0 . 4 . - Path lines of fluid particles on the sur ­
faces of the impeller channel are shown in figure 13 for 40 percent of 
the through-flow solution superposed on the eddy-flow solution. Path 
lines on the hub and on the blade surface faced in the direction of r ota­
tion are shown in figure 13(a) ; path lines on the shroud and on the blade 
surface opposed to the direction of rotation are shown in figure 13(b). 
A composite plot of these path lines is shown in fi~ITe 13( c ). 

For this solution the flow rate through the r otating impeller is not 
sufficient to eliminate (by superpos i tion) all the reverse flow result­
ing from the negative velocities (Ql)~ of the eddy- f low solut i on (see 

fi g . 7( a)) . This condition corresponds t o the eddy fl ow that is attached • 
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to the face of the blade in the direction of rotation for two - dimensional 
solutions on surfaces of revolution (references 4 and 6, for example) . 
Unlike the two-dimensional solutions, however, the fluid in the reverse 
flow of the three-dimensional solution does not remain in the impeller 
but eventuallY leaves as indicated by the spiral path lines emanating 
f r om the s t agnation point on the hub of the impeller. 

The locus of stagnation points indicated on the blade surface in 
figure l3(a) corresponds to the downstream stagnation point associated 
with the eddy flow of a two - dimensional solution. For the three­
dimensional solution in figure 13(a), upstream stagnation point s occur 
at the hub and shroud only . However, along the dot-dash line between 
these stagnation points the velocity component Q~ is zero so that this 

line corresponds to the upstream stagnation point associated with the 
eddy flow of a two - dimensional solution. Path lines on the shroud sur ­
face in figure 13(b) converge to the upstream stagnation point. This 
convergence indicates that, as the path lines approach the stagnation 
point, the fluid leaves the shroud surface and passes into the interior 
of the passage. 

Solution for k = 1.0. - Path lines of fluid particles on the sur ­
faces of the impeller channel are shown in figure 14 for 100 percent of 
the through-flow solution superposed on the eddy-flow solution . The 
conditions for this solution are the same as those for the two- dimensional 
solutions given in references 1 and 4 . Path lines on the hub and on the 
blade surface ·faced in the direction of rotat ion are shown in f igure 14 (a); 
path lines on the shroud and on the blade surface opposed to the direction 
of r otation are shown in figure 14(b) . A composite plot of these path 
lines is shown in figure 14(c) . 

COMPARISON OF TWO - AND THREE-DIMENSIONAL SOLUTIONS 

The results of the three - dimensional solution are compared with two­
dimensional solutions on the mean passage surface extending from hub t o 
shroud, on the mean surface of revolution, and on the shroud surface. 
Only the eddy- flow solutions are compared because the contribution of 
through flow to the velocity components is the same for both the two -
and three - dimensional solutions. Thus the velocity components to be 
compared are components of the perturbation velocity caused by the rota­
tion of the impeller, and the relative importance of errors in these 
components is reduced when the known, primary through flow is added. 

Mean passage surface. - Because, for the type of impeller geometry 
investigated, the three-dimensional eddy flow has no velocity components 
in the mean passage surface extending from hub to shroud (plane E, 
fig. 4(a)), the velocity components in this plane are solely determined 
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by, and therefore agree with, the axial-symmetry two-dimensional solu­
tion . The axial-symmetry solution, hovever, completely neglects the 
relative tangential velocity We, which for the three-dimensional solu­
tion has maximum values on the mean plane (fig. 8(d)) . 

For impellers with curved blades, the relative tangential velocity 
component reaches maximum values on a mean flow surface between the 
blades. If, as for high-solidity blade rows, this surface is not much 
different from the geometric mean surface between blades, then the flow 
is nearly two dimensional on the mean passage surface and the flow on 
this mean surface is approximately described by axial-symmetry solutions 
like those of reference 1. This conclusion is reached by Ruden in 
reference 8. 

Mean surface of revolution. - The velocity components Qt and We 
for the two - and three-dimensional solutions are compared on the mean 
surfa ce of revolution in figures 15 an~ 16. The agreement for Q~ in 

figures 15(a) and 15(b) is excellent, and the agreement for We in fig­

ures 16(a) and 16 (b) is also excellent near the impeller tip, although 
the two- dimensional solution (fig . 16(b ) ) introduces relatively small 
positive values of We not found f or the three - dimensional solution in 
the region upstream of the contour line for We equal to zero. 

The slip fa ctor, defined as the ratio of average absolute tangential 
velocity at the impeller tip to the tip speed of the impeller, depends on 
the distribution of We at the impeller tip and is equal to 0.7892 for 
the three-dimensional solution compared with 0.8142 for the two­
dimensional solution on the mean surface of revolution (reference 4) . 

The velocity component Q~ of the three -dimensional solution is 
plotted i n f igure 17 . This velocity component is normal to the mean sur­
face of revolution and is completely neglected by the two - dimensional 
solution . 

Shroud . - The velocity components Qt and We for the two- and 

three - dimensional ~olutions are compared on the shroud surface in fig­
ures 18 and 19 . (The two - dimensional solution on the shroud surface was 
obtained from correlation equations , developed in reference 4, USing, for 
"standard values" of velocity, the velocities of the two - dimensional, 
eddy- flow solution on the mean plane . ) The agreement for Q ~ in fig-

ures l8(a) and l8 (b) is good, but the agreement for We in figures 19(a) 

and 19 (b) is poor, except in a limited region near the impeller tip. 
From simple phys i cal considerations the agreement for Q~ and We on 

the hub i s expected to be similar to the agreement on the shroud, except 
that We will have large positive values instead of the large negative 
values on the shroud . On the hub and shroud surfaces the velocity com­
ponent Q~ is zero for both the two - and three - dimensional solutions . 

N 
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Summary of comparisons. - A summary of the comparisons between the 
two- and three-dimensional solutions that are discussed in this report 
is given in the following table: 

Velocity Agreement 
component 

Mean passage Mean surface Hub or shroud 
surface of revolution surface 

Qt good good good 

We poor good poor 

~ good poor good 

It is concluded that on the flow surfaces investigated the velocity com­
ponents Q ~ , We, and ~ agree for the two- and three-dimensional solu-

tions dis cussed in this report, except: (1) We on the hub, shroud, and 

mean passage surface, and (2) Q~ on the mean surface of revolution. 

If quasi - three-dimensional solutions are obtained by the proper 
combination of two-dimensional axial-symmetry and blade-to-blade solu­
tions (reference 5), good agreement with the exact three-dimensional 
solution is indicated by good agreement on all surfaces of revolution. 
This agreement has already been discussed for the hub, shroud, and mean 
surfaces of revolution. For intermediate surfaces the table of compari­
sons suggests that the agreement will always be good for Qt, will be 

progressively better for We as the mean surface of revolution is 
approached, and will be progressively better for Q~ as the hub and 
shroud are approached. Because Qt is the velocity component of prime 

importance, it is concluded that, at least for the type of impeller 
investigated in this report, two-dimensional solutions can be combined 
to de.scribe the three-dimensional flow in rotating impeller passages with 
sufficient accuracy for engineering analyses. 

SUMMARY OF RESULTS, AND CONCLUSIONS 

A solution is presented for three- dimensional, incompressible, non­
viscous, potential flow in a rotating impeller passage with zero through 
flow. The solution is obtained for a conventional impeller with straight 
blades but with the inducer vanes removed and the impeller blades 
extended upstream parallel to the axis of the impeller. By superposition 
of solutions two additional examples are obtained for different flow 

J 
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rates through the rotating impeller . Of particular interest is the fact 
that at low compressor flow rates the fluid in the reverse or eddy-flow 
region does not remain permanently in the impeller passage, as is the 
case for two - dimensional solutions on surfaces of revolution, but, after 
spiraling around, eventually leaves the impeller. In other respects the 
three - dimensional solutions are compared with corresponding two ­
dimensional solutions and it is concluded that, at least for the type 
of impeller geometry investigated, two -dimensional solutions can be 
combined to describe the three -dimensional flow in rotating impellers 
with sufficient accuracy for engineering analyses. In particular it is 
concluded that: 

1 . On the mean surface of revolution the velocity components, 
except the component normal to the surface, agree for the two - and 
three- dimensional solutions . 

2 . On the hub and shroud surfaces the relative tangential velocity 
component does not agree for two - and three-dimensional solutions, but 
the other velocity components do. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, July 3, 1952 
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APPENIlIX A 

SYMBOLS 

The f ollowing symbols a re used in this report: 

A, A' , B,B ', ... meridional planes (fig . 4(a)) 

k 

Q 

R, e ,Z 

W 

Subscripts : 

1 

2 

percentage of through- flow solution ~2 

absolute velocity, expressed as ratio of impeller tip 
speed 

cylindrical coordinates (fig . l (a)), linear coordinates 
expressed as ratios of impeller tip radius 

relative veloc i ty, expressed as ratio of impeller tip 
speed 

angle, figure l(b) and equation (8) 

velocity potential and stream function, respectively, for 
incompressible flow through hub-shroud annulus; used as 
coordinate system in E ~-plane, equations (Bl) and (B2) 

velocity potential, equation (3) 

rotating impeller with zero net through flow (eddy-flow 
solution) 

stationary impeller with through flow (for numerical 
example, through flow is such that Qz equals 0 . 3429 
upstream of impeller) 

components in R,e,z, t ,~ directions, respectively 
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APPENDIX B 

TRANSFORMATION FROM RZ- TO ~Tj-PLANE 

It is convenient for purposes of solution by relaxation methods to 
transform the RZ-plane to one on which the coordinates are the stream 
function Tj and the velocity potential t for flow through the com­
pressor annulus without blades . The stream function Tj satisfies the 
continuity condition if defined as 

(Bl) 

and the velocity potential ; satisfies the irrotationality condition 
if defined as 

(B2) 

In terms of the transformed ; }~ coordinates} the partial deriva­
tives of equation ( 4b) become 

(B3) 

• 
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From equations (Bl) through (B3), equation (4b) becomes 

(B4) 

and from c ontinuity 

and for irrotat ional flow 

so that equation (B4) becomes 

Equation (6) is the partial differential equation for the distribution 
of ~ in the t ,~, e coordinate system. 

This new coordinate system introduces two new velocity components 
Q t and Q~, which are related to the radial and axial velocity com­
ponents by equation (9). Combining equations (3), ( 9 ), and (Bl) t o 
(B3) gives 

d~ 
Q ~ = Q2 d1 

d~ 
QT] = RQ2 drl 

( 7a) 

(7b) 

J 
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(a) Cylindrical coordinates. 

Figure 1. - Coordinate systems relative to inu?eller, and absolute velocity 
components. All quantities are dimensionless. Linear coordinates are 
measured in units of impeller tip radius; velocity components are 
measured in units of impeller tip speed. 
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R 
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(b) t,~ coordinate syst em in RZ-plane. 

Figure l . - Concluded. Coordinate systems relative to impeller, and absolute 
velocity components. All quant ities are dimensionless. Linear coordinates 
are measured in units of impeller tip radius; velocit y components are 
measured in units of impeller tip speed. 
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Direc ti on of r otation .. 

Stagnation 
point 

_______ Streamlines 
- - - - Path lines 

(a) Comparison of graphically constructed path lines (three -dimensional solution) with streamlines 
obtained from stream function of two-dimensional solution. 

Figure 2 . - Comparison of r esults obtai ned f rom two- and three - dimensional solutions. Plane normal 
to impeller axis in region of uniform axial velocity far upstream . 

/' 
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Solution 

Two dimenai onal 
Three dimensional 

(b) Lines of constant velocity relative to rotating impeller. 

Figure 2. - ·Concluded. Comparison of results obtained from two- and three-dimensional solutions . 
Plane normal to impeller axis in region of uniform axial velocity far upstream. 
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Vaneless diffuser 

1.0 

.8 

.4 

.2 

o~ ____ ~ ____ ~ __ ~~ ______ ~ ____ ~ ____ ~ ____ ~ ____ ~ 
-.2 .6 

Axial distance, Z 

Figure 3. - Hub-shroud dimensions of impeller for numerical 
examples. Vaneless diffuser; straight impeller blades 
extended far upstream parallel with axis of impeller. 

23 



24 

(a) Designation of planes. 

P1gure 4 . - Meridional planes on which results of 
three -dimensional solutions are plotted . 
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Impel l e r tip 

(b) Transformed ~ . n eoordlnatea on meridional planes . 

P1gure 4. - Concluded. Meridional planes on which reeul ts of three-dimensional 
eolutions are plotted. 

- - --- Velocity potential t ------

_________ I~m~p~eller_C.M==.~ ____ _ 
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(a) Meridional plane A (impeller blade) . Values of potential 
function are s ame on plane A' but of opposite slgn. 

Pigure 5 . - Lines of constant velocity potential 'PI of eddy flow. 

Shroud 

Impel er 8x:ls 

NACA TN 2806 
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(b) Meridional plane B. Values of potential function are same on 
plane B' bu t of' opposi te sign. 

Impeller tip 

Pigure 5 . - Continued . Lines of constant velocity potential CPI of eddy flow. 

Shroud 

----+-----+-----+-----~----~_roo 
-~----

---+ -----1----+ - - -100 -; ____ _ 

Impe 11 er ax1s 
--------------- -------------

Velocity 
potential 

,CPI, 
-780 
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(c) Merid10nal plane C. Values of potential function are same on plane c r 
but of oppoal te sign. 

Figure 5 . - Continued. Lines of constant velocity potential qll of eddy now . 

Shrood 

________________ =Im~p=eller __ . _xl_. __________ __ 
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(d) Meridional plane D. Values of potentIal. function are same on 
plane Dr but of opposite algn . 

Figure 5 . - Concluded . Lines of constant velocity potent1al 1;)1 of eddy flow . 

Shroud 

Impeller axls 
------------~ ------------
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(a) Meridional plane A (impeller blade) . Values of ( Ql)~ are same on 
plane A' bu t of OPPOSl te sign. 

Plgure 6 . - Lines of constant (Ql) ~, veloci toy component of eddy- flow solution 
tangent t o velocity o f through- flow solution . 
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(b) MerIdional plane S. Values of ( Ql)~ are same on plane SI but 
of opposi te sign . 

FI gure 6. - Continued . Lines of constant (Ql)~' velocity component of eddy-flow 
solution tangent to velocity of through-flow solutiOn . 

Shroud 

Impeller axis 
-------- ------- - ----- -
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(c) Mer1d1onal plane C. Values of ( Ql)~ a r e same on plane C' but 
of apposl te sign . 

I mpe ller tip 

Pigure 6 . - Conti nued . Lines of constant ( Ql) ~' velocity component of eddy-flow 
solution tangent to velocity of through-flow solut i on . 

Shroud 

Impeller axle 
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(d) Meridional plane D. Values of (Ql)( are same on plane D' but 
of opposite sign . 

Plgure 6 . - Concluded. Lines ot constant ( Ql)(~ velocity component of eddy-flow 

solution tangent to velocity of through- flow solution . 

Shroud 

________________ ~l~mp~e ll er __ a_x~l~. __________ _ 

... _._----

Veloe1 ty 
component 

(Q,) t 
I I 

- 0 . 02 
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(8) Meridional plane A (i mpeller blade) . Va l ues of (Ql)n are 
same on plane A' bu t of opposite sig n . 

Figure 7 . - Lines of constant (Ql)n ' velocity component of eddy-flow solu tion 

normal to veloe1 ty of through- flow solution a nd lyI ng I n meridional plane . 
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(b) Meridional plane B. Values of (Ql)n are same on plane BI but 
of opposite slgn . 

Pigure 7 . - Continued . Lines of constant (Ql)n ' velocity component of eddy- flow 
solution normal to velocity of tnrough-flow solution and ly1ng 1n meridional 
plane . 

Shroud 

________________ I~mp~e_l1er _a_x_l __ s __________ _ 
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(c) Meridional plane C. Values of (Ql)n are same on plane C' but 
of oppoal te algn. 

Pigure 7. - Continued. Lines of constant (Ql l7J' veloel ty component of eddy-flow 

solution normal to velocity of through-flow solution and lyIng In meridional 
plane . 

Shroud 

_________________ Im~p_eller __ ._x_l. __________ _ 
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(d) Meridional plane D. Values of (Ql)n are same on plane 0' but: 
of oppoal te sign. 

Figure 7 . - Concluded . Lines of constant (Ql),., ' velocity component of eddy-now 

solution normal to velocity of through- flow solution and lying 1n meridional 
pIa.ne . 

Shroud 

Impeller axis 
------------- -----------
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(a) Meridional planes Band BI . 

Figure S . - Linea of constant (WI 'S ' tangential velocity component of eddy- flow 
solution, relative to rotating impeller . Negative values of (WI'e are 
directed into page . 
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(b) Meridional planes C and C'. 

Pigure 8. - Continued. LInes of constant (WI)e, tangential velocity component 
of eddy- flow solution, relative to rotating impeller . Negative values of (WI)S 
are directed into page . 
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lmpell er tip 

(c) Meridi ona l planes 0 and 0' . 

Figyre 8 . - Continued . Lines of constant (W1)e' tangential veloci ty component 
of eddy-flow solution, relative t o rotating impeller. Negative values of (WI)e 
are directed into page . 
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(d) Meridional plane E. 

Pigure 8. - Concluded . Lines of conetant (W1)SI tangential veloc1ty component 
of eddy-flow 8olution, r"elative to r"ota ting i mpeller" . Negative values of (Wl)e 
ar"e directed into page . 
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.Pigure 10 . - Streamlines in meridional plane for flow in stationary impeller 
passage described in figure 3. Streamline designation indicates percentage 
of flow through channel between streaml1ne and hub. Incompressible flow ; 
(~)Z' 0.3429 far upstream (reference 1) . 
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P1gure 11 . - Lines of c onstant velocity (Q2)~ (equal to ~) on meridi onal plane 

for flow through stationary impeller passage. Incompressible flow; (Q2 )Z' 

0 .34 29 far upstream (reference 1). 

Impeller axIs 
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FIgure 12. - Linea of constant flow direction Q
2 

on meridIonal plane for flow 

through etationary impeller passage. Incompressible flow; (Q2)ZI 0.3429 far 

ups tream (reference 1). 

Shroud 

Impeller axle 
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Locus of 
8 tegns t1 on poln ts 

(a) Blade surface In directIon of rotation , 
and hub. 

Figure 13 . - Paths of fluid partlclef\ on surfaces of 
rotating channel . Porty percent of through- flow 
solution superposed on eddy- now solutIon (k - 0 . 4) ; 
~ I 0 . 1312 far upstream . 
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(b) Blade surface opposed to direction of 
rotation. and shroud. 

Pigure 13 . - Continued. Paths of fluid part1cles 

Stagnation 
point 

surfaces of rotat1ng ehannel . Porty percent of through­
flow solution superposed on eddy-flow solution (k _ 0 4,) . 
QZ' 0.1372 far upstream . 
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(8) Blade surface In direction of rotatlon l and hub. 

Pigure 14 . - Paths of f'luld particles on 8urfaces of 
rotatIng channel. One hundred percent of through-flow 
solut1on superposed on eddy-flow solution (k _ 1 .0) ; 
~, 0.3.29 far upstream . 
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(b) Blade surface opposed to ::Urectlon of rotaUon l 

and shroud . 

Pigure 14 . - Continued . paths of fluId particles on 
surfaces of rotating channel . One hundred percent of 
through-flow solution auperposed on eddy - flow solution 
(k - 1.0) ; ~~ 0 .34 29 far upstream . 
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(8) Three-dimensional =solution . 

Pigure 15 . - Mean surface of revolution showing velocity 
component Q~ 1n direction of thrOJgh flow. Eddy­
flow solutions . 
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(b) Two-dimensional soluti on . 

FIgure 15 . - Concluded . Mean surface of revolution showing 
velocl ty component Q In direction of through flow. 
Eddy-flow solutions. ~ 
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(a) ~ree-dlmen81onal solution. 

Pigure 16 . - Mean surface of revoluti on showing tangential 
velocity component We relative t o rotating impeller. 
Eddy-flow solutions. 
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(b) Tw o- dimensional solution . 

F1gure 16 . _ Concluded . Mean surface of revolution show1ng 
tangential velocity component We relative to rotating 
impeller. Eddy- flow 801uUone . 
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Figure 17. - Velocl ty component Qn normal to mean surface 
of revolution. Three-d1mensional eddy-flow 8olut1on . 
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(a) Three-dimensional solution . 

Figure 18 . - Shroud surface showing velocity component Q~ 

1n direction of th r ough now. Eddy- flow soluti ons. 
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(b) 'I'Wo-dlmenatonal solution . 

Pigure 18 . - Concluded . Shroud surface shOWing velocity 
component Q(. 1n direction of through flow . Eddy­
flow solutions. 
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(a) Three-dimensional soluti on. 

Plgure 19. - Shroud surface showing tangential velocity 
component We relative t o rotating Impeller. Eddy-

flow s oluti ons. 
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(b) Tw o -dimensi ona l !S o luti on. 

P1gure 19 . _ Concluded :' Shroud surface shOWing tangential 
velocity component ""e re l ative t o r otating impeller . 
Eddy-flow soluti ons. 
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