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SUMMARY

A solution is presented for three-dimensional, incompressible, non-
viscous, potential flow in a rotating impeller passage with zero through
flow. The solution is obtained for a conventional impeller with
straight blades but with the inducer vanes removed and the impeller
blades extended upstream parallel to the axis of the impeller. By super-
position of solutions two additional examples are obtained for different
ratios of compressor flow rate to impeller tip speed. The three-
dimensional solutions are compared with corresponding two-dimensional
solutions and it is concluded that, at least for the type of impeller
geometry investigated, two-dimensional solutions can be combined to
describe the three-dimensional flow in rotating impellers with suffi-
cient accuracy for engineering analyses.

INTRODUCTION

As an aid to better understanding of flow conditions in rotating
impeller passages, methods of analysis have been developed in the past
for potential nonviscous flow. In order to achieve solutions with a
reasonable expenditure of effort, all methods are based on two-
dimensional assumptions, in that the flow is restricted, by assumption,
to specified flow surfaces in space. ZEither of two types of surface
are usually assumed for the flow: first, the mean blade (or passage)
surface on which flow conditions vary from hub to shroud but are con-
sidered constant in the circumferential direction (axial-symmetry solu-
tions, references 1 and 2), or, second, surfaces of revolution on which
flow conditions vary from one blade to the next, but normal to which
the flow conditions are considered constant (blade-to-blade solutions,
references 3 and 4).

If the streamlines of an axial symmetry solution are used to
generate surfaces of revolution around the axis of the impeller, the
totality of the blade-to-blade solutions on these surfaces of revolution
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constitute a quasi-three-dimensional solution (reference 5) because the
solutions indicate variations in flow conditions throughout the impeller
passage. However, because the flow is constrained to surfaces of revo-
lution, the solution is not three dimensional in the exact sense of the
word. No complete three-dimensional solutions for rotating impeller
passages exist in the literature, and a solution has therefore been
obtained at the NACA Lewis laboratory. The solution is presented in
this report and is compared with the results of axial-symmetry and
blade-to-blade solutions in order to evaluate these two-dimensional
methods of analysis.

The three-dimensional solution was obtained for incompressible non-
viscous flow in a rotating impeller passage with straight blades and
with the inducer vanes located far upstream of the impeller. By super-
position of solutions, results are obtained for several ratios of flow
rate to impeller tip speed.

GENERAL METHOD OF ANALYSIS

A partial differential equation for three-dimensional flow in a
rotating impeller passage is developed from considerations of continuity
and absolute irrotational fluid motion.

Assumptions. - The fluid is assumed to be inviscid and incompres-
sible. The flow is assumed to be steady relative to the rotating
impeller passage, and in the absence of viscosity the absolute motion
of the fluid is assumed to be irrotational. It is assumed that the
phenomenon being investigated, that is, the deviation of three-
dimensional flow from the restricted motion of two-dimensional solu-
tions, is qualitatively the same for compressible and incompressible
solutions. This deviation is a perturbation resulting primarily from
rotation of the impeller; and in reference 6 it is shown that at least
for two-dimensional solutions this type of perturbation is independent
of compressibility, which affects only the average velocity.

Cylindrical coordinate system and velocity components. - The cylin-
drical coordinates R, 6, and Z relative to the impeller are shown in
figure 1(a). (All symbols are defined in appendix A.) These coordi-
nates are dimensionless, the linear coordinates R and 2Z having been
divided by the impeller tip radius (so that R 1is equal to 1.0 at the
impeller tip).

The absolute velocity @ has components QR, Qg, and Qy in the

R, 6, and Z directions, respectively (fig. 1(a)). These velocities
are dimensionless, having been divided by the impeller tip speed (so
that, for example, the dimensionless blade speed at any radius R 1is
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equal to R). If W 1is the velocity of the fluid relative to the impeller,
expressed as a ratio of the impeller tip speed, then

Wg=Qg - R (1)
Potential function . - For absolute irrotational fluid motion
VXQ = 0 (2)

where the bar indicates a vector quantity. A potential function (Vo)

satisfies equation (2) identically if defined by

Q= Vo (3)
from which
)
® - % (32)
19 :
zSF= a0 (3b)
and
0P
= 5
37 QZ (3c)
Differential equation of flow. - From continuity
vV.Q =0
so that, from equation (3),
qu) = 0 (4a)

which in cylindrical coordinates becomes
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NUMERICAL PROCEDURE

A numerical procedure is outlined for the solution of the partial
differential equation (4) .for flow in a rotating impeller passage with
special type of geometry.
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Preliminary Considerations

Special type of impeller geometry. - The three-dimensional solutions
presented are for a straight-bladed impeller of conventional design
except that the inducer vanes are removed and the straight impeller
blades are extended indefinitely upstream parallel to the axis of the
compressor. This idealized entrance condition along with straight
blades results in substantial simplification of the numerical procedure.

Superposition of solutions. - As a result of the special type of
impeller geometry just discussed, the boundary conditions for flow
through a rotating impeller are equal to the sum of the boundary condi-
tions for zero flow through the rotating impeller and for finite flow
through the stationary impeller. Therefore, because the boundary con-
ditions can be added and because the differential equation (4) is
linear, the velocity potential @ for flow through the rotating impeller
passage can be expressed as

2587

@ = q)l &t k¢2 (5)

where @1 satisfies equation (4) and the boundary conditions for the
rotating impeller with zero net through flow and ®, satisfies the same

equation but for the boundary conditions associated with flow through -
the stationary impeller. The solution for @ 1is called the "eddy-flow

solution" and corresponds to ideal flow conditions in the rotating
impeller with the throttle closed so that no through flow occurs. The
solution for P, 1is called the "through-flow solution" and, for the

special type of impeller geometry being considered, this solution is
axially symmetric and corresponds to flow with zero whirl through an
annulus with the same hub-shroud profile and no impeller blades. Solu-
tions for various ratios of flow rate to impeller tip speed are obtained
directly for various values of k 1in equation (5)

Eddy-Flow Solution

The eddy-flow solution for the rotating impeller passage with zero
net through flow is considered first.

Transformation of coordinates. - It is convenient for purposes of
the numerical solution by relaxation methods to transform the RZ-plane
to one on which the coordinates are.the streamlines n and velocity
potential lines ¢ for flow through the compressor annulus without
blades. Because the hub and shroud contours are streamlines in the
RZ-plane, these contours become straight parallel lines in the
¢n-plane. In terms of the new transformed coordinates, equation (4b)
for the eddy-flow potential ®; becomes (appendix B) ¢
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Sy Pp 1 W o,
sz -§—2'+R2Q22-a;2—+R—2—a—9—2—-+ Z(Q‘Z)Zgn—= 0 (5)

where the subscript 2 refers to the solution for axially symmetric
flow through the compressor annulus with no blades or, which is the
same thing, through the stationary impeller passage of the special type
considered in this report.

The new coordinate system introduces two additional velocity compo-
nents (appendix B)

Qg = Qp %% (7a)
and

and an angle ap defined by

tan as =(%§)2 (8)

all of which are shown in figure 1(b). From this figure it is seen
that

Qg = Qg cos ap + Qg sin ap (9a)
and

Qn =%y =08 93 = Qg SEikion (9p)
or, conversely,

Qr = Qg sin ap + @y cos ap (10a)
and

Qg = Qﬁ cos ap - Q, sin ap (10b)

Boundary conditions. - For the eddy-flow solution of equation (6)

the boundary conditions that must be satisfied for the special type of
impeller geometry considered in this report are:
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(1) The flow direction must be tangent to the hub and shroud in the
impeller and diffuser so that Qp is zero, or, from equation (7o),

é;f =0 (11)

(2) Along the blade the relative flow is tangent to the blade sur-
face so that for straight radial blades the relative tangential velocity
Wg is zero and from equations (1) and (3b)

-

(3) Boundaries are established in the diffuser on meridional planes
extending from the blade tips. For a rotating impeller with no through
flow the radial velocity component is zero on these boundaries so that
the potential function is constant along radial lines on these surfaces.
Variations in velocity potential @ with Z at the impeller tip of
constant radius indicate the presence of a vortex sheet shedding from the
trailing edge of the blade and passing downstream. It is assumed that
the strength of this sheet is weak and can be ignored in the solution of
equation (6). For impeller blades with constant tip radius the variation
in work input from hub to shroud at the impeller tip is negligible and -
the assumption therefore appears to be reasonable. The Joukowski condi-
tion at the blade tip is automatically satisfied by condition (2).

2587

(4) The domain of the solutions is extended in the upstream and
downstream directions until flow conditions are uniform in a plane normal
to the direction of through flow. For the eddy-flow solution this con-~
dition is achieved when (Ql)g is zero, that is, when 0O® /0t is zero,

everywhere on a plane normal to the § coordinate.

(5) The idealized inlet of the special impeller geometry considered
in this report results in symmetry of flow about the mean plane between
blades in the rotating impeller with no through flow. The flow is
directed normal to this plane and @ 1s therefore everywhere constant

(zero) on it.

Relaxation solution. - The differential equation (6) is solved by
relaxation methods (reference 7) to satisfy the boundary conditions just
described. The velocity components are then determined by equations (3)
and (7) in finite difference form. For the numerical examples of this
report, a three-point system was used for expressing the differential
equations in finite difference form.
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Flow paths. - Any three velocity components determine the flow direc-
tion at a point so that flow paths relative to the impeller passage can
be determined from the velocity components Qrs Wy, and Qz, or QE’ Wg»

and Qﬂ‘ On the hub, shroud, and blade surfaces the path lines can be

constructed graphically from lines of constant flow direction on these
surfaces.

Accuracy. - For the numerical examples of this report, the impeller
channel includes a total of 5400 grid points at which the velocity poten-
tial was relaxed to a unit change in the fifth decimal. (Because P

is constant on the mean plane and the flow is symmetrical about this
plane, the number of grid points at which it was necessary to relax is
reduced to 2400.)

In order to check the accuracy of the graphical construction of the
path lines, these lines were obtained on a plane normal to the through-
flow direction far upstream of the impeller where a direct two-dimensional
solution for the stream function is known and valid. Figure 2(a) compares
the path lines with the streamlines. It is noted that the graphically
constructed path lines agree well with the streamlines. It should be
pointed out, however, that the path-line spacing is not sufficiently
accurate to be indicative of the velocity distribution. In figure 2(b)
the velocities obtained from the three-dimensional solution for the
velocity potential are compared with the velocities obtained from the
two-dimensional solution for the stream function. The comparison indi-
cates much better agreement in the velocity distributions than was indi-
cated by the path-line spacing in figure 2(a).

A check on the accuracy of the three-dimensional solution will be
given in connection with a discussion of the numerical examples. This
check indicates approximately the same accuracy that is shown by the
comparison of velocities in figure 2(b).

Combined Solutions

After the eddy-flow solution has been obtained, various percentages
of a through-flow solution may be added to obtain solutions for different
ratios of compressor flow rate to impeller tip speed.

Through-flow solution. - The through-flow solution is obtained by
methods outlined in reference 1, for example. As already discussed, the
velocity potentials for the two types of solution can be added or, as
indicated by partial derivatives of @ in equation (5), the wvelocity
components themselves can be added directly. The latter procedure avoids
the necessity of computing the distribution of P, from the distribution

of stream function determined by reference 1.
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Flow path. - The procedure for graphically determining the flow path
for the combined solutions is identical with that outlined for the eddy-
flow solution.

NUMERICAL EXAMPLES

Three-dimensional solutions for flow through an impeller with
straight blades and with the inducer vanes located far upstream of the
impeller are presented for: (1) zero flow through the rotating impeller
passage, (2) flow through the stationary impeller passage, and (3) com-
binations of (1) and (2) for various ratios of through flow to impeller
tip speed.

Impeller Geometry

The impeller geometry for the numerical examples is the same as
that in references 1 and 4 with the inducer vanes located far upstream
of the impeller. The hub-shroud profile of the impeller is described
in figure 3. The blade spacing is 32.80° as in reference 4.

The results of the solutions are presented on the channel surfaces
and on the nine meridional planes indicated in figure 4(a). The E,n
coordinates on the meridional planes are shown in figure 4(b). The lines
of constant g are spaced at intervals corresponding to equal increments
of the ¢ coordinate used in reference 4.

Solution for Zero Net Flow Through Rotating Impeller Passage

Velocity potential ®,. - Lines of constant velocity potential on

the meridional planes are shown in figure 5. The center plane E (see
fig. 4(a)) is not shown because, as discussed previously, ®; 1is zero

everywhere on this plane. Note that lines of constant @; intersect the
hub-shroud profile at right angles, as required by equation (11). The

meridional velocity component must be directed normal to the lines of
constant @7 1in the meridional planes and has magnitudes inversely pro-

portional to the line spacings.

Velocity components. - Velocity components of the eddy-flow solution
are shown in figures 6 to 8. These velocity components are directly
related by equation (3) to the local partial derivatives of the velocity
potential (Pl given in figure 5. For the impeller geometry being inves-

tigated, all these eddy-flow velocity components would be neglected by
axial-symmetry-type solutions (reference 115

L8S2
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Lines of constant (Ql)g on the meridional planes are shown in

figure 6. This velocity component of the eddy-flow solution is tangent
to the streamlines (constant 1), and therefore to the velocities, of the

axially symmetric flow through the stationary impeller. The velocity
component (Q;)¢ has maximum values on the blade surfaces (planes A

and A') and is Zero on the center plane E. This velocity component

also becomes zero upstream and downstream of the impeller proper.

Lines of constant velocity component (Ql)n are shown on the

meridional planes in figure 7. This velocity component of the eddy-flow
solution is normal to the streamlines, and therefore to the velocities,
of the flow through the stationary impeller. The velocity component
(Ql)n has maximum values on the blade surfaces and is zero on the center

plane E. This velocity component must also be zero along the hub and
shroud boundaries, and becomes zero downstream of the impeller. Note
that the velocity component (Ql)n would be completely neglected in two-

dimensional solutions on surfaces of revolution (reference 4) generated
by streamlines of axial-symmetry-type solutions.

Lines of constant tangential velocity component (Wl)e relative to

the impeller are shown in figure 8. For the impeller geometry investiga-
ted, this velocity component has maximum values on the center plane E
and is zero on the blade surfaces. Negative values of (W1)g indicate

flow across the meridional planes in the direction opposed to impeller
rotation (into the page), and positive values of (Wj)g indicate flow

across the meridional planes in the direction of rotation (out of the
page). From continuity considerations the integrated weight flow into the
page (exclusive of the fluid that remains in the diffuser) must equal the
integrated weight flow out of the page. These integrations have been
carried out for the center plane E and weight flows agree within

2% percent. This agreement indicates approximately the same accuracy as

that obtained from the integrated weight flows across the center line in
figure 2(b). Thus it seems reasonable to conclude that the error through-
out the domain of the three-dimensional solution is not greater than that
indicated by the velocities in figure 2(b).

Path lines. - Path lines of fluid particles on the passage surfaces
are shown for the eddy-flow solution in figure 9. The fluid remains in
the impeller passage and rotates in the opposite direction to that of the
impeller. :

Solution for Flow Through Stationary Impeller Passage
Flow through a stationary impeller with straight blades has zero

tangential velocity and is equivalent to flow through the annulus formed
by the hub and shroud surfaces. In reference 1, it is shown that for
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incompressible flow the distributions of stream function and velocity
components in the meridional plane for flow through an annulus are the
same as the distributions for axially symmetric flow through a rotating
impeller with an infinite number of straight impeller blades. Therefore,
example II of reference 1 is used in this report as the solution for flow
through the stationary impeller passage.

Streamlines. - Streamlines for flow through the stationary impeller
passage are shown in figure 10. These lines are also the mn coordinates
(fig. 4(b)) used in the relaxation solution for the eddy flow.

Velocity distribution. - For flow through the stationary impeller
passage, (Qplg, (Wa)g, and (Qz)ﬂ are zero. Lines of constant velocity

(Qz)g (equal to Qp) are shown on a meridional plane in figure 11. As

for the eddy-flow solution, this velocity is expressed as a ratio of the
tip speed of the rotating impeller, and the solution presented was
obtained for (Qz)g equal to 0.3429 far upstream of the impeller proper.

The distribution of (Q2)§ is the same for all meridional planes.

Flow direction. - Lines of constant flow direction ap are shown on

a meridional plane in figure 12. These values of ap can be used to com-
pute the velocity components Qgr and Qg by equation (10).

Solutions for Flow Through Rotating Impeller Passage

Solutions for various ratios of flow rate to impeller tip speed are
obtained by superposition of various percentages (k in equation (5)) of
the through-flow solution on the eddy-flow solution. Either the veloc-
ity potential or the velocity components may be superposed. Two solu-
tions are presented for flow through the rotating impeller with values
of the axial inlet velocity Qg (equal to (Qz)t) upstream of the

impeller equal to 0.1372 and 0.3429, that is, for k equal to 0.4 and
1.0, respectively.

Solution for k = 0.4. - Path lines of fluid particles on the sur-
faces of the impeller channel are shown in figure 13 for 40 percent of
the through-flow solution superposed on the eddy-flow solution. Path
lines on the hub and on the blade surface faced in the direction of rota-
tion are shown in figure 13(a); path lines on the shroud and on the blade
surface opposed to the direction of rotation are shown in figure 13(b).

A composite plot of these path lines is shown in figure 13(c).

For this solution the flow rate through the rotating impeller is not
sufficient to eliminate (by superposition) all the reverse flow result-
ing from the negative velocities (Ql) of the eddy-flow solution (see

fig. 7(a)). This condition corresponds to the eddy flow that is attached

L8S2
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to the face of the blade in the direction of rotation for two-dimensional
solutions on surfaces of revolution (references 4 andai6, e for example) .
Unlike the two-dimensional solutions, however, the fluid in the reverse
flow of the three-dimensional solution does not remain in the impeller

but eventually leaves as indicated by the spiral path lines emanating
from the stagnation point on the hub of the impeller.

The locus of stagnation points indicated on the blade surface in
figure 13(a) corresponds to the downstream stagnation point associated
with the eddy flow of a two-dimensional solution. For the three-
dimensional solution in figure 13(a), upstream stagnation points occur
at the hub and shroud only. However, along the dot-dash line between
these stagnation points the velocity component Q is zero so that this

line corresponds to the upstream stagnation point associated with the
eddy flow of a two-dimensional solution. Path lines on the shroud sur-
face in figure 13(b) converge to the upstream stagnation point. This
convergence indicates that, as the path lines approach the stagnation
point, the fluid leaves the shroud surface and passes into the interior
of the passage.

Solution for k = 1.0. - Path lines of fluid particles on the sur-
faces of the impeller channel are shown in figure 14 for 100 percent of
the through-flow solution superposed on the eddy-flow solution. The
conditions for this solution are the same as those for the two-dimensional
solutions given in references 1 and 4. Path lines on the hub and on the
blade surface faced in the direction of rotation are shown in figure 14(a);
path lines on the shroud and on the blade surface opposed to the direction
of rotation are shown in figure 14(b). A composite plot of these path
lines is shown in figure 14(c).

COMPARISON OF TWO- AND THREE-DIMENSIONAL SOLUTIONS

The results of the three-dimensional solution are compared with two-
dimensional solutions on the mean passage surface extending from hub to
shroud, on the mean surface of revolution, and on the shroud surface.
Only the eddy-flow solutions are compared because the contribution of
through flow to the velocity components is the same for both the two-
and three-dimensional solutions. Thus the velocity components to be
compared are components of the perturbation velocity caused by the rota-
tion of the impeller, and the relative importance of errors in these
components is reduced when the known, primary through flow is added.

Mean passage surface. - Because, for the type of impeller geometry
investigated, the three-dimensional eddy flow has no velocity components
in the mean passage surface extending from hub to shroud (plane E,
fig. 4(a)), the velocity components in this plane are solely determined
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by, and therefore agree with, the axial-symmetry two-dimensional solu-
tion. The axial-symmetry solution, however, completely neglects the
relative tangential velocity Wg, which for the three-dimensional solu-

tion has maximum values on the mean plane (fig. 8(d)).

For impellers with curved blades, the relative tangential velocity
component reaches maximum values on a mean flow surface between the
blades. If, as for high-solidity blade rows, this surface is not much
different from the geometric mean surface between blades, then the flow
is nearly two dimensional on the mean passage surface and the flow on
this mean surface is approximately described by axial-symmetry solutions
like those of reference 1. This conclusion is reached by Ruden in
reference 8.

Mean surface of revolution. - The velocity components Q§ and Wy

for the two- and three-dimensional solutions are compared on the mean
surface of revolution in figures 15 and 16. The agreement for Qg in

figures 15(a) and 15(b) is excellent, and the agreement for Wy in fig-

ures 16(a) and 16(b) is also excellent near the impeller tip, although
the two-dimensional solution (fig. 16(b)) introduces relatively small
positive values of Wg mnot found for the three-dimensional solution in

the region upstream of the contour line for Wy equal to zero.

The slip factor, defined as the ratio of average absolute tangential
velocity at the impeller tip to the tip speed of the impeller, depends on
the distribution of Wg at the impeller tip and is equal to 0.7892 for
the three-dimensional solution compared with 0.8142 for the two-
dimensional solution on the mean surface of revolution (reference 4).

The velocity component Qﬂ of the three-dimensional solution is
plotted in figure 17. This velocity component is normal to the mean sur-
face of revolution and is completely neglected by the two-dimensional
solution.

Shroud. - The velocity components QE and Wg for the two- and

three-dimensional golutions are compared on the shroud surface in fig-
ures 18 and 19. (The two-dimensional solution on the shroud surface was
obtained from correlation equations, developed in reference 4, using, for
"standard values" of velocity, the velocities of the two-dimensional,
eddy-flow solution on the mean plane.) The agreement for Qg in fig-

ures 18(a) and 18(b) is good, but the agreement for Wy in figures 19(a)

and 19(b) is poor, except in a limited region near the impeller tip.
From simple physical considerations the agreement for QE and Wg on

the hub is expected to be similar to the agreement on the shroud, except
that Wg will have large positive values instead of the large negative

values on the shroud. On the hub and shroud surfaces the velocity com-
ponent Qﬂ is zero for both the two- and three-dimensional solutions.

L8S2
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Summary of comparisons. - A summary of the comparisons between the
two- and three-dimensional solutions that are discussed in this report
is given in the following table:

Velocity Agreement
component
Mean passage | Mean surface Hub or shroud
surface of revolution | surface
QE good good good
Wo poor good poor
Qﬂ good poor good

It is concluded that on the flow surfaces investigated the velocity com-
ponents Qg, Wg, and Qﬂ agree for the two- and three-dimensional solu-

tions discussed in this report, except: (1) Wg on the hub, shroud, and
mean passage surface, and (2) Q,n on the mean surface of revolution.

If quasi-three-dimensional solutions are obtained by the proper
combination of two-dimensional axial-symmetry and blade-to-blade solu-
tions (reference 5), good agreement with the exact three-dimensional
solution is indicated by good agreement on all surfaces of revolution.

~ This agreement has already been discussed for the hub, shroud, and mean

surfaces of revolution. For intermediate surfaces the table of compari-
sons suggests that the agreement will always be good for Qi’ will be

progressively better for Wy as the mean surface of revolution is

approached, and will be progressively better for Qﬂ as the hub and
shroud are approached. Because Q is the velocity component of prime

importance, it is concluded that, at least for the type of impeller
investigated in this report, two-dimensional solutions can be combined

to describe the three-dimensional flow in rotating impeller passages with
sufficient accuracy for engineering analyses.

SUMMARY OF RESULTS AND CONCLUSIONS

A solution is presented for three-dimensional, incompressible, non-
viscous, potential flow in a rotating impeller passage with zero through
flow. The solution is obtained for a conventional impeller with straight
blades but with the inducer vanes removed and the impeller blades
extended upstream parallel to the axis of the impeller. By superposition
of solutions two additional examples are obtained for different flow
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rates through the rotating impeller. Of particular interest is the fact
that at low compressor flow rates the fluid in the reverse or eddy-flow
region does not remain permanently in the impeller passage, as is the
case for two-dimensional solutions on surfaces of revolution, but, after
spiraling around, eventually leaves the impeller. In other respects the
three-dimensional solutions are compared with corresponding two-
dimensional solutions and it is concluded that, at least for the type

of impeller geometry investigated, two-dimensional solutions can be
combined to describe the three-dimensional flow in rotating impellers
with sufficient accuracy for engineering analyses. In particular it is
concluded that:

1. On the mean surface of revolution the velocity components,
except the component normal to the surface, agree for the two- and
three-dimensional solutions.

2. On the hub and shroud surfaces the relative tangential velocity
component does not agree for two- and three-dimensional solutions, but
the other velocity components do.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 3, 1952

L8S2




L8S2

NACA TN 2806

15

APPENDIX A

SYMBOLS

The following symbols are used in this report:

A,A',B,B',...
k

Q

R,0,%

En

®

Subscripts:

il

R;Q;ZJE)W

meridional planes (fig. 4(a))
percentage of through-flow solution @,

absolute velocity, expressed as ratio of impeller tip
speed

cylindrical coordinates (fig. 1(a)), linear coordinates
expressed as ratios of impeller tip radius

relative velocity, expressed as ratio of impeller tip
speed

angle, figure 1(b) and equation (8)

velocity potential and stream function, respectively, for
incompressible flow through hub-shroud annulus; used as
coordinate system in E1-plane, equations (Bl) and (B2)

velocity potential, equation (3)

rotating impeller with zero net through flow (eddy-flow
solution)

stationary impeller with through flow (for numerical
example, through flow is such that Qg equals 0.3429

upstream of impeller)

components in R,0,Z,§,n directions, respectively
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APPENDIX B

TRANSFORMATION FROM RZ- TO gn-PLANE

Tt is convenient for purposes of solution by relaxation methods to
transform the RZ-plane to one on which the coordinates are the stream
function 1 and the velocity potential g for flow through the com-
pressor annulus without blades. The stream function 7 satisfies the
continuity condition if defined as

%% = R(Qz)y,
(B1)
g% = - R(Q2)Rr

and the velocity potential ¢ satisfies the irrotationality condition
if defined as

g% = (Q2)R
(B2)
gzi = (Q)y

In terms of the transformed §,n coordinates, the partial deriva-
tives of equation (4b) become

N
dp dpdf dpd
B -SPSEt o SE
2 3¢t \¢ 3% ot dn  d% (Y
=SB OR
9%t %“9.5_2_71_ s (B3)
E3r2 ~ 9N aRe

IR
2—2?2‘2%@%) iR -
5%622 5%?822
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From equations (Bl) through (B3), equation (4b) becomes

2 2 2 oQ oQ
(QR2+QZ2)2(M+ R® a—c9)+—l-g—9+(5§§+%+5—z£>zg%+

But,

z
(QR~ + sz)g = ng
and from continuity

(BQR QR aQZ>
BR TR Tl

and for irrotational flow

(BQZ BQR)
oR - "L J2

so that equation (B4) becomes

1 d%p 3P
+I?—§+ Z(QZ)ZEZ‘O (6)

2
Qza +R2Q28
08

& o

Equation (6) is the partial differential equation for the distribution
of @ in the §,1,0 coordinate system.

This new coordinate system introduces two new velocity components
Qg and Q , which are related to the radial and axial velocity com-
ponents by equation (9). Combining equations (3), (9), and (Bl) to
(B3) gives

Qg = Qo g_cgp (7a)
Qy = Raz 3T (70)
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Axis of
/ impeller

v irection of
= rotation

e

(a) Cylindrical coordinates.

Flgure 1. - Coordinate systems relative to impeller, and absolute veloclty
components. All quantities are dimensionless. Linear coordinates are
measured in units of impeller tip radius; velocity components are
measured in units of impeller tip speed.
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Y

Z

(b) ¢,n coordinate system in RZ-plane.

Figure 1. - Concluded. Coordinate systems relatilve to impeller, and absolute
velocity components. All quantities are dimensionless. Linear coordinates
are measured in units of impeller tip radius; velocity components are
measured in units of impeller tip speed.
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— — — — Path lines

(a) Comparison of graphically constructed path lines (three-dimensional solution) with streamlines
obtained from stream function of two-dimensional solution.

Figure 2. - Comparison of results obtained from two- and three-dimensional solutions. Plane normal
to impeller axis in region of uniform axlal velocity far upstream.
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(b) Lines of constant velocity relative to rotating impeller.

Figure 2. - ‘Concluded.

Comparison of results obtained from two- and three-dimensional solutions.

Plane normal to impeller axis in region of uniform axial velocity far upstream.
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Radius, R
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Axis of impeller
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e 0 2 .4

Axial distance, Z

Figure 3. - Hub-shroud dimensions of impeller for numerical
examples. Vaneless diffuser; straight impeller blades
extended far upstream parallel with axis of impeller.
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(a) Designation of planes.
Figure 4. - Meridional planes on which results of
three-dimensional solutions are plotted.
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Impeller tip
(b) Transformed £,N coordinates on meridional planes.
Figure 4. - Concluded. Meridional planes on which results of three-dimensional
solutions are plotted.
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Impeller tip Velocity
potential
£
-1000
(a) Meridional plane A (impeller blade). Values of potential
function are same on plane A' but of opposite sign.
Figure 5. - Lines of constant velocity potential q)l of eddy flow.
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Velocity
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(d) Meridional plane D. Values of potential-function are same on
plane D' but of opposite sign.
Figure 5. - Concluded. Lines of constant velocity potential Py of eddy flow.
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(a) Meridional plane A (impeller blade). Values of (Ql)g are same on

Figure 6.

plane A' but of opposite sign.

- Lines of constant (Ql)i, velocity component of eddy-flow solution
tangent to velocity of through-flow solution.
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(b) M

Figure 6.

eridional plane B. Values of (Q1)¢

are same on plane B!'

of opposite sign.

but

- Continued. Lines of constant (Ql)i' velocity component of. eddy-flow
solution tangent to velocity of through-flow solution.
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Impeller tip

(¢) Meridional plane C. Values of (Ql)g are same on plane C' but
of opposite sign.
Figure 6. - Continued. Lines of constant (Q;)., velocity component of eddy-flow

solution tangent to velocity of through-flow solution.

-.16
-.18,
Shroud
-.14
-.12
-.10,
~.0
-.06
-.04
-.02
T
Hub

Impeller axis

NACA TN 2806

| Velocity | |
component

(@)

(N
=0.02 et

T
-.06

-.08

-.10

L8S2




5B

NACA TN 2806

33

.
Velocity
component
~ Q)¢
@ (]
0 -0.02
a
Impeller tip
-.04
(d) Meridional plane D. Values of (ql)g are same on plane D' but
of opposite sign.
Pigure 6. - Concluded. Lines of constant (Ql)g’ velocity component of eddy-flow - .08,
solution tangent to velocity of through-flow solution.
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(a) Meridional plane

Figure 7.

Shroud

A

- Lines of constant (Q;),

(impeller blade).
same on plane A'

Values of

but of opposite sign.

velocity component of eddy-flow solution
normal to velocity of through-flow solution and lying in meridional plane.
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(b) Meridional plane B. Values of (Q,) are same on plane B!'
n.

of opposite sign.
Figure 7. - Continued.

but

Lines of constant (Ql)n, velocity component of eddy-flow
solution normal to velocity of through-flow solution and lying in meridional
plane.
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(c) Meridional plane C. Values of (Ql)n are same on plane C! but
of opposite sign.

Figure 7. - Continued. Lines of constant (Ql)n’ velocity component of eddy-flow

solution normal to velocity of through-flow solution and lying in meridional
plane.
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Impeller tip

(d) Meridional plane

D. Values of (Q;)p are same on plane D' but
of opposite sign.
Figure 7. - Concluded. Lines of constant (Ql)n,
plane.
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Impeller tip

(a) Meridional planes B and B'.

Figure 8. - Lines of constant (wl)B, tangential velocity component of eddy-flow

solution, relative to rotating impeller. Negative values of (NI)B are
directed into page.
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Impeller tip

(b) Meridional planes ¢
Figure 8. - Continued. (W1)gs
are directed into page.

and C'.
of eddy-flow solution, relative to rotating impeller. Negative values of (Nl)9
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Figure 8. - Continued.
of eddy-flow solution,

(c) Meridional planes D and D'.

are directed into page.
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Impeller tip
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(d) Meridional plane E. '}B
.16
Figure 8. - Concluded. Lines of constant (wl)g, tangential velocity component {4
of eddy-flow solution, relative to rotating impeller. Negative values of ("1)9 ,
are directed into page. —.Il2
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zure 9. - Path lines of fluid particles on surfaces of
rotating impeller channel with zero net through fliow.
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Figure 10. - Streamlines in meridional plane for flow in stationary impeller
passage described in figure 3. Streamline designation indicates percentage
of flow through channel between streamline and hub. Incompressible flow;
(QE)Z' 0.3429 far upstream (reference 1).
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Figure 12.

upstream (reference 1).

- Lines of constant flow direction
through stationary impeller passage.

Impeller tip

ay on meridional plane for flow
Incompressible flow; (QZ)Z, 0.3429 far
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Stagnation Q
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(b) Blade surface opposed to direction of
rotation, and shroud.
Figure 13. - Continued. Paths of fluid particles on
surfaces of rotating channel. Forty percent of through-
flow solution superposed on eddy-flow solution (k = 0.4);
Qz, 0.1372 far upstream.
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(¢) Composite plot.

Figure 13. - Concluded. Paths of fiuild particles on sur-

faces of rotating channel. Forty percent of through-flow

solution superposed onh eddy-flow solution (k = 0.4}; Qg,
0.1372 far upstream.
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(b) Blade surface opposed to direction of rotation,
and shroud.

Figure 14. - Continued. Paths of fluid particles on
surfaces of rotating channel. One hundred percent of
through-flow solution superposed on eddy-flow solution
(k = 1.0); Qs 0.3429 far upstream.
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(c) Composite piot
Figure 14, - Concluded.

faces of rotating channel.

Paths of fluid particles on sur-
flow solution superposed on eddy-flow solution (k = 1.C);
Qy, 0.3429 far upstream.

One hundred percent of through-
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-
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Flgure 17. - Velocity component Qn normal to mean surface
\ of revolution. Three-dimensional eddy-flow solution.
| -
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(a) Three-dimensional solution.

Figure 18. - Shroud surface showing velocity component
- in direction of through flow. Eddy-flow solutions.
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Velocity
component

(b) Two-dimensional solution.

Figure 18. - Concluded. Shroud surface showing velocity
component QE in direction of through flow. Eddy-
flow solutions.
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(b) Two-dimensional solution.

Figure 19. - Concluded. Shroud surface showing tangential
velocity component Wy relative to rotating impeller.

Eddy-flow solutions.

NACA-Langley - 10-15-52 - 1000
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