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SUMMARY 

An analysis is made of the gust response (inc luding bending moment) 
of an airplane having the degrees of freedom of vertical motion and wing 
bending flexibility and basic parameters are established. A convenient , 
but accurate , numerical solution of the r esponse equations is developed 
which is very well suited for making trend studies. An example treated 
shows results which are in very good agreement with the results obtained 
by a more precise but mor e lengthy method . 

The method of determining a gust causing a known response is indi
cated and a procedure is given for determining the response of an air
plane directly from the known response of another airplane by eliminating 
the common gust condition. 

INTRODUCTION 

I n the design of ai r craft the condition of gust encounter has become 
critical in more and more instances, mainly because of the ever-increasing 
f light speeds . Aircraft designers have therefore placed greater emphasis 
on obtaining r ational methods fo r accurately predicting the stresses that 
develop . As a result, the number of papers dealing with the prediction 
of stresses in an aircraft traversing a vertical gust has significantly 
increa sed. (See, for example , refs. 1 to 9.) Many of t he papers have 
treated the airplane as a rigid body and in so doing have dealt with 
either the degree of freedom of vertical motion alone (refs. 5 to 8) or 
with the degrees of freedom of vertical motion and pitch (refs. 7 and 9) . 

lThis paper is a revision and extension of a paper entitled liThe 
Determination of the Response Due to Gusts of One Airplane From the Known 
Response of Another Airplane" published as TN No . Structur es 40, Bri t ish 
R.A.E . , J une 1949, which was completed by Mr. Houbolt during a temporary 
tour of duty with the Royal Aircraft Establishment . Since the present 
paper is complete in itself, no further reference to the earlier paper 
is necessary. 
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Of greater concern in the consideration of gust penetration) however) is 
the influence that wing flexibility has on structural response. This 
concern has two main aspects : (1) that including wing flexibility may 
lead to the calculation of higher stresses than would be obtained by 
rigid-body treatment of the problem and (2) that wing flexibility may 
introduce some error when the airplane is used as an instrument for 
measuring gust intensity. Thus) there are also many recent papers which 
treat the airplane as an elastic body. In most of these papers the 
approach used involves the development of the structural response in 
t erms of the natural modes of vibration of the airplane (refs. 2 to 4) . 
Others used a more unusual approach) as for example) reference 1) which 
deals with the simultaneous treatment of the conditions of equilibrium 
between aerodynamic forces and s tructural deformation at a number of 
points a long the wing span. Whatever the approach) however) the main 
disadvantage of these elastiC-body analyses is that they are not very 
well suited for making trend studies without excessive computation time. 

In the present paper) the case of the gust penetration of an air
pl ane having the degrees of freedom of vertical motion and wing bending 
is considered. Wing bending was chosen because designers have expressed 
greater concern about the influence of this flexibility on gust response 
t han they have about other types of flexibility. The paper ha s the 
objective of trying to establish some of the basic parameters that are 
involved when wing bending flexibility is included and of developing a 
method of solution which is fairly well suited for trend studies without 
excessive computation time . Such a procedure would be useful in evalu
a tion studies which are intended) for example) to evaluate the effect of 
s uch f a ctors a s forward speed) spanwise mass distribution) gust length) 
and gus t shape . 

The equations for response (including accelerations) displacements) 
and bending moments) are derived and the basic parameters outlined. An 
ea sy numerical solution for the response which is readily handled either 
by manual or machine methods is then given . The inverse of the response 
problem is considered brieflyj that is) the method of determining the 
gust causing a given response is indicated. Finally) on this ba sis) a 
procedure is outlined whereby the response of one airplane may be found 
directly from the known response of another airplane without the 
necessity of establishing the gust causing the known response. 

SYMBOLS 

a slope of lift curve 

deflection coefficient for nth mode) function of time alone 
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A 

b 

c 

E 

f ( s) 

F 

g 

H 

I 

aspect ratio of wing 

span of wing 

chord of wing 

chord of wing midspan 

Young ' s modulus of ela sticity 

nondimens i onal gus t force , J s ~ 1jr ( s - a) da 
o U 

external applied load per unit span 

acceleration due to gravity 

distance to gust peak, chords 

bending moment of inertia 

nondimensional bending- moment factor 
(

M. = K· ~ pUVM ) 
J J 2 Co 

3 

Lv aerodynamic lift per unit span of wing due to vertical motion 
of the airplane 

Lg aerodynamic lift per unit span of wing due to gust 

m mass per unit span of wing 

Mj net incremental bending moment at wing station j 

Mco moment of wing area about spanwise station under consideration 

Mn generalized mass of nth mode 

6n incremental number of g acceleration 

p load intensity per unit spanwise length 

s,a 

s 

distance traveled, 

wing area 

£[ t, half- chords 
Co 
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t,T time, zero a t beginning of gust penetration 

u vertical velocity of gust 

U maximum vertica l velocity of gust 

V forward velocity of flight 

W total weight of airplane 

y distance along wing measured from airplane center line 

w deflection of elastic axis of wing , positive upward 

wn deflection of elast·ic axis in nth mode, given in terms of a 

a 

€ 

Iln 

T)n 

p 

unit tip deflection 

response coefficient based on au, 

second derivative of Zo with respect to s 

second derivative of zl with respect to s 

bending- moment response factor, r atio of bending moment 
obtained for airplane considered flexible to bending moment 
obtained for airplane considered rigid 

distance interval , half- chords 

reduced- frequency parameter, 

nondimensional relative- density parameter, 

nondimensional bending- moment parameter, 

mass density of air 

function which denotes growth of lift on rigid wing entering 
a sharp-edge gust (Kussner function) -', 
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natural circular frequency of vibration of nth mode 

1 - ~ function which denotes growth of lift on an airfoil following 
a sudden change in angle of attack (Wagner function) 

e = 1 - ~ 

Subscripts: 

j spanwise station 

n natural modes of vibration 

m number of distance intervals traveled 

Notation: 

I I column matrix 

[ ] square matrix 

Dots are used to denote derivatives with respect to time; primes 
denote derivatives with respect to s or a. 

ANALYSIS 

Equations for Structural Response 

Equations of motion.- Consider an airplane flying horizontally into 
vertical gusts, and suppose that it is desired to include wing bending 
flexibility in determining the stresses induced by these gusts. The 
problem is actually one of determining the response of an elastic wing 
subject to dynamic forces. For dynamic forces of intensity F per unit 
length, the differential equation for wing bending is, if structural 
damping is neglected, 

-mw + F 

where w is the deflection of the elastic axis referred to a fixed 
reference plane. The task of determining the deflection that results 

---- --- --

( 1) 
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from the applied forces F may be handled conveniently by expressing 
the deflection in terms of the natural free - free vibration modes of the 
wing . With regard to the flight of an airplane through gusts, exami
mation of a number of acceleration and strain records that have been 
taken in normal flight with several different aircraft shows that the 
response to gusts is composed primarily of a rigid-body vertical trans
lation and fundamental -bending- mode excitation of the wing. Thus, the 
assumption is made in the present analysis that the response may be given 
with fair accuracy by considering only these two degrees of freedom. 
This assumption is probably invalid when the airplane is flying near the 
flutter speed, for then a large amount of coupled bending-torsion dis
placement may occur . (See ref. 3.) 

The wing deflection is thus assumed to be given by the equation 

w 

where wl is the deflection given in terms of a unit tip deflection 

along the elastic axis of the wing for the fundamental mode, and aO 

and al are functions of time alone. I n this form aO denotes the 

( 2 ) 

free - body vertical displacement of the 
placement of the nodal points ) and al 

airplane (in 
is the part 

this case the dis
of the wing- tip 

deflection which is associated with the 
in the following sketch: 

fundamental mode, as illustrated 

I 
~ I _ alWl~--+_al 

- ~--------~I----------~ 
Reference pla~ 

B 
1--

The use of symmetrical modes implies that only the symmetrical gust is 
to be considered hereinafter . 

Substitution of equation ( 2 ) into equation (1) yields 
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From the following relation which expresses the condition for natural 
fundamental-mode vibration 

equation ( 3) may be written 

7 

( 4) 

where ~ is a natural circular frequency of vibration of the funda 

mental mode. If this equation is integrated over the wing span and use 
is made of the following known orthogonality condition of the free-body 
and fundamental modes: 

l
b/ 2 

mWl dy 
b/2 

the following equation results: 

o (5 ) 

( 6) 

where MO is the airplane mass . Now) if equation (4) is first multi

plied through by wl and then integrated over the wing span and use is 

made of equation (5)) the following equation is obtained: 

( 7) 

where Ml is the generalized mass for the fundamental mode) that is) 

Ml 
__ fb/2 

-b/2 
mW12dy . Equations (6) and (7) represent) respectively) 

the equations for f ree-body motion and fundamental wing bending and can 
be solved if the forces F a re known . 
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For the present case of the airplane flying through a gust, the 
for ce F is composed of two parts: a part designated by Lv due to 
the vertical motion of the airplane (including both rigid- body and 
bending displa cements) and a part Lg resulting directly from the gust 
(this latter part is the gust force which would develop on the wing 
considered rigid and restrained against vertical motion). These two 
parts are defined (see refs. 1 and 3) in the equation of F as follows: 

F 

where 1 - <t>(t) 
function) which 
change in angle 
is given by the 

(8) 

is a function (commonly referred to as the Wagner 
denotes the growth of lift on a wing following a sudden 
of attack and for two- dimensional incompressible flow 
approximation 

- O.09¥t 
1 - 0.165e 

-O.~t 
0.335e 

and ~(t) is a function (commonly referred to as the Kussner function) 
which denotes the growth of lift on a rigid wing penetrating a sharp
edge gust and for two- dimensional incompressible flow is given by the 
approximation 

-0. 2~t 
1 - 0.5e (10) 

An additional term which involves the apparent ai r mass should be included 
in equation (8); this mass term is inertial in character and may be 
included with the structural mass (see ref. 1) although it is usually 
small in comparison. The lift-curve slope a may be chosen so as to 
include approximate over- all corrections for aspect ratio and compressi
bili ty effects. 

If w as given by equation (2) is substituted into equation (8) 
and the resulting equation for F is substituted into equations (6) 
and (7) , the following two equations are obtained for the case of a 
uniform spanwise gust: 
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sit .-l Ll1jr( t - T) d T 
S 0 

where (because of mode symmetry) 

l
b/ 2 

2 cW1 dy 
o 

Equations (11) and (12 ) may be put in convenient nondimensiona1 
form by introducing the notation 

s or cr 2V T 
Co 

where Co is the midspan chord of the wing and U is the maximum 
vertical velocity of the gust . With this notation, equations (11) 
and (12 ) may be written 

9 

(12) 

(13) 

(14) 

(15) 

(16) 
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1
s 

u ' rl -- ~ ( s - cr)dcr 
o U 

(17) 

where 

fl O 

fl l 
8Ml 

apcoS 

~co 
(18) 

A. 
2V 

rl 
Sl 
S 

r 2 
S2 
S 

and a prime denotes a derivative with respect to cr. Equations (16 ) 
and ( 17) are the basic response equations in the pr esent analysis . The 
five parameters appearing in these e quations and given by equations (18) 
depend upon the forward velocity, ai r density, lift- curve slope, and the 
airplane physical characteristics : the wing plan form, wing bending 
stiffness, and wing mass distribution . Experience has shown that vari 
ations in the physical characteristics cause significant variations in 
the first three of the five paramete r s, while the last two vary only to 
a minor extent . The first three are therefore the most basic param
eters; flO is a relative- density factor, frequently referred to as a 

mass parameter, and is associated with vertical free - body motion of the 
a irplane; fll' similar to flO' is the mass parameter associated with the 

fundamental mode; and A. by its nature may be interpreted as a reduced
frequency parameter similar to that used in flutter analysis. 
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It is significant to note that, if anyone of the three quanti 
ities zo' zl' and u appearing in equations (16 ) and (17) is specified 

or known, the other two may be det ermined . Thus, if the gus t is known, 
the response may be determined, or conversely, if either Zo or zl is 

known, the gust may be determined . A useful equation relating Zo and 

zl may be found by combining equations (1 ) and (17) so as to elimina te 

the integral dealing with the gust . The result is the equation 

(19) 

which is used subsequently . 

" I t may also be of int erest to note that ~OzO in effect defines a 

f r e quently used acceleration ratio . From equations (12) and (11), the 
rigid- body component of the vertical acceleration may be written 

4vu " Zo Co 

or, when expressed in terms of the incremental number of g ' s , 

.. 
aO 
g z " o 

An accele r ation factor 6ns based on quasi - steady flow and peak gust 
velocity i s now introduced accor ding to the definition 

The r atio is thus found to be 
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Where the gust shape is represented analytically and the unsteady
lift functions are taken in the form given by equations (9) and (10), 
solution of the response equations may be made by the Laplace transform 
method, but such a solution is more laborious than desired . Therefore, 
a numerical procedur e which permits a rather rapid solution of the equa
tions has been devised and is presented in a subsequent section. It may 
be well to mention , however, that the response equations are suitable 
for solution by some of the analog computing machines . 

Bending stresses . - The bending moment and , hence, the bending 
stresses t hat develop in the wing due to the gust may be found as 
follows : The right- hand side of equation (1 ) defines the loading on 
the wing ; suppose this loading is noted by p , then 

p - mw + F 

By use of equations (2 ) and (8), and the notation of equations (14) 
and (15), thi s equation becomes 

~ pcv
fs 

u ' W( s - cr )dcr 
2 JO 

If the moment of this loading is taken about a given wing station, 
say yj ' the following equation for incremental bending moment at that 

station would result : 

s 
~ pVMc f u ' W(s - cr)dcr 
2 0.)0 

( 20) 
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where the MIS bearing double subscripts a re first moments defined a s 
follows: 

(21 ) 

and Yj is the station being considered. Division through of equa

tion (20) by the quantity ~ pVUMcO gives the following equation which 

is considered to define a bending- moment factor Kj at wing station Y
j 

M. 
,] 

a pVUMc 2 0 

( 22) 

The factor ~ pVUMcO may be regarded as the maximum aerodynamic bending 

moment that would be developed by the gust under conditions of quasi
steady flow and with the wing considered rigid and restrained against 
vertical motion at the root . The bending- moment factor Kj may thus 
be seen to be the ratio of the actual dynamic bending moment that occurs 
to this quasi- steady bending moment and therefore may be regarded a s a 
response or an alleviation factor . 
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A more convenient form for the bending- moment factor may be 

obtained by solving equations (16) and (17) simultaneously for the 

quantities fos zo" ~ - ~(s - aTI da and foS zl" ~ - ~(s - a~ da and 

substituting these values into equation (22 ). With these oper at ions the 

following equation results : 

!lo -

(23 ) 

where 

8~ 
TJ O 

0 (24) 
apcJ4c 

0 

8Mml 
TJ l apcoMc 

0 

I t is seen that, when bending moments are being determined, three addi 

tiona l basic parameters (e qs. (24)) appear . The similarity of TJO 

and Tll to and is to be noted; first moments of masses and 

a reas a r e involved r ather than masses and a reas . 

Reduction to rigid case .- It may be of inter est to show the reduc

tion of t he r esponse equation to t he case of the airplane considered as 
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a rigid body . Thus, if zl is equated to zero in equation (16), the 

following equation for rigid- body response is obtained : 

15 

If zl" is set equal to zero in equation (22) and use is made of 

equation ( 25 ) , the following equation for t he bending- moment parameter 
fo r the rigid- body case is obtained 

( 26 ) 

where z " o is the acceleration of the airplane considered as a rigid 

body . 

Matrix Solution of Response Equations 

I n this section a rather simple numerical solution of the response 
equations (16 ) and (17) is presented . The procedure is readily adapted 
to either manual or punch- card machine calculations. 

The derivation proceeds on the basis that the response due to a 
given gust is to be determined . The airplane, just before gust pene
t r ation, is considered to be in level flight and hence has the initial 
conditions that the vertica l displacement and vertical velocity a re both 
ze r o . These conditions mean that zo' zl' zO ' , and zl ' a re all zero 

at s = O. The gust force can be shown t o start from zero and , there
fore, the additional initial conditions can be established that zo" 

d " 1 an z l are a so zero at s = O. By the numerica l procedure, solution 

for the r esponse at successive values of s of increment € will be 
made and, fo r the case being conSidered, it is found advantageous to 
solve directly for the accelerations r ather than the displacements. 

I n order to make the presentation more compact, the following 
notation is introduced : 

a 

e 1 - ~ 

(27a ) 

J 
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and 

f ( s ) = foS u~ w( s - a)da ( 2Tb) 

With this notat i on, equat i on (16) would appear simply as 

(28) 

In accordance wi th numerical - evaluation procedures, the interval 
between 0 and s is divided into a number of equal stations of 
interval E so that s = mE . The product of (a + rlS) and e( s - a) 
is assumed fo rmed at each station and, with the use of the trapezoidal 
method for determining areas , the unsteady-lift integral in equation (28) 
may be written in te rms of values of a and ~ at successive stations 
a s follows , whe r e the mth station corresponds to the value s : 

in which a re, respect i vely, the values of the 

1 - ~ function at s = 0, s = E, • 

because of the initial conditions ) . 
may be written at va ri ous values of 
t he result, for example , for m = 1 

and for m 2, 
, 

(aO and So do not appear 

With this equation, equation (28) 
G 

is 
or at successive values of m· , 



where fl and f2 are the values of the gust-force integral at s = E 

equations thus formed may be combined in the following matrix equation: 

iJ.o + 80 E 

2Bl E 

2B2€ 

2B l€ m-

iJ.o + BOE 

2Bl E iJ.o + BOE 

2Bm_2€ 

which may be a bbreviated 

a l r 180E 

a2 2rl Bl E rlBo€ 

a3 
+ 

2rl B2€ 2rl Bl€ r 180E 

iJ.o + BO€ II am 2rl Bm_l € 2r l Bm_2€ 

[A] I a I + [BJ \ f3\ = I f \ 

and s = 2€ . The 

~l fll 

~2 f2 

~3 1 I f3 I (3Oa ) 

r lBO€ II ~m f m 

( 30b) 

The simplicity of the matrices A and B, and all square matrices to follow, is to be notedj 
the matrices are triangular and all elements in one column are merely the elements in the 
previous column moved down one row. Thus, only the elements in the first columns have to be 
known to define completely the matrices. 

Now instead of considering directly the second response equation, equation (17), it is 
expedient to consider equation (19) which is repeated here for convenient reference 

iJ.l (Zl" + )..2Z1) + 2(r2 _ r
l
) fS zl"8(s - a)da 

r l r l Jo 
" iJ. O

z
O 

w 
t%j 

~ 
9 
t-3 
2: 
f\) 
--J 
0\ 
w 

f-' 
--J 
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According to the derivation presented in the appendix, the value of zl at s roe may be 

approximated in terms of the past-history value of " zl by the following equation : 

Zl m E 2 ~m - l)~l + ... + 2~m_2 + ~m-l + ~ ~mJ (31 ) 

where ~l' ~2' are the values of zl" at s = E, S = 2E, . . . . If this equati on i s 

used to replace zl in equation (19 ) and the unsteady- lift integral is manipulated similarly 

to the integral in equation ( 28 ), equations are obtained for successive values of m which 
involve only the unknowns a and ~ . The results may be combined in the following matrix 
equation : 

).111 ~2€2) (r2 ) 
rl \1+ - 6- + rl - r 1 eO€ 

131 
a

1 

).11 )., 2e 2 + 21:.2 _ rl) e1 € 
rl \rl 

).11 (1 + ~2€2) + (r2 _ rl) e
O

€ 
rl 6 rl 

132 ~ 

).11 2 2 (r2 ) 2 - ~ € + 2 - -r1 e2€ 
rl rl 

).11 2 2 (r2 ) rl )., € + 2 rl - r 1 e1 € ).11 ( ).,2€2) (r2 ) - 1 + -- + - - r 1 e € 
rl 6 rl 0 

1331= ).10 1 a3 I (32a) 

).11 2 2 ( r2 ) {m - 1)rl ~ e + 2 rl - r 1 em_1 € (m - 2 )- ~ e + 2 - - rl em_~ ).11 2 2 ( r2 ) 
rl r 1 

).11 (1 + ~ 2e 2 ) + ( r 2 _ rl)'eO€ I 113m rl \' 6 rl ~ 

which may be written 

[c] I ~ I ~ o l a l ( 32b ) 

f-' co 

~ 
~ 
8 
~ 

f\) 
--.l 
0'\ 
W 
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The square matrix C is seen to be similar to the other square 
matrices in that it is triangular with all the elements in one 
column made up of the elements in the previous column moved down one 
r ow. 

19 

An equation in lsi a l one is obtained by substituting lal from 
t his equation into equation (30) to yield 

[D] Is I I f l 

which is the basic response equat i on relating S (that i s Zl") to the 

gust force . This equation represents a system of linear simultaneous 
equations where the order of the matrix is arbitrarYj that is, the equa
tions may be writt en up t o any de s ired va lue of s = mE. The solut i on 
for response can therefore be carried on as fa r as desired. Fortunate ly, 
the equations a re of such a nature that simultaneous solut i on is not 

required. As mentioned, ea ch of the matrices [A], [B], and [C] is 

t riangular with all elements 0 a bove the main diagonal and with all 
elements on the main diagonal of each matrix equal j therefor e , the main 

diagonal elements of [D] will also a ll have the same value and the 

elements above this diagonal will be O. I f each element on the main 

diagonal of [PJ is denoted by dl and ~lJ is the matrix D with 

the main diagonal elements replaced by O's, then 

With this equation, equation ( 33 ) may be written 

(34) 
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Expanded) this equation has the form 

13 1 fl 0 131 

132 f2 d 2 0 13 2 

13 3 f3 d3 d 2 0 13 3 

(34 
1 

f4 
1 d 4 d

3 
d 2 0 (34 ( 35) --

dl d l 

(35 f5 d
5 

d4 d
3 

d 2 0 (35 

It can be seen that a step-by-step solution for the successive values 
of (3 may now be made; that is) (31 is solved for first then) with (31 

established) (32 is solved for) and so on as far as is desired. With 

the value of 1(3 1 thus established) solution for lal may now be made 

directly from equat ions (32). Values of the displacements Zo and zl 

may be obtained directly from a and (3; zl may be obtained f rom equa

tion (31); and Zo may be obtained from this same equation with (3 

repla ced by a . 

Some mention should be made with regard to the selection of the time 
interval E. A rough guide to use in selecting E can be obtained by 
considering ~) which appears as the characteristic fre quency in most 
response calculations. The period based on this frequency would be 

Ts = in. Experience has shown that a time interval in the neighborhood 

of 1/12 of this period yields very good results (in general less than 
1 percent error); a ccordingly) a reasonable guide in choosing E would 

be the equa tion E ~ Jl Some convenient value near that given by this 
2~· 

equation should be satisfactory; in general) it will be found that E 
may be 1 or greater. 

The procedure thus outlined provides a rather rapid evaluation of 
the response due to a prescribed gust. With the response thus evaluated 
the bending moment at any value of s or the complete time history of 
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bending moment may be found by application of equation ( 23). It should 
be evident that, if response values for either zo" or zl" are known, 

the gust causing this response can be found by suitable manipulation of 
equations (30) and (32). Thus, if zo" is known, 13 in equations (30b) 

and (32b) may be eliminated to give the equation 

Direct substitution of zan in this equation allows If I to be deter

mined. In most practical cases the second ter.m in equation (30b) con
tributes only a small amount and may be dropped with little resulting 
error in the gust force. The equation for If I is then simply 

Determination of Response of One Airplane From 

Known Response of Another Airplane 

In general, a given gust condition produces different responses 
either for two different airplanes or for the same airplane with dif
ferent loading conditions or forward velocity. It would be expected, 
however, that the response of the two airplanes could be correlated 
through the cammon gust condition. This correlation may be demonstrated 
quite easily by means of the equations given in the preceding section. 
The case to be treated is as follows: The time history of bending 
moment due to a gust is assumed to have been measured in one airplane 
and it is desired to calculate directly from this t ime history what the 
bending moment due to the same gust would have been in another airplane. 
Although the derivation is presented in ter.ms of bending moment, a 
similar derivation could be made in ter.ms of either accelerations or 
displacements. 

If use is made of equation (31) to write the successive values of 
the displacement zl in ter.ms of the accelerations, the bending-moment 

factor, equation (23), may be written in ter.ms of the accelerations alone 
and the following matrix equation for K may be for.mulated: 
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K1 a 1 (31 

K2 a2 (32 

K3 a3 (33 
+ hE2 = d + e 

where 

e 

h 

1 
6" 

1 1 
6" 

2 1 

ill - 1 

1 
6" 

1. 
6 
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(31 

(32 

(33 
(36a) 

With the use of equations ( 32 ) this equation may be written 

( 36b ) 

where 
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in which [IJ is the identity matrix and 

1-
6 

1 

2 

m - 1 

1 
6" 

1 1 
6" 

1-
6 

23 

Substitution of the value of ~ as obtained from equations (36) into 
equation (33 ) gives the following relation between the gust forces and 
the bending- moment parameter : 

(38 ) 

The gust- force matrix If I ( see eq. (27b)) may be expressed in 
terms of the gust velocity by the following process : It is assumed that 
the initial vertical velocity of the gust is zero and that successive 
values of gust velocity of incr ement € are designated by ul' u2' 

u3 . .. First-order difference equations are used to approximate the 

slope of the gust velocity, so that, in general, 

u t 
m 

~+l - ~-l 
2E 

If this equation is used and the integral equation (27b) is handled by 
the trapezoidal integration method similar to that used for equa tion (29), 
the gust force may be written in terms of the successive va lues of gust 
gr adient so as to form the following matrix equation : 
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fl "'1 ~ 
U 

f2 "'2 "'1 u2 
U 

1 (39) 2 
"'2 "'1 

u3 
f3 "'3 - "'1 U 

f4 "'4 - "'2 "'3 - "'1 "'2 "'1 
u4 
U 

where "'1' "' 2' "'3· . . are successive va lues of the '" function. 
Substitution of this equation into equation (38) allows for the solution 

of \ij\ in terms of the parameter K a s 

(40) 

where ["'] is the square matrix in equation (39). Different airplanes 

flying through the same gust will experience the same vertical gust 
velocity for equal absolute distances of gust penetration; that is, 

(Vt) a irplane 1 (Vt) . 
alrplane 2 

From equation (14), then, the following conditions must prevail: 

( 41) 

where the subscripts 1 and 2 denote airplane 1 and 2, respectively . 
Satisfaction of the latter condition insures that the gust velocity as 
given by equation ( 40) would be the same for the two airplanes being 
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compared. This common gust condition may therefore be eliminated to 
yield the result 

If it is assumed that K for airplane 1 is known, then K for air
plane 2 may be written 

25 

( 42) 

where again the time interval chosen for the two airplanes must satisfy 
relation (41). Thus, if the bending moment due to a given gust sequence 
is known for one airplane, the bending moment that would develop in 
another airplane encountering the same gust sequence can be determined 
from this known bending moment by the use of equation (42). If the mid
chords of the two airplanes are equal, the time interval may be taken 
equal and equation (42) reduces to 

SUMMARY OF CALCULATION PROCEDURE 

As a convenience, a summary of the basic steps necessary for calcu
lating the response of an airplane to a gust is given as follows: 

For accelerations and displacements: 

(1) With the use of the fundamental mode, wing plan form, and mass 
distribution, calculate the quantities ~O' ~l' ~, r l , and r 2 as 

given by equations (18). 

(2) Choose the time interval E. A convenient rule of thumb is 

E ~ 2i, but for most cases E = 1 should give satisfactory results. 

( 3) Determine values of the unsteady- lift function e = 1 - ~ at 
successive multiple intervals of E. (See fig. 1.) Also determine 
corresponding values of the gust- force integral f(s), equation (27b). 
As an aid, curves for f (s) are presented in figure 1 for the sharp-edge 

- I 
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gust and in figure 2 for various-length sine gusts, sine2 gusts, and 
triangular gusts. (The curves in fig . 1 have been obtained from 
eqs. (9) and (10). These approximations, although rather accurate for 
the lower values of s, a re noted to crossj actually, they should not 

cross and are known to have the same asymptotic approa ch to unity.) 

(4) From the following definitions: 

Al == ~o + feO 

Am == 2eem_l (m > 1) 

Bl == rleeO 

Em == 2r
l

ee
m

_
l (m > 1) 

Cl == ~l (1 + e
2x 2) + 

rl 6 (~~ - rl) eeO 

Cm (m - Yl e2X2 
+ 2(~~ - r l) eem_l == 1)-rl 

(m > 1) 

set up the following matrices : 
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Then calculate the matrix 

[D] 

(5) Solve fo r the values of i3 (which equals zl ") 
tion (33), by the method outlined following equation (33) . 
eq. (34) . ) The values of zl and a ( WhiCh equals Zo 
calcul ated from equations (31) and ( 32 ) . 

For bending moment : 

(6) I n order to ~ompute bending moment, determine 

as given by equations (24), where MmO ' ~l' Mc , and o 

") 

27 

from equa-

(See 
can then be 

T'io' and T'il 

in these 

equations depend on the particular wing station being considered and a re 
given by equations (21). 
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(7) Determine bending moment by use of equation (23) with the 
values of response already established. This equation may be applied 
directly to any desired time value. Maximum bending moment usually 
occurs very close to the time when zl is a maximum. 

EXAMPLES 

Example A.- In order to provide an illustration and give an idea 
of the accuracy of the present analysis, the response to a sharp-edge 
gust of the two-engine-airplane example considered in reference 1 was 
determined. The weight distribution over the semispan, the wing-chord 
distribution, and the fundamental bending mode are shown in figures 3, 
4, and 5. The frequency and deflection of the fundamental mode were 
calculated by the method given in reference 10. The solution is made 
for a forward velocity of 210 miles per hour and a gust velocity of 
10 feet per second. 

The lift-curve slope used in reference 1 was 5.41; to be consistent, 
the same value was used here . Furthermore, the unsteady-lift function 
used for a change in angle of attack in the example presented in refer
ence 1 was given by the equation 

(1 -~) 6 = 1 - 0.361e-O.381s 
A= 

rather than by equation (9). Thus, this equation was also used here. 
The gust unsteady-lift function used was that given by equation (10). 

The various physical constants and the basic response and bending
moment parameters are given in table lj the values of the unsteady-lift 
function and the values of the gust force are listed in table 2. The 

matrices [A] , [BJ, and [C] used in the solution are given in table 3. 

The solution for response is shown in figure 6(a) where the deflec
tion coefficients aO and al in inches are plotted against distance 

traveled in half-chords. The corresponding deflection quantities for 
the example given in reference 1 were determined and, for comparison, 
are also shown in the figure. A similar comparison is made in fig-
ure 6 (b) for bending stresses at the fuselage and engine stations, 
stations 0 and 1 from reference 1. The agreement is seen to be good. 

Example B.- A second example is included in order to illustrate one 
means by which the method may be used to evaluate the influence of bending 
flexibility upon the response to a gust . The physical characteristics for 
the airplane considered in this example are listed also in table 1, and 
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equation (9) is used for the function 1 - ~ instead of the values 
given in table 2. Maximum values of the bending moment that develops 
at the fuselage station during flights through sine gusts of various 
lengths have been determined, both for the airplane considered flexible 
and for the airplane considered rigid. The results are shown in fig-
ure 7(a) where maximum values of the bending-moment parameter K are 
plotted against gust-gradient distance H. The difference between the 
two curves represents the increase in bending moment due to effects of 
wing bending flexibility. By taking the ratio of K for the fleXible 
case to K for the rigid case, a type of dynamic response factor is 
formulated which gives a direct measure of the influence of wing flexi 
bility. This ratio is deSignated 1M and is shown in figure 7(b) . As 

an example of the significance of this plot, the value of 1M = 1.16 

at H = 5 means that flexibility results in a 16-percent dynamic over
shoot in the stress from the value that would be obtained at H = 5 on 
the basis of a rigid-body analysis. It may be seen also that the value 
of 1M is approximately unity for values of H = 10 and greater; there-

fore, in this range of gust- gradient distances a rigid-body treatment 
would be sufficient for this airplane . 

DISCUSSION 

The derivation presented herein is intended to provide a convenient 
engineering method for calculating the response of an airplane to a gust 
where wing bending flexibility is included. The method is believed to be 
well- suited for making trend studies which evaluate, for example, the 
effect on response of such factors as mass distribution, speed, and 
altitude . Although the unsteady- lift functions for two-dimensional 
unsteady flow are presented, the method is general enough so that the 
unsteady- lift functions for finite aspect ratio, for subsonic compress
ible flow, and for supersonic flow may be used as well. (See refs. 7 
and II to 15.) 

Since the numerical method is based on an integration procedure, it 
possesses the desirable feature that a fairly large time interval may be 
used and good accuracy still obtained. As an accuracy test, solutions of 
equations (16) and (17) were made for several cases by the exact Laplace 
transform method as well as by the numerical process, in which process 
the time interval was selected according to the rule of thumb suggested. 
When the results were plotted to three figures, the difference between 
the two solutions was barely discernible. 

Additional bending modes could be included in the analysis but this 
refinement is really not warranted. Some calculations made with addi
tional modes gave results which differed only slightly from the results 
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obtained when only the fundamental mode wa s used . The good agreement 
of results obtained in example A with the results obtained by the more 
precise method given in reference 1 also illustrates this point. 
Furthermore ) if additional degrees of freedom are to be used) it would 
appear more important to include wing torsion and airplane pitch . The 
extent to which tors i on influences the results is probably governed most 
by the nearness to the flutter speed . The importance of airplane pitch 
is pr obably governed most by the gust length ; some investigations dealing 
with pitch have indicated that except for very light wing loadings the 
pitch of the airplane does not influence the results appreciably until 
gust lengths of from 20 to 30 chords or larger are involved . Thus) the 
present analysis ) although limited to the degrees of freedom of vertical 
motion and wing bending) should probably be sufficiently satisfactory 
for speeds near the cruising speed and for gust- gradient distances up to 
approximately 10 chords . 

The analysis may be useful in assessing the significance of wing 
flexibility in the technique of measuring gust intensity by means of an 
a irplane . I n this technique gust severity is usually measured by means 
of an accelerometer placed at the center line of the airplane . In order 
to obta in a rough idea of whether flexibility may have some effect on 
this mea surement) calculations for the maximum accelerations at the 
center line and for the maximum acceleration at the nodal points ( the 
true center- of- gravity ac celeration) may be made for various assumed 
gust lengths . A comparison of these computed maximum acceleration values 
should give some idea as to the extent to which wing flexibility may 
alter the measurements in actual flight . 

CONCLUDING REMARKS 

The analysis presented herein for the response of an airplane to a 
gust should provide a useful means for evaluating the effects of wing 
flexibil i ty . A convenient ) but accur ate) numerical solution of the 
response equations is developed which is well- suited for trend studies 
such as the evaluation of the effects of mass distribution) speed) 
a ltitude ) and similar factor s . 

As indicated by an example ) the method gives good agr eement with 
the r esults of the mor e p r ec i se but more lengthy recurrence matrix 
method of NACA Rep . 1010 . 

The meth od permits the evaluation of a gust causing a known response. 
A procedure is given whe rein the known gust response of one airplane may 
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be used directly to determine what the response would be for another 
airplane flying through the same gust condition . 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va ., May 21, 1952. 
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APPENDIX 

DERIVATION OF EQUATION RELATING DISPLACEMENT TO 

PREVIOUS SUCCESSIVE VALUES OF ACCELERATION 

In this appendix, a derivation is given of equation ( 31 ) which gives 

the value of displacement in terms of successive past- history values of 

acceleration . Suppose that the second derivative (acceleration ) of a 

function is approximated by a succession of straight-line segments as 

shown in the following sketch : 

" Z 

E 

" Z m 

~~ __ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~__ s 

m - 1 m 

where the segments cover equal interva ls E of the abscissa s and the 

initial condition t hat zo" = 0 is assumed to apply. I f a dummy origin 

is now considered at the station m - 1 , the segment between sta-

tions m - 1 and m may be represented by the equation 

" z 
" 11 

11 Z m - Z m- l 
Z m- l + E S 

Two successive integrations give the relations for z ' m and zm as 

follows : 

" " 
Z , " Z m - Z m- l s2 + Z I 

Z m_ls + 2E m- l 

2 It II 

" S r Z m - Z m- l s 3 + ' 
Z := Z m- l 2 + () E Z m- l s + zm_l 
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where t he constants of integration z lm_l and zm_l ( initia l conditions 

for the interval ) have been introduced . If s is set equa l to E in 
these two equa tions ) the following equations result : 

Zl m E ( " " ) I 2 z m + z m- l + Z m- l (Ai) 

E2" E2" I 6 Z m + 3 Z m- l + Z m- l E + zm_l ( A2 ) 

From these two equa tions the values of Zlm and zm at any time 

interva l may be given in terms of the second derivative a t all previous 
time intervals . For example} with initial conditions of z"o = ZIO = 0) 

equation (Ai ) becomes for m = 1 

u.nd for m 2 

Z I 
2 + ZI 

1 

Combining t his equation and equation (A3) results in the relation 

This process may be carried thr ough for ea ch of the time stations to 
yield the following general equation fo r Zlm: 

Z I m ( " z" 2 + " " + 1. z" ) E Z 1 + z 3 + . . • + z m- l 2 m 

(A3 ) 

(A4) 

whi ch ) of course ) is the trapezoidal approximation of the area under the 
z" - curve . Equa tion (A2) fo r zm may be treated similarly and it is 
found tha t the general equation for 2m may be written 
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This equation thus gives the displacement at any time station in terms 
of the accele r ations at all previous time stations . 

It may be noted that , if higher- order segments (pa raboli c 
had been used instead of straight- line segments to approximate 
second derivative , equations similar in form to equations (A4 ) 
would also result . For most practical purposes , however, the 
of equation (A5 ) is sufficiently good as long as the interval 
chosen so that the straight- line segments roughly approximate 
derivative . 

or cubic) 
the 
and (A5) 

accuracy 
E is 

the second 
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TABLE 1.- PHYSICAL CHARACTERISTICS FOR EXAMPLE AIRPLANES 

Example A Example B 

W, Ib · · · · · · · · · · · · · · 37,450 33,450 
S, ft2 · · · · · · · · · · · · · · 870 870 
b, in. · · · · · · · · · · · 1120 1120 
co ' in. · · · · · · · · · · · · · · · 154 164 

p, Ib/ft3 · · · · · · · · · · · 0.0765 0.0765 
v, ft/sec · · · · · · · · · · · · · · · · · 308 374 
u, ft/sec · · · · · · · · · · · · · · · · 10 -------

€ {sec .... · · · · · · · · · · · 0.0208 0.0183 
half-chords · · · · · · · · · · · · · 1.0 1.0 

a . . · · · · · · · · · · · · · · · · 5.41 6. 28 
~o · · · · · · · · · · · · · 64.16 46.8 

III . . . · · · · · · · · · · 0.9045 0.748 
A. . · · · · · · · · · · · · · · · · 0.4353 0.392 
rl · · · · · · · · · · · · · · · 0 . 2181 0.225 
r 2 . · · · · · · · · · · 0.1358 0.143 

r 1[fusela ge station · · · · · · · · · · 0.452 0.457 
3 engine station . · · · · · · · · 0.547 -------

~o i;fuselage station · · · · · · · · · 23 .49 15.94 
engine station . · · · · · · · · · 10.19 -------

~ ~fUSelage station · · · · · · · · · · · 3. 665 2.555 
1 engine station . · · · · · · · · · · · 3. 391 -------

* in.-3~fuSelage station 0.00537 0.00537 z · · · · · · · · i' engine station . · · · · · 0.00669 -------

* z here denotes distance from neut ral axis to extreme fiber. 
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TABLE 2.- 1 - ~ ORDINATES AND GUST-FORCE ORDINATES 

FOR SHARP-EDGE GUST, € = 1.0 

m 8m or (1 - ~) A=6 f or 1jr 

0 0. 6390 0 

1 .7534 .377 

2 .8315 .547 

3 .8849 . 635 

4 .9214 . 692 

5 .9463 .736 

6 .9633 .771 

7 .9749 .798 

8 .9829 .821 

9 .9883 . 845 

--~ 
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TABLE 3. - MATRICES USED IN EXAMPLE A 

A Matrix 

64 . 799 
1. 5068 64 . 799 
1. 6630 1. 5068 64 . 799 
1. 7698 1. 6630 1.5068 64 . 799 
1.8428 1. 7698 1.6630 1.5068 64 . 799 
1. 8926 1.8428 1.7698 1. 6630 1.5068 64.799 1. 9266 1.8926 1.8428 1.7698 1. 6630 1. 5068 64 . 799 1. 9498 1.9266 1.8926 1.8428 1.7698 1.6630 1.5068 64.799 1.9658 1.9498 1. 9266 1.8926 1.8428 1. 7698 1.6630 1.5068 64.799 1. 9766 1.9658 1.9498 1. 9266 1.8926 1.8428 1. 7698 1. 6630 1.5068 64 . 799 

B Matrix 

0. 1394 
. 3286 0.1394 
. 3627 . 3286 0.1394 
. 3860 . 3627 .3286 0.1394 
.4019 . 3860 . 3627 . 3286 0.1394 
. 4128 . 4019 . 3860 .3627 . 3286 0.1394 . 4202 . 4128 .4019 .3860 .3627 . 3286 0. 1394 . 4252 . 4202 .4128 .4019 . 3860 .3627 .3286 0.1394 . 4287 . 4252 .4202 .4128 . 4019 . 3860 .3627 . 3286 0.1394 . 4311 .4287 .4252 . 4202 .4128 .4019 . 3860 . 3627 . 3286 0.1394 

C Matrix 

4. 5367 
1. 3954 4. 5367 
2. 2445 1. 3954 4. 5367 
3·0735 2. 2445 1. 3954 4.5367 
3.8889 3.0735 2.2445 1. 3954 4.5367 
4.6949 3.8889 3.0735 2.2445 1. 3954 4.5367 
5. 4947 4. 6949 3.8889 3.0735 2. 2445 1.3954 4.5367 6. 2900 5. 4947 4. 6949 3.8889 3. 0735 2. 2445 1.3954 4.5367 7.0824 6. 2900 5.4947 4.6949 3.8889 3· 0735 2. 2445 1. 3954 4. 5367 7.8726 7.0824 6.2900 5. 4947 4.6949 3.8889 3.0735 2.2445 1. 3954 4.5367 

~ 
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Figure 3.- Semispan weight distribution for the two-engine airplane of 

example A. 
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Figure 4,- Wing chord distribution for airplane of example A . 
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Figure 5.- First- symmetrical- bending - mode deflection curve of example airplane A. 

WI = 20,9 radians per second . 
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Figure 6.- Response of example airplane A to a IO-foot-per-second sharp-edge gust . 

V= 210 miles per hour. 
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(b) Dynamic respo nse factor for moment. 

Figure 7:- Bending moment and dynamic re sponse factor for airplane 

of example B due to flight through sine gusts . 
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