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SUMMARY 

The present paper is an extension of a previous investigation 
(described in NACA TN 2383) concerned with the solution of the nonlinear 
differential equation for transonic flow past a wavy wall. In the - 
present work several new notions are introduced which permit the solu-
tion of the recursion formulas arising from the method of integration 
in series. In addition, a novel numerical test of convergence, applied 
to the power series (in the transonic similarity parameter) representing 
the local Mach number distribution at the boundary, indicates that smooth 
symmetrical potential flow past the wavy wall is no longer possible once 
the critical value of the stream Mach number has been exceeded. 

INTRODUCTION 

In NACA TN 2383 (ref. i) the writer considered the problem' of two-
dimensional transonic flow past an infinitely long sinusoidal solid 
boundary. The problem was treated in the physical plane and the purpose 
was to investigate whether or not the flow past the wavy wall remains a 
smooth symmetrical type of potential flow when the undisturbed-stream 
Mach number exceeds its critical value. By a smooth type of potential 
flow is meant one for which the velocity potential, say, and its first 
derivatives are single-valued and continuous; that is, there are no 
discontinuities of the nature of shock waves. 

Initially, the Prandtl-Busemann small-perturbation method was 
applied and the velocity potential developed inclusive of the third 

power in the "thickness" coefficient e 

where 

a	 amplitude of wavy wall 

X	 wave length of wavy wall
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The velocity potential was then referred to the critical speed of sound 

c cr, the coefficient C was replaced by k (l M2)312where 

(y+l)€ Ic =	 is the transonic similarity parameter, and terms 
(1 - M2)3'2 

involving powers of 1 - M 2 ., higher than the first were neglected 

(main assumption for transonic flow). This simplified or transonic 
form of the Prandtl-Busemann solution was shown to be identical with 
the one obtained by solving the simplified nonlinear differential equa-
tion for transonic flow, with the boundary condition taken not at the 
wave-shaped wall but at the flat plate corresponding to vanishing 
amplitude. The calculation was carried through the sixth power in the 
transonic similarity parameter k and corresponds to the insuperable 
task of obtaining the Prandtl-Busemann solution to the sixth power in 
the thickness coefficient C. Thus each iteration step of the Prandtl-
Busemann method contributes to the transonic form of the solution, which 
may therefore be considered a result of thin-profile theory with disturb-
ances not necessarily small compared with 1 - Ma,2 . The main conclusion 
reached in reference 1 was that the transonic similarity parameter k 
must be less than 4/3 - a value still somewhat greater than the critical 
value 0 . 83770 calculated there. 

The purpose of the present work is to express the solution of the 
problem of transonic flow past the wavy wall in a form more suitable for 
general considerations and to prove that the assumed smooth symmetrical 
type of potential flow cannot exist at stream Mach numbers beyond the 
critical value.

SYMBOLS 

x, y	 nondimensional rectangular Cartesian coordinates 

a	 amplitude of wavy wall 

wave length of wavy wall 

X/21c	 reference element of length 

E	 "thickness" coefficient of wavy wall, 

ratio of specific heats at constant pressure and constant 
volume 

U	 stream velocity
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M	 local Mach number 

M.	 undisturbed-stream Mach number 

k	 transonic similarity parameter, 	 + 

(1 - M2)3/2 

Ccr	 critical speed of sound 

0	 velocity potential of flow 

f(x,y)	 transonic disturbance potential 

f(y)	 functions of y only, related to f(x,y) 

A"	 numerical coefficients q 	

00q .generating functions of k, I A pr k 
CO 

Am p	
st— n  

functions of dummy variable r, L Anm rn, lower label 
n-i, m 

starts from 1 when m is negative and from m when m is 
positive 

Primes denote differentiation with respect to independent variable. 

ANALYSIS 

General Formulas 

If the undisturbed stream is in the direction of the positive x-axis, 
then the velocity potential 0 referred to the critical velocity ccr 
can be written as (see ref. 1) 

Ox+71(l_M2)r(x,y) 

0
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where the second term on the right-hand side is a disturbance velocity 

potential and implies that terms involving powers of 1 - M 2 higher 
than the first have been neglected. The differential equation for 
transonic flow satisfied by the function f(x,y) 1.s obtained from the 
general differential equation for compressible flow and takes the 
following simplified nonlinear form: 

- f 2f 

xx 

The boundary conditions to be fulfilled by f(x,y) are as follows: 

TX
-1

(at y = co) 

J .	 ?-	 ( 2) 

= -ksinx	 (at y=O, -co<x<o) 

Here x and y are nondimensional rectangular Cartesian coordinates 
simply related to the physical plane coordinates X and Y by means of 
the transformation

x =X

\ 1/2 
y=(l_M 2) Y 

and the equation of the wavy wall is Y = € cos X or 

y_ (i - M2)1/"2€ cos x. Clearly, f(x,y) Involves only the variables 
x and y and the transonic similarity parameter k. 

The most general form for the function f(x,y) to ensure symmetrical 
potential flow past the wavy wall is the following (see fig. 1):
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5 T fn sin f(x,y) = -x + mc '	
S 

where the f are functions of y only. When this form for f(x,y) 
is substituted into equation (1) and the coefficients of the separate 
harmonic terms sin ax are equated to zero,, the following system of 
second-order nonlinear ordinary differential equations for f n results: 

- 2 n = - n 

n-1	 00 

 L m(n - m) fmf m - n F m(n + m)fmfnm 

(n = 1, 2, . . .	 (Ii.) 

Before proceeding to the solution of these equations, several formulas 
of general interest and subsequent use are given. They have been derived 
in reference 1. The local Mach number distribution' is given by 

1 - M2	 •..'(l -
	 (5) 

The equation from which the critical value of the transonic simi-
larity parameter is calculated follows from equation (5) by taking 
x=0, y=0, and M=l; that is,

=0 

V3X)X=0 
Y=O 

or with the aid of equation (3),

nf(0) = 1
	

(6) 

The pressure coefficient

D - PQQ 
Cp,M I 

poo
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is given by

2 i - M 	 6f Cp,M=_7+l	 2)(1^_) 

Integration inSeries for the Functions 

In reference 1, equations ( Ii-) were solved by an iteration pro-
cedure and approximate expressions for f1 to f6 were obtained. An 

examination of these expressions showed that the general form of f11 is 

n-i 
CO	 2p+n-2 

fn = III	 T yq KA' P k 
n+2r 

P=O	 q=O	 r=p q 

(n=l, 2, . . . oo)	 (8) 

where, if p = 0, the upper limit of q is n - 1 and, if p 0, the 
upper limit of q is 2p + n - 2. The four-labeled coefficients An p 

are real numbers calculated from recursion formulas obtained from the 
system of differential equations ( Ii-) and the boundary condition at the 
surface of the wavy wall. The boundary condition at y = oo is auto-
matically satisfied by the form of f; whereas the boundary condition 
at the wall takes the form 

(f t ) = = -	 1	 (9) 

Inserting the expression for fn given by equation (8) into equations (9) 

yields immediately the following results:

(7) 

10 
A00 

	

r	 r 
(2p + n)A" =	 An p 

Or	 1  

	

P=O	 p=O,l

(10) 

(n=l, 21 ... co)



(n=2,3,  

(r=1, 2,.. 
\n=1, 21 .. .00)

nAn 0 = An 0 
00	 10

r 
0 =	

A" -
	

(2p + n)A Or L 1  
p=O,l	 p=1

(11) 
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where, if n = 1, the lower limit of p on the right-hand side is unity 
and, if n 1, the lower limit of p is zero. Also, if n = 1, the 
upper limit r of p goes from 1 to co and, if n 1, r goes 
from 0 to 00• 

By elementary manipulation of series, the second of equations (10) 
can be replaced by the following more useful forms: 

where in the first term on the right-hand side the lower label p starts 
from 1 when n = 1 and from 0 when n 1. 

In reference 1, recursion formulas were derived for the coef- 

ficients An . In the present paper a much more significant approach 

is introduced. Note that equation (8) can be rewritten in the following 
form:

n-i 
00	 2p+n-2 '2p+n 

=	 (keY)	 AnqP q	 (12) 
P=O	 q=O 

where

A=IA"P q	 r=O qp+r 

In a manner similar to that described in reference 1 for the coef-

ficients A" , recursion formulas can be obtained for the power qr 

series A q • Indeed, the two types of recursion formulas are intimately 

connected and, for a given value of p, the one can be obtained from the 
other by mere inspection. A single recursion formula can be written for 
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the general quantity , A n q P but the resulting expression is cumbersome 

and serves no practical purpose. It is much more desirable to obtain 
separate recursion formulas for each value of p. As examples of pro-
cedure, the recursion formulas for p = 0 1 1, and 2 are considered in 
the sections'which follow. 

Recursion Formula for A 0 

With p = 0, the recursion formula is (compare with eq. (57) of 
ref. i)

n 	 n-2 n  
2n(q + l) Aq+i = (q + 1)(q +2)8 q Aq+2 + 

q n-2-q1 

n 	 (m + 1) (n - m - l)An-m- 1 O Am+l O 

91 =0 m=q-q1	
q1	 q-q1 

(n = 2, 3, . . . oo; q = 0) 1, . . . n - 2) (13) 

where

n-2	 0	 (q=n-2) 
8 q = 1	 (qn-2) 

This recursion formula can be solved, the solution starting with 
q = n - 2 and descending towards q = 0. Thus, for q = n - 2, equa-
tion (13) becomes

n-2 
- l)An 

-
0 =	 (m + 1)(n -	 A m - 1)A m+1 0 n-m-1 0 

n l m	 n-m-2 
M=O

(n=2, 3, . . . 00) (14) 

Now, multiply both Bides of this equation by rn where r is a dummy 
variable and sum from n = 2 to n = co. Then 

00	 CO	 n-2 

8 E (n - 1)An_o r =	 r	 (m l)(n - m - 1)A m+1 OAnmlQ 
n=l	 n=2	 M=O	 (15) 

ru 
L!J
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Ee 

Let

	

A1 =
	

A'	 r 

then

00 

Al 
of =	

fl 0 rn 
L_. n-i 
n=i 

and

n-i 

(Al 
t) 2 =	 r2 Trn(n - rn)Am A-m 0 [

rn-i n-rn-1 
F2  

By observation, it can be seen that the right-hand side of equation (15) 
is equal to (rA1 0 t ) 2 . Equation (15) can thus be replaced by the 

following first-order nonlinear differential equation: 

rA1 092  - 8rA1 ' + 8A1 0 = 0 	 (16) 

The solution of this equation is

1rA 
Al o' = c0e 1 0 

where co is the arbitrary constant of integration. From the defini-
tion of A1 0 it follows that, with r = 01 

	

CO	 1 - A 0 

anT hence

'rAl 0 A1 ' 

	

A10' -e
	

01 0
('7) 

A 1 0 0 -
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Note that by definition An 00 involves the coefficients A 0 which 

are ultimately calculated by means of the auxiliary relations, equa-
tions (ii), engendered by the boundary condition at the surface of the 
wavy wall. In solutions of the recursion formulas, therefore, the 

coefficients A 00 appear as undetermined quantities. 

The expansion of 1 0 A10' in powers of rAi 
00 is a nontrivial 

A0 

problem which fortunately can be solved with the aid of Lagrange's 
investigations on the reversion of power series. In reference 2, 
Lagrange's problem is illustrated by the following example: 

To expand eax in powers of y = xebX. The result is expressed as 

ax = 1 + ay + a(a - 2b) y2 + a(a -3b)2 y3 + . . . + 
2! 

a(a - nb) n-iyn+•	 (18) 

In particular, with a = 1, b = -1, and	 = ex, the solution of the 
equation log t = y or E =	 ( generally referred to as Eisenstein's 
problem) is given by the series 

- c	 n-2	 n-i 

n=l 

-	
(n - 1)! y 

' Then, if	
A	 1 1 is replaced by A1 0 and y by	 rA 0 0 the solution 

0 
of equation (17) is

Co 

Al 0 '	 n2 

A10° = L (n - l)!(0) 
n=i
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or 

CO	

nA 
n-0 

r T	 n 1 
n=l

= E (n 
n=l

n-2
(Al	 ' rr1 

0 1 - 1)! 1 \

Hence, by equating coefficients of equal powers of r on both sides of 
this equation,

An
 

= n-2 (A Q 1Qy' 
n-i n! (n=2, 3, . . . o )	 (19) 

which is the solution of the recursion formula, equation (i-). The 

coefficient n  A 1 can be considered as the generating function for the 
n  set of coefficients A1 r Thus, equation ( 19) can be written as 

=	
A	 k2r)	 (20) 

r=0 

Then, by equating coefficients of equal powers of k on both sides of 

this equation and putting A = 1 (see boundary condition, eq. (10)), 

the following equations are obtained: 

n 0n-2 
An-1 0 =   

n.1 4 n-1 

n 0	 n-2	 10 

(n - 1) !4
A0 i

(21) 

An n 0
	 nn-2	 Al 0 +	 11n-2	 1 

_ 1 ( 0 i 
0\2 

2 = (n - i)t11_1 0 2	 2!(n - 2)! ) 
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Note that from the first of these formulas, A2 0 = 	 and that from 
10 8 

the boundary conditions, equations (ii), 4 = 

Consider now q = n - 3. Then equation (13) becomes 

n-i	 - n 	 n m 	 n-mO 2n(n - 2)A 2 = (n - i)(n - 2 )An1 + n	 m(n - m)A 2	 (22) 
m=2 

Multiply both sides of this equation by r 11 and sum from n = 3 to 
n=. Then 

2
 CO

	

	 CO 

 T n(n - 2)A	 r =	 (n - 1)(n - 2)A 	 r11 + 

CO	 n-iE r1rn L m(	
m 0 n-rn 0	

(23) n-m)A	 A m-2 n-m-1 
n=3	 m=2 

A1 0 =	 A	 r 

A2 0 = 

CO 

 2	
r 

then

co	 fl 
A1 0tA2 ' =	 r11 [ m( -
	 m 0 n-m+2 0 n m+2)A,A

n-rn 
n=1	 m=1 

Let 

and
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It can be shown easily that the last term on the right-hand side of 

equation (23) is equal to 1 r(r2A1 0tA2 )'. Hence, equation (23) 

can be rewritten as the following differential equation: 

2r2A2	 - A2 ' = r2A1 o" - 2rA1 0 + l 0 + ! r(r2A1 01A2 0 / 

Now, from equation (16), it follows that 

(rAl 0 ? ) 2 = 8(rA1 0 1 - A1 ) 

(rAl ) - 4A1 
- 4 - rA1 0 

rA1 0t(rAi s')' = 4rA1 o" 

Then equation (24) can be written as 

___ __ - 8 + r( rA1
	
(,A2 011
	

1 
= r (4 - rA1 t)L(1 a') - 

(rA20t)	
r(_rA10)

6rA1 ' + 4A1	 (26) 

TLet rA2 o	
(rA1 

' = v '- - rA1	
where v is the new dependent variable. 

Then equation (26) becomes 

1 
r (rAi 0,)2 r (rA1 0 	 6rA1

 0 ' + 4A1

13 

(24) 

(23)

/
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or with the aid of equations (25), 

V I = rA	 'V 8\ 10) 

Hence

V = rA ' 1 0 + 

- (rA1 t )3 
+ .1 VA

s)2 

8rA2 0 - - rA1 0'	 1 - rA1 0' 

The arbritary constant c 1 is determined by differentiating this last 

equation twice and evaluating for r = 0. Thus, 

A20° - 
c 1
 - 61 (Alooy 

Finally,

A20° 
A2 0 ' =	 r2	 1)211 + 8 

(A100)2 
rA1	 (27) 

Now, from equation (18) with a = 2, b = -1, and 	 = ex, it follows 
that

Co 

- 2	 n3	 n-2 
-	 (n-2)! 

n=2
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Or with

A
10 

A10°	
y=rA10° 

Co 

f	
(Al 1)2 = 2 L	 n-3	 (A100)'rn_2 

- 
n=2 ( 

and

Co 

Al ot)2]t = 2	
n-3 

n-2 (A100)r3

n=3 (n - 3)!4 

Thus, equation (27) becomes 

rr	 =	

2 (n 
11"3 2(A100)"rhll + 

	

- 4^:	 T

20 Co 

A0 
8 

'A'	

n(n - 1)A	 r 

t\ 0) n=2  

Hence, replacing A 	 by its value from equation (19) and equating 

the coefficients of equal powers of r on both sides of this equation 
yields

____ __	 1	 nn-4 

(n - 2)! 

-	 n-3	 (A100)n_2 A20° + 
(n - 3 ) ! 4n-1  

A	 -8
 

(n=3,	 .07) (28)
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the solution of the recursion formula, equation (22). Again, equa-
tion (28) can be written as

	

n-3	
TAk(A	

n2 
A f2	 = 8 

r=0	 (n - 2)!_l r=0
	 \r=O	

k2r) - + 

	

1	 n-1• 

(n -*3)!4 n—1 
	

A	 k2r) 

\r=O

(29) \ 

Then, equating the coefficients of equal powers of k on both sides of 

this equation and putting A 0 = 1 and A	 =	 yields: 

An O__n-3	 ________ 

	

n-20	 + 

	

2(n - 2)!	 2(n - 

	

n 0	 8n3	
A	

+	 n3	 1 0 A_2 1 =	 n-i	 n-i 
A0 

1
(n - 2) 1 4(n - 3)!!s

(30) 

n 0	 8n3	 2 0	 11n-3	
[A
l0 

A2 2 =- 2)!1A0 2 +(n - 3)!4_i0 2 + 8A
	 A	 + 

______________ 0\2 
(A' 0)21 +

2(n - 

Note that from the first of these formulas A 	 =	 and that from 

the boundary conditions, equations (ii), A3 0 =
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The procedure followed in order to obtain equation (28) for A 

is a general one and with very little difficulty other members of the 

family Ar qo can be obtained. 

For example, 

An 0 =	
n-	

(A100)3 A30° + 
n-3	 n-1 

(n - 3)!I-

	

1	 n-1- 

8 
(n - )!1(0L0 + (AlOO)j 2	 (31) 

From this equation it follows that 

	

fl 0 2	 nn- 

	

An3 0 = - 	n-12 

	

3 (n - 3)!	 (n - 

n 0	 n	
1A01+8	 n-1	 (32) 

	

n-3	
30 ________

A ..3 1 =

	

(n - 3)!	 (n - 

	

A101	 1	 1	 1 1 
n-1 OlL(n 1 )!	 2(nD)!J 

From the first of these formulas and the boundary conditions, equa-

1 0 7 	 1Q	 7 

	

tions (ii), A1 0 =	 and A0 0 = 1536 

At this point, it is noted that the coefficients of the form A 

are calculated from the first formula of each set, equations (21), (30), 
(32), and so forth. A number of this type of coefficient have been 
evaluated (see ref. 1) by means of the recursion formulas for the
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coefficients	 A themselves. They are listed as follows: 

20_i A60_ 7x13 
A10-8

10 72x256 

A10 - 30_ i 'ro_ A10-18256 13 

A80 _ 13x19 
10381.i. 10576x256 

A5
0 - 

10-768

A careful examination of these numerical values leads to the general 
rule,

= f3n	
(n = 2, 3, . . . o) 

n! 

and from the boundary conditions, equations (ii), 

A	
= {3n -s}
	

(n = 2, 3, . . . 00) 

nn! 14. 

where by definition 

{3n-5) =1xx 7 x10x13 x. . .x(3n-5) 

In the expression for the local Mach number distribution evaluated 
at the crest of the wavy wall (x = 0 1 y = 0), there occurs the following 
power series:

CO 

F = 
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or

3n - 5} 
F = k 

+ [ n!
Ichl 

n=2 

This power series can be expressed in the closed form 

\2/3 
F = 2 - 2(1 - k) 

The graph of F against k is a semicubical parabola with the cusp 

point at k =	 and F = 2. With the necessary condition that one and 

only one value of k correspond to a given value of F, the transonic 
similarity parameter k cannot be greater than 4/3. Moreover, the 
lower limit of k is zero when the amplitude of the wavy wall is zero 
but Mc is different from unity. 

Recursion Formula for Anql 

With p = 1, the recursion formula for A q' is (compare with 

eq. (69) of ref. 1) 

+ l)A q	 ^ 1 - 2(n + 2)(q + i)	 A	 + (q + l)(q + 2 )	 ,fl 
A 
n  
q+2 = 

q n-l-q1 

- 1 flnb - 
2 q[ Li 

q 1=0 m=q-q1

m(n - m)Am 
0 Am 1 - n(n + 1)A1 0 An+l 0 

q1 	 q-q1 	 2	 0	 q 

(n = 1 1 2, . . .	 ; q = 0, 11 . . . n)	 (33) 

where

n-1.,n = 0 
q	 1

= ii - 1 or n) 
(q	 n - 1 or n) 

n	 0
	

(q = n) 

	

= 1
	

(q	 n)
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The solution of this recursion formula proceeds as in the case p = 01 
the solution starting with q = n and descending towards q = 0. Thus, 
for q = n, equation (33) becomes 

A 1 = - 11 A1 0 A1 0 
0	 n 

Anl 1 = - !( - 1)A1 0 A 0 
n-i	 8	 0	 11-1

or

(n = 1, 2, . . . 00) 

(n = 2, 3,  

Hence, inserting the expression for A_ given by equation (19) gives 

An-1=	
n n-3 

n-i	 8	 _1(0)	
(n = 2, 3, . . . CO)	 (34) 

(n - 2)! 

or

CO	 100 

n-i 1 k2r = -	
n-3	

(	 A1 
0 2r n+1 

	

4r=A' r+1
	

8 (n - 2)! i74
00

)! - r=0

	

fll\	
Ork) 

From this relation, by equating coefficients of equal powers of k on 
both sides of the equation, the following equations are obtained 

i	 11n-3 

n-il 

1 = -	 11n-3	 1 0 1	 11n-3	 1 0 

111 n-1 2	 8 (n - 2)!	 A0 i - 8 (n - 3)14 n-1 A0 

A- 1 - -	
11n-3	

[Al + (Al 0\ 21 1	 nn-3	 [Al 0 
n-i 3 -	 8 (n - 2)!	 0 i)j -	 (n - 3)tn-l0 2 + 

(Alo o)2I	

1	 n-3	 1 1 o\ 2 -	

(n - 
) 110 i)

(n = 2, 3, . . . 00)

(35)
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Consider now q = n - 1; equation (33) becomes 

n-i 
(n+ i)A	 = 2n(n + 2)A n 1  

- n	 Cm + i)(n - m - l)Am 0 Anmi 1 - 

	

n-1	 n 2	 m	 n-rn-1 
=o  

n(n+1)A1 0 A1 
0	 (n = 1, 2,	 co) 

2	 0	 n-i 

Multiply both sides of this equation by r n and sum from n = 1 to 
n=cc. Then

CO	 Co 

i. El (n + i)A	 rn = 2 [ n(n + 2)An1 rn - 

n=1	 n=i 

CO	 n-i 
1 F n T (m + 1)(n - m - l)Am 

0 Anml 1 - 

n=i	 m=0	 m	 n-rn-1 

Co 

A' 0	 n(n + i)A	 0 r n	 (36) 
2	 n=i	 n-i 

Let

A0 1 
=

A	 r
	

A1 1 
=

A	 rn 

A1 0 
•=	

rn
 ^ n 1
	 A2 0 

= 2	

rn 

Then it can easily be shown that the second term on the right-hand side 

of equation (36) is - r(r2A0 1tA1 ')
	

and that equation (36) can 

be replaced by

/
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' )-(rA1 )' = 2r2A0 " + 6rA	
' -	

r(r2 

	

2	
01A10 I ) - 

rA'j A2 	 -	 (37) 

A0 1 = - A'0° 

CO

 (n - 1)A 0 rn1 
n-i 

n=i 

or, with the aid of equations (27),

),2 rA0 	 A°(rA10 

Hence, from the use of equations (27) and equation ( 27) for A2 o' it 

follows, after routine calculations, that the integral of equation (37) 
is

rA1 1 =	 A10°	 (rA1 ') 2 - (rAl ') -
	

(rAl0') + 

(c1 
+ ) [

V1 (rA 1 ') 2 - 2r2A1 01) 

22 

Now,

where 

Now from equation (18),

20 

c = 64

(Al 0 
\ 	0

co 

1rA 10
	

= m	
(n n_m_l	

(Alo O)n rn	 (38) 
\	 ) -
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Then

00	 00 

oo)n+1 f [	
n-3 

An-rn=--.-(A1	 n	 r11- 

	

n-2	 i28\	 n-2 
(n - 2)!4 

n=2	 n=2

r11 ._i
	 n_5	

rn + 

	

00	 n-4	
00 

i6' 	 , 
(n-3)! n-3  

n=3	 n= 

n3 
(c i + i4 	 rti-- 

n=2	
- 2)!12 

2	
n-2	

rn 

(n - 2)!	
(39) ii—_l	 (39)

Equating coefficients of equal powers of r on both sides of this 
equation gives 

	

A 1 = -	 + (ci + l(n -2)! + 142 + c1 + )1( -3)! + n-2

	

2[5 + (c1 +	 1	 + (c1 + )	
1	 nn-5(Ai 0\n+l 

(n - )!	 (n - 5)! 4n-1	 o) 

(n=2, 3,. . . 00)	 (ho) 

From this equation the expressions for all the coefficients of the 

n-i 1 type. A2 r+l with n = 2, 3, . . . co and r = 0, 1, . . . cc can 

be obtained. Thus, for example,
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(n - 2)! + (n - 3)! + (n 7-47.1 + n-2 1	 n-1  

A1 1 - - 1 nhl_5 [ 20	 70	 37	 _______ 

1 = -	
-5 

32	
5n + l)A	

+	 0(n -2)! + n-2 2	 jn-1 	
32A2	 4 

1(5 n + l)A	 + 32A	 (n - 
14 
3)! + 37n + 5)A	 + 

1 ___ 
256A2 0 	 -1)! +	 + 8A 1)(n - 5)!1 

For q = n - 2, equation (33) becomes 

+ 1)A 1 = 2(n - l)(n + 2)An 1 - 
n-2	 n-i 

/

Z2
m + 2) (n - in - 2)Am 

0 A in22l + 

(m+1)(nm1)Am 0 A n-rn-1 
flm2J 

n+1 0 
n(n + l) A-0 ° .A n-2 

The solution of this recursion formula follows along the same lines as 
that for equation (36) and leads to the following result:

('a) 

(i.2)
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1	 1	 162	 _	 205	 7	 , inn-7 
n- 3	 512 t[^ n 371	 4). Tn - -5T 2	 4 n-2 

	

(c1 + ) r 21	 21i	 9	 1  
[çn - 3)! + (n - li)! +	 (n - 5)fl ) n_2 + 

30 
A0 E i	 1	 1 in 

(A' 0 

12 x 128	
\3kfl - 3)! + (n - ) d n-2 + 

01 

+	
-u)! + (n ±S)tjn2J(AO) 81

)2
n

(n=3, 4,	 . .)	 (1) 

From this equation there follow, in the usual manner, expressions for 

coefficients of the type A	 r1 Thus, for example, with r = 01 

A l - -	 + 21 2 1 3\	 1	 1207 
n-3	 -	 i6	 +	

n.)	 - 3)! +	 +	
n2 ± 

13 	 1	 f 205	 9 2	 1 3)- 	 1 

	

n3) 
(n - 77 +	 + 32	 + 16	 (n - 5)! + 

1 1n7 
256 ( n --767 ])n_l

(1)
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Recursion Formula for A n q 
2 

With p = 2, the recursion formula for Anq2 is 

+ 2)An 2 2(n + )(q + 1), 5 n+2 An 2 + ( q + l)(q + 
2)5fl+1) fl+2 n 2 

q	 q q+1	 q	
Aq+2= 

n+l - q1 

1 nS	 S 
n+2 n-1,n,n+l 50,1,2 	

- 2)(n - in + -- 
2	 q	 q1	 m

q1=0 m=q-q1 

q	 n-q1	
n-mi ml

- 
0 Am2 2 1 n+1 ,n+2 5	

>	
m(n - m)A	 A 

q1	 q-q 1 q 1	 q-q1 -	 q	 q1 q
1=0 m=q-q1 

- n(n + i)(F)A i 	 n+2 1 0 A1 + 5n+l, n+2 A1 An+i 0 + 
2	 q	 0	 q	 q	 0	 q 

50,n+2 A11 Al10) - n(n + 2) 
5n+2 

A20° A2 0 +	 A21° A210 

(n = 1, 2,	 c; q = 0 1 1, . . . n + 2) (45) 

where delta is defined in the usual manner. The solution of this 
recursion formula proceeds as in the previous cases, starting with 
q = n + 2 and descending towards q = 0. Thus, for q = n + 2, equa-
tion (45) becomes: 

An 2 = -	 2 0 A"2 0	 (n = 1, 2, . . . n+2	 8	 1	 n+l 

or

An-2 21
 - g(n - 2)A210	 (n = 3, 1,	 co)
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Then, from equation (19), 

A2 2 -
	 1	 - 2) nn-2 (A O b0)2 -	

fl!nl

(n=3, 14,... cx	 (14.6) 

or

2 2r_ (n_2)nnTO 0 k2r n+2 Ann-2 r+2 k - - 

By equating coefficients of equal powers of k on both sides of this 
equation, the following equations are obtained: 

A'2 2 = - (n - 2)n_2 
n 2 

A2 2 =	 (n2 - 4)n' 2 1 0 
n3 n+2	

A0 1 

An2 2 = - (n2 - !)nh1_2 	 0 + (n + 1) Al 
n!14-"2 [Al[02 2 	 0 1)] 

Consider now q = n + 1; equation (45) becomes 

8(n + 2)An 2 = 2(n + 2)(n + )A 2 - 
n+i	 n+2 

n-2
m+l 0 n-rn-1 2 

nII(rn+l)(n-m-l)A	 A1- 
2 m=0	

m 
 

1	 10 n+1l n(n + l) (A 0 A n+1 + A111 An 0) - 

n(n + 2)(A2 0 An+2 0 +A21°	 0) 0	 n+1

(n=1, 2, . . .	 (14.8) 

(14.7) 

'S.-
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With the introduction of 

Co

n. 2 n 
A2 2 n=1 A 2 r 

Co 

A1 2 =
r

A2 0 =  

Co

 

r 

A0 1 =	 Ann' rn 

A1 0 =
	

A' r1 T n 1 

equation (18) is replaced by the following ordinary linear differential 
equation: 

8(r2A_1 2) =2r2(rA2 2) + 12r(rA2 2) + l6rA 2 2 - 

,t	 1 11 2 r(rA1 0tA_2 2 ') - A10 r2A0 1 - A	 r A1 o" - 

A20° rA1off + A20° Al o f - A21° rA2 " + 

A20A-A 10 20 
1	 20	

0 A 0	 (19) 

By repeated use of equations (25), the solution of this differential 
equation is found to be as follows: 

8r2A1 2	 (A
1o0) 2f(rAl t) -	 (rAl o t) 2 -	 (rAl ') - 

2O(10)	
"+A20+(c1+)(rA	 ,2 io) 

	

16	 10	 8 	 R8 

r2 1	 -	 r(A100)3 + A200[A1 0 - (rAl 1) 21 - 

rA1 
0 

A2 
0 0
	 (o)



NACA TN 27 48	 29 

Finally, with the aid of equation (38) and the definition of A_1 2 

n-2 2 1 1	 1	 1	 2 inn-3 1	 nn-7 
A n-i	 -. 1)! - (n - 2)! + (n - 3)!Jn-1 -	 (n - )! 1 + 

^)['n

1

	

	 1	 11n-2'l 

 - 1)! - (n - 2)n_l(A1O0) 

(n = 3, ., . . . ; c 1 = 
1t A20° \ 

(Al OO)2) 

From this equation, there follows in the usual manner formulas for the 

coefficients of the type A 	 r+2 Thus, for r = 0, n-1

A2 2 
= I	 i	 1	 +	 21n-3	 n-5 

n-12	 ftn_l)!	 (n-2)!	 (n_3)jj4n+3	 (n_)tfl±2 

r	 ln-2 
(n - 2)!j n+2	 (n = 3, 1,	 . . co) 

DISCUSSION OF CONVERGENCE OF SMOOTH TYPE OF POTENTIAL

FLOW PAST WAVY WALL 

In the preceding sections, a number of examples of recursion 
formulas and their solutions have been given in considerable detail. 
The purpose of this exposition is threefold: First, to show the inherent 
elegance of the method of integration in series although the equations 
concerned are nonlinear in character; second, to present a type of 
analysis which may be useful in other problems involving nonlinear 
differential equations; and third, to indicate that an analytical proof 
of convergence may ultimately be obtained by careful examination of the 

recursion formulas for the quantities A" q and their solutions. One 

example is the obtaining of the general expression for the coefficients 

A 0 and the subsequent conclusion that k 

In actual practice it has been found more convenient to evaluate 
n  

the coefficients A  r from their separate recursion formulas rather 

(c 1

(51)
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than to derive the general formulas. The appendix contains the exact 
numerical values of the coefficients necessary for the development of 
the functions fn to the eighth power in the transonic similarity 

parameter k. These coefficients are utilized to demonstrate numerically 
the test for convergence of the smooth symmetrical type of potential flow 
(eq. (3)) assumed in this paper. Thus, when the form of f given by 
equation (8) is inserted into equation (5) for the local Mach number 
distribution and evaluated at the surface of the sinusoidal wall (y o), 
the following result is obtained: 

P M2 21	
m 

1 

1	 )cos(n-	 (52) 

where [] denotes the integral part of n/2. At the crest of the wavy 

wall (x = a), the point of maximum fluid velocity, with the numerical 
values for the coefficients inserted, equation (52) becomes: 

M2 - 12+1=k+k2+_0 + 3 3 7 k4 +	 03	 k5 
381k 	 9216	 576 x . 256:	 + 

359381 k6 + 7326757 k7 + 81688733 k
8 + 

270 x 256 
2	

6)#8o x 256 2
	

861ioo x 256 2
(53) 

The critical value of k (that is, when M i) calculated from this 
equation is

kcr = o.832I4 

(Note that in ref. 1 the value kcr = 0.83770 corresponds to the first 
six terms of eq. (53)..) Consider now the infinite series

(5) 

where.

3n-5) 
A"	 =	 (n = 2, 3, . . . co) 
0 0

/ 

30



NACA TN 2748

	

	
31 

A  0 

The Cauchy ratio test Rin = n+10 yields in the limit n—> the 
A0 0 

result that the radius of convergence R 1 is equal to or less than 4/3. 

If the corresponding ratios R 2 are formed for the right-hand side of 
R 

equation (53) and the quotient Nn = -.2! is calculated, the resulting 

sequence of numbers is as follows:	
2n 

n Rln R2 N 

i 16.0 8.o 2.0 

2 4.5 1.92 2.34375 

3 3.04762 1.78041 1.71175 

4 2.5 1.33366 1.87472 

5 2.21546 1.35000 1.64104 

6 2.04167 1.17721 1.73432 

7 1.92481 1.19588 1.60950

The noteworthy feature of this table is that although R 1 (and pre-

sumably R2fl ) is converging quite slowly toward R 1 = . (and R2), the 

quotient N exhibits a strong tendency to approach an asymptotic 

value N for a relatively low value of n. Figure 2 shows this tendency 
in a graphic manner. The apparent asymptote represented by the straight 
line is the ratio of 4/3, the limit of Rln as n--woo., and of 0.83244, 

the critical value of k. Certainly, the rapid approach of the lower 
dotted curve toward the apparent asymptote and the decreasing I

oscilla-
tions represented by the upper dotted curve indicate that the critical 
value of k is the radius of convergence R 2 of the power series on 
the right-hand side of equation (53). Thus, the critical value of the 
stream Mach number marks the limit of convergence of the smooth sym-
metrical type of potential flow assumed. The ability to approximate 
closely the limiting value N is a matter of luck; namely, the choice 
of the known comparison series. Once, however, the proper comparison 
series has been selected and the approach to an asymptote indicated, there 
can be no question of the meaningfulness of the approximate value of N 
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obtained. It may be that one would like to extend figure 2 to n = 9. 
This extension would entail the forbidding calculation of an additional 

187 coefficients A" P. The result presumably would be to decrease 

slightly the approximate critical value of k and thereby raise slightly 
the straight-line asumptote of figure 2. This extension of figure 2 
would show still more convincingly the approach to an asymptote and the 
dying-out of the oscillations. Perhaps more important still, figure 2 
definitely shows that conclusions based on less than six or eight terms 
are mere speculations in this field. 

CONCLUDING REMARKS 

If the numerical test of convergence presented is acceptable, the 
conclusion to be drawn is that smooth symmetrical potential flow past 
the wavy wall exists only for the purely subsonic range. Moreover no 
such flow can possibly represent the transonic or mixed type for which 
a local region of supersonic flow near the solid boundary is imbedded 
in the otherwise subsonic stream. It follows as a corollary that the 
transonic or mixed type of flow past the wavy wall is necessarily an 
asymmetric one. This asymmetry in the flow pattern entails a resistance 
usually defined as wave drag. As shown by experimental observations, the 
shock wave associated with wave drag closes the downstream portion of 
the local supersonic zone.	 - 

As a final remark - although the analysis and conclusions of the 
present work refer directly to the wavy wall, the suggested result that 
the critical stream Mach number marks the limit of smooth potential flow 
very likely applies to other boundaries. This conclusion is based on 
the idea that the gradual transition from a purely sinusoidal wall to a 
boundary composed of a single bump, say, introduces no essential changes 
in the analysis. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., May 6, 1952.
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APPENDIX 

NIJI€RICAL VALUES OF THE COEFFICIENTS . A" 
q  

Coefficients for f1: 

A10 -1 00  A11- 
01

5 Al2-	 65 
02576x256

A13- 3385 
°31152x2562 

A' 0 - 
-

A1 1 = -	 2765 A1 2 = 2635 Al 3907 0 1	 256 0 2
x 2562 0 81 X 256 1

432 X 2562 

A1 0 -	 1861 
023x2562

1 1 - 18435 Al 2 - 
12

-	 7 
72x256

Al 3 -	 23 
2312x2562 

-
1728x256

33 

A10= 4896755	 11	 1 
03 81x2563	

A11= - Al 2 = -	 53995	 Al - -	 583 
1 3	 1728 x 2562	 3 3 - 54 

X 2562 

A11 -12	 6lx256 Al2 =-	 A3--	 119 
2 2	 32 x 256	 4 3- 12 X 2562 

A11-	 139 
132562 A-2=- 2765	 13_	 1 

23	 96x2562	 A53-9ô256 

A'2-	 1 

32	 8x256 

Al2 =-
33	 8x2562 
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Coefficients for 

20 1	 A21-	 125 
A00=	 0136x256

2 212215	 A	 -	 17999 
2 =
	 x 2562	 3 - - 90 x 256 

2 0 - 119	 A2 1 = -	 5895	 A2 = 35023583	 A2 =	 72577 
A0 1 - 72 x 256	 0 2	 2562	 0 3 1620 X 2563	 1 3 5760 x 2562 

A2 0- 231t215	 A2 1 - - 121Q109	 A2 2 - 6245	 A2 -	 5409 

02 32 x 2562	 0 3	 81x2563	 1272x2,62	 232160x2562 

A2 0 = 2791533	 2 1 -	 5	 A2 2 = loIi.o63	 A2 =	 3515 
0	 618 x 256	

A1 1 - -	 1 3 90 x 2563	 3 3 864 x 2562 

2 0 1	 2 1	 815	 2 2	 79	 A 3 - - 10229 
A1 0 =	 A1 2 = - 576 x	256	 A2 2 = - x 256	 - 86 x 2562 

2 0	 11	 2 1	 46185	 2 2	 167	 A2 = -  
A=	 A13=-	 2	

A23=-	
62	 53	 8x2562 

20	 1o85	 21	 1	 22	 47	 A23=-	 25 
Al2 = 2	 A21g	 A32_192x256	 63	 12X2562 

2 0	 21287	 A2 1 = -	 11	 A k = - 2199 
A1 3 = 32 x 2562	 2 2	 32 x 256	 86' x 2562 

21	 1811	 A2 2 	 1 
A2 = - 192 x 2562	 4 2- 12 X 256 

A22=-
2 2 x 256
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2 0 32

31 
A3 = - 
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Coefficients for f3: 

A3 0 - 
0 0 - 72 

A3 0 = 23603 
01	 27'X'2562

A3 1 = -	 1765	 A3 2 = 14.75823 
0 1	 x 2562	 0 2 15 

x2563 

A3 1 = -	 1351393	 A3 2 = 714353 

0 2	 2880 X 2562	 1 2 320 x 2562 

A3 0 = 9843883 

02 81x2563 

30
A1 0 = 

A30- 259 
1 1 - 72 x 256

A31-- 155 
11	 32x256 

A31-- 30365 
12	 14.8x2562 

A31=- 117 
21	 32x256

A32= 3083 
22 2x2562 

A32=-	
14.1 

	

32	
2X2562 

A3 2 = - 1785 

	

2	 14.0X2562 

0 0. - 149317	 A3 1 = - 295145 
1 2 432 x 2562	 2 2	 96 x 2562

A32=-	 25 
52	 2X2562 

A30= 
21 32x256 

A30= 139 
22 2X2562

55 A3 1 
32	 2562
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j	 QA6 - .	 39O5 1 7 1 = -	 80872738 1. 2 
720 X 256 0 2. 675x 256 

0 =	 1704729613 A	 1 = -	 2465 
0 2

16200 ( 256
1 1 576 X 256 

A1	 0 = A	 1 = -	 30596538 
10 384 12 135x2563 

0	 '=.
11

3297 1 A21=-66 55 

36x2562 

A1	 0 20527213 A 4 1 127825 
1 2 162 x 256 2 2 = - 192 x 2562 

A40 _ 3 4 1 119 
20128 A31=- 6 

A4 o 617 )1 5131t3 
21288x256 A32=-

216 X 2562 

0 - 369587 A 4 1 25 
22 1728x2562

= 
11

-
48x256 

A4 o 1 A 4 1 275

Coefficients for f4: 

A O Z 	 7 
00 6x256

	

A1 	 -35271 

	

01	
90x2562

	

A 2	 71115 
0 

2 51814 X 2562 

2 = 38381086 

	

1 2	 465,x;2563. 

A 2 -	 23833 
22 i	 562 

A 2 - 20815 
3 2 -	 X 256 

173 
2 - - 12 X 2562 

A2_30 
5 2 - '2562 

	

A2 	 36 

	

.62	 2 
5x256 

A40 _	 11 
3 1 - 24 x 256 

A0_	 1i811 
3 2 - i'a X 2562 
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Coefficients for	 f5: 

A5 0 =	 7	
S A5 1 = 57039 - 

0 3840 01 81x2563 

A5 0. = A5 1 = -	 88735 
0 1• 259200 x 2562 1.1 96 x 2562 

A50 - ' A51- 25x15587 

21288x2562 

A5 0 =•	 886211.3
A5 1 - 25 x 997 

1 1
- 1080 x 2562 3 1 2	 x 2562 

A50 - A51- 4
105 

201536 1 6!x256 

A5 0 2375 A5 1 = -  
21 32x2562 51 32x256

A5 0 - 5 
3 0 - 38 

A50= 8950 

31 27X2562 

25 
0 2X256 

A50= 1375
2 24 x 256

37 
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Coefficients for	 f6: 

6 0 -	 91 A6 1 = 2483629 A00_3256 01
-
5x2563 

A6 0 -	 285522407 

-
A6 1 -	 371541 

0 1 4860 x 256 1 1 5760 x 2562 

A6 0 = A6 1 = -	 265901. 
1 0 72 x 256 2 1 192 X 2562 

A6 0 144862403 A6 1 = -	 403535 
1 1 810 x 2563 288 x 2562 

oA6 23 A6 1 79841 -, 
20

=
8x256 4 1 96x2562 

4 2553091 = A6 1 = -	 2205 
2880 x 2562 5 1 8.x 2562 

A60 = 13 A61 2401 

3 0 1024 6 1 60 X 2562

A6 0 = 56387 
31 96x2562 

6o_ 15 
A4 - 8 x 256 

A6°- 815 
4 1 - x 2562 

A6°- 
5020x256 

A6°-	 297 
5110x2562 
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Coefficients for

A70	 13 
00 126x256 

A70	 13 
10	 18x256 

A70=	 287 
20 1lx256 

A70=	 833 
30 288x256 

A70-	
311.3 

4 0 - 144 x 276 

A70=	
311.3 

50 320x256 

A70-	 211.01 
6o

	

	 245 x 256
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Coefficients for

A8 = 13 x 19 

00i&x2562 

A8 = 13 x 19 
1 0 576 x 256 

	

8o_	 89 A20-6 

	

A8 °-	 59 
302x256 

	

A8°-	 '• 
'. 0 T 18 X 256 

A8 0 -.19 
502880 

A8°= 1 
6o 2880 

A80_ 1 
7 0 - 2520
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