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SUMMARY

A method recently developed for determining the steady flow of a
nonviscous compressible fluid along a relative stream surface extending
from hub to casing between two adjacent blades in a turbomachine is
applied to investigate the through flow of air in an experimental
mixed-flow impeller of high solidity. The shape of the stream surface
is taken to be the same as that of the mean camber surface of the blade
which consists of all radial elements. The principal equation govern-
ing the through flow is solved by the relaxation method with the use of
fourth-degree differentiation formulas for unequally spaced grid points
caused by the varying hub and casing wall radii.

A detailed analysis is made of both incompressible and compressible
flow through the impeller, and contour plots of the stream function,
velocity components, total enthalpy, static pressure, and Mach number
are presented and discussed. The trends of flow variations in the
impeller for the incompressible and compressible solutions are quite
similar. The trend in the variation of static pressure along the casing
obtained in the compressible solution compares very well with the experi-
mental data obtained under the same operating condition.

INTRODUCTION

The axial-discharge mixed-flow compressor possesses the theoreti-
cal potentiality of an optimum combination of high pressure ratio,
high specific mass flow, flat operating characteristies, light weight,
compactness, and durability. In conjunction with the experimental
investigation of this type of compressor undertaken at the NACA ILewis
laboratory, a method capable of analyzing accurately the nonviscous
compressible through flow (reference 1) was developed and applied to
the theoretical flow in the experimental impeller shown in figure 1.

A brief account of a compressible solution obtained by this method is
given in reference 2.
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A brief description of the method of analysis is presented herein
considering the mean stream surface approach advanced in references 2
and 3, and both the incompressible and compressible solutions are given

in detail.

The usefulness of the incompressible solution (which is

obtainable much more quickly than the compressible solution) is evalua-
ted and the available experimental data of pressure variation along the
casing are compared with the theoretical solution obtained without and
with an approximate correction for the effect of blade thickmess. (For
a more accurate correction for the effect of blade thickness on the

through flow and for a complete three-dimensional flow analysis, the

method given in reference 3 can be used.)

SYMBOLS

The following symbols are used in this report:

r,p,z

velocity of sound

blade thickness factor

differentiation coefficients in equation (12) used to multiply
function value at point Xj to give nth derivative at X4

based on nth degree polynomial

ao
dz

total enthalpy per unit mass, h + % VL
static enthalpy per unit mass

h + % we - %(bzrz = H - o(V,r)

function of r and =z (equation (11))
Mach number

unit vector normal to mean stream surface
blade pitch or spacing

static pressure

cylindrical coordinates relative to impeller
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& S mean stream surface
. S entropy per unit mass of air
AL temperature
t time
U velocity of blade, wr
\Y absolute velocity of air
| W velocity of air relative to impeller
Y ratio of specific heats of air, 1.4
p density of gas
1 blade thickness in circumferential direction
2 stream function defined on stream surface
g w angular velocity of impeller
. Subscripts:
c casing
e exit
h hub
i inlet

r,u,z radial, circumferential, and axial components, respectively

Ji total, or stagnation, state
t tip

Superscript:

4

dimensionless quantity
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METHOD OF ANALYSIS

Equations Governing Flow on Mean Stream Surface

A general idea of the average air flow through the mixed-flow
impeller is best obtained by determining the flow from hub to casing
along the mean stream surface, which circumferentially divides the mass
flow in the channel formed by two adjacent blades into two equal por-
tions (fig. 1). Because the impeller has very high solidity blades,
for an approximate solution this mean stream surface may be assumed to
have the same shape as that of the mean camber surface of the blade.
With the shape of the surface known, the angular coordinate of the sur-
face o 1is then, in general, a given function of the two other cylin-
drical coordinates r and z. However, as usual in mixed-flow and
radial-flow impellers, the mean camber surface of the blade consists of
all radial elements, a fact which renders ® a function of z only.
S

® = £(z) (1)
and
2= () (2)

(using the same notation as in reference 3), then

W. n
u z
=—=-—=r gi(z) (3)
Wy 2
and
Wynhy + Wyn, = 0 (4)

These four equations give the special properties for this type of flow
surface. The turning function g1 together with the hub and casing

shape completely defines the impeller.

Because the elements of the flow surface are all radial, the
use of cylindrical coordinates results in considerable simplification
in the determination of the flow along the surface. With the "blade
force" in the radial direction equal to zero, the two other components
need not be evaluated during the calculation, and the solution of the
problem is obtained by solving the following differential equation in g

stream function V¥, which is defined on the stream surface (see refer-
ence 3);:
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2

a2y 1 - (xg1)%ay o Z] @ 1n Bp 3y

l+(rg)2] - — 4+ —= {1+ (rg)°| ———— — +
< [: 1 arz 7 ar azz 1 dr dr
2
® 1n Bp 3y 2 (rBp) 3l 3s | _
= = + 2g wr“Bp + oy = Rl (5)
or

in conjunction with the relation between density and V-derivatives
3l

wara 2 anv Ay -1
- I+ . l:l+(rgl:] > (az) eST’i_S (6)

Pr,1 Hy 2(er)2 Hy

In the preceding equations, r and =z are the two independent
variables and the bold derivative sign refers to the differentiation
following the stream surface. The stream function V on the stream
surface 1s related to the meridional velocity components of the air

= flowing along the stream surface by the following equations:
. B 1 3y
s TBp 3z (7)
W o=+ 3V (8)
Z  rBp ar

In equations (5) to (8), B is actually related to the angular
variation of the air velocities and the shape of the stream surface by

it
OW. oW
B i u Z
In &= = ——;-(nu 5% + ny ?ﬁﬁ) dt (9)

in which the integration is performed along a streamline. In refer-
ence 3, B 1is also shown to be proportional to the angular thickness
of a stream filament whose mean surface is the stream surface con-
sidered herein. In general, B can be determined by the method given
in reference 3. At the start of the present investigation, however,
this method was unavailable and B was taken to be 1. The solution
based on B = 1 becomes exact when the ratio of circumferential
thickness of the blade to the pitch approaches zero. In using this
solution as an approximate solution for thick blades, the effect of
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blade thickness should be properly corrected. (Results obtained in ref-
erence 4 indicate that this factor B 1is closely related to the channel
width ratio (P—T)/P. Inasmuch as the channel width ratio decreases
toward 1 along the radius in the impeller, it is expected that the
streamlines for the actual blade would everywhere rise above those
obtained with B = 1.)

In the solution of equation (5), the variations of I and s are
determined by the values at the inlet to the blade and the fact that I
and s remain constant along the streamline for adiabatic steady rela-
tive flow of a nonviscous fluid. The values are considered to be radi-
ally uniform at the inlet to the blade in the present solution, and con-
sequently are uniform everywhere. The computation of density according
to equation (6) is greatly simplified by the use of the general density
table given in reference 3. For the simplified case of incompressible
flow, equation (5) is solved using a constant value of density.

Equation (5) is the principal equation to be solved for the region
of flow where the function g1 is known from the blade shape.

Upstream and downstream of the impeller, 81 is not known and therefore

equation (5) is replaced by the following equation (references 1 to 3):

2%y 1oy 8% (8 1nBp oy . 3 1n Bp 8y
== 4 - — + T ——— % |4
3r2 T 3r 3zl or ar 9z 9z

QBO)Z E’J_u 3(Vyr) - ?f_:l =0 (10)

v r ar ar ar |
ar

in which the radial variations of Vyr are determined from its value

far upstream of the impeller (equal to zero in the present case) and
at the exit of the impeller, respectively, and from the condition that
it remains constant along a streamline in the absence of blade action
or of a circumferential pressure gradient. 1In the present solution,
the radial derivative of Vyur 1is zero upstream of the impeller and is

not equal to zero downstream of the impeller.

Method of Solution

Equation (5) or (10) is first written in a common form

2 2
g8 x ¥ 2y (11)
ar 3T 3z
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The derivatives in equation (11) are then approximated by an appro-
priate finite-difference expression. In the present analysis, a grid

¢ size on the uneridional plane as shown in figure 2 is chosen, and
fourth-degree polynomial representation is used. The finite-difference
form of equation (11) at grid point i (fig. 2) is

4 : > . 4
2 <J ' vk l131> ¥+ E %tk - N (12)
. . y

where wj and wk denote the values of V{ on the surface correspon-
ding to the grid points along constant-z and -r lines, respectively, on
the meridional plane. In order to fit the grid points on the hub and
casing walls at both ends of the impeller, it is necessary to use two
grid sizes in the r direction (0.3544 in the inlet portion and 0.2650
in the exit portion). At the time this investigation was begun, the
tables of differentiation coefficients for unequal grid size given in
reference 5 were unavailable, and the differentiation coefficients were
computed from the formula given in that reference.

& In the present analysis, the system of finite-difference equa-
tion (12) covering the entire domain is solved by the relaxation method
of Southwell (reference 6) with the modification described in refer-
ence 5. Because N in the equation is dependent on the unknown VYV,
the solution must be improved through successive corrections. Suffi-
ciently accurate results are obtained herein by making only three
cycles of calculation. For a quicker and more accurate answer and
especially for investigations where many similar cases are to be
analyzed, it is desirable to employ the matrix method or another method
on high-speed digital machines (references 5 and 7). Detailed steps of
the matrix method of solution are given in reference 7.

In the present calculations, all quantities are rendered dimension-
less as follows:

* = 3 * z 'p‘— 2 'W*: L ;H‘: H

= 5 27 = ~ 5 gL ;
Ty 4 Ty 4 Pt i U4 Ut,iz

RESULTS AND DISCUSSION
Incompressible Solution
The incompressible solution was first obtained for use as the

starting value of the compressible solution and for evaluating the use-
E fulness of the incompressible solution for this type of compressor.
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Prescribed conditions. - The variation of g7 or dq/dz directly

computed from the mean camber surface of the experimental blade is
shown in figure 3. It is smoothed out slightly and corrected at the
exit for a slip factor of 0.95, which is used in the original design.

The value of g, at the leading edge of the blade is -0.287. The

incompressible solution is therefore good when the inlet Mach number is
low and when

vV,
v, = 2 L - o0.625
U.t’i 0287 I‘t’i

or

@ =10.28i Vz,i
The results obtained in the incompressible solution are presented in
figures 4 to 9. Overlays of the contour plots for the compressible
solution discussed later are attached and may be used for comparison
with the contour plots for the incompressible solution.

Streamlines. - Figure 4 shows the streamlines for 10 equal divi-
sions of the mass flow. The position of the streamlines is seen to be
mainly determined by the shapes of the hub and casing. With respect
to their geometrical relation at the inlet, they are first raised by
the positive curvature of the hub wall and then lowered by the nega-
tive curvature of the casing wall. (In this respect, it would be
interesting to compare the streamlines in fig. 4 with the streamlines
obtained for gj equal to zero everywhere, that is, an axially symmet-
ric flow in the annulus with no tangential velocity.)

Variation of velocity components. - In figure 5(a), contours of
constant values of Vz,i are superposed on the streamlines. Because

of the relative shift in the streamline mentioned in the preceding
paragraph and the general decrease in channel area, the axial velocity
of the air above the 0.3 streamline increases in the inducer section,
decreases from z = 1.1 inches to 2z = 3.0 inches, and then increases
toward the exit; whereas the axial velocity of the air below the

0.3 streamline decreases in the inducer section and increases from
there on. The air enters with a uniform axial velocity ratio of 0.625
and leaves with a radial profile decreasing from 1.11 at the hub to
0.91 at the casing.

The variations of radial velocity shown in figure 5(b) resulted
from a direct combination of the slopes of the streamlines and the var-
iation in axial velocity. The maximum value of radial velocity ratio
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is equal to 0.66 along the hub wall at a short distance downstream of
the point of maximum slope. It then decreases rapidly along the hub
toward the exit.

The variation of relative tangential velocity in the impeller is
shown in figure 5(c). At the leading edge of the blade, the velocity
varies almost linearly with the radius because the elements of the
stream surface are all radial and the axial velocity on the surface is
nearly constant. This simple radial pattern is gradually distorted by
the variations in axial velocity. At the trailing edge of the blade,
the relative tangential velocity is nearly zero.

The variation of the magnitude of resultant relative velocity is
shown in figure 5(d). At the leading edge, it increases with the radius
because of the increase in its tangential component. Toward the exit
where the tangential component is very small, its variation is similar
to that of the axial component. Between the two ends, its variation is
a combination of the variations of the two components.

Between the O and the 0.4 streamlines, the magnitude of the resul-
tant relative velocity decreases in the inducer section and then
increases toward the exit. Between the 0.5 and the 1.0 streamlines, it
fluctuates along the streamline. The variation of velocity along the
casing and the hub is shown separately in figure 6. This local rise of
velocity along the casing around z = 1.2 inches apparently is caused
by the earlier rise of hub radius than casing radius.

Variation of total enthalpy. - The greater change in tangential
velocity at the tip (fig. 5(c)) overcomes the greater rise in radius at
the hub and results in a positive radial gradient of total enthalpy with
increasing magnitude from the inlet to z = 5 inches (fig. 7). How-
ever, the extra turning at the lower radii between gz = 5 inches and
7z = 6 inches causes the total enthalpy to have a negative radial gradi-
ent leaving the impeller. This overcompensation in total enthalpy is
due to the triangular trailing portion of the blade, which was designed
for a different inlet flow. For this operating condition, a radially
constant total enthalpy would be obtained downstream of the impeller if
the blade terminates at, for example, the 1.4 constant total enthalpy

line.

Variation of static pressure. - The fact that I remains constant
along a streamline for adiabatic steady relative flow of a nonviscous
fluid gives, for incompressible flow,

W2 _ wzrz

e

godlie}
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constant along a streamline. At the inlet to the blade, because V,r
is zero, this expression is equal to Hy. Hence

or

In this form, the static pressure can be computed for any inlet
values (within the range of epplicability of incompressible flow) of
Hy, p, and the blade speed. Constant values of this generalized pres-

sure parameter are shown in figure 8. Below the 0.4 streamline, the
static pressure of air rises along its streamline when 2z < 2 inches
and decreases when 3z > 2 inches. Above the 0.5 streamlines, the static
pressure at first rises, drops to a minimum at 2z # 1 inch, and rises
again to a maximum near z = 4.5 inches. The variation of pressure
along the casing and hub is separately shown in figure 9. For a local
rise of velocity along the casing at =z = 1.2 inches, there is a corres-
ponding local drop of static pressure. This local drop of static pres-
sure is undesirable in that it gives a high rate of increase in the main
portion of the impeller for the same over-all rise in pressure across
the impeller, and it may be the cause of the relatively low efficiency
obtained in the experimental tests of this impeller.

Downstream of the impeller, the pressure parameter has a positive
radial gradient (from -0.1654 to 0.31 at casing).

Compressible Solution

Prescribed conditions. - In the compressible solution, an inlet
Mach number of 0.45 is chosen, which gives a maximum relative Mach num-
ber in the impeller of about 0.8 at the tip of the leading edge. The
flow throughout the impeller is subsonic. For this inlet Mach number,

<i> = 0.9055
Pt /i

H

1 _ 4.997
0

t,1
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The equivalent impeller tip speed at the exit is 987 feet per
second. The first approximate solution of the compressible case gives
streamlines having oscillatory motion of large magnitude near the leading
edge of the impeller, which may be' caused by the sudden imposition of the
0.287 value of g; at the leading edge of the impeller. The variation

of gy 1is therefore smoothed and extended upstream according to the var-

iation of turning along a mean streamline obtained in reference 4 (see
fidio, 18 of reference 4). This modification is shown in figure 3.

As evidenced in the incompressible solution, overturning of the
air may result at the hub of the trailing edge because the inlet flow
used in this solution is different from that of the original design; it
therefore seems best to remove the triangular section at the trailing
edge and to determine the flow with a radial trailing edge ending at
z = 5.5 inches. The resulting radial gradient in total enthalpy there
will indicate how the extra turning should be added. The meridional
section of the modified impeller used in this solution is shown in fig-

ure 10.

Streamlines. - Figure 10 also shows the streamlines obtained in the
final compressible solution. In general, they lie above the incompres-
sible ones, as required by the density term in the principal equation (5)
or (10).

Variation of velocity components. - The contour plots of the velo-
city components, the resultant velocity, and the velocity at the walls
(figs. 11 and 12) are seen to be of shapes similar to the incompres-
sible ones. Their magnitudes, however, are generally lower than the
incompressible ones and the difference increases toward the exit. This
lower value of the velocity is a combined result of the radially out-
ward shift of streamline position and the increase in density in the
impeller toward the exit.

Variation of total enthalpy. - The contours of total enthalpy
(fig. 13) again are similar to those obtained in the incompressible solu-
tion. The values are higher than those for the incompressible ones,
because a lower value of W, gives a larger change of the angular momen-

tum of the air from its inlet value at any point in the impeller.

Variation of static pressure. - For compressible flow, the ratio of
static pressure to inlet total pressure is directly obtained by raising
the corresponding density ratio to the 1.4 power. The shape of the con-
tours shown in figure 14 is similar to that shown in figure 8 for the
incompressible case. There is again a local drop of pressure along the
casing near z = 1.1 inches (fig. 15) due to the local rise in velocity.
This local drop in pressure can be avoided by increasing the casing
radius around that location.
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Variation of Mach number. - The contours of relative Mach number in
the impeller are shown in figure 16. "The curves are seen to be similar
to those of the resultant velocity. For the inlet absolute Mach number .
of 0.45, the maximum relative Mach number was found to be equal to 0.805
at the tip radius at the leading edge of the blade. The exit relative
Mach number varies from 0.70 to 0.50 from hub to tip, corresponding to
an absolute Mach number varying from 1.0 to 0.95.

Usefulness of Incompressible Solution

The similarity between the flow variations obtained for incompres-
sible and compressible flow makes the quickly obtainable incompressible
solution valuable in giving a good qualitative picture for the compres-
sible case.

COMPARTISON OF THEORETICAL AND EXPERIMENTAL VARIATION
OF STATIC PRESSURE ALONG CASING WALL

During the experimental investigation of the mixed-flow compressor, -
the static pressure along the casing was obtained for the original impel-
ler running at the speed and inlet condition used in the theoretical com-
pressible solution (without the modification of an impeller at the exit
as used in this calculation). The variation of pressure obtained for
two mass flows bridging the mass flow of the theoretical solution is shown
in figure 17. The theoretical variation obtained with the assumption
that B is equal to 1 everywhere is also shown in the figure. The
trends of variation of the two results is seen to be quite similar, and
the theoretical value is seen to be higher than the experimental value
for the same mass flow. This difference in magnitude 1is due partly to
the approximation that B 1is equal to 1 everywhere. Actually, the
value of B should increase from hub to casing in accordance with the
practically uniform blade thickness and the directly increasing circum-
ferential spacing. A more accurate solution of the present problem
would require at least three blade-to-blade solutions of flow along three
stream filaments of revolution from hub to casing (reference 3). For the
present, only an approximate correction of the variation in B 1is taken
at the casing as follows:

It is assumed that the values of ay/dr and aV/9z determined
with B equal to 1 everywhere are the same as those obtained with an
accurate variation of B, and that B is equal to (P-T)/P. The result
is also shown in figure 17. =
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This approximate thickness correction reduces the static pressure
at the casing less than it should because, as shown in figure 185
actually aw/ar is less for B = 1 everywhere than for a solution in
which a correct variation in B is included, for with a correct vari-
ation in B the streamline would shift toward the casing. This shift
results in a lesser increase in W and hence a lesser :drop in static
pressure toward the exact value. Another part of the difference between
the theoretical and experimental values is attributed to the neglect of
viscous effects in the theoretical solution.

CONCLUDING REMARKS

The results obtained in the present analysis indicate that the gen-
eral method developed for the solution of through flow in turbomachines
offers a useful tool for analyzing the mean flow through the mixed-flow
impeller, and that the general trend of compressible flow variations can
be determined by an incompressible solution, which is much easier to
obtain than the compressible solution.

The trend in the variation of static pressure along the casing
agrees well with the experimental data. The local drop in static pres-
sure along the casing at the end of the inducer section is attributed
to the reduction in the normal distance of the stream filament of revo-
lution at the casing, which is caused by the rise of hub radius in the
inducer section. This local static-pressure drop can be avoided by
increasing the casing radius near the location in question.

Iewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, January 20, 1952
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(An overlay of this fig. is enclosed

streamlines for compressible solutions.
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Resultant relative velocity, W/Ut,i
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Figure 12. - Variation of magnitude of resultant relative velocity along casing and hub walls for

compressible solution.
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