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SUMMARY

A method recently developed for determining the steady flow of a
nonviscous compressible fluid along a relative stream surface between
adjacent blades in a turbomachine was applied to investigate the sub-
sonic through flow in a single-stage axial-flow gas turbine. A free-
vortex type of variation in tangential velocity was prescribed along the
stream surface. Cylindrical bounding walls were specified in order to
avoid radial flow at the walls. The flow variations on the stream sur-
face for incompressible and compressible flows were obtained by using
the relaxation method with hand computation and the matrix method on both
an IBM Card Programmed Electronic Calculator and a UNIVAC.

In all solutions considered in this investigation, convergence was
obtained without difficulty. A comparison between the relaxation and
the matrix methods showed that more accurate results were obtained with
the matrix method in a shorter interval of time. The results of these
accurate calculations provide a basis for evaluation of simpler, more
approximate methods for computing subsonic through flow in turbines.

Considerable radial flow was obtained for both incompressible and
compressible flows because of the radial twist of the stream surface
required by the prescribed velocity diagram and the compressibility of
the gas; the radial twist of the stream surface and the compressibility
of the gas had equally important effects, and the nonlinear nature of
the equations defining the flow was quite evident. The shape of the
stream surface was found to be sensitive to the axial position of the
radial element of the stream surface in the stator. When the radial ele-
ment of the stream surface in the rotor was near the midaxial position in
the rotor, a large negative gradient of axial velocity was observed in
all cases ahead of the rotor.
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INTRODUCTION

In the design of gas turbines having relatively long blades in the
radial direction, a first approximation of the radial variation of the
state of the gas is commonly obtained by assuming the gas to be nonvis-
cous and to flow on cylindrical surfaces. Axial symmetry is assumed in
such one-dimensional solutions for the radial variation in the gas state
upstream and downstream of a blade row and they are usually referred to
as the "simple-radial-equilibrium" or “simplified-radial-equilibrium"
solutions (see references 1 and 2 for examples). Even turbines designed
from a free-vortex velocity diagram, however, have considerable radial
displacement of gas particles across the blade row due to the compressi-
bility of the gas; this displacement, of course, violates the assumption

of flow on cylindrical surfaces. The radial displacement of gas particles

across the blade row and the curvature in the streamline caused by the
radial motion have a significant effect on the radial variation in the
gas state (see reference 2).

Several through-flow methods have been developed to consider both
radial and axial variations in flow conditions (see, for example, refer-
ences 2 and 3). In these methods an infinite number of blades and a
nonviscous fluid are assumed. The interpretation of such a solution,
its modification for any finite number of thick blades, and its exten-
sion to a complete three-dimensional solution for nonviscous fluids are
given in reference 4. In actual turbines, the motion of the gas 1s
further complicated by the secondary flow caused by the boundary layers
along the hub and casing walls (for example, reference 5). Nevertheless,
it is believed that the detailed flow analysis based on an assumption of
a nonviscous gas will permit a clearer understanding of the individual
contributions to the complete flow and help to explain the development
of the viscous boundary layer along the walls.

The theoretical method of reference 4 for obtaining a complete
three-dimensional solution is based on an appropriate combination of a
number of mathematically two-dimensional flows on two kinds of relative
stream surface. The first kind of relative stream surface extends from
the suction surface of one blade to the pressure surface of the adjacent
blade and deviates, in general, from a surface of revolution about the
axis of the turbomachine; in reference 4 this surface is called S;. The

second kind of relative stream surface extends from hub to casing and
roughly approximates the shape of the mean camber surface of the blades;
in reference 4 this surface is called Sj,. The equations defining the

flow on these two kinds of stream surface are, however, similar and the
methods of successive approximation used in their solution are essen-
tially the same. The mechanics of obtaining a numerical solution of
either of these two-dimensional problems by the methods of reference 4
has not previously been investigated. If convergence of one of these
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two-dimensional solutions can be obtained without difficulty, the other
solution should then converge as well. The method of reference 4 will
then very likely be practical for analyzing three-dimensional flows of
compressible nonviscous fluids in turbomachines having finite numbers
of thick blades and arbitrary hub and casing shapes.

The 'primary objective of this investigation made at the NACA Lewis
laboratory is to study in detail the technique of solving for the sub-
sonic flow along a relative stream surface of the second kind (S5) by

using the methods of references 4 and 6. At the same time, of course,
the effects of compressibility and radial twist of the stream surface
are obtained; the examination of these effects therefore constitutes
the secondary purpose of this investigation. If highly accuragte solu-
tions can be obtained in this way, these solutions will provide a basis
for evaluation of other simpler but more approximate solutions for sub-
sonic through flow in turbines.

For these calculations, a single-stage axial-flow turbine was
selected as the magchine type to be analyzed. The annulus walls were
chosen to be cylindrical and to have a hub-tip radius ratio of 0.6.

The radial distribution of the tangential component of velocity was of
the free-vortex type. The turbine-work parameter wAH/Utz was 0.96
where -AH represents the stagnation-enthalpy drop and Ui, the blade-

tip speed. The tangential component of velocity at the rotor exit was
assigned equal to zero. For a compressible fluid, the assigned condi-
tions resulted in an absolute Mach number of 0.99 at the root and exit
of the stator and a relative Mach number of about 0.70 at the root and
entrance of the rotor. The effects of radial blade force were varied
by changing (1) the axial distribution of aerodynamic loading and

(2) the axial location of the radial element of the stream surfaces in
the stator.

The following three methods were employed in making the calcula-
tions:

(1) Relaxation method with the use of a hand-operated desk calcu-
lator

(2) Matrix method on an IBM Card Programmed Electronic Calculator
(3) Matrix method on a UNIVAC

The matrix factors obtained in the matrix solutions can be used for
similar calculations for compressors and turbines which have a constant
hub-tip radius ratio of 0.6.
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SYMBOLS

The following symbols are used in this report. (Bold symbols indi-
cate vectors on the stream surface; nonbold symbols indicate the compo-

nents of these vectors.)

a
B

m. 4
B
4 i

fol (LI ),
[al,[x],[ul

D
Dt

1,4,k

velocity of sound

variable defined by equation (2c)

differentiation coefficients in equation (26) used to
multiply function value at grid point: ijaitolglve mth
derivative at grid point 1 wusing polynomial of
fourth degree

square matrices

differentiation with respect to time following motion of
gas particle

vector having dimensions of force per unit mass of gas;
defined by equation (6)

total, or stagnation, enthalpy per unit mass of gas,
g L e UE
Z
enthalpy per unit mass of gas
grid points
Mach number

nonhomogeneous term of principal equation as given in
equation (5)

unit vector normal to stream surface
static pressure of gas

any dependent variable

gas constant

radial distance, r*ry
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Z

{2, A9

5,0,

w

Subscripts:

entropy per unit mass of gas, s*r
temperature of gas

time

velocity of blade at radius r
absolute gas velocity, V*Ut
relative gas velocity,uﬁUf

axial distance, z*ry

column matrices
ratio of specific heats, 1.33

grid spacing in r- and z-directions, respectively;

*
Tt 8zrt
mass density p‘p
¢ LS5
general variables used in density table
angular position
; * 2
stream function, ¥ pT,iUtrt

angular speed of blade

exii

hub

inlet

grid point

refers to position where stream surface has a radial ele-
ment or where F,. =0

radial component

total, or stagnation, state
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G tip

u tangential, or circumferential, component
Z axial componént

Superscripts:

igdsk s gridifpoints

* dimensionless value

EQUATIONS GOVERNING FLOW ON A RELATIVE STREAM SURFACE
BETWEEN TWO ADJACENT BLADES

The present report is concerned with the inverse solution (design
problem) for the steady compressible flow on a relative stream surface
about midway between two adjacent blades (see fig. 1). The shape of
this stream surface is not known in advance but the variation in tangen-
tial velocity of the gas and the position of the radial element of the
surface are prescribed in the design. The shape of the stream surface
as well as the state of the gas flowing along the surface is described
by the two independent variables r and z.

In reference 4, the following continuity equation for steady flow
on the stream surface is obtained:

a(rBoWy)  9(rBoW,)
or * 97

=0 (1)

In equation (l) the bold partial derivative sign denotes the rate of
change of the dependent variable on the stream surface with respect to
the independent variable and is related to the ordinary partial deriva-
tive with respect to the coordinates r, ®, and 2z as follows:

o (gt i KT o
ar " 3r " nyr v (8)
83g 9 o s
ot bt (p)

The angular variation of the variable is thus implicitly included
although its value can be calculated only after the shape of the stream
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surface is obtained in the solution. The variable B in equation (1)
is related to the angular variation of the gas velocities and the shape

of the stream surface by

v

B np M 1My ny 5Wz>

lnE= <nur S0 Fon nr 3P at (2¢)
+ -

Ak

This variable B can also be interpreted as a variable angular thick-
ness of a thin stream sheet whose mean surface is the stream surface
shown on figure 1 (reference 4). Because B along the mean stream sur-
face is very closely related to the ratio of circumferential channel
width to pitch (reference 7), it can be approximately estimated in the
design by considering desirable axial and radial variations in blade
thickness required to provide, for example, adequate strength and a
cooling passage of sufficient size; with these variations taken into
account, B can then be used in the design calculation of the mean
stream surface. For the limiting case of an infinite number of blades
of zero thickness, B becomes a constant and is taken equal to 1.

Equation (1) is the necessary and sufficient condition that a
stream function V¥ exists with

L g

3y = TBeW, (3)
3 - _rBow L
9z 3 ()

With the tangential velocity of the gas specified, the subsonic
flow of the gas is obtained by the solution of V¥ in the following
principal equation, which is obtained from the equation of motion in
the radial direction with the use of relations (3) and (4):

Q
0y
<

32

or

(5)

AV}

=
Rl
Q)IQ)
H s
12
J

Il
=

where

R BRI RL R SR B § T N

ar 32 .37 av/ar T ar or ar
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In equation (5), Fr 1is the radial component of a vector F, which is

defined as follows:

1 [oh Jds 1 dp
(BB R O

For the limiting case of an infinite number of blades, F becomes the
blade force. For the evaluation of Fp., which represents the influence

of the radial twist of the stream surface and of the circumferential
pressure gradient on the gas flow, the other components of F are
first computed by the equation of motion in the tangential and axial
directions:

e [_ﬂ?@;r?l?_(_vf_)] (7)

rBp 92 ar ar 9z

s Wy 8(Vyyr) o988 , 3V/8z | 3H 3(Vyr)
Rei et mea s e ol o SR o 8

1 ay {azx[r Ll coBy _1_[3ng) ay , 3(Bp) a_qTJ} (8)
o 2 Bpslingz 15 3z 9z

(er)Z 9z | ar2 ar 3z

The component F, 1is then obtained by the use of the following equa-
tion, which is derived from the integrability condition, which insures
that the stream surface to be obtained is a continuous integral sur-
Eaeen

3 (Fz
Al — e A ol =it i d gy 9
= = ar (th'> (®)

25

The radial derivative of entropy s 1in equation (5) is determined
from its radial distribution at the inlet and the following condition
of the constancy of s along a streamline on the stream surface for
reversible adiabatic flow:

Ds
=2 = 0) all
Dt ( O)
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The radial derivative of H in equation (5) is determined from the
inlet variation and the following equation:

D(v.xr)
DH u
el e e (11)

Equation (11) is obtained (reference 4) by the use of the equation of
motion on the stream surface and the following equation expressing the
orthogonal relation between the resultant relative velocity and the
surface normal n or its parallel vector F:

W F,. + WF, + W,F, =0 (12)

Because the three equations of motion have already been employed in the
solution, there is only one more independent relation in equations (11)
and (12). In the following, equation (11) is used and is considered to
represent the orthogonal relation (12).

The variation of density included in N in equation (5)_is deter-
mined from the y-derivatives by use of the following relation between
density, enthalpy, and entropy, between the local static condition and
the total condition at the inlet:

L
r-1

2 2
Y v
(rlf - (5«') +<_az> sh ;-5

Ppi tH1  2Hr® 2H; (rBp)2

PRESCRIBED DESIGN CONDITIONS

In the present study of the through flow in a gas turbine, the
effects of some of the design variables are considered. Cylindrical
bounding walls are specified in order to avoid radial flow at the
walls. The meridional section of the turbine is shown in figure 2.

A hub-tip radius ratio of 0.6 and a blade aspect ratio of 2.67 (which
is based on axial chord and corresponds to the blade-row aspect ratio
of 2 used in reference 2) are chosen in order to compare some of the
results with those previously obtained in\reference 2 by an approxi-
mate method.
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Flow conditions were computed for six sets of assigned conditions.
These sets of conditions are designated cases A, B, C, D, E, and F
and are summarized in the following table:

Case Fluid Loading | Axial location
distri- in stator of
bution radial element

of stream
surface
o
o
A Incompressible | Uniform 0.0675
B Incompressible | Nonuniform .0625
£ Compressible Nonuniform | (Fr neglected)
D Compressible Nonuniform .0625
E Compressible Nonuniform 0
F Compressible Nonuniform .1500

The prescribed variation of tangential velocity, or the angular
momentum per unit mass of gas Vur*, is such that at a constant-z plane,

Var* on the stream surface is constant with respect to r*; and at all

*

fixed values of r*, the variation of Vhr' on the stream surface with
*®

respect to z" is as shown in figure 3. Two kinds of variation with
respect to z* are considered. The dashed line shows a linear varia-
tion, and the solid line shows a composite variation in which a constant
rate is maintained for the first half of the blade chord and a rate
linearly decreasing to zero is used for the second half. These two var-
iations are called uniform and nonuniform loading, respectively. _In
both cases the total change of V,r divided by Upry (or -AH/U.Z)

across the blade row is 0.96, which is used in reference 2. The expres-
sions for the dimensionless specific angular momentum are as follows:

(a) Uniform loading

Stator: 0 2%s 0L15%

a(Vir*) 0.9

14
az* ORd5 ( )
* * 0.96

Vur = —'—0.15 Z* (15)
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Rotor: .20 € 2% <055,

avar®) 0.9
ORlS

az*

y*o¥ _ 0.96
>l i

(b) Nonuniform loading

(025515 2%)

Stator: 0 z" < 0.075,
K %
8("yr") 4 0.96
Y 3 0.15
* % _ 4 0.96 =
Vel e el
.075'S 2% <0.15¢
L %
3(Vyr™) 8 0.96 (} z* >
52 3 0.15 0.15
var* = - 0.32 + £ X 0.9 [% 2
Rotor: 0.20< z* <0.275,
*
a(var®) _  40.08
az"‘ 30035
Vork =10:88 « S/0-E0 o8 Sin.8)
2 0e15
Q275 < =* £ 0.55,
*..%
a(Vir*) g 0.9 it i b 2
s R T 0.15

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

; “_> {25)
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* % 4 7t z*- 0.2
ek e 2R eia X600 4l '< 0.15 > (25)

For a given axial distribution of tangential velocity, a change in
the axial location of the radial element of the stream surface will
alter the radial and axial distributions of both axial and radial velo-
cities and thereby change the shape of the stream surface. In the
rotor, the axial location of the radial element of the relative stream
surface is 45 percent of the axial blade chord from the leading edge

(zg = 0.2675) for case A and 41.7 percent (zg = 0.2625) for cases B,
D s and B

2402

With this prescribed axial variation in V,;r, the radial deriva-

tive of Vyr contained in the equations given in the preceding sec-

tion drops out. Also, for the present investigation, the inlet flow
is considered to be uniform in entropy and total enthalpy. Then, for
adiabatic frictionless flow, the radial and axial derivatives of s
vanish. The radial derivative of H also vanishes for the specified
inlet condition and Vyr.

For the present investigation, B is taken to be a constant (a 4
value of 1 is used in the calculation). In a sense, the solutions
thus obtained do not depend on any particular blade configurations.
But the solution is correct only for those bladings whose geometrical G
configuration is such that the angular thickness of the mean stream
sheet is essentially constant. It also gives the limiting solution
for an infinite number of infinitely thin blades. To interpret the
results obtained as this limiting solution, the prescribed variation
of V,r corresponds exactly to the free-vortex type with d(vyr)/or

equal to zero. For the general interpretation of the results obtained
as the solution for the flow along a mean stream surface (subject to
the assumed constant value of B), the prescribed condition that
a(Vyr)/ar be equal to zero does not give d(Vyr)/or equal to zero.

The inlet flow of the turbine example given in reference 2 is
used in the present investigation and is as follows:

Vi

vt = U—l— = 0.650
%

M. = 0.308
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For this Mach number,

o,
A S 5.85055
i pT,i
* Hy
H; = —5 = 12.546
Uy

METHOD OF SOLUTION

The principal equation to be solved is equation (5). This partial
differential equation is first replaced by a number of finite-difference
equations representing the differential equation at a number of grid
points covering the domain. Because of the nonlinear nature of the
problem, these equations are solved by the general method of successive
approximations. In each cycle of calculation, the nonhomogeneous
term N is evaluated by employing any appropriate approximate solution
at the start and by using equations (7) to (11) and equation (13)
together with the flow variation obtained in the preceding cycle; the
results are then taken as given values in the solution of ¢ in the
following cycle. The solution of ¥ from the finite-difference form
of the principal equation is obtained by the relaxation method (refer-
ence 8) in the modified form as given in reference 6 and by the matrix
method discussed in reference 6. The accuracy of the solution depends
on the accuracy of the finite-difference representation of the partial
differential equation, the size of the residual left in the solution
of V¥, and the number of cycles completed for convergence.

Choice of Grid System and Degree of Polynomial Representation

In these calculations, a single grid size was used for both the
relaxation and the matrix calculations. The results of reference 2
were useful in selection of the grid size. From the results obtained
in reference 2, the stream function V¥ 1is expected to increase
smoothly with respect to radius at constant-z planes and to vary
approximately as a sine curve with respect to 2z at constant r-values.
With the necessity of covering a large domain in order to satisfy the
boundary conditions given far upstream of the stator and far downstream
of the rotor, and with such a smooth variation of ¥ over the domain,
the use of a fourth-degree polynomial representation rather than of the
usual second-degree one is suggested so that the number of grid points
may be reduced. From experience gained while obtaining relaxation
solutions, a final grid size of 0.05 ri 1in the radial direction and
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0.025 rt 1in the axial direction in the meridional plane are used

(fig. 4). These grid points on the meridional plane are for neferencer
or recording, purposes only. The variables involved in the solution
are those on the stream surface (fig. 4).

The use of this grid size gives seven radial and axial stations
on the stream surface between the hub and the casing and across each
blade row. With the present variation of ¥ in the radial direction,
sufficiently accurate results are expected for radial derivatives. The
accuracy of the axial derivatives is analyzed for a simple sinusoidal
variation in the axial direction with a period of 20 &5, and the fourth-
degree polynomial representation is found to give first- and second-
order derivatives accurate to within 0.02 percent.

For simplicity (in order to give a uniform formula in the
z-direction), the same grid size in the z-direction is used for the
entire domain. It is found in the relaxation solution that the radial
distribution of V¥ had no axial variation in the first five signifi-
cant figures after eight of these z-stations either upstream of the
stator or downstream of the rotor. The matrix factors for matrix solu-
tions therefore cover a range of z%* varying from -0.5 to 0.85, which
includes 10 stations each way upstream of the stator and downstream of
the rotor. | The order of matrices: 'is thus ' 7X55 = 385, which is!alise
the total number of interior grid points.

At the first and the last z-stations and a few stations nearby,
sufficiently accurate z-derivatives can be obtained by the use of a
three-point differentiation formula. For simplicity in setting up the
matrix factorization, however, the same central-point fourth-degree
differentiation formulas are used for the entire domain. The use of
these formulas means that the same boundary values of V¥ are used for
the two stations outside the first (z* = - 0.5) and the last (z* = 0.85)
z-stations.

Finite-Difference Form of Principal Equation

With the grid sizes of 0.05 and 0.025 chosen for 6; and 6;,

respectively, the differentiation coefficients for the first- and the
second-order derivatives are computed. If these coefficients at grid

pelnt LitEare Sdenoteds by iBE and ZBE, respectively, the finite-

difference form of the principal equation at any grid point i becomes

AH0,2
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4 4
2<?§-iiBi.>wj+;)ZBiwk=Ni (26)

j=0 ri 4 J

where Wj and Wk denote the values of V¥ on the stream surface
corresponding to the grid points along constant-z and constant-r lines
on the meridional plane, respectively (fig. 4y

Calculation of Boundary Values of
The value of ¥ along the hub is chosen to be zero. The value of
a dimensionless V¥ along the casing is chosen as follows: At sta-
tion i-i, with the use of equation (3),

T

A

V) gy
= or J; i

% ¥t e

Wt 5 U r 2 Uy e 2
T P Ve X4
rtz'rhz
Biel Vo i a5

aV] R

* *
5 By Py V;,i (1-717)
Pp,i Uy Ty

For B; equal:to 1 and the chosen values of p; and V; i
2

Vi = 0.19767

which is a constant along the intersecting curve of the stream surface
and the casing.

At the inlet station i-i, which is one &y-distance upstream of
the first station (z* = -0.5), and the exit station e-e, which is one
8z-distance downstream of the last station (z* = 0.85) (see fig. 2),
the radial distribution of ¥* is computed as follows:

AR :
v (r) = v* (r) = 0.19767 SGuh (27)
i A 1e Sy N
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This simple variation results from the fact that with no tengential and
radial velocities of the gas and with uniform values in H and s, the
axial velocity and density are also uniform at both these stations.
This radial variation in ¥ is maintained constant from cycle to cycle
and the problem is therefore treated as a boundary-value problem of the
first kind.

If the nonhomogeneous term N is everywhere equal to zero, the
differential equation (5) would be satisfied by the y-function as given
by equation (27), which means that the gas flows on cylindrical sur-
faces. The present problem is then essentially to determine the change
of ¥ from this simple distribution due to a certain distribution of
N in the domain resulting from the nonzero values of density deriva-
tives and Fr.

Calculation of Nonhomogeneous Term

Calculation of density by the use of general table. - The defini-
tion of N in the principal equation (5) shows N to consist of two
terms for the present investigation. One is connected with the com-
pressibility of the gas, and the other, with the tangential pressure
gradient of the gas and the radial twist of the stream surface. The
first term in N vanishes for incompressible flow, and its evaluation
for compressible Tlow is as follows:

In each cycle of computation starting with a given variation of
¥, its derivatives with respect to r and =z are first obtained by
numerical differentiation. These derivatives are squared, added, and
used in the following formula to obtain a function d

_x#l
* 2 * 2 2l V*Z Y_l
T i e B

The last two factors in the right side of the preceding equation are
obtained from the given inlet condition and equation (ll). From the
value of ¢ , a value of X is read from table I(b) given in refer-
ence 4 (with y = 4/3), and p* is obtained by

th Y-l
o*=<H e > ) (29)

Hs ~ om*
at 2Hi

2402
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After p* 1is evaluated, its derivatives are computed and combined
with the Y-derivatives to form the first term in N.

Calculation of F, by equation (9) and gpproximate formulas. -
The second term in N involves the use of p and Jy/dr Dbased on
the new values of ¥ 1in each cycle and the evaluation of Fp in the
cycle. In order to evaluate Fr, equations (7) to (9) are used. The
computation of F,r by equation (7) is relatively simple (the second
term drops out for the present problem). For the computation of ¥y,

of equation (8), the last factor of the last term

n i e

oy 8%y 1(2p 3%  3pay
ar az2 p\or ar = Iz 9%

[8_1

2
ar2

is available in the solution by the relaxation method because it is
involved in the computation of the residual. In the matrix solution,
however, this factor is not available. In such a case, the last term
is replaced by the following expression through the use of equation (1):

oV /3z
awéar Br

in which the value of Fr of the previous cycle is used. After Fy
is computed, it is divided by Fyr and differentiated with respect to
Z»  -With Z, chosen between two grid points, the formula given in

reference 9 is used for the integration to determine Fp.
The following approximate expression for F, is obtained from

equations (7) to (9) by assuming aw/ar constant and neglecting small
terms:

(vyr) dz (30)

When equations (14) to (25) are substituted into the preceding
equation, the following expressions for dimensionless F, are obtained:
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(a) Uniform loading

2 (0.96\2 Z*-z¥
s . _ . (0]
Stator: Ppe= %3 <O.15> 2 (31)
Rotor: F* = - _2, (0.98)% 6:35 {a¥0.2) -":-z;ql-z—z- (32)
§ r: o WSS : i 2
(b) Nonuniform loading
Stator: 0 '€ z%<.0.075,
g W _ *2
§* . 2 £0.96 | 40.9 o (33)
r 45 80,15 |3 0:15 2
(075 < 7*.<0: 15,
*
i 8096, mt é09600752’22>
¥ W5 3015\ 015 5 0.15 2 2
* 4 0.96 *0 %
0.32 (z -o.o75)+3———0.15 (z*°-0:075% )2
1 B8 0 015 (34)
9 0:15
Rotor': Orar s i < 0.275,
g2 4098
. S WA e e L A AV RS
FY = 53015 [O.96(z g
aip g (270 2)2—(28-0-2)2J o
8018 2

0275 ‘Sz = 0,35,

2492




2442

NACA TN 2750 19

0.15

%
(1- Z '0-2> {0.96(0.275 =gy

2 * 2
0.96 0.075 —(ZO-O.Z)
015 2

+1.28 (z*-z8) -

4 0.9 * 2 2
Z 015 [(z -0.2)¢ - (0.075)

gz*-o.2)3-0.0753]} (36)

3X0.15

Solution of Principal Equation by Relaxation Method

Computation of the residual. - After the nonhomogeneous term N1
is obtained at each grid point, it is subtracted from the left side of
equation (26). The difference obtained is the residual at the grid
podnt: 1.

Reduction of residuals. - The coefficients used tc relax residuals
(relaxation pattern) are obtained according to the five-point first-
and second-order differentiation coefficients in the left side of equa-
tion (26). These coefficients for a 0.00001 change in the w-value at
the grid point are given in table I. These and similar coefficients
for other values of change in V¥ listed on cards were found to be con-
venient in calculation. As a combination of checking and time saving,
it is found convenient to relax a given set of residuals by using only
the central three or five major coefficients at first and, when the
residual is small enough, to compute for the total changes in ¥ made
at each grid point the correct resultant residual everywhere, and then
to relax the residuals further with all coefficients. The technique of
overrelaxing or underrelaxing and line-relaxing is very helpful. In
most cases, the relaxation of 385 points (most relaxation is done in
the blade region) is completed within 16 hours by hand computation.

The greater portion of work for the present problem is obtaining the
residuals, which takes about 40 and 60 hours, by hand computation, for
the incompressible and the compressible solutions, respectively. In
some of the later relaxation solutions obtained herein, this work of
computation of residual is done on the IBM 604 Calculating Punch

and an IBM Card Programmed Electronic Calculator (hereinafter called
CPEC), except the computation of F., which is more difficult to set

up. In this way, the calculation of residuals for the compressible
flow problem takes about 8 hours of machine time and a few hours of
hand computation for Fp.
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Solution of Principal Equation by Matrix Method

The 385 simultaneous algebraic equations (26) for the 385 interior
grid points can be written in a compact matrix form by denoting the com-
bined coefficients of {J's and vE's in equation (26) at the point ® i

by C% and denoting the sum of N1 and the product of the known boun-
dary W-values and their corresponding coefficients by ol:

ci’; ¥ = ot or [C] {xy} £ {a,} (37)

The matrix [C] is shown in figure 5 in terms of submatrices [E], [F],

and Di]. Because there are seven interior grid points in the radial
direction, these submatrices are of the order seven, and because of
the cylindrical walls and the use of uniform spacing and the same dif-
ferentiation formula, they repeat regularly along the diagonal of [C].
A1l the other submatrices are zero. The elements of [E]|,[F],[G] are
given in figure 6 in terms of the grid spacings 6; and 8;. In [F]
and [G] there are nonzero elements only on the diagonal. With the
use of 6; and 8; equal to 0.05 and 0.025, respectively, in order to
get the elements of the matrices in short round numbers, the following
multiplications are made:

Row of [C] Value | Multipli-

of r*| cation

factor

15 U8 i 5N L e SO 0.95 0 .57
2 O iiliE R S S8 0) .90 S04
Byl 0 AR H RS B! .85 sl
& -0 A8 e OBE .80 .48
S AR NCL T B <15 A5
By i B0 POk BTS84 .70 42
Ty ChAO 2 i S R 3ED 265 .39

The resultant submatrices are shown in figure 7. The same row multi-

pliers are also applied to the elements of {é} before solving for {W>.

In the solution of equation (37), because of the aforementioned

special nature of [C], it is best to factor [C] dinto two triangular

matrices which also have not more than 15 nonzero elements in a row
running alongside the diagonal (references 6, and 10 to 13) .. Thus
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(c] = [1] [u] (382)

wWhere [u] has elements which are unity along the diagonal, and equa-
tion (37) becomes

[L1[u) (% = {o} (38b)

The solution of {W} is then obtained by forward and backward substi-
tution processes as follows: Let

{8} = [ul {¥} (39)
Then

(L] {8 = {«} (40)
Solve {B} from equation (40) and then {w} from equation (39).

This matrix solution for the present investigation was made on an
IBM CPEC and on a UNIVAC. Nine digits are used on the CPEC and eleven
digits on the UNIVAC. At no place in the domain do the results
obtained for (¥} differ by more than 5 in the sixth digit.

After the solution of {W} is obtained in each cycle, it is sub-
stituted into equation (37) for an over-all check. The residual found
at any interior grid point is less than 1 in the eighth digit. Thus,
the residual at every interior grid point as found in each cycle of
calculation is reduced to practically zero with reference to the accu-
racy of the grid size chosen. A comparison between the relaxation and
the matrix methods showed that more accurate results were obtained
with the matrix method in a smaller amount of total man- and machine-

hours.

RESULTS AND DISCUSSION
Incompressible Solutions

For adiabatic flow of a nonviscous gas with uniform s and H at
the inlet, the deviation of gas flow from that on cylindrical surfaces
in the incompressible case is due entirely to the term containing Fr
in equation (5). In order to study this effect, solutions are obtained
for the two types of loading as given by equations (14) to (21). The
one with uniform loading is designated case A, and the one with non-
uniform loading, case B.
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Convergence of solution. - Similar approaches are used in obtaining
the solution for both cases. The calculation for case A is started with
an assumption of straight cylindrical flow and successively corrected
until the solution converges. The calculation for case B is started
from an approximate solution of case A. The initial calculations in
both cases are made by the relaxation method with 8 = (6l Zuarst

= 0.025. The values 8r = 0.05 and SZ = 0.025 are used in later
calculations. In each cycle, the y-values are difficult to improve
beyond the fifth decimal place.

The final relaxation solution is further improved by the matrix
method. The Yy-values obtained in each matrix solution are resubstituted
into equation (26) and the residuals calculated at any point are found to
be less than 1 in the eighth decimal place. In the fourth matrix solution
all values are sufficiently converged for the grid size and differentia-
tion formula chosen. As an indication of convergence of the solution,
the successive values of V¥ at the mean radius ™ = 0.8 in the matrix
solutions of case B are shown in table II. The change in ¥* in the
last cycle is less than 3 in the fifth significant figure or less than
0.003 percent. The varlatlons of V*, avy*/ar®, av*/oz¥, R oS
and N* at two points z%=0.10 and 0.25 at the same radlus
obtained in the matrix solutions as well as the last three relaxation
solutions are shown in table ITII. All results given in the following
paragraphs are based on the last matrix solution and are the values on
the mean stream surface as indicated in figure 4.

Variation of F components and shape of streamline. - The calcula-
tion is first started by using F, determined by the approximate for-

mula (30). It was later refined by using equations (7) to (9). The
variations of Fur* and F; with z* at several radii are shown in

figures 8(a) and 8(b), respectively. The variation of Fir¥*

similar to that of a(Vir*)/3z* shown in figure 3, being modified
only by the variation in V;.

is very

The final values of F?

ure 8(c). The starting values determined by the approximate for-
mulas (31) to (36) are also shown in the same figure and are seen to
give reasonably good approximate values. The magnitude of Fr is seen

to be of the order of a quarter of F, (figs. 8(a) and 8(c)). This
large value of F, is due to a combination of the large deflection of

at the same radil are shown in fig-

the gas in passing the turbine blading and the large radial twist of the
stream surface of this type of velocity diagram and influences the flow
distributions significantly.

20%2
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Because of this Fr-distribution, the nonhomogeneous term N in
equation (5) or (26) is positive upstream of the radial element in the
stator and downstream of the radial element in the rotor and is negative
between them. The term N also increases in magnitude toward the hub.
This distribution of N requires a general increase in V¥ at any point
inside the blade row from its inlet value at the same radius and results
in a streamline shape as shown in figure 9. In both cases A and B, the
gas flows radially inward in the stator and outward in the rotor. The
difference between the two cases is rather small.

Variation of radial and axial velocities. - The variation of radial
velocity with respect to z at several radii is shown in figure 10(a).
In both cases A and B, this velocity has a minimum and a maximum about
in the middle of the stator and the rotor, respectively. It is practi-
cally zero about 1 axial chord upstream and downstream. The radial loca-
tion of the largest radial velocity occurs around r¥* = 0.75.

The variation of axial velocity at five radii is shown in fig-
ure 10(b). Its deviation from the inlet value is rather large along
the casing and the hub, especially in the space between the two blade -
rows.

Condition in plane normal to turbine axis and between stator and
rotor. - In a plane normal to the turbine axis and between the stator
and the rotor, the axial velocity is seen to decrease with an increase
in the radius (fig. 10(b)). For radially uniform H and s, the equa-
tion of motion in the radial direction is

3V, av,

% 8w ir

Because Fr 1is zero in the space between the stator and the rotor
(fig. 8(c)), the radial velocity must decrease with an increase in z
in order to satisfy this equation. This negative slope in V, with
respect to z 1is clearly shown in case B by the values of radial
velocity obtained at the regular grid points at z*= QL5 O 5

and 0.20 (fig. 10(a)). For case A, where V, is nearly equal to zero
around z* = 0.15, this negative slope is apparent after the values

GE V. at z% = 0.1625 and 0.1875 are computed by using the three-

point differentiation formula and the values of V¥ at the regular grid
points.

It may be noted that this oscillatory variation of velocities in
the space between the stator and the rotor is entirely due to the speci-
fied variation of V¥ 1in that space. Because VX 18 specifiled to
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be constant in that space (fig. 4), Fy and F,. on the stream surface

are equal to zero in that space according to equations (7) and (9).
These values are approached when the number of blades of the stator and
rotor approaches infinity. In the actual case of a stream surface
between two adjacent blades a finite distance apart, the streamlines
turn for a short distance both upstream and downstream of the stator
and the rotor (see, for example, reference 7), and consequently, both
F,. and the velocities would vary smoothly in the space between the

stator and the rotor.

Contours of constant velocity. - A contour plot of constant values
of absolute velocity in the stator and relative velocity in the rotor
for case B is given in figure 11. The maximum velocities leaving the
stator and entering the rotor are, respectively, 1.77 and 1.25 times
the rotor tip speed.

Compressible Solution Neglecting F

A compressible solution for an inlet Mach number of 0.308 is first
obtained by neglecting F, in the principal equation (case C). This
solution is found in order to see the effect of the compressibility
term in equation (5) alone and to see the error involved in neglecting
Fr for compressible flow. Nonuniform loading is used.

The deviation of flow in this solution from cylindrical flow is
due to the density term in N, which is mainly determined by the product
(Bazy
dr ar
the rotor requires a general decrease in V¥ at any point inside the
stator and the rotor from its inlet value at the same radius, thereby
resulting in a streamline shape as shown in figure 12.

) . This generally positive value of N inside the stator and

In this solution, the starting values for the relaxation solution
are obtained by using the values for the gas state at z*= 0.175
obtained in reference 2 and by assuming that the streamline shape varies
as a simple sine curve in the meridional plane. The solutions converged
quickly. The successive values of ¥*, ay*/ar*, ay*/az*, p*, and N*
at r* = 0.8 obtained in the matrix and relaxation solutions are given
in tables IV and V. The change in ¥* in the last cycle is less than
2 in the fifth significant figure or about 0.002 percent.

The variations of V;, V;, and p* at several radii obtained in

the final matrix solution are shown for case C in figures 13{(a), 13(b),
and 14, respectively (the curves in those figures for cases D and E
will be discussed in the following section). Because of the decrease
in density across the turbine, the axial velocity rises to a higher
value downstream of the rotor (fig. 13(b)).
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Compressible Solutions Including F,

Solutions are next obtained for compressible flow by considering
simultaneously the effects of compressibility and of Fr. As in case C,

nonuniform loading is used. Three axial positions of the radial ele-
ment of the stream surface in the stator (zg = 0.0625, 0, and 0.15 for

cases D, E, and F, respectively; see fig. 15) are considered in order

to investigate the possibility of minimizing the effect of radial flow
by the choice of this position. (Conceivably, the stream surface within
the stator may have no radial element, its inclination with respect to

a radial line being arbitrarily chosen to produce a certain desired
effect.) Because of the very large value of F, and the accompanying

large radial flow, the solution for case F was stopped at an early
stage, and only the value of F,r obtained in the early relaxation solu-
tion and that obtained by the approximate formula (30) are given. The
other two cases were carried further by the relaxation method and
checked by two to three matrix cycles. Although the solutions are not
so far converged as those in cases A, B, and C, they are accurate enough
for ordinary purposes. The successive values of ¥ and other pertinent
variables at a number of typical points for case D are given in

tables VI and VII in a manner similar to that for cases B and C.

Nonlinearity of compressible solution. - In the calculation of
case D, the values of the later relaxation solutions of case C were used
as starting values. The results soon made clear, however, that gquicker
convergence would have been obtained if the calculation had been started
from cylindrical flow. Because of the nonlinear nature of the principal
equation, the complete solution for compressible flow for case D cannot
be estimated from the solutions obtained in cases B and C. For the two
contributions in the nonhomogeneous term N, the first term due to com-
pressibility remains about the same as that in case C, but the second
term, containing F, and p, is greatly changed because of the change
in density. The distribution of the resultant values of N (and con-
sequently the W-distribution) is therefore quite different from that
in case B or C or that obtained by directly combining the N-values in
the two cases.

Variation of F components. - The variations of F,r, F,, and F.

are plotted as before in figures 16(a), 16(b), and 16(c), respectively.
The variations of Fyr and Fy are similar to those in case B, which

has the same type of loading.

A comparison of the Fr-distribution in the stator for the three

values of ZS chosen shows that alining the stream surface at the

stator exit (zg = 0.15) causes very large-negative values of F, in
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the stator, which will produce large amounts of radial flow. For
dg = 0.0625, F,. is negative for the first portion and positive for the

second portion. For z% = 0, Fr 1s positive everywhere in the stator.
The approximate formula (30) for Fr still compared very well with the
final values.

Shape of streamline. - The meridional projection of the streamlines
obtatned for cases D and E is shown in figure 17. In case D, the gas
flows radially outward and then inward in the stator, whereas in case E
the gas flows radially inward and then outward in the stator. The
streamline in case D deviates from a cylindrical surface more than that
in case E at the leading edge of the stator but less at the leading edge
of the rotor.

2402

Variation of velocities and density. - The variations of Vi and

Vy; in cases D and E at several radii are shown in figure 13. The radial

velocities in these cases are of about the same order of magnitude as
the velocity in case C but have more complicated shapes (fig. 13(3)).
Figure 13(b) shows that there are significant differences between the
values Vy of the three cases C, D, and E, especially at the casing
and the hub. These differences are due almost entirely to the different
shapes in the streamlines because the differences in density among the
three cases are very small (fig. 14).

Contour plots of static pressure and Mach number. - Because of the
low value of the hub-tip radius ratio, there is an over-all static-
pressure rise across the rotor for values of r* below 0.7 (fig. 18).

An even greater static-pressure rise accompanied by a subsequent reexpan-
sion to the exit pressure occurs within the rotor-blade row; this
increase in pressure rise is a result of the flow-area increase associ-
ated with the assumption that B is equal to 1.

The contours of constant Mach number (absolute Mach number in
stator and relative Mach number in rotor) of cases D and E are shown in
figure 19. The maximum Mach numbers at the stator exit are 0.982 and
0.993 for cases D and E, respectively. If the effects of radial flow
are completely ignored (simplified radial equilibrium), the maximum
Mach number at the stator exit is only 0.927.

Radial variation of axial velocity ahead of rotor. - In the
simplified-radial-equilibrium calculation, the axial velocity does not
vary radially for free-vortex-type blading. The present solutions
show, however, that there is considerable radial variation in axial
velocity for both incompressible and compressible flows. An error in 4
the axial velocity of the gas entering a blade row produces an error in
Mach number and angle of attack, and thereby the range of efficient
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operation is reduced. The radial variation of axial velocity ahead of
the rotor (at z* = 0.175) is plotted for cases A to E in figure 20 in
which the variation obtained in reference 2 is also plotted for com-
parison. In all cases except simplified radial equilibrium, the axial
velocity decreases with an increase in radius, and the rate of decrease
is greatest at the hub. The effect of moving the radial element of the
stream surface in the stator from the stator entrance (case E) to the
midaxial position in the stator (case D) was to decrease the radial
gradient in axial velocity at the rotor entrance. The approximate solu-
tion of reference 2 is very close to the solution of case D.

For incompressible flow, this variation is due to the shapes of
the streamlines (fig. 9), as influenced by the Fr-distributions
(fig. 8(c)), whereas for the compressible flow this variation is due
mainly to the increasingly larger drop in density across the stator
toward the hub.

SUMMARY OF RESULTS

A method recently developed for determining the steady flow of a
nonviscous compressible fluid along a relative stream surface between
adjacent blades in a turbomachine was applied to investigate the sub-
sonic through flow in a single-stage axial-flow gas turbine. A free-
vortex type of variation in tangential velocity was prescribed along
the stream surface. Cylindrical bounding walls were specified in order
to avoid radial flow at the walls. The flow variations on the stream
surface for incompressible and compressible flows were obtained by using
the relaxation method with hand computation and the matrix method on
both an IBM Card Programmed Electronic Calculator and a UNIVAC.

In all solutions considered in the present investigation, conver-
gence was obtained without difficulty. A comparison between the relax-
ation and the matrix methods showed that more accurate results were
obtained with the matrix method in a shorter interval of time. The
results of these highly accurate through-flow calculations form a basis
for evaluation of simpler but less accurate methods.

For incompressible flow, considerable radial flow was obtained
because of the circumferential pressure gradient of the gas and the
radial twist of the stream surface. The gas flowed radially inward in
the stator and radially outward in the rotor. This radial flow resulted
in a large negative radial gradient of axial velocity in the space
between the stator- and rotor-blade rows.

For compressible flow, the compressibility of the gas and the
radial twist of the stream surface had equally important effects on




28 NACA TN 2750

the flow distribution and the nonlinear behavior of the principal equa-
tion defining the flow was quite evident. The shape, or twist, of the
stream surface and thus the amount of radial flow were sensitive to the
axial location of the radial element of the stream surface in the stator.
The largest radial flow occurred when this radial element was located at
the exit of the stator. The effect of moving the radial element of the
stream surface in the stator from the stator entrance to the midaxial
position in the stator was to increase the deviation from cylindrical
flow ahead of the stator and to reduce the deviation ahead of the rotor;
the radial gradient in axial velocity at the rotor entrance was
decreased. When the radial element of the stream surface in the rotor
was near the midaxial position in the rotor, a large negative gradient
of axial velocity was observed in all cases ahead of the rotor.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, April 18, 1952
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TABLE I - RELAXATION COEFFICIENTS

NACA TN 2750

rl For 0.00001 change of V¥ at grid point (ri,zl),
T change residual at (r,z) by
) z
rt i . i i il
2 = a0, | TF = By Z 25 O onlh BTN saG
0.95 0.95 | -0.00133 | 0.02133 | -0.04684 | 0.02133 | -0.00133
e 20 .00519
285 -.00031
095 0.00232
0L90 <90 1" -0300155 10021535 -.05000 | 0.02133 | -0.00133
EE s .00518
.80 -.00031
©.95 Q001235
«90 .00548
0.85 <85 =0, 0013511002135 -.05000 | 0.02133 | -0.00133
.80 .00517
o5 -.00031
0.95 ~-0.00032
<20 -.00035
« 85 . 00549
0.80 < B0N[E-0, 00133 10502133 -.06000 | 0.02133 | -0.00133
1) .00516
4740, -.00031
09 -.00036
0.85 -0.00035
5ts(0) .00550
Q.15 « [5 =0, 0015505021535 -.05000 | 0.02133 | -0.00133
ST40) .00514
2695 .00149
0.80 ~-0.00035
SHES - 0055
(D)5 740) S0 "=0L00155 1002155 =.05000 | 0.02133 | -0.001353
265 .00154
015745 -0.00036
o 148 .00552
065 <657 =0,00155 100721355 -.04641 | 0.02133 | -0.00133

=
[P SRS

il
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TABLE II - SUCCESSIVE VALUES OF V IN MATRIX SOLUTIONS AT
r* = 0.8 FOR CASE B

z* Starting Matrix solutions
value
First Second Third Fourth
CPEC UNIVAC

-0.500| 0.08648 0.086479 |0.086478 |0.086478 | 0.086478 | 0.086478
-.400 .08648 .086475 .086468 .086468 .086468 .086468
-.300 .08648 .086468 .086450 .086450 .0864.49 .086449
-.200 .08646 .086448 .086415 .086415 .086413 .086412
-.100 .08639 .086395 .086354 . 086354 .086350 .086349
-.050 . 08636 .086371 .086330 .086330 .086324 . 086322
-.025 . 08638 .086382 .086333 .086333 «0B63Z7 .086325
0 .08647 .086437 .086381 .086381 .086374 .086372
<025 .08695 .086879 .086811 .086811 .086805 .086803
.050 = 08775 .087673 .087591 <O87591 .087587 .087585
50} 45 .08882 .088650 .088550 . 088550 .088550 .088547
. 100 . 08976 .089536 .089415 .089415 .089419 .089416
N25 .09042 .090145 .089996 .089996 .090005 .090002
k50 .09086 .090522 .090338 .090338 < 0903552 +090551
Salyes « 09139 -090972 .090746 . 090746 .090769 .090769
.200 .09187 .091458 .091187 .091187 091220 091221
5 vayats) 109152 091119 .090809 .090810 .090834 .090835
52e10) .09073 < 0303536 .089989 .089989 .090004 .090007
oD .08982 .082464 .089109 .089107 .089106 .089108
.300 .08908 .088756 .088414 .088414 .088398 .088400
Y] .08858 .088284 .087960 .087960 .087942 .087944
SE1510) .08824 .087981 .087677 .087677 .087666 .087668
SRS . 08794 .087728 .087454 .087454 .087449 .087450
.400 .08765 087515 087213 087273 .087272 « 081275
.450 + 08723 +087185 .087008 .087008 .087010 <OBTOLL
S950) .08676 .086800 .086716 .086716 .086718 .086718
<650 . 08656 .086622 .086584 . 086584 .086585 .086585
4180 .08649 .086537 .086522 .086522 .086522 .086522
.850 .08648 .086489 .086486 .086486 .086486 .086486

3l
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TABLE III - SUCCESSIVE VALUES OF 1V, %%, %%, Fyrs Fps F,, AND N
AT r* = 0.8 FOR CASE B S NACA,
* »
7% i Bolutlon . | B} [ .87 v S%, g%, 2% o F¥ N*
0.10 | Relaxation |0.10 |0.025 | 0.08987 |0.49248 | 0.03500 | 3.6851 | -7.2194 | 0.49755 | 0.58395
.10 | .025| .08982 .49101 | .03563 | 3.6741 |-7.2313 | .50430 | .59364
.05 | .025| .08976 .49217 | .03238 | 3.6828 |-7.2353 | .51134 | .60051
2(.08975)

Matrix .05 | .025| .0895364 | .49377 | .03050 | 3.6948 | -7.2374 | .51534 | .60325
.05 | .025| .0894151 | .49266 | .02940 | 3.6865 |-7.2386 | .51757 | .60723
.05 | .025| .0894189 | .49270 | .02959 | 3.6867 |-7.2380 | .51589 | .60521

.05 | .025| .0894185 | .49269 | .02959
0.25 | Relaxation |0.10 |0.025 | 0.09122 |0.48654 |-0.03647 | -5.4610 | -1.4682 |-0.19868 | 0.23604
.10 | .025 | .09098 .49268 | -.03647 | -5.5230 | -1.4432 | -.20870 | .24484
7 .05 | .025| .09073 .49292 | -.03603 | -5.5327 | -1.4453 | -.20328 | .23837

(.09064)

Matrix .05 | .025| .0903360 | .49648 | -.03527 | -5.5726 |-1.4367 | -.20638 | .24837
.05 | .025| .0899893 | .49191 | -.03599 | -5.5213 |-1.4371 | -.20682 | .24302
.05 | .025| .0900044 | .49235 | -.03667 | -5.5263 |-1.4376 | -.20674 | .24271

.05 | .025 | .0900065 | .49243 | -.03665

@Improved value by relaxation method and directly comparable
method.

to next value obtained by matrix

2
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TABLE IV - SUCCESSIVE VALUES OF  IN MATRIX

SOLUTIONS AT r* = 0.8 FOR CASE C
z* Starting Matrix solutions
value
First Second Third

CPEC UNIVAC
-0.500 | 0,08642 |0.086475 |0,086474 |[0,086474 | 0.086474
-.400 .08642 .086451 .086447 .086447 .086448
-.300 .08642 .086399 .086396 .086396 .086396
-.200 .08627 .086285 .086282 .086283 .086283
-.100 .08600 .086024 .086023 .086023 .086023
-.050 .08577 .085789 .085789 .085789 .085788
-.025 .08562 .085631 .085632 .085632 .085631
0 .08543 .085440 .085440 .085441 .085439
- 2025 .08520 - 0852 .085210 .085210 .085210
.050 .08493 .084949 .084947 .084947 .084948
SRS .08467 .084679 .084676 .084676 .084676
g .100 .08438 .084439 .084433 .084433 .084434
125 .08417 .084268 .084258 .084258 .084259
s 150 .08414 .084190 .084179 .084180 .084181
LTS .08417 .084218 .084207 .084207 .084208
<200 108429 .084352 .084342 .084342 .084343
cBPD .08454 .084594 .084585 .084585 .084586
s 230 .08486 .084884 .084877 .084877 .084878
D - Q8515 «085172 .085166 .085166 .085167
.300 .08541 .085424 .085419 .085419 .085420
YA .08562 .085630 .085626 .085627 .085627
950 108578 .085796 .085793 .085793 .085794
SN .08591 .085930 .085928 .085928 .085928
.400 .08602 .086040 .086037 .086037 .086037
.450 .08618 .086199 .086195 . 086195 .086195
S51810) .08628 .086370 .086363 .086363 .086363
.650 .08644 .086437 .086432 .086432 .086433
50 .08648 .086463 .086462 .086462 .086463
.850 .08648 .086477 .086477 .086477 .086477

NACA

55




TABLE V - SUCCESSIVE VALUES OF V,

v

3;)

9y

3z’

r* = 0.8 FOR CASE C

P ANDE SN SAN

* . * * * oy * Gl * *
z Solution 8r SZ s 5%1 5%1 o N
0.10 | Relaxation | 0.05 | 0.025 | 0.08442 0.49085 | -0.01037 0.82013 |0.19948
.05 2025 .08438 439592 -.01070 31871 .20101
Matrix 5015 <025 .0844393 .49552 -.00840 .81884 . 19747
cA5F 025 .0844328 .49602 -.00858 .81870 .19748
.05 .025 .0844335 .49582 -.00856 .81876
0.25 | Relaxation | 0.05 |[0.025 | 0.08486 0.439087 0501265 0.78938 |0.06684
«09 2025 .08486 .49638 < 012535 BT L .06538
Matrix 05 <025 .0848845 o435 17, 01180 . 78810 <06522
=05 <025 .0848769 .49535 501 LIk . 78802 +0B523
+05 + 025 .0848786 .49528 .01190 . 78804 .06550

SNACA T

2092

45
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TABLE VI - SUCCESSIVE VALUES OF 1 IN MATRIX
SOLUTIONS AT r* = 0.8 FOR CASE D
z¥ Starting Matrix solutions
value
First Second Third
CPEC UNIVAC

-0.500 | 0.08648 0.086470 | 0.086470 | 0.086470 | 0.086470
-.400 .08642 .086422 .086422 .086419 .086420
-.300 .08628 .086330 .086330 .086324 .086324
-.200 .08597 .086123 .086123 .086114 .086114
-.100 .08539 .085657 .085657 .085653 .085651
-.050 .08497 .085264 .085264 .085265 .085262
-.025 .08474 .085020 .085021 .085026 .085023
0 .08452 .084773 .084773 .084782 .084778
«025 .08466 .084860 .084861 .084872 .084868
.050 208511 .085238 « 085239 .085254 .085249
075 .08568 0857350 .085731 .085753 .085747
. 100 .08614 .086114 .086114 .086148 .086140
125 .08641 .086312 .086312 .086358 .086350
S50 .08660 .086433 .086433 .086492 .086483
SL1S .08694 .086713 .086713 .086785 .086775
.200 .08741 - 08T 157 .087137 .087219 .087207
e2ab .08744 .087124 .087124 .087220 .087206
2250 .08720 .086859 .086859 .086971 .086953
s oD .08691 .086558 .086558 .086682 .086661
. 300 .08671 .086361 .086361 .086498 .086474
" IBD .08662 .086313 .086313 .086432 .086407
w220 .08659 .086331 .086331 .086433 .086409
JONS .08656 .086352 .086353 .086440 .086417
.400 .08653 < 086373 .086373 .086448 .086426
.450 .08650 .086406 .086406 .086461 .086443
151510, .08647 .086447 .086447 .086474 .086464
.650 .08648 .086465 .086465 .086479 .086473
150 .08648 .086474 .086474 .086480 .086477
.850 .08648 .086479 .086479 .086480 .086479

35




TABLE VII - SUCCESSIVE VALUES OF ¥, g%; g%, p, AND N AT
r* = 0.8 FOR CASE D
* *
% | selution: | VBe | 0h y* g%; %%: o* 7 N*
0.10| Relaxation |0.10 | 0.025 | 0.08616 0.49474 | 0.00888 |0.81905 | 0.52876 | -0.28438
.10 | 025 | .08609 .49661 01595 .81847 | .54071 | -.31213
405|025 | . .0B6IS .49675 L1593 .81845 | .54193 | -.30862
.05 | .025 | .08614 .49612 .01450 .81863 | .53724 | -.30484
2(.08614)

Matrix 2054 .025 | 086114 .49530 .011534 | .81889 | .54006 | -.30277
.05 | .025 | .086148 .49567 .012020 | .81878 | .53905 | -.30187

.05 | .025 | .086140 .49564 .011969 | .81879
0.25 | Relaxation [0.10 |0.025 | 0.08737 0.49501 |-0.00562 |0.78815 |0.20438 | -0.06956
<10+ 025 | - 08726 AS521 | = 01X .78807 | .20388 | -.06909
.05 | .025 | .08720 .49493 | -.01180 .78815 | .20419 | -.06843
.05 | .025 | .08720 .49573 | -.01180 .78791 | .20740 | -.06732

a(.08718)

Matrix .05 | .025 | .086859 .49450 | -.012527 | .78827 | .20320 | -.06944
L05- I S025] 086971 .49483 | -.011951 | .78818 | .20331 | -.06983

.05 | .025 | .086953 .49488 | -.012092 | .78816

8Tmproved value by relaxation method and directly comparable to next value obtained by

matrix method.

e0ve.
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Figure 1. Relative stream surface about midway between adjacent blades.
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Figure 6. - Concluded. Submatrices [E], [F], and [G] expressed in terms of grid
spacings 57 and 8}. a =8%; Db = 53}.
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Figure 19. - Contours of constant Mach number.
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