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SUMMARY

A theoretical method is derived for the determination of the
motions and loads during chine-immersed water landings of prismatic
bodies. This method makes use of a variation of two-dimensional
deflected water mass over the complete range of immersion, modified by
a correction for three-dimensional flow. Equations are simplified
through omission of the term-proportional to the acceleration of the
deflected mass for use in calculation of loads on hulls having moderate
and heavy beam loading. The effects of water rise at the keel are
included in these equations. In order to make a direct comparison of
theory with experiment, a modification of the equations was made to
include the effect of finite test-carriage mass. A simple method of
computation which can be applied without reading the body of this paper
is presented as an appendix, along with the required theoretical plots
for computation of loads and motions in chine-immersed landings.

Comparisons of theory with experiment are presented as plots of
impact 1ift coefficient and maximum draft-beam ratio against flight-
path angle and as time histories of loads and motions. These compari-
sons cover angles of dead rise of 0° and 30°, trims up to 45°, flight-
path angles up to 90°, and beam-loading coefficients from 1 to 36.5.
Fair agreement is seen to exist over these ranges. The comparisons
show in general that the concept involving the two-dimensional deflected
mass and a three-dimensional-flow correction can be used to predict
accurately the loads and motions in landings of prismatic bodies
involving immersion of the chines.

INTRODUCTION

This paper is concerned with the derivation of a method for
calculating impact loads and motions during water landings of narrow,
heavily loaded, prismatic bodies. The problem of non-chine-immersed
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impacts of wide, lightly loaded, prismatic hulls has been treated in
reference 1. Comparisons of the theoretical results of this reference
'with experimental data have been made in references 1 to 4, where
reasonable agreement has been demonstrated. Although these papers are
devoted largely to the non-chine-immersed case, references 2 and 3
extend the thoery to cover 1mpacts during which a small amount of chine
immersion is experienced.

For impacts of heavily loaded bodies involving deep immersion of
the chines, reference 5 suggests that the force be determined in two
main parts: (1) a part for the hull sections having nonimmersed chines,
obtained by means of the theory of reference 1, and (2) a part for the
hull sections having immersed chines, based on the two-dimensional
separated flow about a wedge immersed in an infinite fluid (ref. 6
arts. 73 to 78). Preliminary analysis based on the equations proposed
in reference 5 indicated that these equations were inadequate for the
case of 0° dead-rise angle and showed some disagreement, with experiment ’
for practical immersions of narrow, heavily loaded,V-bottom bodies.

In view of the inadequacies of the procedure suggested in refer-
ence 5, a new analysis is made in the present paper on the following
basis: For a given transverse cross section of an immersing prismatic
form, a unique relation is assumed to exist between the deflected water
mass (two-dimensional) and the penetration of that section. A total
deflected mass is determined by applying this wvariation to all cross
sections along the hull, integrating over the wetted area, and applying
an approximate correction to this integrated mass to account for three-
dimensional flow. In the absence of a satisfactory relation for the
continuous variation of two-dimensional deflected mass with draft through
the region of chine immersion, relationships derived from the sugges-
tions in reference 5 are employed. The purpose of this paper is to
present this new analysis and a procedure for applying it in impact
calculations. Experimental verification of the theory is given.

The paper is organized as follows: The differential equation of
motion is derived in terms of a variation of two-dimensional deflected
water mass and a correction for three-dimensional flow which is selected
to satisfy the condition of steady planing. A suggested variation of
this two-dimensional deflected mass with draft is given. The general
solution of the equation of motion is then presented and modified by
omitting the term involving acceleration of the deflected mass. A
computational method is indicated for determining loads and motions in
landings of prismatic bodies involving appreciable chine immersion. A
further modification based on the assumption of constant forward velocity
is made for comparison with experimental tank impact data. Finally,
comparisons with experlmental data are presented for angles of dead rise
of 00 and 30°, trims from 6° to 459, beam-loading coefficients from 1
to 36. 5, and flight-path angles up to 90°. A system for determining
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water rise on a rectangular flat plate is given in appendix A.

In

appendix B a computational procedure is outliined which may be used

without reading the body of the paper.
SYMBOLS

Any consistent system of units may be used.

B Bobyleff's flow coefficient, a function of dead rise
b beam of hull at chines
C ratio of water rise at keel to draft, r/z

(niw)maxw
CL impact 1ift coefficient, -—-—">T—""_

P b2V 2

) o
CA beam-loading coefficient, W/pgb3
FN ‘hydrodynamic force on hull normal to keel
g acceleration due to gravity
J parameter involving three-dimensional deflected mass
k generalized draft parameter for free;body landing
1 wetted length along keel
My, two-dimensional deflected water mass in transverse plane
niw impact load factor measured normal to undisturbed water

surface, - z
g
Q velocity-reduction parameter for free-body landing
Qq, velocity-reduction parameter for landings involving horizontal
constraint

T water rise at keel normal to undisturbed water surface
r vertical velocity of water rise at keel
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distance from foremost immersed station along keel to flow
plane

velocity of flow plane relative to float in direction parallel
to keel /

acceleration of flow plane relative to float in direction
parallel to keel

time after water contact
resultant velocity of hull
weight of airplane

horizontal velocity of float

immersion of keel at step normal to undisturbed water surface,
positive down

vertical velocity of float

vertical acceleration of float

angle of dead rise, radians
dead-rise function
flight-path angle relative to undisturbed water surface

immersion of keel below undisturbed water surface, normal to
itself into a flow plane, positive downward

-velocity of float normal to keel, "x sinT + 2 cos T

acceleration of float normal to keel

immersion of the keel normal to itself into a flow plane,
corrected for water rise at keel

partial derivative of ' with respect to time

sin T

— +
SIn 7, cos (7 + 79)

approach parameter for free-body. landing,

approach parameter for landings involvihg horizontal constraint,
tan T/tan Yo
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A ratio of length of keel below undlsturbed water surface to
mean beam

A ratio of length of keel below elevated water surface to mean
beam .

o] mass density of wétér

g hull cross-sectional-shape factor

T trim (between keel and undisturbed water surface)

o(n') Pabst's aspect-ratio correction based on A

@(%) Pabst's aspect-ratio correction based on l/k

Subscripts:

c at chine immersion

max maximum

o at water contact

s at step

THEORY FOR PRISMATIC CHINE-IMMERSED IMPACT

Equation of Motion

This derivation for the motion of a long, narrow body landing on a
smooth water surface (fig. 1) is based on the concept that the flow
occurs primarily in transverse planes which are fixed in space and
oriented normal to the keel (refs. 1 to 5). Thus, a two-dimensional
treatment with a three-dimensional-flow or aspect-ratio correction factor
is made, as is usual in the calculation of the dynamics of such bodies.
The effects of buoyancy, viscosity, and changes in trim are believed to
be very small for practical impacts and are neglected. As in refer-
ences 1 to 5, therefore, the reaction in a given flow plane of length ds
(fig. 1) is defined in terms of the momentum of the fluid as

aFy = é%(mwg)ds (1)
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a

where m,; ds 1is an equivalent deflected mass of fluid and € is the
riormal velocity of the body. The total hydrodynamic force on the body
is then obtained by integrating equation (1) over the wetted surface
and applying the correction for three-dimensional flow @(\') (herein-
after designated three-dimensional correction):

l .
Fy = o(1") L -a%(mWQ)ds (2)

Assuming that external forces, such as the wing 1lift force in the case
of seaplanes, are equal and opposite to the weight and applying Newton's
second law to equation (2) as in references 1 to 5 leads to the fol-
lowing differential equation for the motion normal to the keel during
impact: :

T 1
-gé-:(p(}.).[)‘éaa;?ds+§;](;mwd§ (3)

This basic equation of motion can be solved specifically, provided that
m, and ®(\') are known. Although this equation may not hold for

accelerated motion at very large (infinite) immersions, it is believed
to apply over the practical range of impacts.

Selection of Three-Dimensional Deflected Mass

‘The three-dimensional-flow correction ®(\X') and the two-dimensional
deflected mass my will be defined and evaluated before the procedure

for solving equation (3) is presented.

Determination of three-dimensional correction.- The three-dimensional-
flow correction to be used in this paper was determined empirically by
Pabst in reference 7 and is given by the equation
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which is plotted in figure 2. The value ‘A' is taken as the ratio of
the length of keel below the elevated water surface to the mean wetted -
width (see fig. 1). The hydrodynamic aspect ratio A' for a rectangular
flat plate is therefore expressed by the equation

AT = (5)

L
b

where 1 1is the length of keel below the elevated water surface and b
is the beam of the body at the chines.

For a V-bottom prismatic body the water rise at the keel is
neglected so that A' = A and g's = Cs (see fig. 1). The "lateral"

water rise as shown in figure 1(b) at flow plane 1 and discussed in
reference 2 is, however, taken into account in determining the mean
wetted width. On this basis, the ratio of the wetted keel length to
the mean wetted width is found to be

e o S 52’2—@) (6
or
\ - (ts/0)° (% ;targl B) (7)
tanw[%s— . hf(lBJ
where .

and B 1is the angle of dead rise.

A certain measure of the suitability of equations (4) to (8) can
be obtained by considering the case of steady planing. For this case

(£ = 0), equation (2) reduces to

- . [Pom,
Fy = ¢(A )Cﬁ 5: @ | (9)
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In order to consider this equation further, the assumptlon is made that

the two-dimensional-deflected-mass ratio defined as mw/pb is a

function of only the cross-sectional shape of the body and the ratio of
normal draft to beam; that is,

) - (0

where p 1is the mass density of the fluid and o is the cross-
sectional-shape factor. On the basis of this assumption and the sub-
stitution ds = d({ cot 7) = d({ ' cot 7) (see fig. 1), equation (9) may

be written
s
Fy = C\jr :2Y a(¢' cot 1)

_o0E s amy bt
Ctan T | at' ot

.0 ¢!
P(A")E ®
=\p—t5n_7-£ gy

. ' 'y 62
Fy - @(:aiQme | (11

acg

where Iy 1s the two-dimensional deflected water mass which in sea-

planes is associated with the flow plane at the step. Solution of
equation (11) for my, and division through by pb2 to render the

equation nondimensional gives

My, FN tan T

s _ ' : (12

b7 - p(n! Pl

In order to investigate this equation, use has been made of
unpublished, high-speed, experimental planing data obtained at the
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Langley tank no. 1 with prismatic forms having angles of dead rise
of 0° to 4O°. When the right-hand side of equation (4) is substituted
for @(XA') and the unpublished d&ta are substituted into equation (12),

the factor mwS/pb2 is found to be essentially a function of only the

angle of de:.d rise f and the ratio of normal draft at the step to
beam g'&/b, or

i; = f(B, —Cb—s-) (13)
pb

This result substantiates the assumptions of equation (10) and also
demonstrates the validity of the three-dimensional correction expressed
by equations (4) to (8), for the case of the V-bottom prism.

Two-dimensional deflected mass.- In the absence of a theory covering
the continuous variation of two-dimensional deflected mass with draft
over the complete range of immersion, the two separate variations sug-
gested in reference 5 are combined in this paper to give a single mass
variation with draft. This variation is selected as follows:

(1) Sections prior to chine immersion:

For non-chine-immersed sections the deflected mass is generally
taken as the virtual mass, which is defined herein as the apparent
additional mass observed during accelerated motion. In references 8
and 9 theories are available for determining the variation of virtual
mass with draft for non-chine-immersed impacts. These theories have
been checked experimentally for the prismatic V-bottom form and that
of reference 8 was checked also for the scalloped-bottom form. For
cross sections of arbitrary shape, the variation of the two-dimensional
deflected mass may be obtained from reference 3, 8, or 10. However,
_experience has shown that, for small transverse concave curvature, the
mass variation may be approximated by an average V-shape. The same
approximation is believed to be equally valid for small convex curvatures.
The two-dimensional-mass variation for a V-shape is

. 2 o)
_pné
m, = 222 [2(8)] (13)
which is taken from references 1 to 3 and is based on Wagner's work.
Substitution of ' for € in this equation to take water rise at
the keel into account gives :

mw=ﬂ(—§-f-l:f([3ile ' (15)
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which is to be used as the deflected mass prior to chine immersion of
each section. Chine immersion is herein assumed to occur at the inter-
section of the chines in a given flow plane with a plane parallel to
the undisturbed water surface and passing through the intersection
point of the keel with the actual water surface. The draft-beam ratio
at chine immersion is

C'C " tan B - (16)

The two-dimensional deflected mass at this instant therefore becomes

2
m, = p’éb [£(8)] Ptan2s (17)

(2) Sections subsequent to chine immersion:

For infinite immersion of the chines, a variation of two-dimensional
deflected mass with draft may be derived from the theory of Bobyleff
(ref. 6, arts. 73 to 78). However, no theory is believed to be avail-
able on the yariation of two-dimensional deflected mass for moderate
chine immersion. In the absence of a single accurate deflected-mass
variation over the entire range of immersion, a composite deflected mass
is suggested which is composed of the deflected mass present at the
instant of chine immersion plus a deflected mass which is derived from
Bobyleff's theory. . For infinite immersions, Bobyleff has shown that _
the force per unit length on a two-dimensjional V-shape of finite width b
traveling with constant normal velocity ¢' (point foremost) is

Fy - B S(E)% \ (18)

where B 1is a function of the angle of dead rise and is given in
figure 3. This force is assumed to be equal to the rate of change of
momentum of an equivalent deflected mass; that is,

Fy é%(mwé')

.2 dm, -
(¢) Tt | (19)
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where constant velocity is assumed. Thus, from equations (18) and (19),

dm,,

T b (20)

=B

Nlo

which in this paper is taken as the variation of deflected mass with
draft subsequent to chine immersion. Integrating to find the change in
deflected mass subsequent to chine immersion Am, gives

p ¢
AHI-W=B§b dg'

=B§pb(§' - (_;'C> : (21)

The total two-dimensional deflected mass subsequent to chine immersion
is found by adding to this expression the deflected mass at the instant
of chine immersion. If this latter mass is assumed to be given by
equation (17), the total mass becomes

2 ' '
m, = p‘gb' E"(B)tan @2 + B ‘—23 b2<£b— - tar21 B) (22)

For prismatic hulls of arbitrary cross-sectional shape where the variation
from a V-section is not great, approximate values of m, are believed

to be obtainable through substitution of equivalent V-sections for the
arbitrary sections. The angle of dead rise would be determined by '
obtaining an average angle of dead rise for the arbitrary section.

For the case of 0° dead-rise angle, equation (22) reduces to

3
2 nt g'
=pb {— + 0.4k 2
m, = p 2 + > (23)

Equations (15), (22), and (23) are to be used in the solution of
equation (3).
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METHOD FOR SOLVING EQUATION OF MOTION INCLUDING
COMPUTATIONAL CHARTS

General Treatment

The incorporation of the aspect-ratio correction @(A') and the
deflected mass m, into equation (3) permits solution of the equation
by numerical methods. A large saving of time may be effected, however,
by solving the equation partially by analytical means to reduce it to a-
form convenient for graphical integration. This reduction is given here,,
with equation (3) restated first for convenience: :

W NG .l . om, . .
fé§=“’(*’,£§¥ds*§o”“ds -

The discussion following equation (10) substantiates the assumption
expressed by that equation that the two-dimensional deflected mass for
a given hull is a function only of the draft normal to the keel; that
is, : ' :

m, = £(¢1) o (2b)

Therefore,

dn, dmy pre _dm [, -
3 A Bt Kk | . =)

From figure 1, s = El:—;. Differentiating this relation gives
an

» at’
s_.tan‘r

Substitution of equations (25) and (26) into equation (3) gives

Wi ooy [ L8 i [
_Eg.—q)()»)ﬁub taanmw-!-g\L‘mvds | (27.)
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For impacts with deeply immersed chines, however, the water rise at

the keel r (see fig. 1) is generally small compared with the draft and
is approximately constant for the greater drafts. Therefore, its deriv-
ative with respect to time 1 approaches zero at these drafts, making

&', which is equal to ¢ + r sec 7, approach (. In this derivation,

then, (' is assumed equal to ¢, whereby

. 2 [my .M '
CWE o) =8 Sam, +¢ | m, ds (28)
g 0 0

tan T

and, after integration of the first term on the right-hand side,

.2 :
. l o) gmy,
§1+§<p(>»")j; m, ds =-§———————S (29)

W tan 1

Rewriting equation (29) in terms of the coordinate system referred to
the water surface is done by means of the following substitutions (see
fig. 1):

E = Cos T (30a)
. 2 .
t = - s tan T - (30b)
cos T
z
8s = cos T (30¢c)

where s 1is taken equal to O because of the assumption of frictionless
flow and no external force, and s is therefore a constant. When these
substitutions are made, equation (29) becomes

W sinT

. l gp(\')
El+%uf m, ds =-(é-éSinT)2———-—j§ (31)
0.
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Rearranging the terms and integrating both sides with respect to z
gives

4 . 5_ 4z
fz 7 az Z_IZ Csin T (32)
0 (z - s sin T)2 0 "y l
—_t m, ds
: ep(X') o -
which can be written
Trg
z dz _ _' z sin T . (33)
. (2 - § sin T)% 0 W l
Zo —_ m ds
gp(n') 0

After the integration of the left-hand side has been performed, the
following equation expressing the velocity -as a function of the draft is
obtained: . :

2 +;{ ' 2 s d
T e dz
loge O + . K - K - - - SlnT - (3)4,)
L+r 2, 1+ 0 W [
Z5 + m_ ds
' gp(r') o 7
where !
‘ K = - S sin 7
%0
sin T
= — T
Sin 7 cos (T + 74)

If for convenience the left-hand side of equation (34) is denoted by

Z : . . . s .
Q<2O’ K), and if dz as obtained by dlffergnt;atlng equation (30c) is
substituted into the right-hand side, the following equation results:

Qs t:n T -
“=- 5 o T (35).
+ 5 -
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Since, from equation (24), myg = f(g’s), a multiplication by dC'S/dQ'S
is performed inside the integral to give

My 40
¢’ ‘tans’i' dg' s
Q- [ ° (36)
0 .

k[‘ m, ds

Equation (36) can be expresséd in terms of nondimensional quantities

through multiplication of the right-hand side by pb3/pb3, after sub-
stitution of equation (26), the following relation results:

¢'y /b Mg AL 4 (s
S pb2 dg' b
Q= - i 5 (37)

‘ Ca tan 1 “l mws o $'s

o(1') 5 ob
where

W
YCA = ——Tg
pgb

Since Q, which denotes the left-hand side of equation (34), contains the
velocity ratlo z/zo, equation (37) ) represents, finally, the relation
between this velocity ratio and the ratio of normal draft to beam Q‘s/b

The relation between the hondimensional acceleration 'z'b/éo2 and

the nondimensional vertical-velocity and draft-beam ratios is determined

through similar nondimensionalizing of equation (31), which results in
the equation

(; . K)z 1M
'Z:.b _ ZO COsS T pb (38)
20° o 4 WE .

A tan T My 4 t's
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. Equations (37) and (38) can be used to calculate the variation of
acceleration and velocity with draft during fixed-trim impacts involving
appreciable chine immersion. In order to effect specific solutions of
these equations, the variables making up the equations are presented in
the form of computational charts, some of which are described in the
next paragraph. An indicated method of computation follows.

The variation of k with. 75 is given in figure 4 for various
trim angles. The left-hand side of equation (34), designated as Q in
equation (37), is plotted against k for various values of z/t5 in -
figure 5. The ratio dgs/dg's' in equation (37) is the keel water-rise

factor which in'reference 11 was shown to be substantially independent
of flight-path angle and therefore capable of being evaluated from .
planing data. For the rectangular flat plate, a large quantity of
experimental planing data is available from which this factor can be
computed. An analysis based on these planing data and giving the wetted

.o d '

length and the keel water-rise factor Eé%— = é%% for landings of flat
. s

plates is presented in appendix A and the results are plotted in fig-
ure 6. For the case of finite dead rise this factor has not been fully
evaluated, but since it is believed to be close to unity (no water rise),
it is assigned that value in this paper for angles of dead rise greater
than 10°. For eangles of dead rise smaller than 10°, use of the keel

water-rise factor ‘dcs/dg's for the flat plate is suggested.

In order to obtain specific solutions of equations (37) and (38) in
the forms shown for flat or V-bottom prismatic bodies, the following pro-
cedure is suggested: The variation of m*s with C'S may be obtained

from equations (15) and (22) and figure 3, from equation (23) and fig-

ure 3, or from experimental planing data with the aid of equation (12).

This mass variation may be substituted into the integral in the denomi-

nator of equations (37) and (38) and integrated analytically or graphi- °

cally. The aspect ratio A' may be determined from equations (5) to (8)

as a function of the ratio of normal draft to beam (A' is taken equal to
A for a hull with dead rise). For a flat plate, 1 in equation (5) is
¢'s

. tan T

The variation of @(A') with \° may then be obtained from figure 2.

- The variation of d{g/d{'s may be obtained from figure 6(b) for angles

related'to the normal draft (see fig. 1) by the equation 1 =

of dead rise smaller than 10° and is taken as unity for angles of dead
rise of 10° and greater. After these quantities have been substituted
into equation (37), it can be integrated graphically to yield the varia-
tion of Q with Q's/b. The variation of é/éo with Q may be

obtained from figure 5 after selecting a value of k from figure k;

-
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thus, the variation of 2z/zy with {'g/P may be established. A value
of Eb/éo2 can then be obtained for each value of Z/io through
substitution of the derived quantities into equation (38).

The ratio of vertical draft to beam can be found from the ratio
of normal draft to beam by means of the equation

=%€§—'ss-c05'r (39)

o'ln

where gs/g's .is assumed to be equal to A/A', which may bhe obtained

from figure 6(a) for angles of dead rise smaller than 10° and is taken
as unity for angles of dead rise of 10° and greater. For the case of
0° dead rise, equation (39) can also be written

Zan Xosin g (40)
The variations of acceleration and velocity with draft as obtained
by use of equations (37) to (40) allow design maximums to be established.
For calculating structural-response, time histories are desirable. From
the relations dz = z dt and Zo = Vo 8in 7o a time coefficient may be
derived which is defined as follows:

a2
o 1 o - (k1)
b sin 75 Jo z/2q :

where Vo 1is the initial resultant velocity at contact. Graphical

integration of this equation allows the draft-time relation to be
established.

Simplification Tﬁrough Omission of Acceleration Term

1l

In order to reduce the labor required to make solutions for specific
landing impacts, a simplification was effected which does not seriously
reduce the accuracy of these solutions for practical landing configura-
tions. From equation (28) it is evident that the hydrodynamic force is
composed of two terms, one proportional to the square of the velocity
normal to keel and the other proportional to the acceleration normal to
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the keel. For impacts involving beam-loading coefficients greater than
1 and appreciable chine immersion, the ratio of the acceleration term
to the velocity-squared term is usually small. This acceleration term
is therefore omitted from the equation of motion, with the result that
equation (37), which relates the velocity and draft, is reduced to

gislb 1
Q= - 1 o(rt) ™ dgs a £ 's
CA Jo  tanT R dt's b
which may be written
. k
Q= - ~— 42
o (k2)

where

Omission of the acceleration term from equation (38), which relates the
acceleration, velocity, and draft, reduces it to

. . 2 .
b <_ ; ) ?(r1) B (43)
502 2, Cp sin 7 b2

Thus, a simplification of the numerical calculation is made possible
through the introduction of additional computational charts. One such
chart (fig. 7) shows the variation of k with §'g/b for various trims

and angles of dead rise. For the flat plate (0° dead rise), k was
evaluated by graphical integration after substitution into equation (42)
1]
{'s
. tan T .
dtg/dt's from figure 6(b). For the case of finite dead rise, k was

of equations (4), (5), and (23), where 1 =

, and of the ratio

similarly evaluated after substitution into equation (42) of equa-
- tions (4), (6) to (8), (15), and (22) for finite dead rise, where dfg/dl'y
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was- taken equal to unity. A second chart was constructed from the varia-
tion of the part of equation (43) designated as J, where '

p(r') s

J = sin T EEE

(Lh)

and is plotted against Q'S/b for various trims and angles of dead
rise in figure 8.

In order to obtain specific solutions of equations (42) and (43),
a computational procedure has been set forth in appendix B. This pro-
cedure is somewhat like that outlined for treating equations (37)
and (38) and the labor for each solution has been considerably reduced.

EXPERIMENTAL VERIFICATION OF THEORY

Modification of Theory to Permit Comparison With Experiment

The theory developed in this paper covers free-body landings in
which the velocity parallel to the keel is assumed to be constant during
impact. The only available experimental data that were usable for
verification of this theory, however, were obtained during an investiga-
tion of constrained models at the Langley impact basin. In these tests
the model was mounted on a catapulted carriage in such a way that the
model was free to move vertically but was constrained to move with the
carriage in a horizontal direction. Since the carriage was several times
as heavy as the model, the forward velocity of the carriage-model com-
bination remained approximately constant. In order to compare the theory
of this paper with the available data, it was necessary to modify the
equations so that the velocity component in the horizontal direction,
instead of the component in the direction parallel to the keel, was
considered constant during impact. The equation of motion was then
solved by a procedure similar to that used in deriving the proposed free-
body theory with the following results.

The equation relating the velocity of the body to its draft, which
is comparable to equation (37), is

P Rl b
2 on? s ° (45)

QL = -cos“T
0 Cp tan 7 . Jrc o/® ™S 4 £'s
0

b
()" )cos T pb2
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where
Z
-+ K
-1 Zo L KL, ke
U = loee T+ v T 14k
L Z |k L
E‘ L
o
and
k. = tan T
L= ———
tan 7o

'

The equation relating the acceleration of the body to its vélocity and
draft, which is comparable to equation (38), is :

. 2 :

LI ° L (46)
QA an T - C My 4 ¢ s
—— —_— —_—
@(x‘)coszT A pb b

Specific solutions for impacts may be obtaihed with theée equations as
was done with equations (37) and (38). The value of Qr, can be obtained

from figure 5 in place of Q when ki, 1s substituted for k.

The omission of the force term arising from acceleration of the
deflected mass is handled as in the derivation of the free-body theory
and leads to the following equations which are similar to equations (42)

and (43): Equation (45), which relates velocity and draft, is reduced
to : ' :

Q'S/b a 1 |
Q = - E_C&h‘_-r : Q(x') mws dgs d g S v (LL‘T)

and equation (46), which relates the acceleratdon, velocity, and draft,
is reduced to

zb _ _ [z . 29(A") costr ™s (48)
02 "L Ch” sin T ob?2

N e
Ne

o}
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Specific impact solutions of these equations may be obtained as was
done in appendix B with equations (42) and (43) for the free-body case.

Comﬁarison With Test Data

Theoretical curves, usable for actual landing-impact calculations,
are presented in figures 2 to 8 and were discussed in detail in the
previous sections. The succeeding figures present comparisons of experi-
mental data, obtained at the Langley impact basin, with the proposed
theory modified for constant forward velocity.

Several theoretical variations of impact load factor, vertical
velocity, and vertical displacement with time are compared with experi-
ment in figures 9 and 10. The experimental data in these plots were
obtained at the Langley impact basin, and, although a portion of these
data is unpublished, the rest may be found in references 11 and 12. In
figures 9(a) and 9(b) are presented theoretical and experimental load-
factor time histories of landings of a flat plate for a wide difference
of trim and flight-path angle and for a beam-loading coefficient of 18.8.
Fair agreement exists in each case.

An indication of the agreement between theory and experiment at
the upper 1imit of flight-path angle is given in figures 9(c) and 9(d).
These figures present theoretical and experimental load-factor time
histories for water landings of a flat plate having a beam-loading coef-
ficient of 18.8 at trims of 6° and 15° for the end-point case of a
vertical drop (flight-path angle of 90°). Fair agreement is also
obtained in these figures. :

In order to demonstrate the effect of neglecting the force term
arising from the acceleration of the deflected mass, figure 9(e) is
presented for the landing of a flat plate with a medium beam-loading
coefficient of 4.36, at the lowest trim for which data were avail.
able. The difference between the two theoretical lines plotted illus-
trates the effect of neglecting this acceleration term. The higher line
represents the solution with the deflected-mass acceleration neglected,
and at maximum acceleration the difference between the two theoretical
curves is seen to be about 10 percent. The deflected mass used in the
acceleration term may possibly be overestimated here. If the cylindrical
virtual water mass based on the beam as a diameter (ref. 2) were used
instead, this difference of 10 percent would be somewhat reduced. The
experimental data fall somewhere between the two curves, but no conclu-
sion is drawn from this fact since the possible errors in the experi-
mental data are estimated to be of the order of magnitude of 10.2g.

The effect of water rise at the keel is demonstrated in figure 9(f).
This effect is greatest for small immersions and is therefore important
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for lightly loaded plates for which maximum drafts in impact are small.
The upper curve includes the effect of water rise at the keel and the
lower one does not. For plates with medium loading, consideration of
this water rise increases the theoretical maximum load by about 9 percent
and increases the initial rate of load application, so that the time to
maximum load is reduced. As in Tigure 9(e), the experimental data fall
between the two theoretical curves up to maximum acceleration and the
same reservation concerning accuracy holds. It might be mentioned that
the acceleration data presented in this paper have a time lag which is
estimated to be approximately 0.005 second. If this also is taken into
account, the theory including water rise in figure 9(f) would give
better agreement with the experimental data up to maximum load than the
theory omitting water rise.

Figure 10(a) presents time histories of impact load factor, vertical
velocity, and draft for an impacting flat plate having a beam-loading
coefficient of 18.8. The effects of neglecting the acceleration of the

.deflected mass and water rise at the keel are again shown here, in addi-
tion to the effect’ of a large carriage mass. Comparison of the theoret-
ical curves for free motion and constant forward velocity indicates that
the large test-carriage mass, which causes the horizontal velocity to
approach a constant value, increases the maximum load factor for this
case by about 3 percent. . The increase becomes considerably larger for
the higher trims. The effects of carriage mass, acceleration of the
deflected mass, and water rise at the keel on vertical velocity and
draft are seen to be small.

In figure 10(b), time histories of impact load factor, vertical
velocity, and draft are presented for an impact of a hull with an angle
of dead rise of 30° and a beam-loading coefficient of 18.8. The small
effect of acceleration of the deflected mass may be noted by comparing
the two curves and the experimental data on each plot of this figure.

The agreement between the theoretical and experimental hull load factors
would be improved if the aforementioned 0.005-second time lag were taken
into account. A similar time lag exists in the vertical-velocity data
and, although the exact value of this lag is unknown, it has been roughly
estimated at 0.005 to 0.01 second. If this lag were taken into account,
the agreement between the theoretical and the experimental velocity would
be considerably improved. If more were known about the water rise at the
keel for the float with dead rise and if a better variation of two-
dimensional deflected mass were available, the agreement would probably
be further improved. Thus, from figures 9 and 10 the agreement between
theoretical and experimental time histories is seen to be fair.

The variation of impact lift coefficient with flight-path angle for
wide ranges of trim and beam-loading coefficient is shown in figure 11
for.Oo dead-rise angle and for flight-path angles up to 21.5°. The
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experimental data in this figure were obtained at the Langley impact
basin and the published portion may be found in reference 13. The agree-
.ment between experiment and the theory that incorporates water rise at
the keel, omits the acceleration term, and assumes constant horizontal
velocity is seen to be fair, at least for beam-loading coefficients
greater than 1. For beam-loading coefficients less than 1, the effects
of acceleration and of flight-path angle on the deflected mass might
introduce noticeable errors.

Since fair agreement was demonstrated between theoretical and experi-
mental flat-plate landing accelerations for flight-path angles up to
21.5° in figure 11 and for the end point of 90° flight-path angle in
figures 9(c) and 9(d), the proposed theory is believed to be applicable
for all flight-path angles.

The variation of impact 1ift coefficient with flight-path angle for
an angle of dead rise of 30°, a beam-loading coefficient of 18.8, and a
wide range of trim is presented in figure 12. The solid curves represent
the suggested theory for constant forward velocity including water rise
at the keel and neglecting the acceleration term, with dfg/dt's taken

as 1 for the body with dead rise. The dashed lines are calculated from
the theory of reference 2, which predicts the occurrence of maximum load
at the instant of chine immersion for impacts involving deep immersion
of the chines. Each of these curves experiences a radical change of
slope and shape at a certain critical flight-path angle for each trim
and beam loading. For flight-path angles below this critical value,
maximum load occurs prior to chine immersion. TFor a.short range of
flight-path angles immediately above this critical value, maximum load
is believed to occur at or near chine immersion, and for high flight-
path angles, maximum load occurs subsequent to chine immersion. Since
the variation of deflected mass with draft is different before and after
chine immersion, a break in the curve is expected to occur at the point
of chine immersion. In figure 12 a comparison of the two theories with
experimental data from reference 12 shows that for impacts involving a
small degree of chine immersion the theory of reference 2 gives better
results, at least for low trims, whereas for impacts involving deeply
immersed chines the agreement with the theory suggested in this paper
is better. This disagreement of the suggested theory with experiment
for small degrees of chine immersion when dead rise is present could be
improved through use of a more accurate deflected-mass variation in the
region of chine immersion. The general agreement between the experi-
mental data for bodies with dead rise and the proposed theory, however,
is seen to be fair, even for small amounts of chine immersion where the
theory is conservative.

The variation of maximum draft with flight-path angle is presented
in figure 13 for angles of dead rise of 0° and 30° and for several trims
and beam loadings. The general agreement with data from the Langley
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impact basin, the published portion of which may be found in refer-
ences 12 and 13, is seen to be fair. This agreement indicates that the
theory of the present paper could be used in conjunction with the method
of reference 14 to compute pitching-moment time histories during landing
impacts.

CONCLUSIONS

A method has been derived for the analytical determination of the
motions and hydrodynamic loads in chine-immersed water landings of
prismatic bodies. Comparison of this theoretical work with other avail-
‘able theory and with experimental data obtained at the Langley impact
basin has led to the following conclu51ons

1. In general, the concept of a two-dimensiohal deflected mass with
a correction for three-dimensional flow can be used to predict with
reasonable accuracy the loads and motions during landlngs of prlsmatlc
bodies involving immersion of the chines.

2. Use of Wagner's virtual-mass variation for non-chine-immersed
sections combined with a deflected-mass variation obtained from Bobyleff's
solution after chine immersion of these sections, with level water-as a
boundary, gives fair agreement with experiment for deep impacts.

3. For shallow impacts at the lower trims, involving slight chine
imnersion of bodies with dead rise, the virtual-mass variation sug-
gested in NACA TN 1516 gives better agreement with experiment than the
proposed variation.

4. The effects of water rise at the keel in the case of a flat
plate and the effects of the ratio of test-carriage mass to model mass
in the general case are significant enough to be included in the proposed
equations of motion.

5. Omission of the force arising from acceleration of the deflected
mass is not serious for beam-loading coefficients larger than unity and
results in a large reduction in the work required for each solution.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., June 25, 1952
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APPENDIX A
WATER RISE ON A RECTANGULAR FLAT PLATE

As has been mentioned in this paper, reference 11 shows the water
rise at the keel of an impacting body to be relatively insensitive to
flight-path angle and thus capable of being evaluated from planing data.
Since such data are most conveniently analyzed in terms of the wetted
length of the body (1 in fig. 1) and since this analysis is based on
the draft 2z with respect to the undisturbed water surface, the relation
between these two quantities must be obtained. This relation is expressed
by the equation (see fig. 1)

z=1sin71 -r ) (A1)

where r is the water rise at the keel.

Several papers about planing discuss this phenomenon of water rise
at the keel in connection with steady motion and reference 11 discusses
it in connection with motion of the peak-pressure line during impact. A
theoretical solution by Wagner (ref. 8) for the two-dimensional planing
flat plate predicts infinite water rise for the ideal case, in which
gravity and viscosity are neglected. Planing data from references 15
to 17 show the increase in wetted length due to water rise A' - A to
be a more or less constant fraction of the hull beam, with only a small
variation due to changes in trim. At low length-beam ratios this result
is more or less in agreement with Wagner's theory for planing, but it
would not be in agreement for impact, as indicated in reference 11. This
reference shows an expected gradual transition from no water rise .at the

_instant of water contact to some constant value for the hull tested at
ratios of wetted length to beam greater than 1.5. The rise variation of
reference 11 is not used in this paper, however, since it is based on
the peak-pressure location and not on the measured wetted length. The
following system is therefore used for the flat plate. The case of a hull
with dead rise is not covered because of a lack .of sufficient information
on water rise at the keel in planing.

The assumption is made, as in reference 11, that the water rise at
the keel for a two-dimensional flow about an impacting plate of infinite
width is independent of the flight-path angle and is proportional to the
draft; thus '

r = Cz  (a2)
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where r is the rise and C is the constant of proportionality. In
nondimensional form this becomes

I =Crsin 7 (A3)
where XA = —2 _ is the length-beam ratio below the undisturbed water

b sin T .
surface for a flat plate. For three-dimensional flow about plates with
a very small ratio of wetted length to beam, equation (A3) would also be
applicable. However, as the length-beam ratio increases, this piled-up
water should be relieved through flow around the sides of the model.
Thus, some form of correction for three-dimensional flow f(X) is
required to reduce the rise for high length-beam ratios, as follows:

L - oar(M)sin 1 (AL)

A correction for three-dimensional flow which fits the end points,
reducing equation (A4) to equation (A3) at small length-beam ratios and
to a constant value at large length-beam ratios, is Pabst's correction
(eq. (k) in the body of the paper) applied to the inverse hydrodynamic
aspect ratio. Substituting this correction into equation (A4) gives

% = CNp(%)sin T . (45)

The effective ratio of wetted draft to beam (see fig. 1) is therefore

zZ +1r _ 2 l) ;
=2 4+ Cwp{=Jsin T (A6
b b Nv(x , )
. z Z 4+ 7T . .
Since A = ——— and A' = —————, the effective ratio of wetted
b sin T b sin T

length to beam is

A= x[l + an(%il (AT)

An average value of 0.4 for C was obtained from the experimental
planing data in references 15 to 17. Figure 6(a) is a plot of equa-
tion (A7) based on this value ogé C, and figure 6(b) is a plot of the
d\ s

slope of this curve, or —— = —
ar', dat's

against A'.
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APPENDIX B
SUGGESTED COMPUTATIONAL PROCEDURE

.This section gives suggested computational methods to facilitate
calculation of loads and motions during free-body impacts of a prismatic
form experiencing appreciable chine immersion. These methods are based
on a solution of the equation of motion which takes into account water
rise at the keel, neglects the acceleration of the virtual mass, and
neglects the effects of flight-path angle on water rise at the keel and
on the normal-force coefficient. As a result of these omissions, the
effects of which are small at the higher beam loadings, this solution
is considered applicable only to those cases for which the bean-loading
coefficient exceeds unity.

The over-all computational procedure is subdivided into four less-
general procedures to increase the utility of the solution. The first
of these treats smooth-water landings of prismatic bodies approximating
V-sections and makes use of computational charts covering specific angles
of dead rise of 0°, 10°, 20°, and 30° and certain fixed trims. The
second procedure applies to the same bodies for all angles of dead rise
and fixed trims but requires more work for each solution. The third
procedure covers prismatic bodies of arbitrary shape but requires experi-
mental data from planing or drop tests. The fourth procedure accomplishes
a conversion from smooth-water to rough-water landings. Explanation of
symbols is given in the list of symbols following the introduction and -
in figure 1.

Procedure 1 - Smooth-Water Landings of a Prismatic Body Having
a Cross Section Approximating a V-shape With a Dead-Rise
Angle of 0°, 10°, 20°, or 30°, at One of

Several Fixed Trims

1. Obtain a value of &k from figure 4 through use of appropriate
values of initial flight-path angle 7o and trim T.

2. Select several values of the vertical-velocity ratio 2/%g
between 1 and -1 and, with the value of k, obtain a value of Q from
figure 5 for each value of 2z/zg.
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3. Compute a value of k for each value of Q from the equation
W .

k = -CAQ, where Cp = and is defined as the beam-loading

pgb
coefficient.
L. Obtain values of the ratio of normal draft to beam {'g/b for

each value of k from the curve for the appropriate values of T and
average angle of dead rise f 1in figure T. :

5. Obtain a value of J for each value of g's/b for the appro-

priate values of T and B in figure 8.

6. Calculate a value of the nondimensional acceleration 'z'b/zo2
for each combination of 2z/z, and {'g/b through substitution of the

appropriate quantities into the equation

. . 2
._ZEE_=.___2_+K> J (B1)
Zo o Ca

(. Plot the load factor nji, = - é and the vertical velocity 2

against the ratio of normal draft to beam g's/b.

8. Repeat steps 1 to 7 for several other values of 7o and T,
covering the range of interest.

(niw) maxw
§b2vo2

niw obtained from the curves obtained in step 8 and plot CL against

9. Compute values of CL = from the maximum values of

7o for various values of 7. The resulting curves may be used as.design
curves.

10. Compute values of draft-beam ratio z/b from the equation

¢’ '
= —BE %} cos T (B2)

[l IS

where A/A' is obtained from figure 6(a) for B = 0° and is taken as

C'
unity for B 2 10°. For the case where B = 0°, A' = —5 |
. btan T
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1L.. For calculation of structural response, the variation of time t
with draft may be found from graphical integration of the equation

b 4 2
B, g z/b 4 z
b sin 7, 0 é/éo

where V, 1is the initial resultant velocity at water contact. Integra-

tion of this equation allows the draft-time relation to be established.

Procedure 2 - Smooth-Water Landings of a Prismatic Body
Having a Cross Section Approximating a V-Shape
With Any Dead-Rise Angle, at Any Trim

- 1. Select a series of several values of the ratio of normal draft
to beam {'g/b and compute values of mvS/pb2 from the equations

3 1
De _ oy ls (g = 0°)
pb2 32 b
m, ¢’ ¢ ¢
s _xI>s 0,2 s gten B
ob 2I:b f(Bil (B>O’ b T 2)
m__-‘-'_3.=£[f(5)tan;§| +§&-M B > 0°; g'5>-'°£ﬁ
2 8 2\ b > ’ 2
where

£(B) =X -1
2B

and & value of B 1is obtained from figure 3 by means of the average
angle of dead rise B.
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2. Obtain a value of X' for each value of g /b selected in
_step 1 by means of the equations

- 'y :
M vt (B = 0°) (B3)
AT = 1 B>00-_€'_S—.€_S<ta'nﬁ) (Blg.)
" tan T £(B) 7 b T b T 2 ,
() '
A= b (B >o°,5=%>m;1 5) (BS)

tan T[%LE — t]
_ b Le(p)

and substitute these values of A' into figure 2 to obtain values of
e(r1).

3. Obtain values of dtg/dt'y from figure 6(b) for each value of

A'. for cases where 0° < § 10°. For cases where B > 109, dgs/dg's
is taken equal to unlty )

4. Combine the results of steps 1 to 3 to obtain values of

p(n') Mws dlg
tan T pb2 dg's
integral

» plot these against {'y/b, and graphically evaluate the

C's/P p(ar) Doy dt, ¢
QCA = - \L . rom—— pb; dg's d bs (B6)

at each value of C'S/b selected in step 1.

5. Obtain a value of @ from equation (B6) for each value of ¢ s/b

where the beam- loadlng coefficient Cp = ¥_. For each value of Q,

pgb
obtain a value of the vertical-velocity ratio 2/z, from figure 5,

using the value of k obtained from figure 4 by means of the appro-
priate initial flight-path angle Yo @and the value of fixed trim .

6. Calculate a value of the nondimensional acceleration 7b/2 o2
for each combination of i/io and {'s/b through substitution of the

[y
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appropriate quantities into the equation

E_bz_(_ﬁ_,L K)‘?M%

Zo Cp sin T gp?

1

8

9. Same as in procedure 1.
10.

11.

Procedure 3 - Smooth-Water Landings of a Prismatic Body of
Arbitrary Cross Section Where Section Characteristics
Obtained From Experimental Data Are Required

This procedure is suggested as a rough approximation only, as it
has not been verified by experimental data. )

1. Select a series of several values of the ratio of normal draft
to beam Q'S/b and compute a value of A' for each value of g's/b,
either from formulas (B3) to (B5) of procedure 2, where B is the
2
average angle of dead rise, or from the equation \' = %; "where 1 is
the wetted length and S is the wetted area projected normal to the

keel. Obtain a value of ®(A') for each value of A' from figure 2.

2. Substitute data from planing runs or vertical drops of a heavily
loaded prismatic body with a cross-sectional shape similar to that of
the body of interest into the equation '

Fy tan T

mwS
= I
b2 @(x')fpb

to obtain a value of mwS/pbg‘ for each value of (' /b.

Same as in procedure 2.

AN\ W
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Same as in procedure 1.

= O\ O

=

Procedure 4 - Conversion to Rough-Water Step Landings

Rough-water landings of prismatic bodies with any angle of dead
rise into waves which are long compared with these bodies may be handled
as in reference 18 by the following procedure:

1. Determine the wave slope at the point of contact from reference.6,
articles 229 and 251, or from reference 18. The most severe landings are
believed to occur on the flank of an advancing wave, in the region of
the steepest slope.

2. Rotate the space coordinate system so that the z-axis is normal
to the wave slope and compute an effective trim with respect to these
coordinates.

3. Compute the wave-particle velocity at the point of contact from
reference 6, articles 229 and 251, or from reference 18, subtract this
velocity vectorially from the hull velocity, and compute.an effective
flight-path angle from the resultant velocity with respect to the new
coordinates. ’ -

L. Using these effective values of trim and initial flight-path
angle, continue as in smooth-water cases outlined in procedures 1, 2,
and 3. '
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Ratio of wetted length based on undisturbed water surface to mean beam, A
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Ratio of wetted length based on water rise to mean beam, \'

(a) Wetted-length variations.
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(b) Variation of derivative of wetted length ratio with ratio of
wetted length based on water rise to mean beam.

Figure 6.- Water-rise variations for a flat plate.
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Theory for constant forward velocity

With water rise at keel, no acceleration term
— — — Nc water rise at keel, no acceleration term
—— - — With water rise at keel, with acceleration term
—— - — No water rise at keel, with acceleration term

Theory for free motion
+e-oeeveoo. With water rise at keel, with acceleration term

Experimental data
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Theory for constant forward velocity
With water rise at keel, no acceleration term

Experimental data
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Theory for constant forward velocity .
With water rise at keel, no acceleration term
Theory for free motion
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Theory for constant forward velocity
With water rise at keel, no acceleration term
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Figure 13.- Comparisons of theoretical and experimental maximum drafts
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