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SUMMARY 

A theoretical method is derived for the determination of the 
motions and loads during chine-immersed water landings of prismatic 
bodies. This method makes use of a variation of two-dimensional 
deflected water mass over the complete range of immersion, modified by 
a correction for three-dimensional flow. Equations are simplified 
through omission of the term-'proportional to the acceleration of the 
deflected mass for use in calculation of loads on hulls having moderate 
and heavy beam loading. The effects of water rise at the keel are 
included in these equations. In order to make a direct comparison of 
theory with experiment, a modification of the equations was made to 
include the effect of finite test-carriage mass. A simple method of 
computation which can be applied without reading the body of this paper 
is presented as an appendix, along with the required theoretical plots 
for computation of loads and motions in chine-immersed landings. 

Comparisons of theory with experiment are presented as plots of 
impact lift coefficient and maximum draft-beam ratio against flight-
pth angle and as time histories of loads and motions. These compari-
sons cover angles of dead rise of 00 and 30°, trims up to I.5O, flight-
path angles up to 900, and beam-loading coefficients from 1 to 36.7. 
Fair agreement is seen to exist over these ranges. The comparisons 
show in general that the concept involving the two-dimensional deflected 
mass and a three-dimensional-flow correction can be used to predict 
accurately the loads and motions in landings of prismatic bodies 
involving immersion of the chines. 

INTRODUCTION 

This paper is concerned with the derivation of a method for 
calculating impact loads and motions during water landings of narrow, 
heavily loaded, prismatic bodies. The problem of non-chine-immersed
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impacts of wide, lightly loaded, prismatic hulls has been treated in 
reference 1. Comparisons of the theoretical results of this reference 
with experimental data have been made in references 1 to l4, where 
reasonable agreement has been demonstrated. Although these papers are 
devoted largely to the non-chine-immersed case, references 2 and 3 
extend the thoery to cover impacts during which a small amount of chine 
irmnersion is experienced. 

For impacts of heavily loaded bodies involving deep immersion of 
the chines, reference 5 suggests that the force be determined in two 
main parts: (i) a part for the hull sections having nonimmersed chines, 
obtained by means of the theory of reference 1, and (2) a part for the 
hull sections having immersed chines, based on the two-dimensional 
separated flow about a wedge immersed in an infinite fluid (ref. 6, 
arts. 13 to 18). Preliminary analysis based on the equations proposed 
in reference 5 indicated that these equations were inadequate for the 
case of 0° dead-rise angle and showed some disagreement with experiment 
for practical imxnersions of narrow, heavily loaded, V-bottom bodies. 

In view of the inadequacies of the procedure suggested in refer-
ence 5, a new analysis is made in the present paper on the following 
basis: For a given transverse cross section of an immersing prismatic 
form, a unique relation is assumed to exist between the deflected water 
mass (two-dimensional) and the penetration of that section. A total 
deflected mass is determined by applying this variation to all cross 
sections along the hull, integrating over the wetted area, and applying 
an approximate correction to this integrated mass to account for three-
dimensional flow. In the absence of a satisfactory relation for the 
continuous variation of two-dimensional deflected mass with draft through 
the region of chine immersion, relationships derived from the sugges-
tions in reference 5 are employed. The purpose of this paper is to 
present this new analysis and a procedure for applying it in impact 
calculations. Experimental verification of the theory is given. 

The paper is organized as follows: The differential equation of 
motion is derived in terms of a variation of two-dimensional deflected 
water mass and a correction for three-dimensional flow which is selected 
to satisfy the condition of steady planing. A suggested variation of 
this two-dimensional deflected mass with draft is given. The general 
solution of the equation of motion is then presented and modified by 
omitting the term involving acceleration of the deflected mass. A 
computational method is indicated for determining loads and motions in-
landings of prismatic bodies involving appreciable chine immersion. A 
further modification based on the assumption of constant forward velocity 
is made for comparison with experimental tank impact data. Finally, 
comparisons with experimental data are presented for angles of dead rise 
of 00 and 30°, trims from 6° to	 beam-loading coefficients from 1 
to 36.5, and flight-path angles up to 90°. A system for determining
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water rise on a rectangular flat plate is given in appendix A. In 
appendix B a computational procedure is outlined which may be used 
without reading the body of the paper. 

SBOLS 

Any consistent system of units may be used. 

B	 Bobyleff's flow coefficient, a function of dead rise 

b	 beam of hull at chines 

C	 ratio of water rise at keel to draft, r/z 

(flj	 W 
C L	 impact lift coefficient,

Pb2V2 
0 

C	 beam-loading coefficient, W/pgb3 

FN	 'hydrodynamic force on hull normal to keel 

g	 acceleration due to gravity 

J	 parameter involving three-dimensional deflected mass 

k	 generalized draft parameter for free-body landing 

7.	 wetted length along keel 

two-dimensional deflected water mass in transverse plane 

impact load factor measured normal to undisturbed water w
surface, - -

g 

Q	 velocity-reduction parameter for free-body landing 

velocity-reduction parameter for landings involving horizontal 
constraint 

r	 water rise at keel normal to undisturbed water surface 

vertical velocity of water rise at keel
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S	 distance from foremost immersed station along keel to flow 
plane 

velocity of flow plane relative to float in direction parallel 
to keel 

acceleration of flow plane relative to float in direction 
parallel to keel 

t	 time after water contact 

V	 resultant velocity of hull 

W	 weight of airplane 

horizontal velocity of float 

z	 immersion of keel at step normal to undisturbed water surface, 
positive down 

z	 vertical velocity of float 

vertical acceleration of float 

J3	 angle of dead rise, radians 

f (i3 )	 dead-rise function 

7	 flight-path angle relative to undisturbed water surface 

immersion of keel below undisturbed water surface, normal to 
itself into a flow plane,positive downward 

velocity of float normal to keel, i sin T + cos T 

acceleration of float normal to keel 

immersion of the keel normal to itself into a flow plane, 
corrected for water rise at keel 

partial derivative of 	 ' with respect to time 

approach parameter for free-bodylanding, S1IIT 
cos (T + 7o) -	 S111 Yo 

approach parameter for landings involving horizontal constraint, 
tan T/tan 7
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ratio of length of keel below undisturbed water surface to 
mean beam 

X I	 ratio of length of keel below elevated water surface to mean 
beam 

p	 mass density of water 

hull cross-sectional-shape factor 

T	 trim (between keel arid undisturbed water surface) 

tp(x')	 Pabst's aspect-ratio correction based on X' 

Pabst's aspect-ratio correction based on l/X 

Subscripts: 

c	 at chine immersion 

max	 maximum 

0	 at water contact 

S	 at step 

THEORY FOR PRISMATIC CHINE-IMMERSED IMPAC.T 


Equation of Motion 

This derivation for the motion of a long, narrow body landing on a 
smooth water surface (fig. i) is based on the concept that the flow 
occurs primarily in transverse planes which are fixed in space and 
oriented normal to the keel (refs. 1 to 5). Thus, a two-dimensional 
treatment with a three-dimensional-flow or aspect-ratio correction factor 
is made, as is usual in the calculation of the dynamics of such bodies. 
The effects of buoyancy, viscosity, and changes in trim are believed to 
be very small for practical impacts and are neglected. As in refer-
ences 1 to 5, therefore, the reaction in a given flow plane of length ds 
(fig. i) is defined in terms of the momentum of the fluid as 

dFN = -( m )ds	 (1)
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where m ds is an equivalent deflected mass of fluid and	 is the 
riorinal velocity of the body. The total hydrody-namic force on the body 
is then obtained by integrating equation (i) over the wetted surface 
and applying the correction for three-dimensional flow cp(X') (herein-
after designated three-dimensional correction): 

= (x')
	

(2) 

Assuming that external forces, such as the wing lift force in the case 
of seaplanes, are equal and opposite to the weight and applying Newtonts 
second law to equation (2) as in references 1 to 5 leads to the fol-
lowing differential equation for the motion normal to the keel during 
impact:

-	 =(Y	 —ds^	 Pds	 () g	 t	 Jo 

This basic equation of motion can be solved specifically, provided that 
m and p(X ? ) are known. Although this equation may not hold for 
accelerated motion at very large (infinite) immersions, it is believed 
to apply over the practical range of impacts. 

Selection of Three-Dimensional Deflected Mass 

The three-dimensional-flow correction cp(X') and the two-dimensional 
deflected mass mw will be defined and evaluated before the procedure 
for solving equation (3) is presented. 

DeterminaUon of three-dimensional correction. - The three-dimensional-
flow correction to be used in this paper was determined empirically by 
Pabst in reference 7 and is given by the equation 

• - r 1	 11/2/	 O.25 cp(x') -

	 +	 1	 I	 -	
, + 1 1 L	 (x?) 2j	 \
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b (5) 
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which is plotted in figure 2. The value X t is taken as the ratio of 
the length of keel below the elevated water surface to the mean wetted 
width (see fig. 1). The hydrodynamic aspect ratio X.' for a rectangular 
flat plate is therefore expressed by the equation 

where 2 is the length of keel below the elevated water surface and b 
is the beam of the body at the chines. 

For a V-bottom prismatic body the water rise at the keel is 

neglected so that X' = X and 	 =	 (see fig. 1). The "lateral" 

water rise as shown in figure 1(b) at flow plane 1 and discussed in 
reference 2 is, however, taken into account in determining the mean 
wetted width. On this basis, the ratio of the wetted keel length to 
tI mean wetted width is found to be 

1

tan T f(3) 

or

=	 (5/b)2

11 
tan. Ti- - _____ 

Lb	 1f(i3j 

where

(s<tan	 (6) 
- 2 J 

( 

> tan 
2 )
	

(7) 

f(13) =	 - 1
	

(8) 

and 3 is the angle of dead rise. 

A certain measure of the suitability of equations ( ii-) to (8) can 
be obtained by considering the case of steady planing. For this case 
( = 0), equation (2) reduces to

rl 
= cp(x')	 - ds	 (9) JO t
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In order to consider this equation further, the assumption is made that 

the two-dimensional-deflected-mass ratio defined as mw/pb2 is a 
function of only the cross-sectional shape. of the body and the ratio of 
normal draft to beam; that is, 

- = f(a, - 
2	 \	 b pb 

where p is the mass density of the fluid and a is the cross-
sectional-shape factor. On the basis of this assumption and the sub-
stitution ds = d( cot T) = d( ' cot T) (see fig. 1), equation (9) may 
be written

FN =	 t)	
d	

d(' cot T) 

Jo	 Tt 

4., 
____	 Sdm 
tan T	 d' t 

= (x)2 
18 

-	 - (x')2	
(ii) FN	

tanT 

where m	 is the two-dimensional deflected water mass which in sea-

planes is associated with the flow plane at the step. Solution of 
equation (11) for	 and division through by pb2 to render the 

equation nondimensional gives 

IIIw	 FNtanT 
-=	 (12) 
pb2 - cp(X'.)2pb2 

In order to investigate this equation, use has been made of 
unpublished, high-speed, experimental planing data obtained at the

(10)
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Langley tank no. 1 with prismatic forms having angles of dead rise 
of 00 to Ii0°. When the right-hand side of equation (4-) is substituted 
for cp(X') and the unpublished da0ta are substituted into equation (12), 

the factor m 5 /pb2 is fomd to be essentially a function of only the 

angle of de:.d rise	 and the ratio of normal draft at the step to 
beam	 ' 5/b, or

	

=fQ3,	 (13) 

This result substantiates the assumptions of equation (10) and also 
demonstrates the validity of the three-dimensional correction expressed 
by equations ( it) to (8), for the case of the V-bottom prism. 

Two-dimensional deflected mass.- In the absence of a theory covering 
the continuous variation of two-dimensional deflected mass with draft 
over the complete range of immersion, the two separate variations sug-
gested in reference 5 are combined in this paper to give a single mass 
variation with draft. This variation is selected as follows: 

(1) Sections prior to chine immersion: 

For non-chine-immersed sections the deflected mass is generally 
taken as the virtual mass, which is defined herein as the apparent 
additional mass observed during accelerated motion. In references 8 
and 9 theories are available for determining'the variation of virtual 
mass with draft for non-chine-immersed impacts. These theories have 
been checked experimentally for the prismatic V-bottom form and that 
of reference 8 was checked also for the scalloped-bottom form. For 
cross sections of arbitrary shape, the variation of the two-dimensional 
deflected mass may be obtained from reference 3, 8, or 10. However, 
experience has shown that, for small transverse concave curvature, the 
mass variation may be approximated by an average V-shape. The same 
approximation is believed to be equally valid for small convex curvatures. 
The two-dimensional-mass variation for a V-shape is 

	

2	 2 
111w 

= p:2 [f(3]	 (lit) 

which is taken from references 1 to 3 and is based on Wagner's work. 
Substitution of ' for in this equation to take water rise at 
the keel into account gives

2 2[12	 (15)
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which is to be used as the deflected mass prior to chine immersion of 
each section. Chine immersion is herein assumed to occur at the inter-
section of the chines in a given flow plane with a plane, parallel to 
the undisturbed water surface and,passing through the intersection 
point of the keel with the actual water surface. The draft-beam ratio 
at chine immersion is

tan f3
(16) b - 2 

The two-dimensional deflected mass at this instant therefore becomes 

pirb2 

= 8 
[f()]2tan2	 (_7) 

(2) Sections subsequent to chine immersion: 

For infinite immersion of the chines, a variation of two-dimensional 
deflected mass with draft may be derived from the theory of Bobyleff 
(ref. 6, arts. 73 to 8). However, no theory is believed to be avail-
able on the variation of two-dimensional deflected mass for moderate 
chine immersion. In the absence of a single accurate deflected-mass 
variation over the entire range of immersion, a composite deflected mass 
is suggested which is composed of the deflected mass present at the 
instant of chine immersion plus a deflected mass which is derived from 
Bobyleff's theory. For infinite immersions, Bobyleff has shown that 
the force per unit length on a two-dimensional V-shape of finite width b 
traveling with constant normal velocity ' (point foremost) is 

- (18) 

where B is a function of the angle of dead rise and is given in 
figure 3. This force is assumed to be equal to the rate of change of 
momentum of an equivalent deflected mass; that is, 

d

= —(m 

= ()2w	
(19) 

d'
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where constant velocity is assumed. Thus, from equations (18) and (19), 

= B 2 b 
2 

which in this paper is taken as the variation of deflected mass with 
draft subsequent to chine immersion. Integrating to find the change in 
deflected mass subsequent to chine immersion imw gives 

Am=Bb /	 d' 

U c 

	

= B b(	 - Yc)	 (21) 

The total two-dimensional deflected mass subsequent to chine immersion 
is found by adding to this expression the deflected mass at the instant 
of chine immersion. If this latter mass is assumed to be given by 
equation (it), the total mass becomes 

p irb 2 ____	 tan íA 
8	 2 )
	

(22) 

For prismatic hulls of arbitrary cross-sectional shape where the variation 
from a V-section is not great, approximate values of m are believed 
to be obtainable through substitution of equivalent V-sections for the 
arbitrary sections. The angle of dead rise would be determined by 
obtaining an average angle of dead rise for the arbitrary section. 

For the case of 00 dead-rise angle, equation (22) reduces to 

	

+	 (23) n=pb—	
b) 

Equations (17), (22), and ( 23) are to be used in the solution of 
equation (3).

(20)



12	 /	 NACA TN 2813 

METHOD FOR SOLVING EQUATION OF MOTION INCLUDING 


COMPUTATIONAL C HART S 

General Treatment 

The incorporation of the aspect-ratio correction cp(X') and the 
deflected mass m into equation (3) permits solution of the equation 
by numerical methods. A aarge saving of time may be effected, however, 
by solving the equation partially by analytical means to reduce it to a-
form convenient for graphical integration. This reduction is given here, 
with equation (3) restated first for convenience: 

..pz 
-	 =cp(x)J c— ds +
	

m, ds) 

The discussion following equation (10) substantiates the assumption 
expressed by that equation that the two-dimensional deflected mass for 
a given hull is a function only of the draft normal to the keel; that 
is,

= f(t)	 (2)) 

Therefore,

=	 =	 t	 (25) 
t	 t t	 d 

From figure 1, s =

	

	 Differentiating this relation gives 
tan T

d' 
ds =

	

	 (26) 
tan T 

Substitution of equations (25) and (26) into equation (3) gives 

Ci 
-	 = (X')(	

tanT	
• I	 ds)	 (27) 

\JO	 JO
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For impacts with deeply immersed chines, however, the water rise at 
the keel r (see fig. i) is generally small compared with the draft and 
is approximately constant for the greater drafts. Therefore, its deriv-
ative with respect to time	 approaches zero at these drafts, making 

', which is equal to	 +	 sec T, approach	 . In this derivation, 

then,	 is assumed equal to	 , whereby 

.2	 Blw 
-	 = (Xt Ktan T	 j	 )	

( 28)
I mds 

and, after integration of the first term on the right-hand side, 

.2 
P1 

(x') I	

dsl = -	
(29)
W tan 

Jo 

Rewriting equation (29) in terms of the coordinate system referred to 
the water surface is done by means of the following substitutions (see 
fig. 1):

z 
= COS T
	 (30a) 

z =

	

	 - s tan T	 (3ob)

cos T 

= cos T
	 (30c) 

where	 is taken equal to 0 because of the assumption of frictionless 

flow and no external force, and s is therefore a constant. When these 
substitutions are made, equation (29) becomes 

+	 ______ _______	 - S Slfl T)	 (31) 

L	 Jo.	
ds = -(	

.	 2 ______ 
W SiflT
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Rearranging the terms and integrating both sides with respect to z 
gives

dz 
z dz	 f	 sin T	

(32) 
2	 - -SSiflT)	 w	

/ mds 
gp(x') Jo 

which can be written 

fl	 dz	 - 
zdz	 -	 I	 S1flT 

J. (-sinT) 2

	

	 jo ___ Z0	 + I muds 
gp(XT)	

Jo 

After the integration of the left-hand side has been performed, the 
following equation expressing the velocity as a function of the draft is 
obtained:

LIkW5 

z	 dz ,- + K zo	 K	 K	 _____________________ _____ _____ ____	 SIflT	 (3)#) loge	 +	 -	
K = -	 W	

+ J m ds 
1 + K	 --- + K	 1 +

(x')	 Jo 

where

K = - S sin T 
zo 

	

- Sin T	 (T + 
sin 

If for convenience the left-hand side of equation (3)4) is denoted by


	

Q(_	 and if dz as obtained by differentiating equation ( 30c ) is \Z0 / 

substituted into the right-hand side, the following equation results: 

rn	 d 5	 S 

	

-	 QfS	
tan	

-	 () 0	 W	 1



NACA TN 2813
	

15 

Since, from equation ( 2 11. ), mw5 = r(), a multiplication by dsId'5 
is performed inside the integral to give 

m	 d

____ S 

Q	
tan T dt'	 S 

--	 (36) 
- I	 2 +1 mds 

p(x')	 Jo 

Equation (36) can be expressed in terms of nondimensional quantities 

through multiplication of the right-hand side by pb 3/pb3 ; after sub-
stitution of equation (26), the following relation results: 

mw t 
lb	

d'5 d S	
pb2 

cp(Xt)	
0	 Pb 

where

3 
pgb 

Since Q, which denotes the left-hand side of equation (311.), contains the 
velocity ratio	 equation (37) represents, finally, the relation 
between this velocity ratio and the ratio of normal draft to beam '8/b. 

The relation between the nondimensional acceleration zb/ 02 and 

the nondimensional vertical-velocity and draft-beam ratios is determined 
through similar nondimensionalizing of equation (31), which results in 
the equation

1 +c 
zb -	 / COS T	

(38) 
- - ______________________ CtanT	

Sd5 
cp(X')	 jO	 b
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Equations (37) and (38) can be used to calculate the variation of 
acceleration and velocity with draft during fixed-trim impacts involving 
appreciable chine immersion. In order to effect specific solutions of 
these equations, the variables making up the equations are presented in 
the form of computational charts, some of which'are described in the 
next paragraph. An indicated method of computation follows. 

The variation of K with. y is given in figure 1 for various 
trim angles. The left-hand side of equation (31k), designated as Q in 
equation (37), is plotted against i for various values of	 in 
figure 5. The ratio d 5 /dy 5 ' in equation (37) is the keel water-rise 
factor which inreference 11 was shown to be substantially independent 
of flight-path angle and therefore capable of being evaluated from 
planing data. For the rectangular flat plate, a large quantity of 
experimental planing data is available from which this factor can be 
computed. An analysis based on these planing data and giving the wetted 

____ dX 
length and the keel water-rise factor 	 =	 for landings of flat 

d' 5 	 dX' 

plates is presented in appendix A and the results are plotted in fig-
ure 6. For the case of finite dead rise this factorhas not been fully 
evaluated, but since it is believed to be close to unity (no water rise), 
it is assigned that value in this paper for angles of dead rie greater 
than 100 . For angles of dead rise smaller than 10°, use of the keel 
water-rise factor d 5/d' 5 for the flat plate is suggested. 

In order to obtain specific Solutions of equations (37) and (38) In 
the forms shown for flat or V-bottom prismatic bodies, the following pro-
cedure is suggested: The variation of m 	 with	 may be obtained 
from equations ( 15) and (22) and figure 3, from equation (23) and fig-ure 3, or from experimental planing data with the aid of equation (12). 
This mass variation may be substituted into the integral in the denomi-
nator of equations (37) and (38) and integrated analytically or graphi-
cally. The aspect ratio X' may be determined from equations (5) to (8) 
as a function of the ratio of normal draft to beam (x' is taken equal to 
X for a hull with dead rise). For a flat plate, 1 in equation (5) is 

related to the normal draft (see fig. i) by the equation 1 = 	 S 

tanT 
The variation of cp(X') with X' may then be obtained from figure 2. 
The variation of d /dt s may be obtained from figure 6(b) for angles 
of dead rise smaller than 10° and is taken as unity for angles of dead 
rise of 10° and greater. After these quantities have been substituted 
into equation (37), it can be integrated graphically to yield the varia-
tion of Q with ' 5 /b. The variation of	 with Q may be 
obtained from figure 5 after selecting a value of 	 from figure ;
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thus, the variation of 	 with ' 8/b may be established. A value 
of zb/ 02 can then be obtained for each value of /o through 
substitution of the derived quantities into equation (38). 

The ratio of vertical draft to beam can be found from the ratio 
of normal draft to beam by means of the equation 

-	 COST 
b	 b
	 (39) 

where 5/Y5 is assumed to be equal to x/x', which may be obtained 
from figure 6(a) for angles of dead rise smaller than 10° and is taken 
as unity for angles of dead rise of 10 0 and greater. For the case of 
00 dead rise, equation (39) can also be written 

	

z 
= '	 Slfl T
	 (40) 

The variations of acceleration and velocity with draft as obtained 
by use of equations (37) to (40) allow design maximums to be established. 
For calculating structuralresponse, time histories are desirable. From 
the relations dz = d.t and = V 0 sin 7 a time coefficient may be 
derived which is defined as follows: 

____ rz/bd 

b	 sin y	 (4i) 

where V0 is the initial resultant velocity at contact. Graphical 
integration of this equation allows the draft-time relation to be 
established. 

Simplification Through Omission of Acceleration Term 

In order to reduce the labor required to make solutions for specific 
landing inrpacts, a simplification was effected which does not seriously 
reduce the accuracy of these solutions for practical landing configura-
tions. From equation (28) it is evident that the hydrodynamic force is 
composed of two terms, one proportional to the square of the velocity 
normal to keel and the other proportional to the acceleration normal to
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- the keel. For impacts involving beam-loading coefficients greater than 
1 and appreciable chine inmersion, the ratio of the acceleration term 
to the velocity-squared term is usually small. This acceleration term 
is therefore omitted from the equation of motion, with the result that 
equation (37), which relates the velocity and draft, is reduced to 

' lb 
1	 P 

Si cp(x') ifl
	 d	

d 

	

tanT pb2d 's	 b 

which may be written

k 

where

k=	
p(xt)Wds d!.—. 
tan T pb2 d 5	 b 

Omission of the acceleration term from equation (38), which relates the 
acceleration, velocity, and draft, reduces it to 

z	 '	 cp(x')	 m 

	

+,I	 - ) CsinTpb2 

Thus, a simplification of the numerical calculation is made possible 
through the introduction of additional computational charts. One such 
chart (fig. 7) shows the variation of k with 	 for various trims 

and angles of dead rise. For the flat plate (00 dead rise), k was 
evaluated by graphical integration after substitution into equation (11-2) 

of equations (11.), (5), and (23), where. 1 =	 S	 and of the ratio 
tanT 

from figure 6(b). For the case of finite dead rise, k was 

similarly evaluated after substitutidn into equation (112) of equa-
tions (11), (6) to (8), (15), and (22) for finite dead rise, where

(11.2) 

(11.3)
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was taken equal to unity. A second chart was constructed from the varia-
tion of the part of equation (4-3) designated as J, where 

- cp(x') 

	

- sin T pb2	
(14J#) 

and is plotted against	 '51tb for various trims and angles'of dead 
rise in figure 8. 

In order to obtain specific solutions of equations ( )42) and (143), 
a computational procedure has been set forth in appendix B. This pro-
cedure is somewhat like that outlined for treating equations (37) 
and (38) and the labor for each solution has been considerably reduced. 

EXPERIMENTAL VERIFICATION OF THEORY 


Modification of Theory to Permit Comparison With Experiment 

The theory developed in this paper covers free-body landings in 
which the velocity parallel to the keel is assumed to be constant during 
impact. The only available experimental data that were usable for 
verification of this theory, however, were obtained during an investiga-
tion of constrained models at the Langley impact basin. In these tests 
the model was mounted on a catapulted carriage in such a way that the 
model was free to move vertically but was constrained to move with the 
carriage in a horizontal direction. Since the carriage was several times 
as heavy as the model, the forward velocity of the carriage-model com-
bination remained, approximately constant. In order to compare the theory 
of this paper with the available data, it was necessary to modify the 
equations sci that the velocity component in the horizontal direction, 
instead of the component in the direction parallel to the keel, was 
considered constant during impact. The equation of motion was then 
solved by a procedure similar to that used in deriving the proposed free-
body theory with the following results. 

The equation relating the velocity of the body to its draft, which 
is comparable to equation (37), is

Tfld 

= -cos2T	
C	

pb2 d' 5	 b 

tan T	 mw5 
d 

	

+ J cp(X')cos 2 -r	 0	
b

(1,7)
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where

z + 
zo

+	 -	 L 
l+KL

L zo 

and

tan T 

tan 

The equation relating the acceleration of the body to its velocity and 
draft, which is comparable to equation (38), is 

I— + i I cos T -• 

	

I	 'pb 
2	 CY5Jb 

0	 CtanT + I 
cp(')cos2 T	 pb2	 b 

Specific solutions for impacts may be obtained with these equations as 
was done with equations (37) and (38). The value of QL can be obtained 
from figure 5 in place of Q when	 is substituted for . 

The omission of the force term arising from acceleration of the 
deflected mass is handled as in the derivation of the free-body theory 
and leads to the following equations which are similar to equations (1i2) 
and (-i-3): Equation ( li-5), which relates velocity and draft, is reduced 
to

cos T c J
____	

d	 (1) tan T pb2 d 5 b 

and equation (Ii.6), which relates the accelerat4Lon, velocity, and draft, 
is reduced to

= -	
+	 \2 cp(X') cos1i m 

zo2	 ')	
C	 Sin T	

(1.8)
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Specific impact Solutions of these equations may be obtained as was 
done in appendix B with equations (11.2) and (43) for the free-body case. 

Comparison With Test Data 

Theoretical curves, usable for actual landing-impact calculations, 
are presented, in figures 2 to 8 and were discussed in detail in the 
previous sections. The succeeding figures present comparisons of experi-
mental data, obtained at the Langley impact basin, with the proposed 
theory modified for constant forward velocity. 

Several theoretical variations of impact load factor, vertical 
velocity, and vertical displacement with time are compared with experi-
ment in figures 9 and 10. The experimental data in these plots were 
obtained at the Langley impact basin, and, although a portion of these 
data is unpublished, the rest may be found in references 11 and 12. In 
figures 9(a) and 9(b) are presented theoretical and experimental load-
factor time histories of landings of a flat plate for a wide difference 
of trim and flight-path angle and for a beam-loading coefficient of 18.8. 
Fair agreement exists in each case. 

An indication of the agreement between theory and experiment at 
the upper-limit of flight-path angle is given in figures 9(c) and 9(d). 
These figures present theoretical and experimental load-factor time 
histories for water landings of a flat plate having a beam-loading coef-
ficient of 18.8 at trims of 6° and 15° for the end-point case of a 
vertical drop (flight-path angle of 90°). Fair agreement is also 
obtained in these figures. 

In order to demonstrate the effect of neglecting the force term 
arising from the acceleration of the deflected mass, figure 9(e) is 
presented for the landing of a flat plate with a medium beam-loading 
coefficient of 14-.36, at the lowest trim for which data were avail-
able. The difference between the two theoretical lines plotted illus-
trates the effect of neglecting this acceleration term. The higher line 
represents the solution with the deflected-mass acceleration neglected, 
and at maximum acceleration the difference between the two theoretical 
curves is seen to be about 10 percent. The deflected mass used in the 
acceleration term may possibly be overestimated here. If the cylindrical 
virtual water mass based on the beam as a diameter (ref. 2) were used 
instead, this difference of 10 percent would be somewhat reduced. The 
experimental data fall somewhere between the two curves, but no conclu-
sion is drawn from this fact since the possible errors in the experi-
mental data are estimated to be of the order of magnitude of ±O.2g. 

The effect of water rise at the keel is demonstrated in figure 9(f). 
This effect is greatest for small immersions and is therefore . important
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for.lightly loaded plates for which maximum drafts in impact are small. 
The upper curve includes the effect of water rise at the keel and the 
lower one does not. For plates with medium loading, consideration of 
this water rise increases the theoretical maximujn load by about 9 percent 
and increases the initial rate of load application, so. that the time to 
maximum load is reduced. As in figure 9(e), the experimental data fall 
between the two theoretical curves up to maximum acceleration and the 
same reservation concerning accuracy holds. It might be mentioned that 
the acceleration data presented in this paper have a time lag which is 
estimated to be approximately 0.007 second. If this also is taken into 
account, the theory including water rise in figure 9(f) would give 
better agreement with the experimental data up to maximum load than the 
theory omitting water rise. 

Figure 10(a) presents time histories of impact load, factor, vertical 
velocity, and draft for an impacting flat plate having a beam-loading 
coefficient of 18.8. The effects of neglecting the acceleration of the 
deflected mass and water rise at the keel are again shown here, in addi-
tion to the effect' of a large carriage mass. Comparison of the theoret-
ical curves for free motion and constant forward velocity indicates that 
the large test-carriage mass, which causes the horizontal velocity to 
approach a constant value, increases the maximum load factor for this 
case by about 3 percent. The increase becomes considerably larger for 
the higher trims. The effects of carriage mass, acceleration of the 
deflected mass, and water rise at the keel on vertical velocity and 
draft are seen to be small. 

In figure 10(b), time histories of impact load factor, vertical 
velocity, and draft are presented for an impact of a hull with an angle 
of dead rise of 30° and a beam-loading coefficient of 18.8. The small 
effect of acceleration of the deflected mass may be noted by comparing 
the two curves and the experimental data on each plot of this figure. 
The agreement between the theoretical and experimental hull load factors 
would be improved if the aforementioned 0 . 007-second time lag were taken 
into account. A similar time lag exists in the vertical-velocity data 
and, although the exact value of this lag is unknown, it has been roughly 
estimated at 0.007 to 0.01 second. If this lag were taken into account, 
the agreement between the theoretical and the experimental velocity would 
be considerably improved. If more were known about the water rise at the 
keel for the float with dead rise and if a better variation of two-
dimensional deflected mass were available, the agreement would probably 
be further improved. Thus, from figures 9 and. 10 the agreement between 
theoretical and experimental time histories is seen to be fair. 

The variation of impact lift coefficient with flight-path angle for 
wide ranges of trim and beam-loading coefficient is shown in figure 11 
for 0° dead-rise angle and for flight-path angles up to 21.5°. The
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experimental data in this figure were obtained at the Langley impact 
basin and the published portion may be found in reference 13. The agree-
ment between experiment and the theory that incorporates water rise at 
the keel, omits the acceleration term, and assumes constant horizontal 
velocity is seen to be fair, at least for beam-loading coefficients 
greater than 1. For beam-loading coefficients less than 1, the effects 
of acceleration and of flight-path angle on the deflected mass might 
introduce noticeable errors. 

Since fair agreement was demonstrated between theoretical and experi -
mental flat-plate landing accelerations for flight-path angles up to 
21.5° in figure 1-1 and for the end point of 900 flight-path angle in 
figures 9(c) and 9(d), the proposed theory is believed to be applicable 
for all flight-path angles. 

The variation of impact lift coefficient with flight-path angle for 
an angle of dead rise of 30°, a beam-loading coefficient of 18.8, and a 
wide range of trim is presented in figure 12. The solid curves represent 
the suggested theory for constant forward velocity including water rise 
at the keel and neglecting the acceleration term, with d 5/d' 5 taken 
as 1 for the body with dead rise. The dashed lines are calculated from 
the theory of reference 2, which predicts the occurrence of maximum load 
at the instant of chine immersion for impacts involving deep immersion 
of the chines. Each of these curves experiences a radical change of 
slope and shape at a certain critical flight-path angle for each trim 
and beam loading. For flight-path angles below this critical value, 
maximum load occurs prior to chine immersion. For a short range of 
flight-path angles immediately above this critical value, maximum load 
is believed to occur at or near chine immersion, and for high flight-
path angles, maximum load occurs subsequent to chine immersion. Since 
the variation of deflected mass with draft is different before and after 
chine immersion, a break in the curve is expected to occur at the point 
of chine immersion. In figure 12 a comparison of the two theories with 
experimental data from reference 12 shows that for impacts involving a 
small degree of chine immersion the theory of reference 2 gives better 
results, at least for low trims, whereas for impacts involving deeply 
immersed chines the agreement with the theory suggesteci. in this paper 
is better. This disagreement of the suggested theory with experiment 
for small degrees of chine immersion when dead rise is present could be 
improved through use of a more accurate deflected-mass variation in the 
region of chine immersion. The general agreement between the experi-
mental data for bodies with dead rise and the proposed theory, however, 
is seen to be fair, even for small amounts of chine immersion where the 
theory is conservative. 

The variation of maximum draft with flight-path angle is presented 
in figure 13 for angles of dead rise of 00 and 30° and for several trims 
and beam loadings. The general agreement with data from the Langley
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impact basin, the published portion of which may be found in refer-
ences 12 and 13, is seen to be fair. This agreement indicates that the 
theory of the present paper could be used in conjunction with the method 
of reference 114. to compute pitching-moment time histories during landing 
impacts.

CONC UJSIONS 

A method has been derived for the analytical determination of the 
motions and hydrodynanric loads in chine-immersed water landings of 
prismatic bodies. Comparison of this theoretical work with other avail-
able theory and with experimental data obtained at the Langley impact 
basin has led to the following conclusions: 

1. In general, the concept of a two-dimensioflal deflected mass with 
a correction for three-dimensional flow can be used to predict with 
reasonable accuracy the loads and motions during landings of prismatic 
bodies involving immersion of the chines. 

2. Use of Wagner's virtual-mass variation for non-chine-immersed 
sections combined with a deflected-mass variation obtained from Bobyleff's 
solution after chine immersion of these sections, with level water'as a 
boundary, gives fair agreement with experiment for deep impacts. 

3. For shallow impacts at the lower trims, involving slight chine 
immersion of bodies with dead rise, the virtual-mass variation sug-
gested in NACA TN 1516 gives better agreement with experiment than the 
proposed variation. 

1 . The effects of water rise at the keel in the case of a flat 
plate and the effectsof the ratio of test-carriage mass to model mass 
in the general case are significant enough to be included, in the proposed 
equations of motion. 

5. Omission of the force arising from acceleration of the deflected 
mass is not serious for beam-loading coefficients larger than unity and 
results in a large reduction in the work required for each solution. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 


Langley Field, Va., June 25, 1952
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APPENDIX A 

WATER RISE ON A RECTANGULAR FLAT PLATE 

As has been mentioned in this paper, reference 11 shows the water 
rise at the keel of an impacting body to be relatively insensitive to 
flight-path angle and thus capable of being evaluated from planing data. 
Since such data are most conveniently analyzed in terms of the wetted 
length of the body (1 in fig. 1) and since this analysis is based on 
the draft z with respect to the undisturbed water surface, the relation 
between these two quantities must be obtained. This relation is expressed 
by the equation (see fig. 1) 

z = 1 sin T - r
	

(Al) 

where r is the water rise at the keel. 

Several papers about planing discuss this phenomenon of water rise 
at the keel in connection with steady motion and reference 11 discusses 
it in connection with motion of the peak-pressure line during impact. A 
theoretical solution by Wagner (ref. 8) for the two-dimensional planing 
flat plate predicts infinite water rise for the ideal case, in which 
gravity and viscosity are neglected. Planing data from references 15 
to 17 show the increase in wetted length due to water rise X' - X to 
be a more or less constat fraction of the hull beam, with only a small 
variation due to changes in trim. At low length-beam ratios this result 
is more or less in agreement with Wagner's theory for planing, but it 
would not be in agreement for impact, as indicated in reference 11. This 
reference shows an expected gradual transition from no water rise .at the 
instant of water contact to some constant value for the hull tested at 
ratios of wetted length to beam greater than 1.5. The rise variation of 
reference 11 is not used in this paper, however, since it is based •n 
the peak-pressure location and not on the measured wetted length. The 
following system is therefore used for the flat plate. The case of a hull 
with dead rise is not covered because of a lack .of sufficient information 
on water rise at the keel in planing. 

The assumption is made, as in reference 11, that the water rise at 
the keel for a two-dimensional flow about an impacting plate of infinite 
width is independent of the flight-path angle and is proportional to the 
draft; thus

r=Cz	 (A2)
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where r is the rise and C is the constant of proportionality. In 
nondimensional form this becomes 

- = CX sin T 
r	 (A3) 

where X =	 Z	 is the length-beam ratio below the undisturbed water 
bsinT 

surface for a flat plate. For three-dimensional flow about plates with 
a very small ratio of wetted length to beam, equation (A3) would also be 
applicable. However, as the length-beam ratio increases, this piled-up 
water should be relieved through flow around the sides of the model. 
Thus, some form of correction for three-dimensional flow f(X) is 
required to reduce the rise for high length-beam ratios, as follows: 

= CXf(X)sin T	 (A14-) 
b 

A correction for three-dimensional flow which fits the end points, 
reducing equation (Ai-) to equation (A3) at small length-beam ratios and 
to a constant value at large length-beani ratios, is Pabst's correction 
(eq. (14-) in the body of the paper) applied to the inverse hydrodynamic 
aspect ratio. Substituting this correction into equation (A14-) gives 

= CAP(J )sin T
	

(A5) 

The effective ratio of wetted draft to beam (-see fig. 1) is therefore 

z + r _• 

	

b	
- b + CA()sin T 

Since X =
	

and X' 
= Z 

+ r_, the effective ratio of wetted 
b sin T	 b sin -r 

length to beam is

X' =x[1+cc(J	 (A7) 

An average value of O.4- for C was obtained from the experimental 
planing data in references 15 to 17. Figure 6(a) is a plot of equa-
tion (A7) baed on this value °r C, and figure 6(b) is a plot of the 

slope of this curve, or	 =	 against X'. 

	

d.X'	 d'5

(A6)
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APPENDIX B 

SUGGESTED COMPUTATIONAL PROCEDURE 

.This section gives suggested computational methods to facilitate 
calculation of loads and motions during free-body impacts of a prismatic 
form experiencing appreciable chine immersion. These methods are based 
on a solution of the equation of motion which takes into account water 
rise at the keel, neglects the acceleration of the virtual mass, and 
neglects the effects of flight-path angle on water rise at the keel and 
on the normal-force coefficient. As a result of these omissions, the 
effects of which are small at the higher beam loadings, this solution 
is considered applicable only to those cases for which the beam-loading 
coefficient exceeds unity. 

The over-all computational procedure is subdivided into four less-
general procedures to increase the utility of the solution. The first 
of these treats smooth-water landings of prismatic bodies approximating 
V-sections and makes use of computational charts covering specific angles 
of dead rise of 0 0 , 100 , 200, and 300 and certain fixed trims. The 
second procedure applies to the same bodies for all angles of dead rise 
and fixed trims but requires more work for each solution. The third 
procedure covers prismatic bodies of arbitrary shape but requires experi-
mental data from planing or drop tests. The fourth procedure accomplishes 
a conversion from smooth-water to rough-water landings. Explanation of 
symbols is given in the list of symbols following the introduction and 
in figure 1. 

Procedure 1 - Smooth-Water Landings of a Prismatic Body Having 


a Cross Section Approximating a V-shape With a Dead-Rise 


Angle of 0°, 100 , 200, or 300, at One of


Several Fixed Trims 

1. Obtain a value of c from figure 14. through use of appropriate 
values of initial flight-path angle 7c and trim T. 

2. Select several values of the vertical-velocity ratio 
between 1 and -1 and, with the value of c, obtain a value of Q from 
figure 5 for each value of z/z0.
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3. Compute a value of k for each value of Q from the equation 

k = _CAQ, where CA = W
	 and. is defined as the beam-loading 

pgb3 
coefficient. 

1 Obtain values of the ratio of normal draft to beam Y 5 /b for 

each value of k from the curve for the appropriate values of T and 

average angle of dead rise 3 in figure 7. 

5. Obtain a value of J for each value of 	 ' 5/b for the appro-

priate values of T and 3 in figure 8. 

6. Calculate a value of the nonditnensional acceleration zb/Z02 

for each combination of /o and ' 5 /b through substitution of the 

appropriate quantities into the equation 

	

+ \2 
L	 (Bi) 

2	 ) CA 

7. Plot the load factor n = - . and the vertical velocity 

against the ratio of normal draft to beam 

8. Repeat steps 1 to 7 for several other values of	 and T 

covering the range of interest.

ft . \	 w 

9. Compute values of CL = 'w1m
	 from the maximum values of 

2 
2 ° 

obtained from the curves obtained in step 8 and plot CL against 

7 for various values of T• The resulting curves may be used as. design 
curves.

10. Compute values of draft-beam ratio z/b from the equation 

z	 's X - = - - cos T	 (B2) 
b	 b Xt 

where X/X' is obtained from figure 6(a) for 13 = 0 0 and is taken as 

unity for 13 100. For the base where 13 = 00, 	 =	 S 

btanT



+	 - tan 
2\b	 2 

(J3 >0o.s>tan\ 
2) 

= .[)tan	
2 

pb2 8 
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1L. For calculation of structural response, the variation of time t 
with draft may be found from graphical integration of the equation 

	

tV	 rz/bd 

	

0	 1	 I	 b 
bsinY0J0	

/o 

where V0 is the initial resultant velocity at water contact. Integra-
tion of this equation allows the draft-time relation to be established. 

Procedure 2 - Smooth-Water Landings of a Prismatic Body 

Having a Cross Section Approximating a V-Shape 

With Any Dead-Rise Angle, at Any Trim 

• 1. Select a series cif several values of the ratio of normal draft 
to beam ' 5/b and compute values of mw 5/Pb2 from the equations 

+ 
Pb232	 b

(.B = 00) 

(1 > 
0 ,	 tan ^._i ^ ____ 

b	 2) 

where

f(3) =	 - 1 
213 

and a value of B is obtained from figure 3 by means of the average 
angle of dead rise 13.
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2. Obtain a value of X' for each value of 
C S /b selected in 

step 1 by means of the equations 

y --_S 

- b tan T 

xt=
taflT f() 

/ft \2 

tanTr__.- 
11 

Lb	 1f()J

( = 0°)	 (B3) 

>00;	 s = s <tan	
(Bk) 

(0oYsstan)	 (B5) 

and substitute these values bf X' into figure 2 to obtain values of 

3. Obtain values of d 5 /d '	 from figure 6(b) for each value of 
X', for cases where 00 < ^ 10°. For cases where 	 > l0, d5/d'3 
is taken equal to unity.	 - 

4• Combine the results of steps 1 to 3 to obtain values of 

cp(x)	 plot these against p 5/b, and graphiàally evaluate the
tan T pb2 d'' 
integral

	

Ys/t)q(t) mws• d8 d-L	 (B6) QC = -
	 tan T pb2 d' 5	 b 

at each value of	 selected in step 1. 

7. Obtain a value of Q from equation (B6) for each value of	 fb 

where the beam-loading coefficient C = W	 For each value of Q, 
pgb3 

obtain a value of the vertical-velocity ratio /o from figure 5, 
using the value of i obtained from figure 1 by means of the appro-
priate initial flight-path angle y and the value of fixed trim T. 

6. Calculate a value of the nondimensjonal acceleration 
f?r each combination of /o and ' 5 /b through substitution of the
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appropriate quantities Into the equation 

= -	
+	 p ( x') 

2	 o	 ) C Sin T pb2 

7.
8.
9. Same as in procedure 1. 
10. 
11. 

Procedure 3 - Smooth-Water Landings of a Prismatic Body of 

Arbitrary Cross Section Where Section Characteristics 

Obtained From Experimental Data Are Required 

This procedure is suggested as a rough approximation only, as it 
has not been verified by experimental data. 

1. Select a series of several values of the ratio of normal draft 
to beam ' 5/b and compute a value of X' for each value of 
either from formulas (B3) to (B5) of procedure 2, where J3 is the 

average angle of dead rise, or from the equation X' = 	 where 2 is 

the vetted length and S is the wetted area projected normal to the 
keel. Obtain a value of cp(X') for each value of X' from figure 2. 

2. Substitute data from planing nms or vertical drops of a heavily 
loaded prismatic body with a cross-sectional shape similar to that of 
the body of interest into the equation 

FN tan T 

pb2 - cp.(X')2pb2 

to obtain a value of rr/pb2 for each value of 

Same as in procedure 2.
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7.
8.

9. Same as in procedure 1. 
10.
11.

Procedure Ii - Conversion to Rough-Water Step Landings 

Rough-water landings of prismatic bodies with any angle of dead 
rise into waves which are long compared with these bodies may be handled 
as in reference 18 by the following procedure: 

1. Determine the wave slope at the point of contact from reference. 6, 
articles 229 and 251, or from reference 18. The most severe landings are 
believed to occur on the flank of an advancing wave, in the region of 
the steepest slope.	 - 

2. Rotate the space coordinate system so that the z-axis is normal 
to the wave slope and compute an effective trim with respect to these 
coordinates. 

3. Compute the wave-particle velocity at the point of contact from 
reference 6, artic1es 229 and 251, or from reference 18, subtract this 
velocity vectorially from the hull velocity, and computean effective 
flight-path angle from the resultant velocity with respect to the new 
coordinates. 

I. Using these effective values of trim and initial flight-path 
angle, continue as in smooth-water cases outlined in procedures 1, 2, 
and 3.
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(a) Wetted-length variations. 
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(b) Variation of derivative of wetted length ratio with ratio of 
wetted length based on water rise to mean beam. 

Figure 6.- Water-rise variations for a flat plate. 
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Theory for constant forward velocity 
With water rise at keel, no acceleration term 

- -	 Nc water rise at keel, no acceleratiOn term 
- - - kTitn water rise at keel, with acceleration term 
- . - No water rise at keel, with acceleration term 

Theory for free motion 
With water rise at keel, with acceleration term 

Experimental data 
o Reference 11 
0 Reference 12 

0	 .0l.z	 .08	 .12 
Time, sec 

(a)	 = 00 ;	 1°; lo = 10.10; 

7.7 feet per second; CA	 18.8.

.16	 0	 .011.	 .08 .	 .12 
Time, Sec 

(b)	 30°; -r = 1S°; 'r 
9.b feet per second; C	 18.8. 

Figure 10. - Comparisons of theoretical and experimental impact time 
histories for 0° and 30° angles of dead rise.
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Theory for constant forward velocity 
With water rise at keel, no acceleration term 

Experimental data 

Unpublished 

Reference 13 
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Figure 11.- Comparisons of theoretical and experimental impact lift

coefficients CL for a flat plate at various beam loadings. 
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Theory for constant forward velocity 

With water rise at keel, no acceleration term 

Theory for free motion 
- - - Reference 2 

Experimental data 
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Figure 12.- Comparisons of theoretical and ecperimental impact lift 
coefficients for a hull with an angle of dead rise of 30° and a 
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\ beam-loading coefficient of 18. 8. CL = _________ 
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Theory for constant forward velocity 
With water rise at keel, no acceleration term 

Experimental data 
00

0 14	 8	 12 0 .8	 16	 214 

(a)P.o°)w-6°. (c)p..0°;v'30°. 

1.2- 3 
I	 ' 
-

0' unp,1j8h	
c	

//
(deg) 

0. Reference 13 ,/ 
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Initial flight-path angle, y 0 , deg Initial flight-path angle, y0, deg 

(b) p • 00; -	 (CI)	 P	 30°;	 C	 18.8. 

Figure 13. - Comparisons of theoretical and experimental maximum drafts 
for 00 and 300 angles of dead rise.
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