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THEORETICAL DISTRIBUTION OF SLIP ANGLES IN AN AGGREGATE 

OF FACE -CENTERED CUBIC CRYSTALS 

By John M. Hedgepeth 

Sill-1MARY 

An analysis of the relative frequency of occurrence of any given 
s l ip- line angle in a plastically deformed polycrystal composed of face ­
centered cubic crystals is presented for the case of simple tension. 
The results are compared with those obtained for a polycrystal com­
posed of crystals which have but a single mode of slip and with experi­
mental results. The comparisons show that the differences between the 
results obtained by the two theories become greater as the stress is 
increased. The comparison of the face-centered cubic theory with 
experiment is somewhat better than that of the single-slip-mode theory, 
but the errors are appreciable. 

INTRODOCTION 

The frequency distribution of the angular orientation of slip 
lines that are observed within separate grains on the surface of a 
pl astically deformed polycrystal depends upon the detailed mechanism 
of plastic deformation. In reference 1 an attempt was made to assess 
quantitatively the assumptions on which the slip theory of plasticity 
(ref. 2) is based by investigating the implications of this theory 
concerning this frequency distribution. This assessment was made by 
comparing an experimental distribution with theoretical distributions 
calculated on the basis of the same model as that used in formulating 
the stress-strain laws of the slip theory. Although good agreement 
was obtained with regard to the shape of the distributions, the com­
parison between the experimental maximum slip angle and that predicted 
by theory was poor. One of the possible reasons for this poor com­
par i son, ag reported in reference 1, was the fact that the theory was 
based on a polycrystalline aggregate of grains which possess only one 
mode of slipj whereas aluminum, the metal used in the experiment, is 
made up of face-centered cubic crystals which have 12 modes of slip. 

In order to investigate the quantitative effect of the multimode 
property of face-centered cubic crystals on the slip-angle distribution 
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an investigation was performed wherein this distribution was derived 
on the basis of the same assumptions as those used in reference 1 
except that the grains were assumed to be face-centered cubic crystals 
instead of the single-slip-mode type. The theoretical derivations 
and the results of the investigation are presented herein. 

SYMBOlS 

N(e) cumulative probability of slipped grain having slip angle 
less than e 

s( e) probability density of slipped grains having slip angle of e 

G(e,A.) 

K(e,A.) 

W(A.) 

e 

A., f3 ,(J), 0 

x ,y,z 

a 

R 

T 

indicial cumulative probability 

indicial probability density 

weighting function (s ee eq . (7)) 

slip angle 

maximum slip angle 

coordinates specifying orientation of slip-plane-direction 
combination with respect to specimen axis and viewing 
plane (see fig. 3) 

coordinate axes (see fig. 3) 

tensile stress 

lowest value of tensile stress to cause slip 

stress ratio, a/aL 

resolved shear stress 

limit shear stress 

THE FACE-CENTERED CUBIC CRYSTAL 

The structure and distortion of the face-centered cubic crystal 
have been fully discussed in the literature (see, for example, refs. 3 
to 5) . For convenience , however, some of the characteristics of single 
crystals are given here. 
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Figure 1 indicates the basic slip systems of the crystal. In 
terms of the Miller indices (which are merely sets of direction num­
bers referred to the edges of the cube) , the normals to the planes of 

3 

slip are of the form {lli} (Le. (111), (iil) , (111), etc.) and the 

slip directions in the plane are of the form <110> (Le. [llOJ, 5.10J, 

[lO~ , etc . ). The octahedral planes therefore are the slip planes and 
the face diagonals are the slip directions. The regular tetrahedron 
shown inscribed in the cube contains the slip planes as faces and the 
slip directions as edges. Four slip planes and three slip directions 
in each plane produce a total of 12 possible plane-direction combina­
tions or slip systems. 

If a tens ile stress a is applied to a single cryst.al spec imen 
along the specimen axis the resulting resolved shear stress on any 
particular slip system is given by 

T = a cos A cos 0 

where A and 5 are the angles between the specimen axis and, 
respectively, the normal to the slip plane and the slip direction. 
This shear stress is, in general , different for each slip system in 

(1) 

the crystal. The particular slip system for which T has a maximum 
magnitude is, of course , dependent on the orientation of the crystal 
and can be found by comparing the shears on the various slip systems. 
The stereographic projection of the crystal shown in figure 2 summarizes 
the information obtained in reference 5 by such a comparison . The 
crystal is presumed to be fixed and the orientation of the crystal with 
respect to the loading direction is specified by the position of the 
specimen axis on the stereographic projection. The projection shows 
the orientation of the slip planes (of the form {Ill} , indicated by 
the symbol 6) and the slip directions (of the form <110>, indicated 
by the symbol e» with respect to the orientation of the cube edges 
(of the form <100>, indicated by the symbol [J ). The great- circle 
arcs connecting the various directions divide the hemisphere into 
24 equal triangular regions. The set of indices within each region 
expresses the particular slip plane (upper indices) and slip direction 
(lower indices) most highly loaded if the specimen axis falls within 
that region. Since the resolved shear stress required to cause slip 
along any given slip system of a virgin crystal is independent of the 
orientation of the slip system, the sets of indices also denote the 
particular slip system which will initially undergo slip . (An excep­
tion to this statement is noted in ref. 6 wherein the required resolved 
shear stress is found to be different for different slip systems in a 
thin, plate-like crystal.) As the crystal is loaded further in tension 
the same slip system will continue to undergo slip provided the crystal­
lographic orientation remains essentially unchanged with respect to the 
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loading direction; the other systems will remain dormant because, as 
has been shown experimentally, the dormant slip systems are strain­
hardened to at least the same extent as the operative ones. (See 
ref. 3, p. 304.) 

THEORY 

In the derivation a polycrystallin~ specimen is considered to be 
plastically strained in tension. The grains, which are so oriented 
that the resolved shear stress on the most highly loaded slip-plane­
direction combination is sufficiently great, exhibit slip along the 
slip plane which is evidenced in the form of slip lines on the surface 
of the specimen. If the specimen axis is vertical, the slip lines are 
inclined to the horizontal at various angles known as slip angles. As 
in reference 1 the objective is the calculation of the relative frequency 
of occurrence of slipped grains with various slip angles . 

The desired result can be expressed, in one way, as a cumulative 
probability, that is, as the relative number of slipped grains havigg 
slip angles less than a given value. This cumulative probability NCe) 
can be found conceptually by counting the slipped grains with slip 
angles less than e and dividing by the total number of slipped grains. 
Another way to express the desired result is as a frequency distribu­
tion or probability density, that is, as the relative density of slipped 
grains with a given slip angle. The probability density s( e) is 
found to be equal to the derivative of N( e) with respect to e. Both 
of these quantities are derived herein. 

The following assumptions, which with the exception of assumption 2 
are common to those used in reference 1, are used in the derivation: 

(1) The crystallographic orientation of the grains in the specimen 
is random. 

(2 ) The specimen is composed of face-centered cubic crystals. 

(3) The microscopic stress state in each grain in the same as the 
macros copic stress on the specimen as a whole. 

(4) A grain slips when the resolved shear stress in the slip direc­
tion in the slip plane is greater than a certain limiting value, herein 
called the limit shear stress, which is the same for all grains. 

The model thus consists of a specimen composed of a very large 
number of randomly oriented grains of identical crystallographic pro­
perties subjected to a common tensile stress in the direction of the 
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specimen axis . In the determi nation of the slip-angle distribution, the 
following questions must be answered for each particular grain : 

(1) Which is the most highly loaded slip system? 

(2) Does .this system undergo slip? In other words, is the resolved 
shear stress greater than the limit shear stress? 

(3) If slip occurs, what is the slip angle produced? 

With these questions answered for each grain the relative frequency of 
occurrence of slipped grains with the various slip angles can be deter­
mined . Now, the concept of having many randomly oriented grains can be 
replaced by the concept of having a single grain which is allowed to 
assume randomly all orientations; each different orientation represents 
a different grain. Furthermore, since the 12 slip systems are crystal­
lographically equivalent, attention can be directed to only those 
orientations for which a particular slip system (say the (111/011) sys­
tem) would be most highly loaded. If the orientation is such that 
another slip system is most highly loaded, the basic tetrahedron of 
figure 1 can be rotated to bring the (111/011) system into coincidence 
with this most highly loaded system and this new orientation will be 
crystallographically the same as the old. By means of this artificial 
restriction of the orientation the first question is automatically 
answered and only the second and third questions need to be answered. 

In order to anSWer these questions, the orientation of each crystal 
with respect to both the specimen axis and the viewing plane must be 
specified. One method of specification was used in reference 1 wherein 
the specimen axis and viewing plane were fixed and the orientation of 
the grain was allowed to vary. A better method for the purposes of 
this analysis would be to hold the grain fixed and allow the orienta­
tion of the specimen axis and viewing plane to vary. The quantities 
necessary to specify these orientations are shown in figure 3 wherein 

the (111) plane is the xy-plane and the [9iu direction is the x-axis. 
The orientation of the specimen axis is given by the spherical coordi­
nates ~,the angle between the specimen axis and the normal to the 
slip plane, and ~, the angle oetween the slip direction and plane OAC 
which passes through the specimen axis and is normal to the slip plane. 
The orientation of the viewing plane (which is, of course, parallel to 
the specimen axis) is given by m, the complement of the dihedral angle 
between the viewing plane OAB and the aforementioned plane OAC. The 
slip line produced by the intersection of the slip and viewing planes 
and the slip angle B, the angle measured in the viewing plane between 
the slip line and the normal to the specimen aXis, are also shown in 
figure 3. These quantities defining the orientation are exactly 
equivalent to those used in reference 1. 

- - ---- ---
_~J 
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The value of m is in no way involved in answering the question 
of whether a grain will slip; variation of ill merely changes the slip 
angle produced and only the values of A and ,3 need to be known to 
answer this question. If the stereographic projection shown in figure 2 
is rotated to bring the normal to the (lll) plane into the center, the 
projection in figure 4 is produced. In figure 4 only those parts of 
the projection which will be useful are shown. As was previously 
remarked, the only orientations of the grain that are considered are 
those for which the slip system (111/011) is most highly loaded. The 
triangular region specifying orientations of the specimen axis (or 
values of A and ~ as indicated in fig. 4) for which this slip sys­
tem is most highly loaded is therefore shown. Thus, the restricting 
condition is merely that only values of A and ~ within this triangle 
are to be considered. This limitation entirely takes into account the 
multimode property of the face-centered cubic crystal and constitutes 
the significant difference between multimode and single-mode crystals; 
there would be no restriction of values of A and ~ for a single­
mode crystal. 

The question of whether a grain will slip can now be answered. 
The resolved shear stress on the (111/011) slip system due to a tensile 
stress cr along the specimen axis is given by 

T = cr cos A sin A cos ~ 

The locus of positions of the specimen axis for which T 

shear stress, is given by 

or 

where R 

TL cr cos A sin A cos ~ 

1 
R 

sin 2A cos ~ 

is the stress ratio and is equal to in which 

(2) 

For a fixed value of R, equation (3) describes a closed curve such 
as that shown in figure 4 which separates the sphere into two regions, 
the one inside being where T > TL and the one outside being where 

T < TL. As R is increased the curve encompasses an ever widening region 
starting with a point at A = f' ~ = 0 for R = 1 and increasing to 
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the whole region 0 < A < -2rt , - ~ < ~ < ~ for R = 00. Such curves and 
2 2 

regions have been constructed by Von Galer and Sachs (see, for example , 
ref. 4, p. 38) for a different orientation of the basic triangle than 
the one contained herein. 

For a grain to slip at a given stress ratio the grain must be 
oriented so that the spec imen axis falls in this region. In addition, 
however, a restrictive condition is that the specimen axis must fall 
within the spherical triangle. The specimen axis thus must be included 
both in this r egion and the spherical triangle. For small values of R 
the curve for T = TL falls entirely within the triangle and the results 

should be the same as those obta ined in reference 1 because the restric ­
tive condition is not involved. For large values of R the curve lies 
entirely without the triangle and the exact value of the stress ratio 
is unimportant; the value of R is high enough to cause slip in all 
the grains and the slip-angle distribution is frozen. At intermediate 
values of R both the triangular boundary and the value of the stress 
ratio are important. 

Attention up to this point in the discussion has been directed 
mainly to considering the variables A and ~. Variation of ill, as 
was pointed out, only changes the slip angle produced. The effect 
of ill is taken into account in the following manner . Define the 
indicial cumulative probability G(A,e) as the probability of a slipped 
grain, the orientation of which with respect to the specjmen axis is 
given by A and ~,exhibiting a slip angle l ess than e. (This indicial 
cumulative probability is independent of ~ ,as will be seen later.) 
The equation for N(e) can then be obtained by superposition: 

iCe) 
~ G(A,e)sin A dA d~ 

~ sin A dA d~ 
(4) 

where the quantity sin A dA d~ is an elemental area on the sphere 
shown in figure 4, and the integrations in both the numerator and the 
denominator are carried out over the area A which is included both 
within the spherical triangle and the curve T = TL ' The numerator 

thus is effectively the sum of the indicial cumulative probabilities 
for each position of the specimen axis (A, ~) over all positions which 
produce slip, and the denominator is effectively the sum of all posi­
tions (A, ~) which produce slip. 
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In order to derive the expression for G(A. ,e), t he relationship 
between the orientation of the slip system (given by (A., ~ , ill,)) and e 
must be known. This relationship can be obtained from figure 3 by 
solving the irregular tetrahedron OABC and is 

sin ill tan e ---tan A. 

Note that the value of ~ does not enter into this relationship since 
the slip angle produced by slip on a given system depends only on the 
orientation of the slip plane and not on th~ direction of slip within 
the plane . Because of the symmetry of this equation only values of ill 
between zero and rt/2 need be considered in the calculation of G(A.,e). 
The quantity G(A.,e) is by definition the proport ion of all values 
of ill in this range for which the slip angle is less than a given 
value of e. When A. < e, the slip angle produced will be less than e 
for all values of ill; when A. > e, the slip angle produced will be less 
than e for all values of ill between 0 and sin-l(tan e/tan A.). Thus, 

G(A.,e) 1 

2 sin-l tan e 
rt tan A. 

(A. < e) 

(A. > e) 

Note that the indicial cumulative probability is independent of ~ 

a consequence of the fact that ~ does not appear in equation (5). 
t he limits on the ~-integrat~ons in equation (4) are functions only 
the expression for N(e) can be written 

N( e) == 

~rt/2 W(A.)G(A. , e )sin A. dA. 
o 

rrt/2 J W(A.)sin A. dA. 
o 

(6) 

as 
Since 

of A., 

I n this expression, the term W(A.) 
values of ~ at the end points of 
is included in both the triangular 
curve T == TL ' The value of W(A.) 

is merely the difference between the 
the small circle with radius A. which 
area and the region inside the 

is zero for values of A. for which 

there are no positions of the specimen axis within both of these regions. 
The expression for the probability density See) can be obtained by 
t aking the derivative of N(e) with respect to e 
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11(/2 
W(t.)K (t., e)sin I. dt. 

s(e) 0 
(8) = 

11(/2 
W(t.)sin I. dt. 

0 

where 

K(t.J e ) =:: ~ G(t.Je) 
de 

= 0 (I. < e) 

(9) 

2 sec2e 
(I. > e) =:: 

1( 
Vtan2t. - tan2e 

In equations (7) and (8)J the function W(t.) can be interpreted as 
being a weighting function used in the superposition of the indicial 
cumulative probability G(XJB) and the indicial probability density 
K(t.JB). In order to determine the end-point values of ~ for the 
purpose of calculating W(t.)J use must be made of equation (3) as well 
as the equations of the great circles bounding the triangular area; 
these equations are obtained in the appendix and the results are summa­
rized here. (Each great circle is denoted by the points through which 
it passes .) 

For great circle (OOl JlOl ), 

~ 
rr - cos- l cot I. 

=:: 

6 V2 
(lOa) 

For great circle (001,111) J 

(lOb) 
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For great circle (101,111), 

:r( 

6 
(lOc) 

As can be expected , for a fixed value of R, the variable A must 
be separated into various ranges in the determination of W(A). In 
addition, the stress ratio itself must be separated into various ranges. 
A discussion of each range of R and illustrative sketches follow: 

(1) Range I: 1 < R < J6 
1 + v'2 

001 

-----~" I 

In this range the curve for T = TL falls entirely within the triangle; 

the upper limit of this range is the value of R for which the 
curve T = TL first touches the great circle (001,101) . The values 

of W(A) are 

W(A) o 

2 cos-l ____ 1 __ __ 
R sin 2A 

o 

( ll) 
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where the minimum and maximum values of A on the curve T = TL are 

(2) Range II: 

001 

"\ 1. -1 1 "'1 = - Sln -
2 R 

1t 

2 
1 
2 

. -1 1 
Sln -

R 

V6 
---<R<L 
1 + (2 216 

---~I\I 

In this range and in subsequent ranges both the curve and 
are involved. The upper limit of this range is the value 
which the curve intersects the great circle (001,101) at 
values of W(A) are 

------

the triangle 
of R for 
(3 = O. The 
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W(A.) 0 

2 cos - 1 1 
= 

R sin 211. 

cos - 1 1 + cos - 1 cot A. T( 

R sin 2A '(2 6 

2 cos - 1 1 

R sin 211. 

o 

where the values of A a t the intersections between the curve for 
T = TL and the great circle (001 ,101) are 

(3) Range III : 

001 

~ <R< _6 _ _ 
2V6 3 + {6 

~--~III 
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The upper limit of this range is the value of R for which the curve 
first touches the great c i rcle (001,111). The values of W(~) are 

W(A.) o 

cos - l 1 + cos- l cot ~ J{ 
(Al < A. < A2 ) 

R sin 2~ {2 6 

(13) 

2 cos- l 1 
(A2 < ~ < ~2) = 

R sin 2~ 

0 (~2 < A. < ~) 

( 4) Range IV: 
6 <R < ~ 

3 + {6 4/6 

OO! 

-_--l.!!! 
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The maximum value of R i n this range is that for which the intersec ­
tion between the curve and the grea t circle (001, 111) occurs at ~ = O. 
The va lues of W (~) are 

w(~) o 

1 1 1 cot ~ = cos- ---- + cos- rc 
6 R s in 2~ 

2 cos-1 1 
R sin 2~ 

cos - 1 1 _ cos-1 (f2 cot ~) + 2!. 
R sin 2~ 6 

2 cos -1 __ 1 __ 
R sin 2~ 

o 

whe r e the values of ~ at the intersections between the curve for 
T = TL and the gr eat c ircle (001,111 ) are 

8 ± ' /1 + _4 V6_6 _ 12 
1 R V: R R2 

Bl 2 = - cos-1 -----------
, 2 9 

(14) 
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(5) Range V: 11 < R < 2 
4V6 (3 

001 

---~III 

The upper limit of this range is given by the value of R for which 
the curve first touches the great circle (101,111). The values of w(~) 
are 

w().. ) = 0 

cos-1 1 + cos-1 cot ).. 11 
= - -

R sin 2~ V2 6 

2 cos- l 1 
R sin 2)" 

cos-1 1 _ cos -1(f2 cot ~) + E. 
R sin 2A 6 

o 
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(6) Range VI: ;; < R < $ 

001 

----~III 

The maximum value of R in this range is that for which the curve 
passes (simultaneously) through both the corners (001) and (101). The 
values of W (~) are 

w (~) 0 (0 < ~ < Al) 

cos - l 1 -1 cot ~ J{ (Al < ~ < Cl) + cos - b R sin 2~ {2 

c6s - 1 cot ~ (Cl < ~ < C2) 
f2 

cos - l 1 + cos- l cot ~ J{ 
(C 2 < ~ < A2) 

R sin 2~ f2 - 6" (16) 

= 2 cos - l 1 (A2 < ~ < Bl) 
R sin 2~ 

= cos - 1 1 _ cos-1 (f2 cot ~) + J{ 
(Bl < ~ < ~) "6 R sin 2~ 

= 0 (~ < ~ < ~) 
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where the intersections between the curve for T = T L and the great 
circle (101,111) are 

rc 
2 

1 . -1 2 
- Sln -
2 (3R 

1 . -1 2 
- Sln -

2 /3R 

(7) Range VII: fl. < R < ~ R 

The upper limit of t his range i s the value of R 
passes through the corner (111). The values of 

for which the curve 
W(A.) are 
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w(,,) == 0 0< ,,< Cos-l~) 

-1 cot " == cos 
f2 

(coS- l ~ < " < cos-
l If) 

rr 
= - -

3 

== cos-l 1 _ cos-l(n cot ,,) + !.!. 
R sin 2" 6 

== 0 

(8) Range VIII: ~ Ii < R 
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In this l ast r ange the curve lies outside the triangle and the exact 
va lue of R is unimportant ; slip occurs in all grains and the slip­
angl e distribution is frozen . The values of w()...) are 

w()...) == 0 ( 0 < )...< c08 -
1 ~) 

0 0s-1 ~ < )... < cos - Iff) == cos - l cot )... 

f2 

3 
cos - l(V2 cot )...) ~os -l n <A < cos - l ~) 

( cos - l 1<)... < ~) 3 
o 

19 

(18) 

The theoretical derivation is thus completed . By using equations (11) 
to (18) in conjunction with equations (6) and (9), the cumulative prob­
ability N(e) (eq. (7)) and the probability density s (e) (eq. (8)) 
can be eval uated. 

RESULTS .~ COMPARISONS 

In order to sho~ the difference between the results obtained 
herein and those derived in reference 1 the curves for N(e) and s(e) 
have been computed by both theories for three values of R and compared 
in figures 5 to 7. In the calculation of these curves , the integrations 
necessary for computing s(e) were carried out numerically. For 
isolated cases, however, the integrals could be expressed in the form 
of elliptic functions and these exact evaluations were us ed as a check. 
The curves for N(e) were found by numerically integrating the curves 
for s (e), s(e) being the derivative of N(e) with respect to e. 
As can be seen from figure 5 for which R == 1 . 015 , there is no plottable 
difference between the results for this value of stress ratio . When 
the stres s ratio is increased to 1.156, the effect, as shmm in figure 6, 
increas es appreciably. Even more effect is apparent in figure 7, for 
which the stress ratio is 1. 837. It should be noted that the value of 
the str ess ratio R == 1.837 is the one for which the slip- angle dis­
t r ibution derived in the present paper becomes frozen. For higher 
va lues of the stress ratio the curves for the face - centered cubic dis­
tributions would be the same as those shown in figure 7, whereas the 
curves derived on the basis of single -mode crystals would continue to 
change . 
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The manner in which the differences between the two theories exhibit 
themselves can be seen from figures 5 to 7. The values of 8(e) for 
the single-mode crystal remain almost constant for low values of e as 
the stress ratio i s changed; whereas the corresponding values for the 
face - centered cubic crystal decrease as R is increased (until R = 1. 837, 
of course) . The value of slip angle where the probability density is 
maximum continually decreases as the stress ratio is increased for the 
single -mode crystals; whereas the value for which the maximum is obtained 
remains at about 450 for the face~centered cubic crystal. The value of 
the maximum slip angle , denoted herein by emax , for the face-centered 
cubic crystal is always less than or equal to Bmax for the single -mode 
crystal. 

More detailed consideration can be given to this last point. It 
was found in reference 1 that Bmax is, for single-mode crystalS, 
equal to ~2' The value of Bmax a s obtained herein is clearly given 
by the maxirr.um value of ~ for which W(~) is not zero. (See eqs. (8) 
and (9) . ) Thus, for face - centered cubic crystals, 

cos - l 1:. 
3 

These results for Bmax are plotted against the stress ratio R in 
figure 8. For comparison the corresponding results for the single­
mode theory a re also shown. 

In reference 1 an experimentally obtained slip-angle distribution 
was shown. This distribution was taken from a photomicrograph of a 
polished 2S-0 aluminum alloy specimen at 0 .022 strain. At this strain, 
the stress ratio was found to be approximately 2 and, in addition, 
the stress was high enough to cause slip in all the grains. The 
experimental distribution is plotted in figure 9 along with the face­
centered- cubic frozen distribution and the single -mode distribution 
for R = 2.000 taken from reference 1. The comparison is somewhat 
better between the experiment and the face-centered cubic theory than 
between the experiment and the single -mode theory. At the higher slip 
angles, however, the agreement is still not very close. In particular, 

------ - -------
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the maximum experimental slip angle of 580 is still far below that pre­
dicted by the face-centered cubic theory (700 32 '). It is a point of 
interest that the analysis of other photomicrographs of similar speci ­
mens strained in the same manner as the specimen from which this 
experimenta l distribution was obtained has yielded no slip lines with 
slip angles greater than 63 0 . Thus experience has shown that there is 
an utte r l a ck of slip angles between 630 and the theoretical 700 32 ' 
in polycrystals that have been strained in tension until all the grains 
have slipped. It might be argued that the reason for this lack is due 
to the small theoretical probability of a grain exhibiting a slip angle 
between, say, 580 and 700 32 ' (on the order of 0 . 05), but a simple 
calculation shows that the probab ility of at least one of 123 grains 
(which is the size of the sample from which the distribution shown in 
fig . 9 was obtained) exhibiting a slip angle between 580 and 700 32 ' is 

1 - (1 - 0 . 05) 123 

or 0.998, almost a certainty. Some other reason must therefore exist 
for the aforementioned lack. This reason is undoubtedly connected with 
either the fact that surface grains do not act like interior ones or 
the violat ion of one of the assumptions . With regard to this latter 
point, the assumption dealing with equality of microscopic and macro­
scopic stresses seems to be the most likely suspect , particularly since 
it is generally agreed that the stress state in a polycrystal varies 
from grain to grain . (See , for example , ref. 7. ) 

CONCLUDING REMARKS 

The differences between theoretical slip-angle distributions 
derived on the basis of polycrystal a ggregates made up of single - slip­
mode crystals and those made up of face-centered cubic crystals are 
found to be appreciable, the difference increasing as the stress is 
increased. 

The face-centered cubic theory agrees somewhat better with experi­
ment than the single -mode theory, but the errors are still appreciable. 
These errors are probably due to the inadequacy of the assumption 
involving the homogeneity of stress from grain to grain . 

Langley Aeronautical LAboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va ., June 20, 1952 
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APPENDIX 

EQUATIONS OF GREAT CIRCLES BOUNDING THE TRIANGLE OF INTEREST 

In orde r to obtain analytical results for W(A) the equations of 
the great circles bounding the triangle shown in figure 4 must be known. 
The approach that is used in this analysis is to find first the general 
equation of a great circle and then to fit the equation to the points 
through which each bounding circle must pass. 

In terms of the coordinates A,~ in figure 3, the direction 
cosines of a given direction (or a given point on the sphere from 
which the stereographic projection is obtained) with respect to the 
x-, y-, and z-axes are 

(Al) 

A great circle can be defined, in one way, as the locus of points 
on the sphere that are 900 away from a fixed point called the pole of 
the great circle. If the location of the pole of a great circle is 
denoted by AO,~O with the direction cosines IxO' lyO' IzO' the 

points on the great circle must satisfy the equation 

o 

or 

sin A sin AO cos(~ - ~O) + cos A cos AO 0 

or 

(A2) 

Equation (A2) is the general equation for a great circle. The 
equation has two unknown constants, ~O and cot AO. These constants 
can be detennined from the coordinates of two points through which the 
great circle is known to pass. The corners of the spherical triangle 
shown in figure 4 furnish the necessary points. 
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The coordinates of the corners can be found from the angles 
between the corners and th'e }mown points (111) and (011). Since the 
Miller indices of the various directions are direction numbers referred 
to a common set of axes, these angles can be easily de~ermined. For 
instance, the cosine of the angle between the (111) point and the 
(101) point is given by 

and the cosine of the angle between the (011) point and the (101) point 
is given by 

(o)(~) -(.1.-)(0) + (.1.-\(.1.-) = 1 
{2 (2 f2) {2 2 

Knowledge of these two angles allows the determination of the coordinates 
of the point (101). Thus 

(s in ~ cos ~) (0) + (s in ~ s in ~) (0) + (cos ~) (1 ) = If 
(sin ~ cos ~)(l) + (sin ~ sin ~)(o) + (cos ~)(o) 

therefore, 

cos ~ = ~ 

and 

1'( 

~ = 
6 

1 
2 
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Similarly, the coordinates of the other two corners can be determined 
to be 

cos A. 1 
3 

for the corner (111) 

~ 
J'( 
-
6 

and 

cos A. = ~ 
for the corner (001) 

J'( 

~ = --
6 

In order that each bounding great circle pass through the required 
points the arbitrary constants in equation (A 2 ) must be such that the 
resulting equat i ons a re : 

For great circle (001,101) , 

J'( _ cos - 1 cot A. 

6 {2 
(A3a ) 

For great circle (001,111) , 

(A3b) 

For great circle (101,111) , 

f3 
J'( 

6 
(A3c) 
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F igure 1 .- Slip systems of the face- cent ered cubic crystal. 
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