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SUMMARY 

An experimental investigation has been carried out t o study the 
variation of average induced flow around a model helicopter during 
transition from a hOVering condition to steady autorot a tive vertical 
descent . Test data were obtained from simulated power failures under 
many different conditions . Results are summarized for variat i ons in disk 
loading) blade angles ) and rate of pitch change . Calculations were made 
of "effective induced velocity" for t he various conditions. Sample 
comparisons of calcul ated and experimental performance were made . 

The results of these tests show that the manner in which effective 
induced velocity varie s during the transition to autorotation often differs 
greatly from the exponential variation assumed in the theoretical analysis 
(NACA TN 1907). It i s a lso shown that conditions peculiar to vert ica l 
descent in the trans i t i on range cause variations in performance of the 
model not predicted by this method. 

INTRODUCTION 

This repor t covers one phase of an experimental program of model 
testing to study accelerated vertical flight of helicopters . This phase 
considers only the power- off vertical descent of a helicopter model during 
the first few seconds after power failure at a hovering condition. 

In considering thi s transition from hovering flight to steady 
autorotation) one of the factors which must be known is the manner in 
which the induced flow of the rotor varies with time after power failure. 
Methods are well-known for calculation of initial and final values of 
average induced velocity (reference 1) ) but there has previously been 
neither theory nor empirical data to predict the manner in which the 
transition occurs between the two . In or der to calculate performance 
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during transition, it has been assumed in reference 2 that average induced 
velocity v varies with time after power failur e according to : 

where k is chosen arbitrarily . Testing the validity of this assumption 
has been the primary purpose of this phase of the model testing program. 

This work was conducted at Pri nceton University under the sponsor­
ship and with the financial aid of the National Advisory Committee for 
Aeronautics . 

SYMBOLS 

Physical quantities : 

w 

w 

b 

R 

c 

e 

p 

t 

te 

g 

Velocities : 

v 

gross weight of helicopter, pounds 

disk loading, pounds per square foot 

number of blades per rotor 

blade radius, feet 

blade- section chord, feet 

rotor solidity ratio (~~) 

blade- section pitch angle from zero lift, radians 
unless otherwise stated 

mass density of air, slugs per cubic foot 

time, seconds 

length of blade- pitch- change cycle , seconds 

acceleration due to gravity ( 32 . 2 ft/sec2) 

true airspeed of helicopter along flight path, feet 
per second 

. .1 
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v 

3 

average eff ective induced velocity (including possible 
interference effects)} f eet pe r second (referre d to 
herein as "induced velocity") 

rotor angular velocity} radians per second 

inflow ratio (assuming v constant over disk) 

Blade - section characteristics: 

a 

average section lift coefficient (at 0.75R) 

slope of lift curve} per radian 

section pr ofile - drag coefficient 

coefficients in power series for Cd as a function 
o 

of angle of attack (Cd
o 

= 00 + 0la. + 0~2) 

Rotor characterist i cs : 

T r ot or t hrust } pounds 

Q r ot or tor que , pound- fee t 

r ot or t hrust coefficient ( T ~ 
rrpR2 (DR) 2) 

r ot or torque coefficient ( Q ~ 
rrpR 3 (DR) 2) 

Subscripts: 

o initial value (for hovering) 

f f i nal value (for steady vertical autorotative descent) 

DESCRI PTION OF APPARATUS 

Apparatus f or this test program consisted of an enclosed drop tower} 
a model r ot or system} and vari ous units of electrical equipment for making 
and recording the neces sary measurements . 
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The test tower (fig. 1) provides the necessary drop area, free from 
cross winds, weather, and so forth , having greater than l - rotor- diameter 
clearance about the model in all positions. A control room above the 
test chamber houses all drive equipment and measuring apparatus . A 
guide wire down the center of the tower keeps the fall of the model truly 
vertical. The model can be pulled up into the control room to make 
necessary adjustments before each drop test. 

The first test model (fig. 2) consisted of a rigid, controllable­
pitch rotor ~stem having the foll~Ting characteristics: 

Rotor diameter, ft 
Number of blades 
Solidity ratio 
Blade section (no twist or taper) 

Rotor inertia (about center rotation), slug- ft2 . 
Dry weight, lb . . . . . . . . . . . . . . 

· . 6 
· . 2 
0.07 

NACA 0015 

0.1865 
... 5.6 

Blade pitch changes up to 100 could be made after power failure by 
means of a hydraulic actuator which was adjustable for various rates of 
pitch change. Completion of the pitch- change cycle was signalled by 
lighting of a photoflash bulb (fig. 2). The start of the test was sig­
nalled by another flash bulb on the drive shaft which was triggered by 
the model release mechanism. The guide wire passed through the axis of 
the model and the wire contact bushings were spaced widely enough to pre­
vent appreciable tipping of the model axis from the vertical. 

Additional tests were also made with a second larger model in order 
to investigate possible scale effects (fig. 3) . Characteristics of this 
model were as follows: 

Rotor diameter, ft 
Number of blades 
Solidity ratio 
Blade section (no twist or taper) 

Rotor inertia, slug- ft 2 

Dry weight, lb 

· . 8 
· . 2 
0 .08 

NACA 0015 

0. 660 
.12.3 

Operation of this model was similar to the other except that a number 
of flash bulbs were on the model to r ecord each 20 pitch change, thus 
enabling a true curve to be obtained of blade pitch variation with time 
during the pitch- change cycle . 

During a drop test, all data were taken by photoelectric tubes with 
appropriate amplifying circuits and were recorded against a time base by 
.'3. Heiland recording oscillograph. Vertical position of the model was 
recorded by means of horizontal light beams and phototubes along the drop 
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path . . Rotor speed was counted throughout the drop by a vertical light 
beam passing through the rotor to a phototube on the ceiling. Another 
tube picked up signals from the photoflash bulbs to record the start of 
the drop and pitch- change data . 

In order that basic model characteristics might be known for the 
range of Reynolds numbers covered in these tests) a static -thrust test 
stand was built . Measurements of thrust and torque were made on the 
models at various rotor speeds and blade angles in order to calculate 
rotor coefficients and average blade- sect i on coefficients . 

TEST PROCEDURE 

5 

A typical test was begun by setting the desired initial blade pitch 
angle for hovering and also the amount of pitch reduction after release. 
Time of pitch change was set approximately by adjusting the needle valve 
on the pitch-control mechanism. With flash bulbs installed in the model 
and the release mechanism (fig. 4) ) the model was lowered to starting 
position on the end of the drive shaft (fig. 5). With the tower darkened 
except for phototube light beams) the model was started whirling and 
brought to about 90- percent hovering speed. The oscillograph record was 
then started and the model speed was gradually increased to hovering. 
As the model started to lift) it released automatically from the drive 
shaft and simultaneously the pitch reduction began . The oscillograph 
was kept running to record data from the phototubes until the model hit 
the shock ab sorber at the bottom of the t ower . From the developed record) 
graphs 1vere plotted of position) blade pitch) and rotor speed against 
time for each test . For the 6- foot rotor) blade pitch was assumed to be 
a straight - line variation with time duri ng the p i tch- change cycle. Curves 
of descending ve locity and acceleration against time were then calculated 
by differentiation of the displacement curve . Finally) a curve of average 
induced velocity against time was comput ed) using the following formula 
from reference 2: 

2Ren - -----v 
4(V - g )W V + ~----~-

3 

The range of test conditions cover ed by the two models included 
variations in disl, load i ng from 0 . 2 pound per square foot to 1 . 1 pounds 
per square foot with corresponding Reynolds numbers from 300) 000 
to 800)000 . Hovering values of e varied from 60 to 120 and autorota­
tive va l ues of e ranged from 00 to 40 . Pitch- change intervals te 
varied from auout 0 . 1 second to 3 . 0 seconds . For each set of test 
conditions at least two drops were made t o be sure that r esults were 
reproducible within the limits of experimental error . 
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PRECISION 

Since a ccelerations must be obtained by double differentiation of 
displacement data, a high order of accuracy is required for all measure ­
ments. Hence, electronic recor ding of all data was used in order to 
eliminate appreciable time error s of observation . The accuracy of the 
results then r ested primarily on accuracy in reading oscillograph records 
and also on accuracy of measurement in det ermining phototube positions . 

By conservative estimate, time at any position could be read on 
the oscillogr aph record to the nearest 0 . 005 second and measurement 
error between any two phototubes has been determined by several measure ­
ments to be not ove r 3/32 inch . On this basis , velocity curves were 
obtained with accuracy, better than ± 3 percent up to 16 feet per second, 
and they are still within ±6 percent at 30 feet per second . Calculation 
of acceleration accuracy was based on the premise that a velocity curve 
must be a smooth curve within its limits of accuracy. This gives error 
limits varying from less than 5 percent in the high acceleration range 
to more than 100 percent for very low accelerations . However, in most 
cases this is an approximately constant error of ±1 . 5 feet per second 
per second . Since acceleration enters the calculation of induced velocity 
in the form (V - g) , the errors in V obviously have a much smaller 
effect on the value obtained for average induced velocity . 

Also required for calculation of induced velocity are rotor - speed 
and blade - angle data . Rotor - speed accuracy is ±2 percent, based on an 
estimated time reading error of 0 . 003 second in 2 revolutions . Calibration 
of the blade -pitch- change mechanism of the 6 -foot model showed straight -
line variation of blade pitch with time for changes up to 70

, with less 

than 5 -percent error for an 80 pitch change . 

As a result of the various degrees of accuracy mentioned above, the 
curves of ave r age induced velocity have a calculated accuracy of better 
than ±7 percent in most cases . Limits of accuracy of various curves are 
illustrated for a sampl e case in figure 6 . 

In addit i on to errors in data recording and reduction , other inaccu­
racie s are possible in the tests themselves . Friction between the model 
and the guide wire is a possible source of error, but there has been no 
ev idence that it was apprec i able except in a few cases where vibration 
occurred during the drop . In these instances the test results were erratic 
and hence were discarded . Normally , t wo tests under the same conditions 
would duplicate each other within plotting accuracy . As an ext r a check, 
the acceleration due to gravity was checked within 3 percent by dropping 
the model hub down the wire without blade s . 
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Errors in rotor speed occasionally occurred through erratic opera­
tion of the release mechanism. However) the addition of a booster spring 
to the mechanism practically eliminated this trouble . Also, the correct 
rotor speed for hovering was known from. static - thrust data so that any 
tests whose records showed marked errors in release speed could be 
discarded. 

RESULTS AND DISCUSSION 

Test Results 

Data resulting from a typical test are shown in graph form in fig­
ure 7. Displacement and rotor- speed data are plotted for the particular 
conditions of disk loading, blade angles) and rate of pitch change of this 
test . Also, the average - induced-velocity curve computed from these data 
is shown in the same figure . 

The effects of changes in rate of pitch change on test r esults of a 
particular model configuration are illustr ated in figur es 8 and 9. A 
family of displacement and rotor- speed curves are shown in figure 8 for 
different pitch-change rates and figure 9 shows the resulting family of 
computed curves of average induced ve l ocity . 

Effects of changes in disk loading on test results are illustrated 
in figure 10) where other parameters ar e held constant . Comparative values 
of average induced velocity may be noted in figure 9 fo r low and high disk 
loadings. 

The great mass of data from all the tests of this program has been 
summarized in figure 11. It nas been found that when the t est results 
are plotted in Glauert's coefficients (l/f against l/F), the most signifi­
cant variable is rate of pitch change . Hence, figure 11 represents a 
family of curves for different pitch-change rates for all the tests of 
both models. It is interesting to note that , as the length of pitch­
change interval increases ) the shape of the curve seems to approach the 
results of recent experiments for steady- state power-on vertical descent 
from hovering to steady autorotation (reference 3) . 

Computed Results 

It is apparent from inspection of figure s 12 and 13 that the test 
results are not in very good agreement with pe r formance curves computed 
for the test conditions by the method of reference 2 . This is believed 
to be primarily due to the unexpectedly high values of descending velocity 

--------------
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which we r e encountered experimentally . The causes of these high rates 
of descent, which will be discussed in detail below, we r e not included 
in the analytical met hod used to compute the perfo rmance curves . 

In reference 2 an exponential va riation of average induced ve l ocity 
with time was arbitrarily a ssumed for lack of better information . It 
now appears from the experimental result s that this assumption could be 
improved upon, particularly for the case of rathe r high rates of blade 
pitch change . It may be noted from f i gures 12 and 13 that , when the 
pitch change is r ap id , the induced-velocity curve takes a sudden dip and 
t hen rises to a value higher than that of the assumed exponential curve . 
When slower pitch change is used, the agreement seems to be better . 

High Descending Velocitie s 

A source of consider able difficulty in analyzing test results was 
the fact that both model s appeared to reach much higher r ates of auto ­
rotative descent than were predicted by the Glauert empirical curves . 
Calculated rate s of autorot ation for both models were best approximated 

by the formula V = 28 ~ and, fo r disk l oadings less than about 
0 .5 pound per s quare foot, the models should st abilize at this rate within 
the drop height of the tower . Howeve r , it was soon noted that even the 
lightest models were r eaching rates of descent much higher than this at 
the bottom of the towe r and heavier ones were still accelerating . Esti ­
mated autorotative rates of descent from test data came to about 
V = 37 V~. This led to conside rable speculation as to possible scale 
effects and interference effects of the tower enclosur e , but it was later 
determined experimentally that the models would stabilize at normal rates 
of autor otative descent when r eleased f r om a condition of zero thrust at 
autorotative speed instead of a hovering condition. Under such conditions 
they checked Glauert ' s data within a few percent . 

It was therefore apparent that initial conditions are important in 
determining pe r formance in the t ransiti on range . To explor e this effect 
further, a se r ies of tests we r e made with different initial conditions . 
St arting thrusts from 0 to 161 percent of hovering wer e used , with a rapid 

pitch change and 00 blade pitch for the final angl e in each case . Rotor 
speed and disk l oading were constant for all tests . Results are plotted 
in figure 1 4 and show plainly the wide range of final values obtained . 
I t seems obvious that the model was being strongly accelerated by falling 
into its own downwash, however , no correcti ons were made to the data for 
this effect, as a s imilar condition exists for a full - scale helicopter 
during the initia l par t of its transition to autorotation . 

A test of f l ow persistence In ~ne downwash a r ea was made with a hot ­
wire anemometer system . The mode l was turned at hovering thrust at its 
3tarting position in the tower. The blade angle was then instantly 

reduced to 00 without dropping the model and the downwash velocity was 
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recorded. It was found that it required 2 to 3 seconds after the blade 
pitch changed to zero for the velocity at any point to fall to half its 
initial value and about 20 seconds passed before it became undetectable. 
Since the average drop test of the model was less than 3 seconds, the 
flow persistence Was easily great enough to have a strong effect. 
Furthermore, the flow test conditions were probably overly severe for, 
when blade pitch is reduced to zero without dropping the model, it 
should act as a brake to the flow, whereas it would probably have much 
less braking effect when dropped. 

In an effort to explore this effect further, a special small, light 
model was made (rotor diam., 4 ft; disk loading, 0.07 pound per square 
foot), with the objective of covering a greater portion of the transition 
period within the drop distance available in the test tower. Velocity 
curves for this model when released from initial conditions of hovering 
and zero thrust are shown in figure 15. It is seen here that model 
descending velocity, when the initial condition is hovering, peaks at 
an abnormally high value and then falls back towards a final steady-state 
value. However, it appears that more than twice the time will be required 
to stabilize than when the model is released f r om a zero - thrust condition. 

Recirculation Effects 

It seemed possible that the high descending velocity effects noted 
above might be due largely to r ecirculation of air within the tower . 
Hence, a rather thorough survey was made of air patterns in the tower . 
Figure 16 summarizes results obtained by a smoke wand and also by a hot­
wire anemometer . The smoke survey showed clearly the general pattern 
of a strong slipstream and a large turbulent area outside it . Air veloc­
ities were surprisingly low in the uppe r and outer part of the space . 
The anemometer survey gives air velocity values for the 8 - foot model 
hovering at a disk loading of 0 . 5 pound per square foot . Curves are 
plotted along a radius at various distances beneath the rotor, with down­
ward displacement of the curve for downward air velOCity . Note that 
downward velocity is ve ry high beneath the rotor, but net upward velocity 
near the walls is very low . It is believed that , because of the low net 
upward velocity outside the slipstream and also the large turbulent area, 
the recirculation energy of the air must be negligible . 

Scale Effects 

In evaluating the results of this test program, consideration of 
possible scale effects must be included . Tests were made in the range 
of Reynolds numbers from about 300 , 000 to 800 , 000, so that caution should 
be used in any extrapolation of these results to full - size rotors . How­
ever, it is encouraging that steady autorotation descending ve l ocities 
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of both models checked Glauert's data closely, since these are said to 
agree fairly well with full-scale test performance. Also, no appreciable 
differences were found between the two models when results were plotted 
as curves of l/f against l/F (fig. 11). 

The usual Reynolds number corrections have been made through static­
thrust testing of the models in the test range and using coefficients 
thus obtained for all calculations . Detail s of this process are pre­
sented in the appendix. There is evidence that test data such as these 
may be best extrapolated to full scale by use of Froude numbers, but 
such re sults are not at present available. 

CONCLUSIONS 

From an experimental investigation of the variation of average 
induced flow of a model helicopter during transition from hovering flight 
to steady autorotative vertical descent, the following conclusions may 
be dr awn: 

1. The experimental data indicate that the exponential variation 
of average induced velocity with time which was assumed in NACA TN 1907 
does not permit reasonable accuracy to be achieved in computing the 
transient motion of a helicopter between the hovering state and steady 
vertical autorotation. Especially required is consideration of the 
accelerating effect of the rotor slipstream in which the helicopter is 
descending. A more realistic shape must be assumed for the induced­
velocity curve, particularly in the case of rapid reduction of blade 
pitch angle. 

2 . Good agreement of model performance with computed values may 
be obtained for steady-state conditions when known coefficients for the 
actual Reynolds number are used. 

3. While loss of altitude at a given time after power failure can 
be lessened by reducing blade pitch slowly, a rapid pitch change appears 
more desirable in order to minimize loss of rotor speed. 

Princeton University 
Princeton, N. J., Dec. 9, 1949 
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APPENDIX 

STATIC - THRUST ANALYSIS OF MODELS 

Slope of lift curve a. - Figures 17 to 19 show the thrust - torque 
test-stand results of the test models. Measurements of thrust and torque 
were made at various blade angles and rotor speeds with the stand so 
located that at least l - rotor -diameter clearance existed in all directions. 

Data thus obtained were found to be in good agreement with a value 
for a of 5 . 75 per radian which was obtained by other investigators for 
similar blades at corresponding Reynolds numbers (reference 4) . 

Drag polar coefficients 50 and 52 ,- Values for 50 were obtained 
--------~--~~------~------~~--~ by measurements of torque at zero lift at various rotor speeds. Results 

are plotted in figure 17 as (c) against Reynolds number (at O.75R) . 
\ do min 

Figure 19 is a plot of CT against CQ calculated from faired 

experimental curves . Corresponding values of c 1 and cd were calcu­

lated from the following equations which have been derived from blade 
element theory: 

6cT 
cl cr 

cd ~ (C - C ~ cr Q T 

Ie ~ e 4cT 
3 acr 

It was found that, for all Reynolds numbers measured, the drag polar 
(see fig. 18) could be expressed as : 
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Accuracy.- The accuracy of the data for CT plotted against CQ 
(fig. 19) was estimated to be within 7 percent, based on a measurement 
error of 2 percent in rotor speed, 3 percent in thrust, and 2 percent in 
torque. 

The accuracy of the data for (Cd) plotted against Reynolds 
a min 

number (fig. 17) was estimated to be approximately 2 percent, since errors 
in torque and rotor speed were less a t zero lift . 

The drag polar resulting agrees with other similar investigations 
(reference 4). 
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Figure 2.- Hub mechanism of 6- foot model helicopter. 
bulb with electric contacts on blade pitch cross 
and pitch- control needle valve are on far side. 
bottom is for w = 0 . 5. 

15 

Note photoflash 
arm. Batteries 
Lead weight on 

Figure 3.- The 8- foot model used for tests at higher Reynolds numbers. 



16 NACA TN 2648 

Figure 4.- View showing model attached to release mechanism before being 
lowered to starting position. 

Fi gure 5. - Model on drive shaft in starting position. Weights shown are 
for w = 0 .1. Note phototubes on far side of tower . 
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