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TECHNICAL NOTE 2900

THE CALCULATION OF PRESSURE ON SLENDER ATRPLANES
IN SUBSONIC AND SUPERSONIC FLOW

By Max. A. Heaslet and Harvard Lomax
SUMMARY

Under the assumption that a wing, body, or wing-body combination
is slender or flying at near sonic velocity, expressions are given which
permit the calculation of pressure in the immediate vicinity of the con-
figuration. The disturhbance field, in both subsonic and supersonic
flight, is shown to consist of two-dimensional disturbance fields
extending laterally and a longitudinal field that depend on the stream-
wise growth of cross-sectional area. A discussion is a1l ' given of
couplings, between 1lifting and thickness effects, that nec 3sarily arise
as a result of the quadratic dependence of pressure on the induced
veloclty components.

INTRODUCTION

This paper is concerned with the prediction of pressure distribu-
tion on or in the immediate vicinity of a wing, body, or wing-body com-
bination under conditions in which the geometric configuration is
slender in the flight direction or is flying at near sonic velocity.

The material to be presented 1s thus associated with the rather exten-
sive group of results that belong to what is often referred to as
slender-wing theory. The basic gssumptions and methode can be found in
publications by Munk, R. T. Jones, and Ward (refs. 1, 2, and 3} and a
discussion of the applicability of the méthods to the prediction of
loading on slender wings at sonic flight speeds has been given in refer-
ence 5. In reference 2, attention was directed toward the calculation
of load distributions over wings in subsonic and supersonic flight and
reference 3 was devoted essentially to the consideration of supersonic
Tlight velocities. It is therefore of interest to investligate further
the effects attributable to thickness on wings and wing-body combina-
tlons at both subsonic and supersonic flight speeds. Such investigations
lead to valid approximations of interference effects and also indicate
the way in which thickness and lifting effects can produce couplings in
the calculatione of pressures induced in the flow field.

1Reference should also be made to the recent extensions of slender-wing
theory by Adams and Sears (ref. U4).
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ANALYSTS

It 1s proposed to teke the basic solutions of the linearized
partial differential equations governling three-dimensional compressible
flow and to obtaln a simplification of the expressions by restricting
attention to the induced field in the immediate vicinity of slender
airplanes or missiles. These simplified expressions contain solutions
used previously to study the forces and moments on 1lifting wings and
bodies. In addition, however, they can be used to evaluate the first-
order thickness effects on the pressure in the vicinity of the wing
and body.

Consider, first, the comstruction of a weakly disturbed flow field.
Iet a uniform stream flow in the direction of the positive x axis of
& Cartesian coordinate system, as in sketch (A). Immerse in the stream,
Zz which has a velocity U, and a
Mach number M,, & slender wing-
body shape the surface of which is
inclined at a small angle to the
free-stream direction. This angle
of inclination must be small enough
so that nearly everywhere in the
fluid the magnitude of the pertur-
bation veloclty vector divided by
the speed of the free stream is
much less than one; that is,

Vi@ + v 4+ w2
Uo

<<l (1a)

Moreover, large supersonic Mach
numbers are to be avoided and as a
measgsure of this condition the

v - inequality
u
2 2 2
MEN U2 + v2 + W <<1 (1b)
Uo
Sketch (A) LL is imposed.

Consider, next, the linearized partial differential equation gov-
erning weakly disturbed isentropic fluid flow. In terms of the pertur-
bation velocity potential @(x;y,z), the lowest order approximation
consistent with inequalities (las and (1b) is

(1-M5%) Py + Gy +@pp= O (2)
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where the subscripts denote partial differentiation with respect to the
indicated varisble.

Consider, finally, the expression for the pressure coefficient
that is again consistent to the lowest order with inequalities (12)
and (1b). By expanding the pressure-velocity relation for steady
isentropic flow and neglecting higher-order terms, one finds

P-p, . _ 2u (L-ME R + v2 + w2

2
$PoUc" Yo Us

where p and p ere pressure and density, respectively, and the sub-
script o refers to conditions in the free stream. It follows from

inequalities (la) and {1b) that pressure coefficient can be expressed
in the form

. (3)

Equation (3) 1s the simplest general expression for pressure coefficient
that is still entirely consistent with the assumptions basic to the
development of equation (2).

Special solutions applyling to problems of the class indicated can
be obtained by appropriate simplification of general solutions to
equation (2). Such a procedure will be discussed in the next section.
The pressure coefficient is ther determined by substituting these
results into equation (3). The simplifications that can be made in
evaluating the pressure on the surface of the airplane will also be
discussed.

~

The Reduced Solutions

Subsonic.- As it applies to subsonic flow, equation (2) can be
written in its normalized form as

P ¥ Py ¥ Ppp = O (1)
The analysis of equation (4) can be interpreted as applying to the condi-
tion My = O Dbut one can extend the solutions throughout the subsonic
Mach number range by applying the Prandtl-Glavert rule, It is important
to stipulate, however, that the term "slender" will, unless otherwise

r rmrmimer e a me mmmt e T e e e o T SR S e e e & s o 7 e
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indicated, have a dual interpretation - describing an aerodynanmic con-
figuration that is either muc¢h longer than it is wide or is flying
close to the speed of sound.

A well-known solution to equation (4), resulting from an applica-
tion of Green's theorem, is given by the expression

d dSy
qJ TS -5 5)
(x7,2) = f\f dn’ chn') »//(x-xl)z + r2 (

Where dS, 1is the element of surface area on the airplane or its
vortex wake, r equals ~/(y - yi)a + (z-27)%, and d/dn’ 1is the
derivative normal to the surface S. When this solution is applied to

boundary-value problems for slender configurations it can be simplified
considerably. One method for bringing this about is suggested by

studying the variation of [r/(x - x,)]® over the area S. Consistent

with the assumptions made, one has [r/(x - %;)]}° < < 1 over almost all
-of the airplane surface and vortex wake provided the point x,y,z is
on or in the vicinity of these surfaces. This implies the approximation

Jx - %) +r2xlx - x, (6)

The singularity at x = x,, which thus appears in the ihtegrand of
equation (5) for the limiting case r = 0, produces a divergent integral.
An indication of the manner in which this difficulty can be avoided is
obtained through consideration of the single integral

fb g(x,)ax,
2 ~/(x-xl)2 + r2

If g(xl) is differentiable within the region of integration, it
is easy to.show that this expression can be written in the form

r 1

9 f (Xl) sinh-l *1 1_ a f g( l) XXJ_I nlx-xll+v(x_xl)2+redx

and the approximation for smell values of r then becomes

d b X-X

g(xq) |

1

| in dxl



NACA TN 2900 | ’ 5

Equation (5) is to be written subsequently with a logarithmic °
kernel in the integrand and a derivative operator outside the integrals.
An estimate of the order of accuracy involved in using the approximate
form of the integrand follows friom the evaluation of the two expressions

=ff2n [x- E_J+./(x-xl)2+ (Y-Yl)z dy, ax,

l y"'yl l

X=Xq 2 X=X l
5 - f /- LN
|x-x1| [y ]
Sketch (BL) shows the veriation of the ratio E = (Io—Il) /Io for a
rectangle wing of area Sy and aspect ratio A = 1/5 as the point x,y

covers the portion of the xy plane on and within one semispan of the
wing.

The meximum value of E occurs when .20
the point x,y 1lies along the trailing
edge (or, by symmetry, along the leading E
edge) and it 1s significant to notice that
the value of E decreases as the point
moves from this location in eilther x
direction and increases as it moves from
the x axis in either ¥y direction.
This 1llustrates the necessity of restric-
ting the approximate solutiomns to slender
configurations and, further, to portions
of the flow field in the vicinity of the -

_:/Wing, A=I/5

A0}

longltudinal axis .of these airplane ' 00
shapes. Sketch (B2) shows how the maxi- (/)
mum value of E within one semispan of 601
the wing decreases with decreasing :
aspect ratio. E

max

Under the restrictions that have
been imposed, it is Justifiable to 30t
introduce simplifications in the form of
the derivative 0O/On’ and the differ-
entlal area dS; appearing in equa-
tion (5). The operator J/dn’ can be 0 -
expressed as (2) 0] 2

m,d 112a . \ A
o= ay az Sketches (Bl) and (B2)

Al
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where n,,n, and ng are the direction cosines between a normal to the
surface S and the x,y, and z axes, respectively; the differential
area dS; can be expressed as

ds,;dx,
N1 - n12

where ds; 1is a differential length along the surface in a yz plane.
If the airplane is slender, n; is small, and can be neglected, rela-

tive to either unity or ,/ naE + nsz.

Combining the two simplifications d_is'cussed above, one can approxi-
mate equation (5) by the expression

_ 1 9 f (BCP o) > X~-X3 2|x-x, |
O(x,¥, = ——— dx d _— - —_
(x,¥,2) e J 1[ 81 ) 3n/ Tooy] in - (7N

vhere 3/dn represents ngd/dy + ngd/dz, the normal derivative to a
section in & yz plane, s is the curve bounding this section, and 1
is the total length of the airplane. Equation (7) reduces to

X - -
ateir) - 2( [T~ [T [ (Ze02)mran]-
o] X s

© X=X o)
L2 ax, —= ln2|x-x1|f ggd.sl
n
s

b 3x T x|
Since
1 39 as(x)
= oF 35, = =g’ 8
Uof n Y dx 87(x) (8
s

where S(x) is the crogs-sectional area of the specified shape in a yz
plane, this expression becomes

(B2 s -2 [T iR i

It is apparent that the first integral on the right-hand side of
this equation is a solution to Iaplace's equation in two (the ¥y and z)
dimensions. This portion of the solution will be represented by the
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symbol q%(x;y,z). The x dimension, which does not appear explicitly,
enters as a parameter when the solution is adapted to particular
boundary values. Hence, by means of the usual Prandtl-Glauert trans-
£ 3 2 / 2

ormation x—>x, y—>y/1-My", z—> 2z ,/1-Ms2, together with equa-
tion (8) and the relation ’

1
a f V4 X“x:]_ ?
— s (x,) dx, = 287 (x)
ox J (=1 EE A
the final form of the solution is
Up 3 t, X=X le—xll
o(xy7,2) = @(x3¥,2) — = = [ 87 (x;) in dxy (9)
)'I-Tf Bx lx—xll l_M02
o)

The physical significance of the last expression can be interpreted
easily. The three-dimensional perturbation velocity field induced by
wing-body shapes that are slender or flying at near sonic speeds is
approximated in the vicinity of such shapes by a field that satisfies
the two-dimensional Iaplace equation and the boundary conditions in
transverse planes plus & longitudinal field which depends on the stream-
wise rate of change of cross-sectional area and is independent of ¥y
and z.

Supersonic,~ In the case of supersonic flow, the normalized form of
equation (2) becomes

P = Py = Pz =0 (10)

An analysis based on equation (10) applies specifically to the condition
Mo = /2 but these results can be extended throughout the supersonic
Mach number range by applying the Prandtl-Glauert rule. Volterrats
solution to equation (10), (see, e.g., ref. 6, p. 190) which is analo-
gous to the subsonic form given in equation (5), is expressible as

S -1 3 _ o3 ey |+ o/ (xx,)° - x2
z) = \-[f(é‘v CPB‘V in iisl (ll)

21 Ox T

where, as in the subsonic case, dS; 1is an element of surface area on
the airplane or its vortex sheet and r equals ~/(y - y'l)2 + (z -z 3
In distinction to the subsonic solutions, the area of integration is
now the portion of the airplane and its vortex wake within the forecone

e e e T e e e e A e i e e e e T e e o g e A .~ e ettt et g . P . g e, = = A
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from the point x,y,z, and d/dv 1is the derivative along the conormal®
rather than the normal.

If the application of equation (11) is limited to slender configu-
rations, the approximation, similar to expression (6) for the subsonic

case, .
J(X’xl) ¥ x Ix'xll

is implied. Furthermore, if the conormal and differential area are
expressed in terms of the direction cosines and n, is again neglected

relative to unity or »/no® + ng®, equation (11) reduces to the form

1 39 3 1 3
=5;§; F---qp n) lnrdsl--———fln’alx Xlldxlf'ﬁdsl
5
(12)

This differs from the corresponding expression for subsonic flow only by
& factor of two and by the extent of the x, integration. The latter
is carried only to x in the supersonic case since the original inte-
gration area T included only points in the forecone from x,y,z. It
is obvious, however, that these two differences are compensating in the
first integral term so the final expression for the perturbation poten-
tial, appropriately modified by the Prandtl-Glauert rule, becomes

) = o) =2 5[5 w FE e ag)

Moo-1
The Reference Coordinate Systems

Equation (2) was developed specifically for the case in which the
undisturbed stream at infinity is parallel to the x axis. A coordinate
system so orientated is usually referred to as the wind axes. (See
sketch (C).) When the configuration is tilted with respect to the

2The conormal is the vector that results from changing the sign of
the x component of the normal.
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) 4
Body axes

&

Sketeh (C)

free-stream vector, however,'it is often easier to study the boundary-
value problem with the x axis placed along the center line of the
fuselage. Such a coordinate system is usually referred to as the body
axes. '

Obviously the wind and body axes differ significantly only by rota-
tions about the y and z axes. When My 1is zero, equation (2) is
invariant to such a rotation, but for values of My greater than zero
this is no longer true. However, when My 1s greater than zero, equa-
tion (2) represents the governing differential equation only to a
certain order, and, if the magnitude of the rotation is similar to that
of the parameters by which the equation 1s ordered, it is, in this sense,
still invariant to rotations about all three axes for both subsonic and
supersonlc Mech numbers. Thus equation (2) is to the lowest order the
governing partial differential equation for both wind and body axes,
provided the airplane is slender and the angles of attack and sideslip
are small.

Although the partial differential equation is invariant with respect
to a small rotation of the coordinate system, the boundary conditions and
expression for the pressure coefficient in terms of the perturbation
velocities are not. The following will contain ardiscussion of the
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boundary conditions and the pressure and loading coefflicients with
reference to a body axes systen.

The Boundary Conditions

The boundary conditions require that the gradient of the total
velocity potential evaluated infinitely far from the aircraft be con-
sistent with a uniform free stream there (the direction of which
depends on the orientation of the coordinate system) and when evaluated
normal to and on the surface of the airplane 1itself be zero. ILet
o(x,y,z) denote total veloclty potential, ¢@(x,y,z) perturbation velocity
potential, and refer the analysis to body axes in a free stream. If
the orientation of the free-stream velocity vector to the system of axes
is fixed by the angles « and ¥ as shown in sketch (C), one can write

o(x,¥,2) = Up(x cos a cos 74y sin y+z cos 7 sin a) + P(x,y,z)

such that on the aircraft surface

Uo(ny cos a cos y+n, sin 74ng sin a cos 7) +ny Py + noPy + ng?; = 0] \

n,,n,, and ng &again being the direction cosines of & normal to the
airplane surface with respect to the x,y, and z axes, respectively.
By the assumptions basic to the present theory, the latter equation
reduces to

Uo(ny+n, 74ng cL)+a P, (x57,2) =0 (1) .

where, as before, n 1is the normal to the curve bounding & cross section
in the 7yz plane.

Equation (lh), which applies to arbitrary slender shapes, can be
simplified for many specific problems. Consider now three types of
configurations that lead to such simplifications: first, a surface,
such as & wing, which deviates only slightly from a plane; second, a
surface which forms a body of revolution; and, third, a surface which
is a combination of the above two.

Planar problems.- Let h(x,y) be the distance & surface deviates

from the z = 0 plane, and b represent the wing span. (See
sketch (D1).) Assume That a/(db/dx) << 1 holds; then furthermore,
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1f the imequality (dh/dx)/(db/dx)< < 1 1is satisfied, it 1s consistent
with the previous approximations to’

neglect the y component of the

normel along the wing surface and z

to project the yvelocity vector
represented by the resulting verti-
cal derivative to the upper or
lower surface of the z = 0 plane.
In this way equation (14) becomes

Uo(nytnga) + n3< >z=0 (1)

and, since n3/ng = -O0h/dx, the
boundary conditions for planar
problems3 are expressed by the
equation

d
( <P2 = =Up W+ U'Q‘gE (15)
Z=0 x

Body of revolution problems.-
Let R Dbe the radlus of a body of
revolution. (See sketch (D2).) If (2)
@ 1is measured from the 2z axis in
the yz plane and 7 is set equal
to zero, the relations

b MR/ @R

1= .
A 1+(ar/ax)? dx

Ng= cos 8 % cos @

J 1+(ar/ax)®

together with equation (1), give
for the normal derivative on the
surface of the body

) = Uo—-— — Upa.cos @ (16)

Sketches (D1), (D2), and (D3) i

SCertain planar problems, such as the cruciform wing, require more than

one plane but the concepts are essentially the same as those presented
here.

e A P g, i e S
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which 1s the simpTified expression of the boundary conditions pertaining
t0 bodies of revolution.

Interference problems.- Consider, finally, surfaces which are a
combination of the above two as, for example, the one shown in sketch (D3).
The rather obvious extension of the above concepts 1s to epply equa-
tion (15) over the winged portion of the configuration and equation (16)
over the body. It is then necessary, however, to consider the relative
megnitudes of the terms' oh/dx, ds/dx, dt/dx, and dR/dx, since they
appear in the solutions in various combinations. If the winged portion
is to be treated as a planar problem, the magnitude of Sh/dx must be
small enough to be neglected in comparison to the leading~ and trailing-
edge slopes, ds/dx and dt/dx. But this does not imply that Oh/dx can
be neglected in comparison to dR/dx or that dR/dx can be neglected
in comparison to either ds/dx or dt/dx. The latter approximations will
not, in general, be made. .

The Pressure Coefficient

The expression for the pressure coefficient given by equation (3)
is written in terms of velocity components that are referred to the
wind axes., Its re-expression in terms of velocities referred to the
body axes is readily determined. For the orientation shown in
sketch (C2), the equation becomes ,

= -2 -1 (92 2
Cp =~ 2 (@y + 70, + a®,) oz (95" + @) (17)

Equation (17) can be used, in general, to evaluate the pressure in
a perturbation velocity field that is referred to the body axes. If
the interest is limited to the pressure on the surface of the aircraft,
however, certain simplifications can be made. For example, consider
the configuration illustrated in sketch (D3) consisting of a swept-back
wing mounted on & body of revolution. For simplicity, let 7 = O.
Applying the boundary conditions given by equations (15) and (16), one
can show that on the surface of the wing

29 2 2
CP = ——l:—_} + (& J + CL2 - _aﬁ) (188.)
Uo Uo 2=0 Bx
and on the surface of the body

29y 1 1 2] (dR)a
Cp = —| —2+ — (Upasine- = + a2 - (=2 18b
P [ Uo er( ° R qb) . dx (180)
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These solutions can be simplified further by considering the
detailed nature of the'perturbation veloclty field induced by shapes
such as that shown in sketch (D3). Thus, the results given by equa-
tions (9) and (13) can be expressed in the form

P(x,,2) = Pa(x37,2) + A(x) ' (19)

where the expression for A(x) depends on whether the speed is subsonic
or supersonic. Further, for the particular configurations being con-
sidered, the expression for ¢2(x;y,z) can be written in the general form

Po(%57,2) = aPy(t,8,R5y,2) + %% P (t,8,R5¥,2) + %E 9,(t,8,R;¥,2)  (20)

since the dependency on x can enter only through the boundary condi-
tions which, in turn, are specified by the body radius R(x), the wing
thickness, h(x,y), and the lateral distances from the center line to
the trailing edge and leading edge, t(x) and s(x), respectively. The
term.clqa will be referred to as the potential due to angle of attack,
since it vanishes when the angle of attack vanishes and increases
linearly with increasing a; the term (3h/dx)@, + (dR/dx)g, will be
referred to as the potential due to thickness, since it exists when the
angle of attack is zefo, does not change with angle-of-attack change
and vanishes when the thicknesses of the wing and body do not vary
with =x.

By breaking @, down into its component parts as in equation (20),
1t has been ordered in that the magnitudes of the terms on the right- -
hand side of equation (20) are controlled by the coefficients of the @'s,
and the derivatives of o, ¢, and @, with respect to s,t,R,y, and z
can all be considered equal. Since « and oh/dx are negligible relative
to dt/dx, ds/dx, and dR/dx (as was-pointed out in the discussion of the

boundary conditions for interfeérence problems), equations (18a) and (18b)
can be written:,

on the surface of the wing

| 39, 3P 39, 3¢ 3P_\2
p=-{2 2, 1, T, 0B @ (ZV] @
Up 9x U~ dx dy dy ox dy dy dx \ oy 7=0

e et e Aot i et e T i T s T T i i o e

i Rt
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and on the surface of the body

_—{_2—§E+ Q.I_{.>2+ 1 @[2@%%+26_h'_%§&+
U.SRZ &L %6 26 dx 3¢ 26

Uy Ox
39,
00 ] L ‘ (1)

If the body is a cylinder so that its radius does not vary with x,
the pressure coefficient reduces to

39:\*
30

——

Loading Coefficient

By definition the loading coefficient is
Np
7 = o) - (Cp)y (23)

where the subscripts u and 1 refer to the upper and lower surfaces of
the airplane, respectively. It is immediately apparent from an inspec-
tion of equations (23) and (19) that the loading is not affected by A(x).
Hence, the 1ift, pitching moment, rolling moment, and induced drag can
all be expressed entirely in terms of ¢2(x;y,z).

Consider again the type of airplane shapes represented in
sketch (D3). The velocity potential ¢, for such a class of configura-
tions has been expressed in equation (20) ag the sum of three potentials:
one due to angle of attack, one due to the thickness of the wing, and
one due to the thickness of the body. It i1s now useful to remark that @g
has odd symmetry with reference to the z = 0 plane and Py and @,
have even symmetry. Placing equations (21&) and (21b) into equation (23)
and using these properties, one finds

AP) _&[?& 1R, (3% 3%
( ing  Uo [ x T T, ax® '5;‘5;)] (2he)

Z=0
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and

o) 39, o
<Ap>b (20, L, (3% 2% }  (oiv)
ody ox UoR= dx d 99/ 4

where A 1indicates the difference between a quantity on vertlcally
opposed polnts of the upper and lower surface of the airplane.

It is apparent from the last two equations that, in general, the
angle-of -attack and thickness solutions have a coupling effect on the
lpading coefficient and therefore their contribution to the load distri-
bution cannot be treated separately. It is also important to notice the
two special cases in which the coupling effects vanish; namely, a body
of revolution without wings, and an airplane with a cylindrical body
between the foremost and rearmost extent of the wing. In the former case
the term 0Q,/d6 is zero and in the latter dR/dx 1s zero. In both
these cases the equation for the loading coefficient is

Ap 9P 2 0P,
—_—= 2 — —— B - 2
T (2)

The Total Lift

Total 1ift can be obtained, of course, by integrating the loading
coefficient over the aircraft surface. A much simpler way of finding
the 1ift, however, cen be derived from a momentum balance. Thus, by -
momentum conslderations it is possible to show that the vectorial force F
on & body inside a control surface S 1s gilven by the surface integral

ff(P-po dS—ff <v Vo [_\? d-S>]

where vector notation is used, the o subscript indicates free-stregg

conditions, p and p are the local static pressure and density, and V
is8 the local velocity vector. Iet the surface S be a cylinder of
infinite radius and two yz planes closing the cylinder and located
infinitely far shead of and behind the airplane. Then the 1ift force
1s given to the lowest order by

L =F, =:/«°° fw [PV(UO+u)]x=m dydz




) 16 WACA TN 2900

which reduces to

U -

L:—poUoff (w)x___mdy dz

-{) =0

This can be simplified since W = 0P/dz and (A9),_, 1s the same as
the Jump in the potential evaluated at the airplane tralling edge.
Thus the expression for 1ift becomes

L = p.Uo A9, . & (26)
L.

Equation (26) applies to all slender shapes. In special cases
represented by sketch (D3), thickness effects always have even symmetry
with respect to the z = O plane, and it follows that the total 1ift
and the vortex distribution in the wake of such configurations are
affected only by the part of the potential due to angle of attack, even
though the detailéd load distribution depends upon both thickness and
angle-of-attack solutions.

EXAMPLES

Pressure on a Triangular Wing
With Elliptic Cross Section

It is of interest to calculate, by equation (13), the pressure on
nonlifting wings of triangular plsn form and elliptic cross section
flying at supersonic speeds, since examples of this type have been
solved without restriction to slender-wing theory. It is proposed,
therefore, to study two cases given first by Squire (ref. 7) and then
to compare the analytical results.

Let the wing be placed at zero angle of attack in a supersonic free
stream of Mach number M,. Consider first the thickness distribution
for which the ordinate of the upper surface is

b(x,y) = s VP (27)
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where co 1s the root chord, t 1s wing thickness at x = cg, and m
is the tangent of the semiapex angle of the plan form. Since the flow
is supersonic, it is unnecessary to consider closure. g

Since attention is confined to symmetric nonlifting wings, the
boundary values are planar and are expressed by equation (15) for a = 0.
Further, the solution is given in terms of these boundary values by
equation (12) since (39/dn),_, becomes Uy(dh/dx) and (A9),_, 1is zero .

by symmetry. Hence, 1f B = & My;™-1,

1 1 mxah | 13 [, 2(x-x;)
o cp(_x,y,o) == fmx = nly-y | ay, - 5;3;[, s’ (x1) In —

It follows from equation (27) that the elliptic section in the
plane x = x; has major and minor semiaxes equal to mx and tx/2cq,
respectively. The cross-sectional area and the surface slope are,
therefore,

§(x) = wtamx;2/2c, Oh/dx = tmx/2c, v TBXE-y2

Since

: mtx .~ mx
== 1n =3
1 mx 'tmenIy-le dyl Scg n 5’ I'YI < mx

—

e deo i |m gy vl SR

the expression for perturbation potential becomes

) “
tmx y o\,
. 2o \0 712 35" ly|<me
- CP(x,y,O) = -
Uo tmx bix
=——|1-1n slyl>me

2
- - Fo 8(ly| + Vy2emex2)
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From equation (22), pressure coefficient in the plane of the wing

is
g% <}n.é%-— %); ly]< mx
Cp = (28)
E[__?.___+zn hx —1];|y'|>mx
e TN

The pressure_diétribution on the wing is uniform and off the wing has a
square-root singularity at the leading edges. Analysis not limited by
the assumption of slenderness ylelds for pressure coefficient on the

wing
- tm X-E

C [T v —
P co -/l-Bem?

where K and E are complete elliptic integrals with modulus a/1-p2mZ.
Since for values of the modulus near one the asymptotic relations

Ksuzni, Ex 1
gm

apply, the pressure coefficlent in slender-wing theory is seen to be a
first-order approximation.

Squire has &also. consldered the wing with ordinstes given by

B(x,y) = - 22V PPy (29)

Com

The lateral section is again elliptic, with semimajor and semiminor axes
equal to mx &nd tx?/2co . Cross-sectional area and surface slope are,
respectively,

mtx3 b _ _t 2mPx2-y2
2,2’ T ¥  2me? J mBExe-ye

S(x) =
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By direct integration it can be shown that

Cp = El33‘-(3 In EL;? - u) (30)

2
Co

€

Analysis not limited to slender wings ylelds the expression

Op = —Z=___ [(3-p2m2)K-(4-2821P)E]
002(1‘32m2)

and again the results are in agreement if higher-order terms in pm
are neglected.

A study of generaliged conical flow fields In linearized supersonic
theory reveals that the linear pressure distribution in the above problem
can also be obtained on & wing with thickness specifilied by the relation

ky=

b(x,y) = = cosh™t ZX
m

whére k 1is a constant that can be related to the maximm thickness
ratio (attained along the line mx/y = 1.31) of the wing. The cross-
sectional area apd surface slope are, respectively,

8(x) = ke b _ W
3’ ox m« mPx2-y2

and pressure coefficient on the wing is

CP = 2kmm:<?n g;-— ?)

The latter expression agrees to the -first order in pm with the general
linearized solution for such a wing presented in reference 8. Slender-
wing theory thus retains the property of the more general linear theory
in that a given pressure distribution does not necessarily yield a
unique thickness distributidn.

Supersonic Drag of Wings at Zero Incidence

The general expression for the supersonic drag of a slender aero-
dynamic shape has been derived by Ward (ref. 3) through the use of
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momentum methods. It 1s also possible to obtain these results by direct
integration of the product of pressure and surface slope over the speci-
fied surface; the analysis, however, requires rather careful attention
to orders of integration, when planar problems are involved. Consider,
for example, the drag of a wing at zero incidence and with a specified
thickness distribution 2z = th(x,y). The drag of the wing is express-
ible in the form

oh
D=De+2qL/‘pru'€fdxd¥ (31)
w

where the first term includes possible contributions to the drag that
result from a finite leading-edge radius of curvature. From reference §,
this drag per unit of span is, in slender wing theory,

an, ) 2 '
_é"':e' = ﬁqrn('—_ - (32)

where r, 1is the radius of curvature normal to the wing leading edge
and s 1is the local semispan. If the ordinate of the wing, in the
vicinity of the leading edge, is )

z=1(8,7)V s - ¥

equation (32) becomes

dDe fa(s,s) <d.s>2
— qu_ ———— —
dy 2 dx

From equation (13) the potential of the wing, evaluated in the
plane of the wing is

Uo 5 azu(x,y ) U, )
(ny‘o,:—-f _____L.Zn - __.QS' in & -
(%,¥, ) = /. 5S¢ IY Yll dyy o (x) B

U

2—‘;- S™(xy) in (x-x,) dx, . (33)
(o]

and, since pressure coefficient in the planar case is directly propor-

tional to the streamwise gradient of ¢, the contribution of each of the

terms on the right-hand side of equation (33) can be calculated separately

in equation (31). The second and third terms offer no difficulty but
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simplification of the expression resulting from the first term neces-
sitates an inversion of order of integration and, if the leading edge
has a finite radius of curvature, such an inversion cannot be carried
out in the conventional manner. However, a method by means of which
such an inversion can be carried out 1s presented in reference 10.
Thus, set

8 2 (x,y) Oz (x,¥;) A
I, =f dyfdyl 1n |y, |
/ 3 dx2

».9

and

83 Fzulx
Io =J[Ed3’1 fdy zuéx,y) 2 ly-7, 1
5 A X ax2

where ‘]E refers to a finite-part integral?® and the notation \/ded/\dyi

signifies that the y, Iintegration must be performed first. Then if

za(%,7) = £(s,7) V5 = 7

1t can be shown that .
\8
2
o ds y
Iy -12=1—<E> £2 (s,s)

Detailed analysis reveals that the residual term (i.e., the value of
I; - Ip) yields a drag component that is equal in magnitude but opposite
in sign to De.

The final expression for the drag of the wing is then

’ S(Z)ah S(l)ah ,. ' ’ 2
o8 [B]  1

o) 5, Ye) ¥ A=

1
1 S'(i)‘/PlS‘Yxl) 1n (1-x;) dx,- A= ZS'Tx)de/p 5% (x,) ln|x—xl|§xl
n [ ¥ 2x o}
' (34)

¥

where 1 1s the over-all length of the wing.

“For a definition of the finite-part integration technique as used here,
see reference 10.
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As a particular example, consider the wing-like surface of trian-~
gular plan form (ref. 7) which results from a combination of the
surfaces specified in equations (27) and (29) and has ordinates glven
by the expression

hy(x,y) = mita (co-x) ¥ mBxE-y? (35)
5 ,

This wing has rounded leading edges and a finite tralling-edge angle,
and from equation (34) its drag coefficient based on wing area is found

to be
Cp = - 2nnt<—£—3—>2 <ZL +1n %—?) (36)

It is apparent from equation (34) that wing drag varies with Mach number
go long as the streamwise gradient of area is finite at the rear of the
wing; conversely, there is no dependence on Mach number when the gradient
of area venishes there. For exemple, a wing with an elliptic plan form
and biconvex sections satisfies the latter condition, and its drag coef-
ficient based on wing area is

cp=22 (;E)e (37)

where t 'is total maximum thickness, a 1is the semiaxis of the elliptic
plan form in the stream direction, and b is the semiaxis measured
normal to the stream direction.

A comparison between the values of Cp given by slender airplane
' theory for the Squire wing (eq. (36)) and ‘the elliptic lens (eq. (37))
and the exact thin-airfoil-theory values® for the same wings is shown
in sketch (E).

5The exact values were given, respectively, by Squire in reference 7
and by R. T. Jones in a paper entitled "Theoretical Determination of
the Minimum Prag of Airfolls at Supersonic Speeds" and presented at
the July 1952 meeting of the Institute of Aeronautical Sciences.
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Sketch (E)

Thickness Distributions Having Minimal Drag
in Supersonic Flight

The expression for the perturbation velocity potential given in
equation (13) provides a ready way of expressing analytically certain
criteria that have been given by R. T. Jones (ref. 11) for wings pos-
sessing minimum drag characteristice. An essentlal feature of Jones?
results involves the use of combined flow fields which are obtained by
superimposing the disturbance fields in forward and reversed motions.

So long as the governing equations of flow are linear, it is possible

to establish reciprocity relations bhetween the induced fields of arbi-
trarily situated sources and doublets in combined flow fields. Condl-
tions for minimum drag under imposed restrictions are then expressed

in terms of the pressure induced in the superimposed fields. For
exemple, it is found that if the thickness distribution for a symmetrical
nonlifting wing ylelds a specified volume, then drag is & minimum if the
thickness is distributed in such a way that the pressure gradient in the
combined field remains constant over the plan form of the wing. The
application of this condition to & slender wing in supersonic flight is
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simple, since from equation (13) the perturbation potential in the two
directions of flow can be written explicitly. In the plane of the ving,
the forward flow ylelds

b 39 U, o v 2(x-x,)
q)f(x:YJO) = ‘;-_ﬁ'f A 'gf’ in l Y"yll dy, - '2—:_:' 'a_x' S (Xl) in '—_B—l" dx,
AN 5

and the reverse flow ylelds

b aq) ’ U, a , 2(]{1"]{)
9,.(%,¥,0) = 2= bA a—zr |-y ay, + 2 g}-{-fxs (x1) In ———
- 1

where 1 1is the streamwise length of the wing and b is local semi-
span. Since

3 CPf BCPI.

— =

on " an

the perturbation potential Py in the combined field is

-Up d 1 2|x—xll
P (x,7,0) = — — 8 (xy) In ——— dx
2( 2 ) o Ox A ( 1) 8 1

and it follows directly that if 8°(0) = 8°(1) = 0, pressure coefficient

in the combined field is
1 o )
1 8(x3) ~
= e dx 8
CPZ ’tf XX, 1 (38)

(o]

In the case of thickness distribution with given volume, %E is &

linear function in x and equation (38) is precisely the same integral
equation that arises in the determination of thickness distribution with
given volume for a slender body of revolutlon in supersonic flight

(refs. 12, 13, and 14). The same chordwise distribution of area there-
fore exists for wings and bodies of revolution under the glven conditions.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Nov. 28, 1952.°
———
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