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SUMMARY

the assumption that a wing, body, or wing-body combination
or flying at near sonic velocity, expressions are given which
calculation of pressure in the immediate vicinity of the con-
The disturbance field, in both subsonic and supersonic

flight, is shown to consist of two:~nsional disturbance fields
etinding laterally and a longitudinal field that depend on the stream-
wise growth of cross-sectionalarea. A discussion is al given of
couplings, between lfi%ing and thickness effects, that nec Ssarily arise
as a result of the quadratic dependence of pressure on the induced
veloci~ components.

Ili’T.RoDucTtoN

This paper is concerned with the prediction of pressure distribu-
tion on or in the immediate vicinity of a wing, body, or wing-body com-
bination under conditions in which the geometric configuration is
slender in the flight direction or is flying at ne’brsonic velocity.
The material to be presented is thus associated with the rather exten-
sive group of results that belong to what is often refe’rredto as
slender-wing theory. The basic assumptions and methods canbe found in
publications byMunk, R. T. Jones, and Ward (refs. 1,.2, and 3)1 and a
discussion of the applicability of the m&hods to the prediction of
loading on slender wings at sonic flight speeds has been given in refer-
ence 5. In reference 2, attention was directed toward the calculation
of load distributions over wings in subsonic ‘kndsupersonic flight and
reference 3 was devoted essentially to the consideration of supersonic
flight velocities. It is therefore of interest to investigate further
the effects attributable to thiclmess on wings and wing-body connat-
ions at both subsonic and supersonic flight speeds. Such investigations
lead to valid approximations of interference effects and also indicate
tlieway in which thickness and lifting effects can produce couplings in
the calculations of pressures induced in the flow field.

‘Reference should also be made to the recent extensions of slender-wing,
theory by Adams and Sears (ref. 4).

.
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ANALYSIS

It is proposed to take the baSic solutions of the linearized
partial differential equations governing three-dimensionalcompressible
flow and to obtain a simplificationof the expressions by restricting
attention to the induced field in the imnediate ticinity of slender
airplanes or missiles. These simplified expressions contain solutions
used previously to study the forces and moments on lifting wings and
bodies. In addition, however, they can be used to evaluate the first-
order thickness effects on the pressure in the vicinity of the wing
and body.

Consider, first, the construction of a weakly disturbed flow field.
Let a uniform stream flow in the direction of the positive x sxis of
a Cartesian coordinate system, as in sketch (A). Immerse in the stream,

which has a velocity U. and a
MacLnumber ~, a slender wing-
body shape the surface of which is
inclined at a small angle to the
free-stream direction. This angle
of inclination must be small eno~h
so that nearly everywhere in the
fluid the magnitude of the pertur-
bation velocity vector dividedby
the speed of the free stream is
much less than one; that is,

+#-+wa<<l

Uo
(la)

Moreover, large supersonic Mach

w

\’d

numbers are to be avoided and as a
measure ~f this condition the

v inequality

u
M02U2+V-2+W2

<<1 (lb)
Uo

Sketch (A)
\
U* is imposed.

Consider, next, the linearized partial differential eqm’tion gov-
erning weakly disturbed isentropic fluid flow. In terms of the pertur-
bation velocity potential ~(xjy z), the lowest order approximation

~consistent with inequalities (la and (lb) is

(2)

. .. .. —-—---— .-. —-— — . ————— —-
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where the subscripts denote partial differentiationwith respect to the
indicated variable. .

Considerj finally, the expression for the Press~e coefficient
that is again consistent to the lowest order with inequalities (la)
and (lb). By expanding the pressure-velocityrelation for steady
isentropic flow and negl.ecting’higher-orderterms, one ffids

(1-~2)@ + V2 + W2

%= -=”-~-1 ~02~Po U02

where p and p are pressure and density, respectively, and the sub-
script o refers to conditions
inequalities (la) and (lb) that
in the form

%“-

in the free stream. It follows from
pressure coefficient can be expressed

2U ~2 + W2
—-
Uo u~2

(3)

Equation (3) is the simplest general expression for pressure coefficient
that is still entirely consistent with the assumptions basic to the
development of equation (2).

Special solutions applnng to problems of the class indicated can
be obtained by appropriate simplificationof general solutions to
equation (2). Such a procedure will.be discussed in the next section.
The pressure coefficient is then determined by substituting these
results into equation (3). The simplificationsthat can be made in
evaluating the pressure on the surface of the airplane will,also be
discussed.

.

The Reduced Solutions

Subsonic.- As it applies to subsonic flow, equation (2) can be
written in its normalized form as

(4)

The analysis of equation (4) can be interpreted as applying to the condi-
tion ~ . 0 but one can extend the solutions throughout the subsonic
Mach number range by applying the Prandtl-Glauert rule. It is important
to stipulate,however, that the term “slender” will, unless otherwise

.
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indicated, have a dual interpretation - describing an
figuration that is either mu~h longer than it is wide
close to the speed of sound.

AwelJ_-lmown solution to e@ation (4), resulting
tion of Green~s theorem, is given by the expression

NACATN 2900

aerodynamic con-
or is flying

from an applica-

where dsl is the element of surface area on the airplane or its

vortex wake, r (Y - Y1)2 + (z- ‘1)2, ~d apn’ is th’=
derivative normal to the surface S. When this solution is applied to
boundsry-value problems for slender configurations it can be simplified
considerably. One method for bringing this about is suggestedby
studying the variation of [r/(x - X1)]2 over the area S. Consistent

with the assumptions made, one has [r/(x - X1)]2 << 1 over a~ost al-l-
-ofthe airplane surface and vortex wake provided the point x,Y,z is
on or in the vicinity of these surfaces. This implies the approximation

J(x - xl)= + r=%lx - xll (6)

The singularity at x = x,, which thus appesrs in the i“ntegrandof
equation (5) for
An indication of
obtained through

the limiting =ase r . 0, produces a divergent intelg?al-.
the manner in which this difficulty can be avoided is
consideration of the single integral .

.

J
b i(xl)’%

a ~(x-xl)= + r2

If g(xl) is differentiablewithin the region of inte~ation, it
is easy to show that this expression can be written in the form

f

ab” x-xl b x-xl ~D14 + %FzF=

G
g(xJ Sinh-lydxl=@

axf g(xl)lx+=I dxl
r

a a

and the approximation for small valyes of r then becomes

(

\

I
I

I

1

,,,
.

I

1
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Equation (5) is to be written subsequentlywith a logarithmic
kernel in the integrand and a derivative operator outside the integrals.
An esthate
form of the

10

of the-order of accuracy invol~ed in using the a~roxi%te “
integrand follows I&om the evaluation of the two expressions

and

Sketch (Bl) shows the variation of the ratio E = (l.-l,)/10 for a
rectangle wing of area So and aspect ratio A = 1/S &s-the point x,y
covers the portion of the xy plane on and within one semispan of the
wing .

The maximum value of E occurs When
the’point x,y lies along the trailing
edge (or, by symietry, along the leading
edge) and it is significant to notice that
the value of E decreases as the point
‘rovesfrom this location in either x
direction and increases as it moves from
the x sxis in either y direction.
This illustrates the necessity of restric-
ting the approximate solutions to slender
configurationsand, further, to portions
of the flow field in the vicinity of the -
lo@itudinal axis .ofthese airplane
shapes. Sketch (B2)’showshow the maxi-
mum value of E tithin one semispan of
the wing decreases with decreasing
aspect ratio.

Under the restrictions”that have -
been imposed, it is justifiable to
introduce simplificationsin the form of
the derivative a/bn’ and the differ-
ential area dS1 appetiing in ,equa-
tion (5). The operator a~n’ Cm be
expressed as

.20 F

.30“

Sketches (Bl) and (B2)

—— —. .—. ... . - —.. -—. ..-—-. —– ---— --——- ... ..— .— .- —- . ———--- .— —--- - ,-—-- - -
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where nl,nz and ns sre the &ection cosines %etween a
surface S and the x,y, and z =es, respectively; the
area dSl can be expressed as

11F1 - n12

NACA TN 2900

nor&l to the
differential

where dsl is a differential length along the surface in a yz
If the airplane is slender, nl is small, and canbe neglected,

tive to either uni@ or ~*

Combining the two smlifications discussed above, one Cm
mate equation (5) by the expression

H&%r’’’(%a-’n-P(x,y,z) =–—

s

where ~/&
section in a
is the total

9(X,Y,Z) =

Since

represents n@/by + n.@z, the normal-derivative
yz plane, s is the curve bounding this section,
length of the airpl=. Equation (7) reduces to

plane.
rela-

approxi-

(7)

to a
and z

1

f

as(x)
~dsl=—

~ (3X
s

where S(x) is the cross-sectionalarea
plane, this expression

J(

ag
WX,Y,Z) =’* ~–

s

becomes

)
~ Znrdsl–

‘an

-s

= s’(x) (8)

of the specified shape in a yz

Uoaz,——
f4Xax o s (2%),;::,zn21x@4iX~

It is apparent that the first integral on the right-hand side of
this equation-is a solution to Laplace’s equation m ~ (the Y ~d z)
dimensions. This portion of the solution wilILbe represented by the *

—. . ——--—. — -- ——~-—— -—— - — - ——. .——— - --.— ——— —— ——



,

NACA TN 2900 7

Smol 92(X;YY+ The x dimension, which does not appear e~licitly,
enterB as a parameter when the solution is adapted to particular
boundary VZ&&. Hence, by means of the usual Prandtl-Glauerttrans-

7formation xex, y-y l-~ , z~z~~, together with equa-
tion (8) and the relation

~ J
z

axo
‘-X1 dxl=.2s’(x)

“ ‘x’) a

the final form of the solution is

U. a ‘. -J Zn +-q
q(x,y,z) = %(X;Y,Z) –——kfiax s ‘X1) 1:-;J J= “

(9)
o

The physical significance of the last expression can be interpreted
easily. The three-dimensionalperturbation velocity field induced by
wing-body shapes that are slender or flying at nesr sonic speeds is
approximated in the vicinity of such shapes by a field that satisfies
the two-dimen~o~~e~u~ and the bobdary conditions in
transverse planes plus a longitudinal field which depends on the stream-
wise rate of change of cross-sectionalarea and is independent of y
and z.

Sq?ersonic.- In the case of supersonic flow, the normalized form of
equation (2) becomes

(lo)

An analysis based on equation (10) applies specifically to the condition
~ = fi but these results canbe extended throughout the supersonic
Mach number range by applying the Prandtl-Glauert rule. Volterra?s
solution to equation (10), (see, e.g., ref. 6, p. 1~) which iS ~0-
gous to the subsonic form given in equation (’j),is expressible as

~n IX-XII+J(x-x=)2 -r2m1 (u)
q(x,y,z) ‘J-: m av as-%T ) r . .

where, as in the subsonic case> dSl is ~ element of surface area on
the airplane or its vortex sheet and r equals J(Y - Y1)2 + (z - 21)?
In distinction to the subsonic solutions, the area of integration is
now the portion of the airplane and its vortex wake within the forecone

..- . . . . . . .. ..... . .__. - _. ..__ —.—. -— —... ..__— —. —_.. . --- —. —.- -. .--—- . - -
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‘1

from the point x,y,z, and a@V is the derivative along the conorma12
rather than the normal. ,

If the application of equation (n) is limited to slender configu-
rations, the approx~tionj similar to expression (6) for the subsonic
case,

is implied. Furthermore, if the conormal and differential area are
expressed in terms of the direction cosines and nl is again neglected

relative to unity or ./”y equation (lJ_)reduces to the form

This differs from the correspondingexpression.for subsonic fluw only by
a factofiof two and by the extent of the xl inte~tion. The latter
is carried only to x in the supersonic case since the original inte-
gration area T included only points in the forecone from x,y,z. It
iS obvious, however, that these two differences are compensating in the
first integral term so the final expression for the perturbation poten-
tial, appropriatelymodified by the ~andtl-Glauert rule, becomes

f

Uoa x, 2(X-X1)
~(x,y,z) = 92(X;Y,Z)–~~

‘(x’) ‘n W&’

(13)

o

The Reference Coordinate Systems

Equation (2) was developed specificaJJ_yfor the case in which the
undisturbed stream at infini~ is parallel to the x axis. A coordinate
system so orientated is usually referred to as the wind axes. (See
sketch (C).) When the configuration is tilted with respect to the

2The conormal is the vector that results from changing the sign of
the x comoonent of the normsl.

.
i

———— _—. - . - -— —— .- . —. ..—— .
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Sketch (C)

free-stream vector, however,‘it is often easier to study the boundary-
value problem with the ,x axis placed along the center line of the
fuselage. Such a coordinate system is usually referred to as the body
axes.

Obviously the wind and body axes differ significantly onlyby rota-
tions about the ypnd z axes. When ~ is zero, equation (2) is
invariant to such a rotitionj but for values of ~ greater than zero
this is no longer true. However, when ~ is ~eater than zero, eg.ua-
tion (2) represents the governing differential equation only to a
certain order, and, if the magnitude of the rotation is similar to that
of the parameters by which the eqwtion is ordered, it is, in this sense,
still invariant to rotations about all.three axes for both subsonic and
supersonic Mach nunibers. Thus equation (2) is to”the lowest order the
governing partial differential equation for both wind and body =es,
provided the airplane is slender and the angles of attack and sideslip
are small..

Although the partial differential equation is invarian~ with respect
to a small rotation of the coordinate system, the boundary conditions and
expression for the pressure coefficient in terms of the perturbation
velocities are not. The folloting will contain a!discussion of the

.

. . . ..- . . . .. .—----- -..... . . ———— -.— .— —- — .—..— _ . . . — — —~ ———..—-— . —..
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boun&ry conditions
reference to a body

NACA TN

and the pressure and loading coefficientswith
axes system.

2900

t
The Boundary Conditions

The boundary conditions require that the gradient of the total—
veloci~ potential evaluated ~initely far from the aircr@t be con-
sistent with a uniform free stream there (the direction of which
depends on the orientation of the coordinate system) and when evaluated
normal to and on the surface of the airplane itself be zero. Let
Q(x,y,z) denote total veloci~ potential-,T(X,Y,Z) perturbation velociti
potential, and refer the analysis to body axes in a free stream. If
the orientation of the free-stream veloci~ vector to the system of sxes
is fixedby the singles a and y as shown in sketch (C), one can write

f3(x,y,z)= Uo(x Cos a Cos y+y sin y+z Cos Y Sinq) +9(X,Y,Z)

such that on the aircraft surface

v
Uo(nl cos a cos y+nz sin y+% sin a cos Y)+nlqxl- n#Py+ naqz = O

nls%; ~d ~ again being the direction cosines of a normal to the
airplane surface with respect to the x,y, and z axes, respectively.
By the assmnptions basic to the-present theory, the latter equation
reduces to

uO(nl+-n2 7-m3 CL)+~+v2(x;Y,z) = o

where, as before, n is the normal to the curve bounding
in the yz plane.

.

(14)

a cross section

Equation (14), which applies to arbitrary slender shapes, can be
simplified for many specific problems. Consider now three types of
configurationsthat lead to such simplifications: first, a surface,
such as a wing, which deviates only slightly from a plane; second, a
surface which forms a body of revolution; and, third, a surface which
is a combination of the above two.

Planar problems.- Let h(x,y) be the distance a surface u~ates
from the z = O plane, and b re resent the wing span. (See

rsketch (Dl).) Assume that a/(db dx)<<l holds; then furthermore,

——_ .—..— .— .. ..— .-. —.-. .—.. .—. ..- .-— -——— ———— . . . . .



,,

NACA TN 2900 Xl

if the inequality (ah/ax)/(db/dX)<< 1 is satisfied, it is consistent
with the previous approximationsto
neglect the y component of the
normal along the ~ surface and
to project the velocity .vector
represented by the resulting verti-
cal derivative to the upper or
lower surface of the z = O plane.
In this way equation (14) becomes

()a92Uo(nl+n#)+n3 —
az ~=o=

o

and, since nl/n3 = -ah@x, the
boundary conditions for planar
problemsa are expressed ’bythe
equation

t

2

t

z
x

w2() ah
1/

Y
= -Uo‘+uox (15)

x Z.O

Body of revolution problems.-
Let R be the radius of a body of
revolution. (See sketch (D2).) If
19 is measured from the z axis k
the yz plane and 7 is set equsJ-
to zero, the relations

●
Cos e

‘“=Ami=F ‘ co’e
together with equation (14), give
for the normal derivative on the
surface of the body

()aq=~B = uo!K4Joacos e
ax

(16)

1/ Y

\ x
>

\Y=s(x)

(3)

Sketches (Dl), (D2), and (D3)

3Certain planar problems, such as the cruc~form wing, require more than
one plane but the concepts are essentially the same as those presented
here. - .

_.—. . —,,-—. . .—— -..—--— ——.-— -.—— -—
-. -.. . — -— —-—-———.—-—
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which is the shp?3fied expression of the boundary conditions pertaining
to bodies of revolution.

~nterference problems.- Consider, finally, surfaces which sre a
,,

cotitiation of the above two as, for example, the one shown in sketch (D3). ‘
The rather obvious extension of the above concepts is to apply eqya-
tion (15) over the winged portion of the configurationandeqmtion (16)
over the body. It is then necessary, however, to consider the relative
magnitudes of the terms’ ah~x, as/ax, dt/dx, and aR/ax, since they
appear in the solutions in various colibinations. If the winged portion
is to be treated as a planar problem, the magnitude of bbx must%e
small enough to be neglected in comparison to the leading- and trailing-
edge slopes, ds/dx and dt/dx. But this does not imply that ah~x can
%e neglected in comparison to dR/dx or that dR/dx canle neglected
in comparison to either ds/dx or dt/dx. The latter approximationswilJ_
not, in general, be made.

The Presswe Coefficient I

The expression for the pressure coefficient given by equation (3)
is written in terms of velocity components that are referred to the
wind sxes. Its re-expression in terms of velocities referred to the
body axes is readily determined. For the orientation shown in 4
sketch (C2), the eqyation becomes

.

%=-: (qx + 7qy + aqz) - + (9y2 + ~z’)
Uo

(17)

Equation (17) can be used, in genersl, to evalmte the pressure in
a perturbation veloci~ field that is referred to the lody axes. If
the interest is limited to the pressure on the surface of the aircraft,

●

however, certain simplificationscan be made. For example, consider
the configuration illustrated in sketch ())3)consisting of a swept-back
wing mounted on a body of revolution. For simplici~, let 7 = O.
Applying the boundary conditions givenby equations (1S) and (16), one
can show that on the surface of the wing

2qx
~= [-—

( )1
.YZ2 .aa-ah’

Uo Uo ()zZ=o

(18a)

and on the surface of the body

— —— . . . . .—.. .——...-. —. . .— ... . .. —-— ——-. – -- —---- .. —- — —
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,

These solutions csm be simplified further by considering the
detailed nature of the’perturbationvelocity field induced by shapes
such as that shown in sketch (D3). Thus, the results g;venby equa-
tions (9) and (13) canbe expressed in the form

‘ W%Y,Z) =~2(X;Y,Z) +A(x) (19)

where the expression for A(x) depends on whether the speed is subsonic
or supersonic. Further, for the particular configurationsbeing con-
sidere~ the eqmession for q2(X;Y2Z) C= be mitten in the g~ner~ fo~

92(WYA = a9a(t,s,R;y)z) -I-$ ~(t>s,R;Y,z) +~&(t,s,R;y,z) (20)

since the dependency on x can enter only through.theboundary condi-
tions which, in turn,’are specifiedby the body radius R(x), the ~
thicbess, h(x,y), and the lateral distances from the center line to
the trailing edge and leading edge, t(x) and s(x), respectively. The
term. aqa will be referred to as the potential due to angle of attack,
since it vanishes when the singleof attack vanishes and increases
linearly with increasing a; the term (ah/bx)q&+ (dR/dx)q willbe
referred to as the potential due to thickness, since it ~sts when the
angle of attack is zero, does not change with angle-of-attack change
and vanishes when the thicknesses of the wing a& body do not vary
with X.

By breaking 92 down into its component parts as in equation (20),

it has been ordered in that the magnitudes-of the terms on the right- -
hand side of equation (2o) are controlled by the coefficients of the ~Ts~
and the derivatives of ~a, ~, and ~c with respect to s,t,R,y, and z
can sll be considered equal. Stice a and ah/bx are negligible relative
to dt/dx, ds/dx, and dR/dx (as was.pointed ’outin the.discussion of the
boundary conditions for interferenceproblems), equations (18a) and (18b)
can be written:,

on the surface of the ~ng

/

,.. –— -_.—- -..—- —. ...— —--— ---——-— -—--- ———-—-- —-— ~--— — — .- 4--- --- . . . . . . . . . - -
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and on the surface of the %ody

(ml)

If the body is a cyltider so that its radius does not vary with x,
the pressure coefficient reduces to

Loading Coefficient

By definition the loading coefficient is

:= (cp)~ - (CP)U

(22)

where the subscripts u and Z refer to the upper and lower surfaces of
the airplane, respectively. It is inmtediatel.yapparent from an inspec-
tion of equations (23) and (19) that the loading is not affectedly A(x).
Hence, the lift, pitching moment, rolling moment, and induced drag can
allbe expressed entirely in terms Of 92(X;Y,z). .

Consider again the type of airplane shapes represented in
sketch (D3). The veloci~potegtial ~= for such a class of configura-
tions has been expressed in equation (20) as the sum of three potentials:
one due to angle of attack, one due to the thickness of the wing, and
one due to the thiclmess of the body. It is now useful to renwrk that CPa
has odd symmetry with ?%ference to the z = O plane and ~ and PC
have even symnetry. Placing equations (21a) and (21b) into equation (23)
and using these properties, one finds

(%!!= e[A%?+&&’(3%)1
2=0

(24a)

.

*.. —_.__ .. _.. _ ._ _ . . . . _- ___________ ___ — ..._. . .
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and

15

r

.7

(24b)

where A indicates the difference between a quantity on vertically
opposed points of the ~er and lower surface of the airplane.

It is apparent from the last two equations that, in general, the
angle-of-attackand thickness solutions have a coupling effect on the
loading coefficient and therefore their contribution to the load distri-
bution cannot be treated separately. It is also important to notice the
two special cases in which the coupling effects vanish; namely, abody
of revolution without wings, and an airplane with a cylindricalbody
between the forenmst and rearmost extent of the wing. In the former case
the term b@e is zero and in the latter dR/dx is zero. In both
these cases the equation for the loading,coefficient is

4

-z=

The Total Lift

(25)

TOtal lift canbe obtained, of course, by integrating the 10tiiw
coefficient over the aircraft surface. A much simpler way of finding
the lift, however? can be derived from a momentum balance. Thus, by ~

momentum considerations it is possible to show that the vectorial force F
on a body inside a control surface S is given by the surface integral

+
F=-

lf
(p-po)d% - Jfp@:o)~..z] ~

s s
where vector notation is used, the o mibscript indicates“free-stieam

+
conditions, p and p are the local static pressure and density, and V
is the local veloci~ vector. Let the surface S be a cylinder of
infinite radius and two yz planes closing the cylinder and located
infinitely far ahead of and behhd the airplane. Then the lift force
is given to the lowest order by

m m

ML=Fz=- [Pw(uo+u)l_ Wti

-m -co

- .. .— ..-,. ---- —— .— . . ...—.——— —— . ..— .—— .—— ——...— —--
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which reduces to

mm

L = -poUo
If

(W)x=m dy dz

-m -m

This can be siqlified since w = @Pz and (A9)X=. is the same as
the jump in the potential evaluated at the airplane trailing edge.
Thus the expression for lift becomes

L= pouo
f

(AQ)Te~e @ (26)

span

Equation (26) applies to all slender shapes. In special cases
represented by sketch (D3), thickness effects always have even symmetry
with respect to the z = O plane, and it follows that the total lift
and the vortex distribution in the wake of such configurationsare
affected only by the part of the potential due to angle of attack, even
though the detailed load distribution depends.upon both thickness and
angle-of-attack solutions.

IIXAMI?LES

Pressure on a Triangular Wing
With Elliptic Cross Section

.

.

,
It is of interest to calculate, by equation (13), the pressure on

nonlifting wings of triangular plan form and elJiptic cross section ,
flying at supersonic speeds, since examples of this type have been
solved without res’krictionto slender-wing theory. It is proposed,
therefore, to study two cases given first by Squire (ref. 7) and then
to compare the analytical results.

Let the wing be placed at zero angle of attack in a supersonic free
stream of Mach nunber ~. Consider first the thiclmess distribution
for which the ordinate of the upper surface is

.—— —— - -—--—- --— ---, ——— --—.. .—— ——— —.—— - ------- -- .
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where co is the root chord, t is.wing thickness at x = co, and m
is the tangent of the semiapex angle of the plan form. Since the flow
is supersonic, it is Unnecessary to consider closwe.

Since attention is confined to symmetric nonlifting wings, the
boundary values are ~lanar and are expressedby equation (15) for a = O.
Further, the solution is given in terms of these boun~ values by
eqwtion (12) since (&@n)z. becomes Uo@h~x) and (Aq)za. is zero “

by symmetry. Hence, if ~ = -1,

It follows from equation (27) that the
plane x =X1 has major and minor semi=es
respectively. The cross-sectionalarea and
therefore,

Since

mx
1

; f
-mx

elliptic section in the
equal to mx and tx/2co$
the surface slope =e,

s(x) = XtaE=2/2Co, ah/& = _/2c0 d-

m
—;2

IYI + J=
2

the expression for perturbation potential becomes

.

&q(x,y,o) =I2C0 (l-2n[
l-in

)4 .’
~’

4x

IYl<mx

IYl>mx

1

Yl<ux

]1;Y>mx

lxIYl + A===)

.

.. . . . . .-— — —..—. -——. .—— -——---—--——.—.—-— .— .- -. --— ——— _ . -— . .— -. - -
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is
From equation (22), pressure coefficient in the plane of the wing

%?=

E 0“:-1)’ ]Yl< ~
tm

[

4x—

co &’zn B(l+JF-@x2) - 1
1 ;Iy]>mx

1

(28)

The pressure d.istiibutionon the wing is uniform and off the wing has a
square-root “singuWri tyat the leadi& edges. Analysis not limi~edby
the assumption of slendernessyields for pressure coefficient on the

CP=Q K-E

co d-

where KandE are complete elliptic integrals with modulus A/=
Since for values of the modulus near one the asymptotic relations

ap@y, the pressure coefficient in slender-wing theory is seen to be a
first-order approximation.

Squire has alsoconsidered the wing with ordinates given by

h(x,y) = % A/”-
2c02m

(29)

The lateral section is again elliptic, with
equal to mx &d tx’/2co=~ Cross-sectional
respectively,

s(x)= s, ~-=---
“ ax 2MCO=

semimajor and semiminor axes
area and surface slope axe,

~2~2.y2

-.——. . _ -. .– — .— -. — —.._-— -———

.

.
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By direct integration it can be shown that

,
Cp.=~02 ( )= 3Zn $-4

Analysis not limited to slender wings yields the expression

and
are

f+ = mtx

co2(l-p%12)

again the results are in
neglected.

[(3-P2@K-(4-2P*)E]

agreement if higher-order termsinpm

(30)

A study of generalized conical flow fields in linearized supersonic
theory reveals that the linear pressure distribution in the above problem
can also be obtained on a wing with thickness specified by the relation

where k is a constant that can be related to the ~ thickness
ratio (attainedalong the line m/y = 1.31) of the wing. The cross-
sectional area and surface slope are, respectively,

and press~e coefficient on the wing is

%==+$”2)

The latter expression agrees to thef i??storder in @ with the general
linearized solution for such a wing presented in reference 8. Slender-
wing theory thus retains the proper~ of the more general linear theory
in that a given pressure distribution does not necessarily yield a
unique thickness distribution.

, Supersonic Drag of Wings at Zero Incidence

The general expression for the supersonic drsigof a slender aero-
dynamic shape has been derived by Ward (ref. 3) through the use of

—.. . . .——-— —-——- ..— .—. .-— —.— --- -—-
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momentum methods. It is also possible to obtain these results by direct
integration of the ~roduct of pressme and surface slope over the speci-
fied surface; the analysis, however, requires rather careful attintion
to orders of inte~tion, when planar problems are involved. Consider,
for example, the drag of-a wing at zero incidence
thickness distribution z = *h(x,y). The hag of
ible in the form

and with a specified”
the wing.is express-

where the first term includes possible contributionsto
result from a finite leading-edge radius of c~ture.
this drag per unit of span is, in slender wing theory,

dDe ()as2= iqrn
z

where rn is the radius of curvature normal to
and s is the local semispan. If the ordinate
vicinity of the leading edge, is

~=f(s,y)~

equation (32) becomes

dDe ‘()~qF’(s,s) as 2—=
dy 2 z

(3.)

the drag that
I@om reference 9,

(3=’)

the wing leading e&e
of the wing, in the

l?rornequation (13) the potenti~ of the wing, evaluated in the
plane of the wing is

U.
J

s bJx>Y=) U.
m,Y,o).=~ znly-y=ltilax

-zS”(x) Zn~-
-s

Uo
rZ. S-(x~Zn (x-xl) dxl (33)

and, since pressure coefficient in the pl~ ctie is directly propor-
tional to the streamwise gradient of ~, the contribution of each of the
terms on the right-hand side of eqyation (33) canbe calculated separately
in equation (31). The second and third terms offer no difficulty but

I

I

————_ ____ . _ . . . . .... .. . . . . . . . . . _,_
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. simplificationof the expression resulting from the first term neces-
sitates an inversion of order of inte~ation and, if the leading edge
has a finite radius of curvature, such an inversion cannot be carried
out in the conventionalmanner. However, a method by means of which
such an inversion can be carried out is presented in reff

. Thus, set

rence 10.

and

where
f

refers to a finite-part integra14 and the notation
Jf

w WI

signifies that the yl integrationmust be performed first. Then if

%(X,Y) = f(s,y)

it can be shown that

Detailed analysis
II - 12) yiel& a

F (s,s)

reveals that the residual term (i.e., the value of
drag component that is equal in magnitude but opposite

in si@ to De.

The final expression for the drag of the wing is then

f

1
* s’(i) J’z’”-fS“(xl) Znlx-xlldxl

S“(xl) Zn (Z-xl) &l- &

o
(*)

s

where z is the over-all length of the wing.

%’or a definition of the finite-part integration technique as used here,
see reference 10”.

.— ..— ..- . .-.—-——— ._._ _______ .—.. -———. . .. - —--—-- —-——- — —-.—- —----- .. .—.
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As a particular examples consider the wing-like surface of trian-
#@@? pi-anfOrm (ref. 7) which results from a combination of the
surfaces specified in eqyations (27) and (29) and has ordinates given
by the ~ression

%l(%Y) (35)_ 2t (co+ z ,
2mco

This wing has rounded leading edges and a finite trailing-edge angle,
and from equation (34) its drag coefficientbased on wing area is found
to be

(36)

It is apparent from equation (34) that wing drag varies with Mach nuniber
so long as the stresmwise xent of area is finite at theresr of the
ting; conversely, there is no dependence on Mach n~er ~en the gradient
of area vanishes there. For example, a wing with an elliptic plan form

1’

and biconvex sections satisfies the latter condition, and its drag coef-
ficient based on wing area is

(37)

where t ‘istotal maximum thiclmess, a is the semisxis of the elliptic
plan form in the stream direction, and b is the S**S mea~ed
normal to the stream tiection.

A comparisonbetween the values of CD givenby slender airpl=e
theory for the squire wing (eq. (36)) and the elliptic le~ (eqo (37))
and the exact thin-airfoil-theoryvalues5 for the same wings is shown
in sketch (E).

5The exact values were given, respectively,by Squire in reference 7
and by R. T. Jones in a paper entitled ‘TheoreticalDetermination of
the Minimum ~ of Airfoils at @ersonic Speeds” and presented at
tie July 1952 meeting of the Institute of Aeronautical Sciences.

— ————.—. ——.————-.—.—— - . .—— .—— . —. .—.
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Sketch (E)

Thiclmess Distributions Having Minhal Drag
in Supersonic Flight “

The expression for the perturbation veloci~ potential given in
equation (13) provides-a readyway of expressing anal.yticaJlycertain
criteria that have been given by R. T. Jones (ref. 11) for wings POS- “
sessing minimum drag characteristics. An essential feature of Jonest
results involves the use o? combined flow fields which are obtained by
superimposingthe disturbsmce fields in forward and reversed motions.
So long as the governing equations of flow are linesr, it is possible
to establish reciproci~ relations between the induced fields of arbi-
trarily situated sources and doublets in conibinedflow fields. Condi-
tions for minimum drag under @posed restrictions are then expressed
in terms of the pressure induced in the superimposedfields. For
example, it is found that if the thickness distribution for a symmetrical
nonlifting wing @elds a specified volume, then drag is a minimum if the
thickness is distributed in such a way that the pressure gradient in the
combined field remains constant over the plan form of the wing. The
application of this condition to a slender wing in supersonic flight is

,
. . . .. . . . . . ..—. _______ .. . —.— ——— .—___ -. —. — ——- —- .- . .
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simple, since from equation (13) the perturbation potential in the two
directions of flow can be written explicitly. In the plane of the w@, ‘
the fo~d flow yields

and the reverse flow yields

where Z is the streamwise
span. Since

length of the wing and b is local semi- .

the perturbation potential E in the combined field is

anjiit
in the

In the

.

J‘Uo t) z
~~(x,y,o) =—— 2 IX-XJ

S’(xJ Zn — ax~
2fi ax o P

follows directl..ythat if S“(0) =S’(2) = O, pressure coefficient
cofiined field is

case of thickness distribution with given volume
‘Y%%isa

(38)

linear function in x and equation (~) is precisely the s~ae inte~al
equation that arises in the determination of thickness distribution with
given volu& for a slender body of revolution in supersonic flight
(refs. 12, 13, and 14). The same chordwise distribution of area there-
fore exists for wings and bodies of revolution under the given conditions.

b

Ames Aeronautical Laboratory
National Advisory Commi%e for Aeronautics

Moffett Field, calif., NOV. 28, 1952.” - .

.
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