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TECHNICAL NOTE 2902

MATRIX METHODS FOR DETERMINING THE LONGITUDINAL-STABILITY
DERTVATIVES OF AN ATRPLANE FROM TRANSIENT FLIGHT DATA

By James J. Donegan
STMMARY

Three matrix methods are presented for determining the longitudinal-
stability derivatives from transient flight data. One method, which
requires four measurements in time-history form and utilizes the incre-
mental tail load to separate the pitching-moment derivatives Cmé and

Cm&, permits the computation of all the longitudinal-stability deriva-
tives. A second method requires three measurements and one supplemental

assumption, namely EE@ = Constant. This method gives the most infor-

Cmg
mation for the least amount of work. The third method requires two
C
measurements and two supplemental assumptions, namely E;_ = Constant
]

end Cp, = %? Crg (where Cpy and Cry are the elevator-effectiveness

derivatives, x; 1s the tail length, and T is the mean aerodynamic

chord). An inspecﬁion of the results obtained for the various methods
shows the scatter which is typical of this type of analysis of flight
data.

INTRODUCTION

The determination of the longitudinal-stability derivatives from
flight data is a relatively difficult task because the wind-tunnel
technique of permitting only one variable to change at a time, while
constraining all the rest of the variebles, cannot always be used. It
is in the analysis of such flight-test data that matrix techniques
employing the equations of motion seem to be particularly useful.

Currently, much work is being carried out on the determination of
gtabllity derivatives directly from flight data but as yet this work is
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s8till in the preliminary stages. The matrix methods for the.determina-
tion of stability derivatives from transient flight data that are
developed herein are an addition to this work. The previous work done
on the determination of longitudinal-stability derivatives is extensive,
and no attempt is made to summarize it since this summarization has been
adequately done in reference 1. '

. In the present paper three methods are developed and presented for
determining the longltudinal-stability derivatives from transient flight
data. In these methods the expressions for some of the stability deriv-
atives are in the form generally used in stebility calculations. The
first method requires the combination of four measurements in time-
history form, two of which must be incremental elevator deflection and
incremental tail load and the other two measurements can be chosen from
a possible three, namely incremental load factor, pitching velocity,
and angle of attack. The method demonstrates the use of the tail load
to separate the pitching-moment derivatives Cmé and Cm& and deter-

mine the' downwash derivative J¢/du.

The second method, which is more restricted, requires a combination
of three measurements (in time-history form), one of which must be incre-
mentel elevator deflection and the other two measurements can be chosen
from a possible three, namely incremental load factor, pitching velocity,
and angle of attack. This method also requires one supplementary assump-
tion, namely Cm& = A Cme, where A 1is a constant.

The third method uses a combination of two measuréments (in time-
history form), one of which must be incremental elevator deflection and
the other one may be chosen from incremental load factor, pitching
velotity, angle of attack, and so forth. The method also requires two

Xy
supplementary assumptions, namely AC and = —= Cj, (where
. Cmg, = *omy Cms = % CIp
CmS
tail length, and T is the méan aerodynamic chord). By using a modi-
fication of the third method, it is shown that considerable information
can be obtained from a single time history.

The methods are demonstrated by applying them to flight data
obtained from tests of a medium Jet bomber, and a comparison of the
derivatives obtained by the various methods gives an indication of the
accuracy which can be expected from data analysis by matrix techniques
based on the longitudinal equations of motion.

and CL8 are the elevator-effectiveness derivatives, x; 1is the
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SYMBOLS

wing span, ft

mean aerodynamic chord
constants defined in appendix E
1ift coefficient, IL/qS

rate of change of airplane 1lift coefficient with angle of
attack per radian; see appendix E

rate of change of 1ift coefficient with elevator deflection
per radian; see appendix E

rate of change of 1ift coefficient with & per radian; see
appendix E

rate of change of 1lift coefficient with pitching velocity
per .radian; see appendix E

pltching-moment coefficlent of airplane, M/qSE

rate of change of pitching-moment coefficient with angle
of attack per radiasn; see appendix E

rate of change of pitching-moment coefficient with elevator
deflection per radian; see appendix E

rate of change of pitching-moment coefficient with pitching
velocity ber radian; see appendix E

rate of change of pitching-moment coefficient with & per
radian; see appendix E

pitching-moment coefficient of horizontal tail surface,
Me/atSty, |

acceleration due to gravity, ft/sec/sec
airplane moment of inertia, slug-ft2
ailrplane radius of gyration about pitching axis, ft

1ift, 1b
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airplane mass, W/g, slugs
pitching moment of airplane

alrplane load, factor

2
dynamic pressure, QZ , 1b/sq ft

wing area, sq ft
horizontal~tail area
time, éec

true velocity, ft/sec
airplane weight,llb

length from center of gravity of airplane to aerodynamic
center of tail (negative for conventional airplanes), ft

coefficients of transfer function relating © and &; see
appendix E

wing angle of éttack, radians
taill angle of attack, radians : ,
flight-path angle, radians

angle of pitch, o + 7

elevator deflection, radians j

downwash aﬁgie, radians

tail efficiency factor, qt/q

mass density of air, slugs/cu ft

dummy variable of integration
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Matrix notation:'

1 rectangular matrix

[ ] square matrix
{ } column matrix
lich integrating matrix (see table I)

"B|L”D|L“E|| rectangular matrices defined in appendix E

Subscripts:

i denotes row elements in matrix
t tail

WB wing-body combination

For sign conventions used, see figure 1.

‘ A dot over a symbol denotes the first derivative with respect to
time, and two dots over a symbol denote the second derivative with
respect to time.

The symbol A refers to an incremental value. Intermediate
variables such as Au, Af, Ao, AQP,.and A¥ and the constant KXjpo
are defined in appendix E.

OUTLINE OF METHODS

The three methods are based on the longitudinal equations of motion
for horizontal flight and use matrix methods to analyze time histories
of measured quantities. The equations of motion used in each of these
methods are expressed in the form

W . .
= = Cp, &0 + Cppf + Cp & + Crg OB , (1)
L 5= Cp, O + Crgl + Cméé + Cpg A5 (2)

.
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These equations apply to a rigid airplane and are based on the
usual assumptions of linearity, small angles, and no loss in airspeed
during the maneuver. The equations are further restricted to the range
in which the varistion of the derivatives is linear and also to conven-
tional wing-taill configurations in which the major contribution to
damping in pitch is due to the horizontal tail. All the variables are
given in incremental form measured from a steady-flight trim condition.

Ag indicated in reference 2, the four values Ax, &, 6, and AB
in equations (1) and (2) are linearly dependent; therefore, if four
simultaneous equations are formed to determine either the force or
moment derivatives, they cannot be solved uniquely for the unknowns.

For purposes of analysis the moment equation (2) is integrated
once and expressed in the form

t

- +
T .
—6=2C an,dt+C.Aa+Cm'A9+C fABdt (3)
aSe My, o ms, 2] g o

This form permits the use of numerical integrating methods that are
more desirable than numerical differentiating schemes when applied to
flight data. Integrations of the varisbles are performed by use of an
integrating matrix ||Cl] derived in reference 3 and given in table I

t
herein. TFor instance, a time history of ‘jr An dt may be obtained
0

from a time'history of An as follows:

{/: An at 'y =|jcll {Ani} (&)

The integrating matrix ||C|| given in table I may be used for any time
interval At; most of the computations of this paper are based on a
time iInverval of At = 0.1 second. This interval may be too large in
some cases, and 1f greater accuracy is desired, a shorter time interval
may be chosen.

The esgential differences in each of the methods are in the number
of quantities to be measured. Method A requires four basic measurements
in time-history form to determine all the derivatives, Method B requires
three measurements and one supplemental assumption, namely Cm& = XCmé.

Method C requires two measurements and two supplemental assumptions,
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 \Cer  an _ %t ‘
namely Cm& = Mpy and Cm6 = Ef'CLB' All measurements of flight data

used are time histories of Incremental values measured from a trimmed
level-flight initial position. The development of the equations for
each method is covered in appendixes A to C; in the body of the report
the methods are outlined by stating the pertinent equations 1n the order
of computation. Since these computations make extensive use of least-
squares procedures and are greatly facilitated by the use of matrix
algebra, most of the equations are given in matrix form.

Method A
Of the four basic measurements required with method A, two must .
be incremental elevator angle and incremental tail load and two other
measurements can be chosen from a possible three, namely incremental
load factor, pitching velocity, and angle of attack. In this paper,
Incremental load factor and pitching velocity are used.

The procedure of computation with method A (see appendix A for
development) is as follows:

(1) Compute & time histéry of rate of change of angle of attack &
from

&=06-8an (5)
or

fuab - {ou} - s

(2) Calculate time histories of Ax, A8, JF
0

% %
A8 dt, f AB dt,
0

t pT . ‘
and f f A5 dT dt by using the integrating matrix |[|C|| and the
o Yo

time histories of &, 9, and :Aﬁ; for example,

{os}y = el o} (6)

ma e s s =
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(3) Determine Cr, and Cpgy by least squares from the relation

Clum.+CL8.A8=gs—An (7)

or ' \
- .
15l CII:}= 1 fan}

(4) Compute the coefficients Kj, Kp, K5, and Kg of the transfer

function relating pitching velocity and elevator. deflection by the use
of the method of reference L4 and the equation

t t t T
K1A9+K2f A9dt—K5f ASdt-stfAﬁd‘rdt:_G (8)
0 0 ‘ o Yo

where the measured values of pitching velocity and elevator deflection
are used. .

(5) Determine Kjo from the relation

I I .
Kio=—C1, - == (9)
10 cVm Lo gSc . .

by using the results of steps (3) ana (k).

(6) Calculate time histories of the intermediate quantities AQ
and Ap by using the expressions

Ap = %E%An - %(V’E + 1)5{] (10)

or

{Aq)i} = % {ons} - i%(m + 1) {mi}
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and

| _q?-?,Klom-i—Kloa-cIﬁAa (11)
1 ; x-t

or

{Aui} - El_s-{ALt 1} - E;Vt—z K10 {Aai} - XE;- K10 {&i} - Crg {ABi}

o

(7 Compute‘ Cmé by least squares from the relation

. Cmg &9 = Ap o (12)
| or
Cmg {Aq)i} = {A“i}
(8) Determine Cms from the equation
CmC'L = Kq0 - Cm’e ' (13)
(9) Calculate the time history of the intermediate quantity Ac
from
AG = —= B - Cpy b - Cpyy A0 (14)
gSc
OI

{Aci - 5= 91} - Cay {mi} Cmp {Aei}
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(10) Compute and C by least squares by using the relation
ms

t t
Cmaf Aadt+Cm6fA5dt=Ac (15)
0 0
or
Cm
uw@g=@@
(11) Calculate CL(-9 and GL&, from the following definitions:
Crs = = G (16)
Lg = q m .
and
Cr. = < . (17)
I’(I. xt CmCL

(12) Determine the time history of the intermediate quantity AV
from the equation

I'I ! A 3
= e - ’6 -
AY & Mn - Crj CLe& (18)

or

{ory =& fomi} - osg {ouf - osa {a)

(13) Computé the refined values of CL(1 and CL8 by least squares
by using the relation '

o

Cr, oo + 016 AS = AV (19)
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or

Cig, .
I8 9cre (= {zwi}
These values now include the effects of the CLé and Cr; terms in

the force equation.

(14) Method A can now be iterated to obtain better values of the
derivatives by starting the process over at step (5) with the improved
Cr, and Cr, values from step (13) and following the procedure again.

The iteration converges rapidly.

& o A
(15) The derivatives L> %&, and 1 are found from

X +’ 3B
oC Scv
(3, - oo o =
e A
de 1 Cm&
X . =2 (21)
o, b”]—t Cme
oC
M _ 8 ¢ (22)
B 54 o

This procedure shows that the derivatives Cr,, CLé, CL&’, CLS" Cma,’

ac oC ,
Cmé, Cm&, CmS’ <$I"- t, %-, and —% may be determined by numerical

operations on four time histories of measured flight data and through
the use of the theoretical relationships given as equations (16), (1T),
(20), (21), and (22).
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Method B

Three basic measurements are used in method B, one of which must
be incremental elevator angle and the other two measurements can be
chosen from a possible three, namely incremental load factor, pitching
velocity, and angle of attack. In this paper, incremental load factor
and pltching velocity were used.

In lieu of the fourth measurement, the supplemental assumption is
made that:

Cmg, = ACmg i (23)

If a value of A_ 18 not known in advance, a first approximation (see
ref. 5) is A = 4. Although the assumption A = %- imposes & restric-

tion on the generality of the method, it appears to be Justified since
it reduces computation time to almost one half that required for
method A and for the examples presented herein gave results which are
in good agreement with those of method A.

The method is outlined by merely stating the appropriate equations,
the development of which is-contained in appendix B. The procedure is
as follows:

(1) Compute the time history of Ax by using equations (5) and (6).

(2) Determine a time history of the intermediate quantity AE from
the expression

= (1+2)6 -%g-An (24)

ey - oo} -2}

t t
(3) Calculate time histories of f Ao dt, f At dt, and
0 0

t
f AS dt by using the integrating matrix [|Cl| and the time histories
0

of Ax, AE, and Ab.
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(4) Compute Cmu’ Cmé! and CmS by least squares from the relation

‘ t t t
( c andt+C'f At dt + fABdt:—I—_é " (25)
e s Cog o 53

or
| el cay, - = = {5}
aSc
Cmg '

(5) Determine Cm& from cmé by using equation (23) and then
determine CLy end Cyp. by using equations (16) end (17).

(6) Calculate the time history of the intermediate quantity AV
by inserting these values of Cr, and Crj into equation (18).

(7) Compute the values of Cr, and CLg from equation (19).

. ' X

Cr
(8) The derivatives and ——

_ S /i a5
equations (20) and (22) and the previously derived quantities.

are then determined from

Method C

& Method C is an extension of the method presented in reference k.
Appendix C contains the development of the pertinent equations upon
which method C is based. Two basic measurements are used in this
analysis, oné of which must be incremental elevator deflection and the
other one may be chosen from incrementel load factor, pitching velocity,
angle of attack, and so forth. In this paper incremental pitching
velocity is used.

Two supplemental assumptions are made. The first is the relation
between Cm& and Cmé given in equation (23) and the second is

. o ‘ Cmﬁ = %} CL8 ‘ (26)

o e mr e mm e e e e e ———— v — P e et s+ - e e e =
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The procedure for method C is as follows:

(1) Compute the stability coefficients K3, Kz, K5, and K4 as
outlined in step (4) of method A.

(2) Compute Cr, from the relation

_ G "Clz
CIU,__—Q—- T—Cz (27)

where
w |, X6 A Vxgm
cl=q_S’E.K;+(1+>,)—I—-K1 (28)
and
2
- my __* Ko, _Kexim
cz_(1+x)(qs)<1<2 1+XK5K1 K I> (29)

(3) Determine Cp, by using the expression

I as I 2 KT
oy = - Ly -8 I g2, Kl g (30)
Mo, @St 2w cvm(l + A) To cVm (L + A) Lo .

(%) Calculate Cmp from

. _ I _ mV ,
Cmp = TVm(1 + ) GI’“ @ Kl> 3y \

(5) Compute 'Cms from

Cng = 8 3
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(6) Determine Cpg and Crg from equations (23) and (26) by using
the values of Cmg and Cmg found in steps (4) and (5), respectively.

Approximate equations for the stability derivatives are given in
appendix C.

In appendix D, method C 1s modified slightly so that many of the
stability derivatives can be obtained from a single time history. This
time history must be the response to an input elevator motion of the
impulse type. This modified method C comes closest to the ultimate aim
of this type of analysis, nemely to determine the derivatives from a
single time history. :

One of the important factors in obtalning reliable results with
the methods outlined herein is the choice of a sufficiently small time
interval At. In the computations using method C in this paper, in
one case & time interval of At = 0.1 second was found to be too large
to give reliable results, and a time interval of At = 0.05 second had
to be used. : -

EXAMPLES

In order to 1llustrate the methods outllined in the previous section
as well as to compare the results obtained, a number of examples are
given in which the data used are from test runs of a medium Jet bomber
at about the same Mach number. Methods A and C are applied to flights 1
and 2; whereas all three flights are analyzed by method B. Computations
are shown in the tables for flight 1, but for the other flights only the
results are given.

Table I contains the integrating matrix [ICll based on Simpson's
law (ref. 3) which is used in all three methods.

The airplane characteristics and flight conditions are shown in
table II(a) for all three flights. Although the geometric parameters
are the same, the parameters such as weight, speed, Mach number, center-
of-gravity position, and altitude vary slightly between the three runs.

In table II(b) the coefficients of the tramnsfer function which
relates pitching velocity to elevator deflection defined by equation (8)
and computed by the method outlined in reference 4 are shown. These
preliminary constants are required in methods A and C and the actual
computations are shown in a subsequent table.

Time histories of measured and derived quantities for flight 1 are
shown in table III. The quantities in colums (®), ), M, and () are
measured and the other five quantities are derived from the measured
quantities. In these tables more decimal places are carried in the
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measured quantities than are warranted by Instrument accuracy in order
to assure no loss in accuracy in rounding off. The measurements of
incrementdl tail load ALf were available only for the times listed,
and since these covered approximately the natural period of the short-
period oscillations of the aircraft, the data were considered suffi-
cilent. More of the time histories of the other variables were available
and were used.

Method A.- The principal computations illustrating method A are
presented in table IV; some of the intermediate steps outlined in
method A are simple computations and are therefore not included in this
table. Table IV(a) is obtained by applying equation (7) to the data
given in table III and illustrates step (3) of method A.

In table IV(b), the computations illustrating the determination
of Cpy and Cpg for steps (7) and (8) of method A are shown. Two

of the columns are taken from table III and the equations upon which
the computations are based are (12) and (13).

Table IV(c) {llustrates the computation of Cp, and Cpgy for
step (10) of method A. Two of the columns are obtained by operating
on columns &) and (® of table III with the integrating matrix |[C||

given in table I, and the other column is taken directly from table III.
The computation is based on equation (15).

The refined values of Cp,  and Crg are determined in table v(d)

by use of equation (19). Two of the columns are taken directly from
table III and the other column is derived by use of equation (18).

Final results obtained with method A for the data of flights 1
and 2 after three iterations are shown in table IV(e).

Method B.- The principal computations illustrating method B are
presented in table V. Again, some of the intermediate steps outlined
in method B are simple computations and are therefore omitted. In
table V(a) the computation demonstrating the determination of Cma’

Cmpy, and Cmy by step (4) by using the relation (25) is shown. Three

of the columns are obtained by operating on columns @ @, and @
of table IIT with the integrating matrix |[|C]] given in table I.

Table V(b) illustrates step (7), the determination of Cr, and CL5

using equation (19). Two of the columns are obtained directly from
table III and the other column is derived by using equation (18).
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In table V(c) final results obtained with method B for three sets
of flight data are shown.

Method C.- The principal computations of method C are presented
in table VI. Table VI(a) shows the computation of K;, K, K5, and

Kg from flight 1 data by the method of reference 4, The integrals in

table VI(a) were computed by reading the film at 0.05-second intervals
and using the integrating matrix for At = 0.05 second; this interval
was necegsary in order to obtain reasonable results for the method.

Use of the time interval At = 0.1 second did not produce sufficiently
accurate values of K5 and K6 in this case. Table VI(b) shows the

computation of the X values for flight 2 data. In this case a time
interval of At = 0.1 second was sufficiently small to produce reliable
results for method C.

In table VI(c) the final results obtained with method C for
flight 1 and flight 2 data are given along with the results obtained
by using the approximate formulas of appendix C.

DISCUSSION

The three methods presented in this paper are based on the assump-
tions that the aircraft. has two degrees of freedom (vertical motion and
pitch), that' the motion of the aircraft can be adequately described by
the linear differential equations of motion with constant coefficients
based on small-perturbation theory, that the aircraft is a rigid body
with no flexibility, and that the major contribution to the damping
comes from the horizontal tail. The airplane, its flight condition,
and the maneuver to be analyzed must therefore fall within the realm
of these assumptions; that is, the airplane should be operating under
conditions in the linear range of the coefficients, the maneuver should
be of the pull-up or push-down variety where little loss in airspeed-
occurs during the maneuver and where displacement angles are small, and
the maneuver should start from a level-flight trim condition and should
be in the Mach number range in which these assumptions are valid.

Since the choice of the method to be used depends primarily on the

" number of measurements which are available, method A is recommended

when four basic measurements are avglilable, method B when three measure-
ments are available, and so forth. If, however, an accurate value of A
is known in advance, then method B is recommended since it will give the
most information for the least amount of work. Method C requires more
work than method B, and the modified method C is not expected to be so
religble as the other methods.
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In these methods sufficient data to cover the natural period of
the short-period oscillations of the aircraft should be used., For
highly damped motions sufficient data should be used to approach the
steady-state value. :

The accuracy of the results obtained from these methods is influ-
enced considerably by errors in the instruments and in the record reading.
Instruments used should be accurate, calibrated both statically and dynam-
jcally, and free from drift and hysteresis. Before an analysis is started
the data should be corrected for known instrument errors; the records
should then be read as carefully as possible. Measured tail-load data
should be corrected for effects of inertia. The accuracy of the analysis
next depends on the time interval selected for the integrating matrix and
on the amount of departure from the basic assumptions. Provided the
initial data are accurate, the smaller the time interval the more accurate
the results. The differences between the values shown for different
flights in tubles IV(e), V(c), and VI(c) are believed to represent the
scatter caused by effects of flexibility, minor nonlinearities, instrument
errors, record-reading errors, changes in airspeed during the maneuvers,
and other items which essentially depart from the basic assumptions.

As may be seen from a comparison of tebles IV(a) and IV(d), the
inclusion of the CLé and CL& terms in the force equation for method A

has little or no effect on CLm but has a considerable effect on CLB‘
If the CL& and CLé terms are retained In the force equation in the

development of equation (8), the form of. the equation remains the same
but the K values now include CL& and CLé terms. These terms were

found to have a negligible effect on the K values and their inclusion
made the equations too unwieldy to handle. For the sake of complete-
ness, the K wvalues Including the CL@ and CI& terms are given in

appendix E as K, K, K3, K),, Ej, and Kg.

In the actual computation it is recommended that the simultaneous
equations formed by the least-squares procedure be solved directly by

the elimination of the variables or by Crout's method. (See ref. 6. )

The use of a least-squares method permits the calculation of a probable
error, which is an indication of the fit of the data. The expression
used in computing the probeble error is

P.E. = 0.67T45
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vhere Bjj 1s the main diagonal term of the inverted matrix of the
coefficients, E is the difference between the computed and measured
value of the variable, N 18 the number of cases considered in the
least-squares procedure, and k is the number of unknowns determined
by the least-squares procedure. . A probable-error anslysis was made of
all the results using flight 1 data and these results are given in
tables II(b), IV(e), V(c), and VI(c). This probable-error .analysis
indicates that all the derivatives determined by method A with the
exception of CLG appear to be more accurate than the derivetives

determined by method B or C; it also indicates that the derivatives
determined by methods B and C appear to be of the same order of accuracy.

When the computed stability derivatives are substituted back into
the equations of motion, the method that uses the most measurements and
haes the fewest restraints imposed on it would be expected to produce
the most accurate results and give the best fit to the original data.
This might not be the case, as illustrated in figure 2 which compares
the fit of the measured deta with the computed data for the three
methods presented. The results.for method A are more accurate for
the deta herein than the results for method C, but the fit of the
incremental-pltching-velocity curve for method C is as good as if not
better than the fit for method A or method B. It appears in general
that the more coefficients determined from a single time history the
better will be the fit of the data but the less accurate will be the
coefficients determined. The fit of the date 1s interesting since thé
three methods presented are essentially curve-fitting processes in
which the longitudinal equations of motion are used to fit the flight
data. A good fit indicates that the equations of motion and assumptions
used adequately fit the data and the coefficients determined, if inserted
in the equations of motion, will reproduce the motions of the aircraft.

In figure 2 the incremental tail load shown for method B was com-
puted by using the stability derivatives determined from the time
histories of incremental load factor and pitching velocity. In method C
the incremental load factor and tail load presented were computed by
using the derivatives determined from the pitching velocity. These
time histories indicate how well the derivatives determined on the basis
of the measurements recorded by one set of instruments will predict the
measurements recorded by a different set of instruments. In the case
. of method C the agreement is good; in the case of method B it appears
that a more realistic value of A +than 0.5 should be used. Method B
is more sensitive to A than method C is. '

Although not presented, the derivatives determined from flight 2
by methods A and C were used to predict the motions of the aircraft for
flight 1. A comparison was then made with the actual flight 1 motions
and it was found that. the predicted motions and the actual motions were
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in good agreement. These results verify the vallidity of the method out-
1lined herein as applied to the example airplane.

A possibility for a further generalized method which would include
deamping effects of wing and fuselage and therefore would make the method
applicable to the case of swept-wing airplanes may be realized by com-
bining features of method C with method A in the following manner. Equa-
tion (A20) may be written in the form

A Vv v . t Xt
2 Q0 - — A s + Cpid— Da + a} = - — Cy. Aby:

TNow Cmét snd Cps may be evaluated by & least-squares procedure,

provided an accurate value of Crgy is available or can be determined.
Examination of the probable errors for CLB given .in tables Iv(e)

and VI(c) indicate that, in the case of the medium jet bomber used in
the calculations herein, the more accurate value of Crg is determined
by method C by using equations (C12) and (C4). It is believed this will
generally be the case for the derivative Crg. It might also be noted
that this value of CLg will provide more rapid convergence of the
iterative procedure of method A. The usual assumption is made that the
contribution of wing and fuselage to Cpy 1s negligible. Then Cmé
can be computed through the use of the value of Cpg computed by the
above procedure and equation (A22).

Possibilities for further investigation are to expand the method
to include flexibility effects and the effects of higher-order deriva-
tives and to extend the method to the case where the initial conditions
are known but are not necessarily zero; that is, the maneuvers do not
start from level-flight trim conditions. The methods could also be
extended to other configurations such as canard alrcraft and tailless
aircraft, and perhaps a similar analysis could be made of the lateral
motion of an aircraft to determine the lateral derivatives.

CONCLUDING REMARKS

An analysis of longitudinal-stability derivatives by three separate
methods has been presented and applied to flight data. Method A, the
most general method, requires four measurements in time-history form
and permits computation of all the longitudinal-stability derivatives;
it also requires the most computing time and gives the most accurate
answers. Method B, which requires three measurements in time-history
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Cp e

form and one supplemental assumption, namely 62%»: Constant (where

Cm& and Cmé; are the pitching-moment derivatives), gives the most

information for the least amount of work and gives results which are in
good agreement with those of method A. Method C requires two measure-
ments in time-history form and two supplementary assumptions, namely

X
gm@ Constant and Cpmy = — CL6 (wherer Cmg and Cpg are the elevator-
mg T

effectiveness derivatives, xt 1is the tail length, and ¢ is the mean
serodynamic chord). -

The results obtained for the methods presented depend in a large
measure on accurate instrument measurements and require considerable
computation to yield adequate engineering answers. Since, however, the
present trend is toward increased instrument accuracy and expanded
facilities for machine computation, this direction appears to be the
one in which flight-data analysis should proceed.

Langley Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 15, 1952.
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APPENDIX A

DETERMINATION OF LONGITUDINAL-STABILITY DERIVATIVES BY USING
FOUR MEASUREMENTS IN TIME-HISTORY FORM
Equations of Motion

The equations of motion for small vertical-plane disturbances may
be stated (see fig. 1 for definition) as

. oC oc ath
W L L
Svy = (——) asS Ax + <—>tntqst At + ; 14,85 AD . (A1)

N AN 3 - x
16 = (‘a?m wBch ro + <$-I—'>t11tq8txt Doy, + ag;"t N14354Cy, AB + aaLt N435¢%g A5
(a2)
Where
(43)

Aat=Am< -?:f -&,%ae—é%ﬁ

el B
2

These equations are for a rigid body and are based on the usual
assumptions of linearity, small angles, and no loss in airspeed during
the maneuver. It should be noted that the variables are all in incre-
mental form measured from a steady-flight trim condition.

Substituting equation (A3) into equation (Al) results in

ocr,
——V7—M[—L qS+(aa)ntht<l-—- -a(m>n qStx—té:f-

oc
: (ak)
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Since
- V3 ' ‘
&n =27 (A5)
equation (AL) can be expressed as
qlSAn = Cr,, B + Crgh + CLzd + Cr 06 - (46)
whefe
‘ BCL> <BCL> S¢ ae> | ~
Cp = (=L L} q 2tz - %€ A
Lo (Bor. w]3+aa.tnts( S | (&7a)
aCL) St Xg e
Cr. = -|—=& -t 7t O€
Ig <8a t’lt 5V X (ATb)
aCL S¢ Xt 1
Cry = -(—-—) g —= 2 L (ATc)
o \
S
Crg = a_it ng = (a7d)

Substituting equation (A3) into equation (A2) gives

Iy .\ g . x de¢ - |
I 5.-.(%n oL St Xt = A T - L
qsae”(aa)meJ'(aa)t"ts sl%( aa) *Tx7 :|+
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ac S xte 1 L St x¢ aCm S. ©
e_(__L) R eay—1 - CeC P R e A Y
[aa, t 0 S & ar ) S ¢ 3 S
which can be expressed as
& - oy ro + Cmgd + Cmgd + Oy 4B (410)
aSc ‘
where
oC oCy, S; x d¢
c =( m) +(__> _t=t<1__€ Alla
T “\& /up * \3x /it B © aa - (Alle)
aCL) Sg xt2 de
Cme = -{—= L _E_%£ Allb
oc S 'xtz
Cp —-(—L)n St Tt 1 (Allc)
© W/t s &y Yy
oC S Xy S T :
Cme = —Lt o St Xt t ., 2t St
mg, asntSE+35ntSE (A114)

From an examination of equations (All) and (A7), the following relations
are seen to exist:

Cm&fz—tCL& | ‘ 7, (Al2a)
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Cmp = ﬁ?ﬁcLé "~ (A12b)

C ,
Cne = V7%, X Oy | (a12¢)
my = VNt 3 vmg c

Equations (A6) and (A10) are linearly dependent in the present
form and must be suitably altered to be put into a computational form.
As is well-known, CLé and CL& are small, and Initially for computa-

tlonal purposes the force equation can be expressed as

W

a§m=CIuM+cL5 AD (A13)

The derivatives CLé and - CL& can be determined by means of equa-
tions (Al2a) and (A12b) after Cp; and Cp. are determined.

Equations (Al13) and (A10) are now in the identical form of the
equations of motion developed in reference 7. From figure 1 the
following relation is seen to exist:

A8 = A+ AY ‘ (ALk)

As demonstrated in reference 4, equations (A10), (Al3), and (Alh)
may be solved simultaneously to obtain the relation

t . :
6 + K10 + Ko A0 = K5 AB + Kg‘jr AB dt ‘ (A15)
' which may be expressed in integral form as

t t t T
6 + Ky A6 + KQ\/; N dt = Ks\j; AB dt + K6g/; L/; AD dT dt

where

C av :
Ky = %ﬁ %@_ - ’CI_(Cmu +‘cmé> ) | ' (A16a)




26 NACA TN 2902

_ C; aS
Kp = - 3%263%1 + Cmg i%q') (A16b)
Ks = L<m8 CLscmo,> _ (A16c)
K = 2 qS(CL ng - Oy ma> (a16a)

By using the matrix method of reference 4, K;, Kp, K5, and Xg

ﬁay be evaluated from the time-history measurements of pitching velocity
and elevator angle.

Method of Separating Cmé and Cm&

This method of separating Cmé end Cm& applies only to conven- -

tional aircraft configurations equipped with & horizontal tail surface
located to the rear of the wing so that the major contribution to
damping in pitch is due to the-horizontal tail.

In order to separate Cpj and Cmy, the tail-load equation is
developed into a form suitable for computing Cmé ' geparately in the
following manner:

The incremental tail load is given by

e o
Alyg = (Ba—L>tT]tht Moy + a? N+5¢q AS (A1T)

Substituting equation (A3) into equation (AlT) gives

E’CL) 3¢\ . X de % 1 | Crg
A‘ft=(yt"tqstE“< " % '“7&‘97;,;]—; "%

(A18)
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or
ALy _ (%), St i)m( ) St Xt de 4
as <5a>tn S( S, 3 /g8 V 3
oCy, Sg xp 1 5 . Lt
2t 2% 6 il
<¥' t“t 5 V yue t WP (A19)

which can be expressed as

% = I:- %g(lﬁl—t Cmp - cmc.élm +’%<cm&& + cméé> + O = (A20)

From equation (All) it can be seen that
Cme@ + Cmpb = (cma + Cm-e>a. + Cmp? (a21)

but from equation (Al6a)

Cre + Oy = —Y— OL,. = —L_ Xy = K A22
mg, + Pmh = Ol = g5 1 = Ko (A22)

Therefore,
Cmeé + Cmp® = Kio& + Cmg? - (a23)

Substituting equations (A22) and (A23) into equation (A20) gives

[ S0 o - o o]+ St o) < 010 20 i)

— o m— e = s e
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»

which can be expressed as

v = c . cv -’
%L_C_gxlom-%xloa-clﬁas=cmé%7 -;—2(fﬂ+ 1>A£I (A25)

Xt
or
Ap = Cpg A9 ' (A26)
where ' i
M=%-%Klom“%K10&‘cL5& (A27)
and

AP = % 5 - a_i?(m + Do = %%An - %(y/ﬁ; + 1>m] (a28)

From equations (Alk) and (AS5) the following relations are self-evident:

&=G-§An

t
m:ae-%f on dt (A29)

0

The relations needed to determine the longitudinal-stability
derivatives from the flight measurements have now been developed from
the equations of motion; it remains to express the pertinent relations
in matrix notation.

Mgtrix Form of the Equations

A powerful tool for data analysis is provided by matrix methods
since tabulated time histories .may be conveniently carried in the equa-
tions of motion. 1In the matrix solutions using data, it is well-known
that numerical differentiation is inherently more inaccurate than the
corresponding integration process. For this reason, whenever necessary,
the differential equations are expressed in integral form. The first
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step in matrix solutions is to tabulate the recorded values of the basic
variables at a number of points to, ti, t2, t3 . . . along a given
time history as in table III, the interval of time used in most of the
computations in the paper being At = 0.1 second. These tabulations
then become the various column matrices Ad3, Algy, Ang, and éi- In

certaln cases smaller time intervals must be used to get reliable results.
Another means of getting more accuracy is to use integrating matrices

. based on cubic or quartic curves faired through the data in place of
the parabolic curves. .

The four basic measurements used in the development herein are
incremental load factor, pitching velocity, tail load, and elevator -
angle. By use of equation (A29), the time history of incremental
angle of attack is computed. Equation (Al3) may be expressed as

W

Ja's 7o) Pasle)

51 oB1 Any

AD.2 A'52 p An2
Ly W

: == - 7 (430)
C Q
Ls

SRS o

or

Clu W )
”B”{h@} =5 {Ani} (a31)

Applying least squares, which in matrix notation involves premulti-
plication of matrix B by its transpose B!, to equation (A31l) yields

c
(B8] ol W {B 'Ani} (a32)
C]:,,(3 as
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for which the solution is

CI‘U. 1- ‘ ‘
- = [B'8]" ?;WE {B'Ani} (433)

By the method of reference 4, compute Kj, 'K2, K5, and Kg from

the time histories of the piltching velocity and elevator angle. The
value of Kjp can be obtained from equation (A22). Time histories of

the derived Ap and A@ functions can now be computed by using equa-
tions (A27) and (A28) since the value of 'CL‘3 has been computed from

equation (A33). :

Equation (A26) becomes

{Aui} = Cmy {Acpi} ’ (A34)

Applying least squares to equation (A34) results in

t
> (ang agg)
Cnyy = oi (435)
0

(apy)?

From equation (A22) Cm, is obtained as

Cug, = 10 - Cumy (A36)

Equation (A10) is now expressed in integral form as

t t -
%e:cmaf Aadt+Cm&m+CméA9+Cm5f a5 at  (A37)
gsc 0 0

.
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which can be rewritten as

t t
ie_cm&m-cméAe=cmuf Aa,dt+Cm6f AB dt
. o

asc 0

Now if

O

Ao = ——

— 6 - Cp- A - Cpp AB
gSc 3 Cmd

31

(A38)

(A39)

then a time history of Ac can be obtained and equation (A38) can be

put in the form

to to ~
Mo dt N (2
0 0 ‘

t1 t1
. Lo dt f Ad dt ateg)
0 0

f’cz to ’
A dt f AS dt Ado
0 0 g 4 >

t].’_'I. . ) »
f Ao dt A5 dt Aoy
0 0 L

or

.

“D” " = {Acri}

Cmg

Applying least squares to equation (Akl) gives

o dmal [
[>'D] Cma} = {D Aci}

(ako)

(Ak1)

(Ak2)
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and the solution is

d

z:“ .= [po]-t {D'Adi} | (Ak3)

In order to include the effects of the CLé and CL& terms
initially omitted in the force equation, equation (A6) is rewritten as

Ay = Cr, &+ Cprg AB (Ahk)

where

AY = E%Am - Crgh - Crgd (Ak5)

Method A may now be iterated to obtain more refined values of the
derivatives. The values of Cr; and CL& determined by equations (A35),

" (436), (Al2a), and (A12b) are inserted into equation (A45), and a time

history of AV 1is computed. New values of CLa and CL6 are computed *
from
C
BElg % - 'wve) (A46)
C1gy
or

C
£
Clﬁ |

If these values of CLOL and CL6 are used, a new value of Kjp and a

new time history of Au can be computed, which, if inserted into equa-
tions (A34) and (A36), yleld new values of Cpj and Cp;. The deriva-

tives Crg and Crp are again determined from equations (Al2a) and -
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(Al2b) and a new time history of AV is computed by using equation (A45);
refined Cr, and CLy derivatives are found from equation (A46). The

process converges rapidly. After it has converged, compute Cma and -’
Cmg from equation (A43). Thus far CLy» CLg> CLys Cigs Cmys Cmgs Cmyo

and Cm6 have been determined. Then (ggL) may be determined by
t ) ‘

rewvriting equation (Allc) as

BCL Scv ' .
('—) T e me
t S¢xy m

An examination of equation (Al2c) shows that

% _ 1 mg

% g Cmb
and from equation (A7d)

T_&:L%

B ¢S

All the longitudinal-stability derivatives are now determined.

—— e —
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APPENDIX B

DETERMINATION OF LONGITUDINAL-STABILITY DERIVATIVES BY
USING THREE MEASUREMENTS IN TIME-HISTORY FORM

AND ONE SUPPLEMENTAL ASSWMPTION

The three basic measurements used in method B are incremental load

factor, pit¢hing velocity, and elevator angle. The supplemental &ssump-

tion made is that Cp: /Cmy 18 a constant, that is
Mg /~1o ’ ;

' Cpg, = My, . (B1)
For a first approximation the copstant is assumed to be equal to
1/2 (see ref. 5).
If the definition
A§=M’z+é=(1+)~)'6-x%An (B2)
is adopted, a time history of At may be computed. Then

Cng® + Cmy = Cmy A (B3)

The integral form of the moment equation (A37) can then be written

. ,
-q—;-ée=cmaf Amdt+CméEA§dt+Cm5/¢A8dt (Bl4)
0 0

If time histories of incremental load factor, pitching velocity,
and elevator angle are measured and W, q, S, V, ©, and I are known,
then equation (BY) can be put into matrix form and used directly to

compute Cmm, Cmé, and Cma.




NACA TN 2902 35

The derivative Cp. is derived from Cp; by using equation (Bl)
and Cp, and Cry are computed from equations (A12a) and (Al2Db)

c

. _C .
CL9=TI;Cm6

These values of CL& and Cp- are then inserted into
equation (A45) ‘

WA, : .
= - Cr*H - C
Ay qSAn L, Lgo

and a time history of AV is computed. The values of CL&’ and CL‘(‘)
are then computed from equation (All) |

Aq;:CIaAa+CL5A5

Equation (B4) may be expressed in matrix form as

0 0 | 0 - ( D
Aq dt At dt A5 at b0
0 0 0 -

1 ty b1 . ,
A at AE dt A5 at b1
0 0 0
2 2 2 .
A at ft At at s at oo : 49‘2
0 0 0 Core - = B
| w = wwy [ )
Cmg

by n '
f N dt AE dt AB dt
0 0]

o
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or

Cmg, .
. I -
E C = ——=— 40
Iell < g > = L {24}
Cmg,
Applying least squares yields
Cm,
I .
E'E : = — <E19
] <oy - == ferou
Cms,
and solving for the derivatives gives
-1 I {: \:}
Cmp ¢ =[E'E] = —<E
w (=B — {s
Cmg,

Equation (Akl) expressed in matrix form is

ACLl ASl Ay

Jate?)) Jatlst . JAY'Z,)
CL(3 - 4 )

Non Adn A\I&b

NACA TN 2902

«(B6)

(BT)

(B8)

(B9)
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or

fizl| z: - {Awi} | | (BlO).

Applying least squares to equation (B1O) gives

‘ C
[B3] C: = {B‘Axyi} o (B11)

and solving for the unknowns results in

C
Ly = L':_BtB]'l B'Allfj} (B12)
C1g

¢ C
The derivatives <$L)t 2 %;—, and —gé—'t— are determined from equa-

tions (Allc), (Al2c), and (ATd), respectively.

Thus the derivatives CLQ, CLé, CL&’, CLS’ Cma’ Cm'e, Cm&, Cms,

oC .
(éc._T—)t s %;i, and —-E'-t— are now determined.

da 3B
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APPENDIX C

DETERMINATION OF LONGITUDINAL-STABILITY DERIVATIVES BY USING
TWO MEASUREMENTS IN TIME-HISTORY FORM AND TWO
SUPPLEMENTAL ASSUMPTIONS
By the matrix method of reference L4, time-history measurements of

the pitching velocity and incremental elevator angle are used to com-
pute the K wvalues from the relation

§+K1.6+.K2A9=.K5A8+I‘(6L/:‘.A8dt (c1)
where
Ky = q—f- CTI“ - ?(Cma +cmé):l | (C2a)
Kp = - %E(:ma + cmé Cigqs> (cop)
Ks = Si—aéms - ;‘,‘-f?%cma) e
K6 = q—iz 2 CraCus - CLSCmor.> (cad)

If it is assumed that
Cm& = kaé (c3)

end

Cug = igt CLy . (ch)
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these six relations in six unknowns (Cr, Crlss Cmqs Cﬁa, Cmgp, and Cmc-L)
can now be solved simultaneously. The following relations for the

variables result:
C (=
=21 ozl _ ¢ C
Cry, > | i - Ce (C5)

where
cl=m_‘r(1+x)ﬂ5-xl+x5ﬂ (c6)
qS ) I K5
and .' '
~ av\2/ . Xg K¢ x¢Vm
02_(1+>.)(q—s) <K2—1+XEK1——K—5- - (cn
I S I 2 Kl
Cp. == ——Ko = X o ¢ e —— ¢} N c8
T e ° T mv cvm(1l + ) o ¥ cvm(1l + A) Lo (c8)
C.c = I__.__C _m_VK) ' C
e EVm(l-*-A.)(LO' oS L | (c9)
' I mV
—== 2= XKg :
_ gSc gSc
Cma“c - _ (c10)
o | Thg
[

1

Approximate formulas which give a quicker evaluation of the deriva--

tives with fair accuracy were derived from equations (C5), (C8), (C9),
and (C10) and are
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Cr,, = L % (c11)
gSc -
A S 4 L.
Cmg ¥ T qSE(Ks Kl) (©13)

o % - - Kp - 56 gy = L ) S LT TS
gSc K5 ch 1+ >» (1 + x)K5

The set of approximate formulas has been found to give results
which are usually within the accuracy of the method. In table VI(c),
a comparison is presented between results computed by using the approxi-
mate relations and the more accurate relations. The set of approximate
formulas given by equations (C11l) to (C1lL4) is used in the development
of a modified method C which is given in appendix D.
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APPENDIX D
MODIFIED METHOD C

For some special types of longitudinal maneuvers considerable
informetion may be determined from a single time history. If the
elevator motion is known to be of the impulse type (a blip of short
duraetion) but its magnitude or time history is unknown, then the method
of appendix C may be modified slightly to yield some of the stability
derivatives. The method may be used with impulse-type forcing functions
produced by ballistic devices. If the input is not a pure impulse but
regembles one, then the modified method may be applied after the
elevetor motion is zero. - Integrals, however, must be evaluated from
the zero-time trim condition but the least-squares procedure is applied
only to the time histories after the elevator motion is zero.

Since the’definite integral of an impulse is a step function and
the integral of a step function is a ramp function, let -

t
f AB dt = A (D1)
0

t - pT . :
: f f Ad dTt dt = At : (p2)
0 VYo

Substituting these values in the integral form of equation (A15) which

is

t t t T K

K1A6+K2f Aedt-K5f ABdt-KgffASchdt:-e(D'j)
0 0 0 0

results in

- t s ’
K1 A6 + Kp f A6 dt - KsA - KgAt = -6 (Dk)
' oo . . 7 ‘ :




Lo

4

Equation (D4) may be expressed in matrix form as

Ko, KsA, and KgA.

The following approximate formulas presented in appendix C are

to
280 f A6 dt
0

ty
G f A8 dt
: 0

2
N ft A9 at
0

L8, U/tn A8 dt
0

Equation (D5) is then used to solve for the-stability coefficients

-1 -to
-1 -t
-1 -to
-1 -ty

NACA TN 2902

60

by

£

e

(D5)

Ky, -

used to compute the stability derivatives (since only the ratio K6/K5
is used the value of A need not be evaluated):

n I 56

aS X5

(D6)

(D7)

(D8)
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43
Also, it is assumed that
As indicated previously in appendix A,
=L 0y -
CLy = Z Cp (p11)
6 Xg g

Thus the analysis of a single time history of pitching velocity‘can
yield considerable information if it is the Tesponse to an elevator

impulse function; however, the elevator-effectiveness derivatives can-
not be found by this method.
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APPENDIX E

DEFINITIONS OF STABILITY PARAMETERS

The stability parameters of the methods'presented, not previously
defined in the original list of symbols, can be defined as follows:

c, = Kg Vxgm
1 qs[l%+(l+>‘)1 1
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T T Y e e e+ e e o e

45

Sc aS
15 = (e, - Crqfm)

_ gSc g8

K6 = % = (CrCmg - CLeCng )

e T e e e e e . e e ———



Ap

ALy

aS

AT = —
g3¢c

X%

oV

2

AE = (1+x)é-x$An

I

o4

, v
AP = —|Ean - (5 +

6 - Cpy Ax - Cp A0

=

- ¥ .o -
AY = 5 fn - Cra8 - Cp.é
: mV .
chl_I Cry, . &~ °L
I |gScV |, . &y
— 4+ C71- —_ Cr.»
e X

3

_ Cm - %Sr(cm‘ecLa - CrgCn,)

I ad 2
_ Cm:C W _ cp;
gst "6 Ts * Cmel g CL@)
T

mV+C
=t e

Kig O - % Kigd - CrLg A

NACA TN 2902
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8% (0r, O, - Oyl )

e i<§§f+ CL&>

Matrices used in the present paper are defined as follows:

Ja's 7] ABg

Doy A5y
Bl =] -

g Sy

llcl] 1s the integrating matrix given in table I.

{ane e o o e i e e = = e =



=l =
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to to
f Ax dt f AS dt
0 0
1 tl
A dt AS dt
0 0
: to . [t
, Ao dt A5 dt
lInll =] Yo Jo
ty by
f A dt f AS dt
0 )
f Ao dt f At at AS dt
0 0 0
& t tq
Mo dt f At dt f AS dt
0 0 - 0
to to to
Ao dt ) f At dt ‘AB dt
0 0 0

o
0 0
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TABLE II.- ATIRPLANE CHARACTERISTICS, FLIGHT CONDITIONS,

AND TRANSFER-FUNCTION COEFFICIENTS

(a) Airplane characteristics and flight conditions

Flight 1 |  Flight 2 | Flight 3
by, £t . . v . o .. © 89 89 89
(<7 & . 14.016 14.016 1k.016
_ Center-of-gravity position,
percent M.A.C. . . . . . 27.34 27.32 o7. 44
g/V, 1/sec . . . . . . .. 0.061923 | 0.062854 | 0.062686
I, slug-ft . . . . . ... 255,865 255,276 | 258,957
k2, F62 . . . . . . . . . 141.61 141,61 141,61
Mach number . . . . . . . . 0.497 0.L4oh 0. 496
m, 8lugs_ . . . . + . . . . 1806. 83 1802. 67 1828. 66
q, b/t . . . .. .. . 171 166 171
S, ft2 . . . . . ... .. 1,175 1,175 1,175
Sg, ££2 . . . L. .. .. L 289.3 289.3 289.3
V, ft/sec . . . . . .. .. 520 512 514
W, b . o v v v e e e . 58,180 58,050 58,880
W/aS v v v e e e e e 0.289561 | 0.297595 | 0.293060
X, £ . . . ... 0. . -33.5 -33.5 -33.5
NE o v o oo o e e e e e 0.87 0.87 0.87
p, slugs/ft3 . . . . . .. 0.001267- | 0.001276 | 0.001281

(b) Coefficients of airplene transfer function

Flight 1 Flight 2
Coefficient | Trobable Coefficient | tropable
error error
K1 b1y - 0.1k k.19 0.18
Ko 9.547 0.73 10. 329 0.70
K5 =9. 767 0.35 -10.010 - 0.k2
Kg -14. 62k 1.4 -15.526 1.3

=
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TABLE IIT.- TIME HISTORIES OF MEASURED AND DERIVED
QUANTITIES FOR FLIGHT 1
Measured Derived
@ ® |6 ® ® ® ) ® ©)
t AD ALy An ] Jave3 At Ao Ap Ao
0o |[o- oo 0 0 0 0 0 0
.1} .009703| 660| O 0 0 0 0 .000741 |0
.2| .055812| 3773| .03792|-.019808 | -. 000922 (-.030886 .010591| .00k929|-.001986
.3] .072880} 3488| -.12008{-.07h06% | -.005175|~.107378 .068067|-.003122|-.007957
4| .othEes| 164k | -.35392(-.125305 { -.013921 (~. LTT7000 .183905{ -. 022667 -. 014935
.5 o7k 25| -.62568{-.149419 | -.0248T1|-. 204757 .328389|-. 046165/ -. 02022}
.6] .070698|-1k23| -.92272]-.165781 | -.035932 |-. 220103 b7hgze| -, 070393 -. 025122
.7l .067923|-25291-1.16920]-. 16750k | -. 046216 -. 215056 .610391|-.092683|-.028773
.8] .068691(-3459 |-1.40936]-.163628 | -. 054782 |-. 201806 .T24134| -, 112697|-. 031746
.9] .067923|<-3962]-1.56736]-.155447 | -.061513|-. 184643 .81271%| -. 127257 | -. 034084
1.0] .064712]-4518|-1. Tuh32|-. 142960 | ~.0661T6]~. 160433 .875829| -.138772}-.035700
1.1} .ok3246}-6321(-1.85808]-.127027 | -.068518]<.133012 .908173| -. 148055 -. 036590
1.2| .032077]-627h {-1. 75064 ]-.090426 | -.068301|-.081436 . 902665 -. 147554 (- . 034981
1.3|~.012565|-8570 |-1. 7506k |-.053810-| -.064585|-. 026512 .856022] -.145166|-.032478
1.4]-.020862|-6T78(-1.45360| 014640 | -.056328| .066966 . TH686| -. 125729( -. 025852
1.5|-.026023|-5079|-1.25768] .058562 | -.0uk150} .126783 .586752| -. 100705 -. 02027k
1.6}-.047260|-4748| -.88480} .091287 | -.030073| .164326 .400397|-. 072582 -. 014992
1.7|-.075428] -4048| -.46136| .133055 | -.014T3T7| .213867 .196931| -. 039441 -. 008194
1.8|-.071623]|-1968| -.05056| .167503 | .001884| .252820 | -.022338|-.005166]|-.00133L
1.9|-.078674| -316] .284k40| .196353 | .019360| .285725 | -.250374| .031245| .005589
2.0|-.082513| 1018| .72680( .207549 | .03646T| .288821 | -.L4T76562| .06T093( .011195
2.1]-.088063| 2172 1.17552| .214008| .051697{ .284616 | -.679353{ .100087| .016361
2.21-.095707| 2835 1.46624k| .217022| .065082| .280136 | -.854892| .127688| .021140
2.3]-.08750%k} 5070| 1.73168| .217022 | .076895| .271918 | -1.010045] .156658| .025542
2.4|-.030227| 9801 2.07296] .186880 | .085314| .216138 |-1.124562| .183397| .02673h4
2.5}-.024956 1.85808{ .121859| .088583| .125260
2.6]|-.026k422 1.78224| .051241 | - 085705 .021681
2.7}-.026702 1.62424] 006889 .0T780k|-.039955
2.8|-.019651 1.46624(-.039516 ] .066452]-.10L6TL
2.9|-.005864 1.22608]|-.0T2T72| .052350{-. 147119
3.0} .000908 .99856|-.080953 | .037762|-.152347 |
3.1} .005620 .T75208|-.088704 | .023846]-.156342
3.2| .007958 .34760|-.083537] .012066]-.13606%
3.3| .010611 .25072(-.085259 | .001887|-.1368%0
3.4} .009145 .01264|-.068896 | -.006638{-.103735
3.5{ .010175 -, 18960 -. 062437 | ~. 012536/ -. 087786
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TABLE IV.- COMPUTATIONS ILLUSTRATING METHOD A

(a) First approximation of Cr, and CrLg by step (3)

53

M AB - i1 AB -
t | (table III, | (table III = An t | (table III, | (teble III,| . — An
column @5 column @5 B column @5 column @5 g3
0 0 o . 0 1.8} 0.001884 -0.071623 | -0.014640
110 . 009703 0 1.9 . 019360 ~. 078674 .082351
.2 | -.000922 . 055812 .010980 ({ 2.0 . 036467 -.082513 .210453
.3 | -.005175 .072880 -.034770 || 2.1 . 051697 -.088063 .34038%
4| -.013921 . 074625 -.102481|{ 2.2 . 065082 -.095707 Lhoks566
.5 | -.024871 .O71h1k -.181172 (2.3 . 076895 ~. 087504 .501427
.6 | -.035932 . 070698 -.267184 ||2.4 .08531% -. 030227 . 600248
LT | -.0k6216 . 067923 -.338554 [|2.5 ] .088583 -.02k956 .538027
.8 ] -.054782 .068691 | -.%08095||2.6 . 085705 -. 026422 .516067
.9 | -.061513 . 067923 -. 453846 || 2.7 . 07780k -. 026702 470316
1.0 | -.066176 . 064712 -.505087 || 2.8 . 066452 -.016651 2566
1.1 | -.068518 .043246 -.538027 (2.9 . 052350 -. 005864 . 355025
1.2 | -.068301 . 032077 -.506917|3.0 .037762 . 000908 . 28914
1.3 | -.064585 -. 012565 -.5069174|3.1 . 023846 . 005620 .217T73
1.4k | -.056328 -.022862 ~-.420906 |} 3.2 . 012066 . 007958 . 100651
1.5 | -.0kk150 -.026023 | -.364175|3.3 .001887 .010611 .084181
1.6 | -.030073 -.047260 - | -.256203|{3.4 | -.006638 .0091k5 . 003660
1.7 | -.014737 -.075428 -.133592(|3.5| -.012536 .010175 -.054901

: W
CLO,_M+CL5A5=-q§An

0.08T761  -0.053345| [Cr,, 0. 606401
-0.053345 0.100964 CLg - -0. 350626
cLa. = T.07
CLB = 0,262
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TABLE IV.--COMPUTATIONS ILLUSTRATING METHOD A - Continued

(b) Determination of Cpy amd Cmg;, by steps (7) and (8)

Op Ap Np Ap
(table IIT (table IIT (table III (table III
column column column colimn @S
0 0 o) 1.2 | 0.902665 -0, 147554
.1 0 . 000741 1.3 . 856022 -. 145166
.2 .010591 .004k929 1.4 . T4l686 -.125729
.3 . 068067 -.003122 1.5 .586752 -.100705
A .183905 -. 022667 1.6 .400397 -. 072582
.5 .328389 -.046165 1.7 .196931 -.039441
.6 .b7hoo2 -. 070393 1.8 -.022338 -. 005166
T .610391 -.092683 1.9 -.25037h .031245
.8 .T72h13L -.112697 2.0 -. 476562 . 067093
.9 .81271h -. 127257 2.1 -.679353 . 100087
1.0 . 875829 -.138772 2.2 -. 854892 .127688
1.1 . 908173 -.148055 2.3 | -1.010045 . 156658
2.4 | -1.124562 . 183397
Cmy {Acpi} = {A}l{}
9.934264Cny = -1.578836
Cmé = 0. 1589
Cmg, = K10 - Cmp
Cmg, = -0.0803
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TABLE IV.- COMPUTATIONS ILLUSTRATING METHOD A.- Continued
(c) Determination of Cm, end Cmg Dy step (10)
it t
t fMdthﬁdt Ao t ftAa.dt fmdt Ao
0 0 0 0
0 0 0. 0 1.2]-0.041237 | 0.067784+ |-0.034981
.1{0 .000182 |0 1.3] -.0k7910 .068473 | -.032478
.2 | -.000018 003154 | -.001986 ||1.4| -.053989 .066415 | -.025852
.3 | -.000295 .009716 | -.007957 ||1.5] -.0590L45 .064119 | -.02027h
.4 | -.001232 .017219 | -.014935 (|1.6| -.062767 .060601 | -.014992
.5 | -.003153 .024501 | -.020224 {|1.7| -.065018 .054201 | -.00819%
.6 | -.006200 .031585 | -.025122 ||1.8]| -.065668 .046582 | -.001334
.T|-.01031% .038487 | -.028773{|1.9| -.064612 . 039040 .005589
.81-.015379 .045288 | -.0317Lk6 {|2.0] -.061805 .030954 .011195
.9 | -.021209 .052139 | -.034084 ||2.1| -.057382 . 022443 .016361
1.0 | -.027613 .058791 | -.035700 {[2.2| -.051530 .013272 .0211%0
1.1 | -.034367 .064103 | -.036590 [{2.3| -.044L18 . 003702 . 025542
2.4 | -.036264 | -.002593 . 026734
Ao = Cp, th N @t + Cmg th AD dt
0 0
0.042893  -0.036635 Crm,, 0.005959
~-0.036635 0.045583 | |Cmg B -0.018185
Cm, = -0.64h4
Cug = ~0.916
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TARIE IV.- COMPUTATIONS ILLUSTRATING METHOD A - Continued
(@) Determination of the refined velues of Cr, and Cry by step (13)
.Y AB pi¥e? OB
t | (table III, | (table III oy t | (table IIT, | (table IIX Y
column @5 column @S column 5 column S

0 0 0 0 1.8 0.00188% -0.071623 | -0.031511

.1] o0 .009703 0 1.9 .. 019360 -.07867h . 063290

.2 | -.000922 .055812 .o130k1ll 2.0 . 036467 -.082513 .191190

.3 | -.005175% .072880 -.027606(| 2.1 .051697 -.088063 . 321409

A -.013921 .0Th625 ~-.090675|] 2.2 .065082 -.095707 . 405894

.5 | -.024871 L0711k -.167519|1 2.3 . 076895 -. 087504 . 483307

.6 | -.035932 .070698 -.252511 || 2. % .08531L -.030227 .585856

7| -.0u6216 .067923 -.32h221 |{2.5 .088583 -.024956 .529696

.8 | -.054782 . 068691 -.3946501| 2.6 .085705 -. 026422 .514646

.9 | -.061513 . 067923 -.4hashkol|l 2.7 .OT7804L -. 026702 . 473006
1.0 | -.066176 .06h712 -.ighhio71| 2.8 . 066452 -. 019651 .431572
1.1 | -.068518 . 043246 -.529178]|2.9 .052350 -. 005864 . 364860
1.2 | -.068301 .03207TT7 -.501508 1| 3.0 .037762 .000908 .299324
1.3 | -.064585 -.012565 -.505173 (3.1 .023846 . 005620 .228216
1.4 | -.056328 -. 022862 -.42539511 3.2 . 012066 .007958 .109736
1.5 | -.04k150 -.026023 -.3726531}3.3 .001887 .010611 .093319
1.6 | -.030073 -.047260 -.267181 || 3.4 ~. 006638 . 009145 .010582
1.7 | -.014737 -.075428 -.147869113.5 -.012536 . 010175 -. 049055

&Y = CL, Ho + CLg A
0.087761L  -0.053345| |Cr, 0.597599
~0.0533L5 0.10096k | |CLg - -0.33110k4
Ory, = 7-09
CLB = 0.469
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!

TABLE IV.- COMPUTATIONS ILLUSTRATING METHOD A - Concluded

(e) Final results using method A after three. -iterations

W

Probable
. Flight 1- error for Flight 2
flight 1
Cr,, 7.09 10.113 6.70.
CLg 0.468 0.105 : 0.446
Crg 0.072 0.0004 0.076
Cr, 0.028 0.000% 0.033
Cumy, ~0.622 ~ 0.003 -0.711
Cmg - -0.171 0.001L -0.181
Cm, -0.068 0.001 -0.078 \
Cug, -0.91k4 0.003 -0.968
(3CL/3a),, k. 8k ) 5.05
3 /o 0.425 0.461
ath/as 2.19 2.08
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TABLE V.- COMPUTATIONRS ILLUSTRATING METHOD B

(a

) Determination of Cm,, Cmp, and Cpg

NACA TN 2902

/

0.0448786
0.0743828
-0.03704k2

i

-0.1121529 0.04k71095] |G

0.0743828 -0.0370442| [Cm, .0072099
0.2959167  -0.1121529<Cmy ~ = 0.0059555
mg 0006984

Cn, = -0.62k
Cmgy = -0.1k9
Cmg = -0.861

t
t[mmfgaﬁmmiw tfm&f&&fm&iﬁ
0 0 et 0 o . |0 oST
o |o o 0 o} 1.8|-0.065668 |-0.104508 (0. 046582 [0.015219
.1lo 0 .000182 o 1.9} -.064612| -.077530| .039040 [ .017840
.2}-.000028 |-.001164 | .003154k |-.001800({2.0| -.061805| -.0487hk2| .03095k | .018857
.3[-.000295 |-.007697 | .009716 |-.0067291|2.1| -.057382| -.020009] .022h43 | .oLohlk
L4l-.001232 [-.022265 | .017219 |-.011385[|2.2] -.051530| .008260] .013272 | .019718
.5/-.003153 |-.0k1702 | .024501 |-.013576]]|2.3| -.0ukh18]| .035893| .003702 | .019718
.6[~.006200 {-.063115 | .031585 |-.015062]||2.4] -.036264] .060589]-.002593 | .016979
.7]-.02031% |-.085043 | .038487 |-.015219)|2.5] -.027526] .OT7951|-.005296 | .011072
.8]-.015379 |-.105918 | .045288 |-.014867}|2.6] -.018770| .084949|-.007809 | .00LES6
.91-.021209 |-.12527k | .052139 {-.01k123{|2.7| -.010553| .083685]-.010526 | .000626
1.0{-.027613 |-.14255k | .058791 |-.012989}[2.8] -.003317] .076269{-.012905 |-.003590
1.1{-.034367 |-.157253 | .064103 |-.01154k1{{2.9} .002646) .063493|-.014122 |-.006612
1.2{-.041237 {-.168003 | .06778k {-.008216{13.0| .00TA46| .04B510}-.014312 |-.007355
1.3|-.047910 |-.173k29 | .068473 |-.004889({3.1| .010221{ .033065|-.013966 |-.008059
1.4}-.053989 |-.171125 | .066415 | .001330}|3.2| .012003| .018620|-.013267 |-.007590
‘|1.5]-.059045 |-.161157 | .064119 | .005321(]3.3| .012687( .005148{-.012304 |..007T7hE
1.6}~.062767 |-.146702 | .060601 | .00B8294|13.4| .012428] -.006739]-.011282 |-.000280
1.71-.065018 |-.127892 | .054201 | .012089{{3.5| .011kLT| -.0L6172{-.01029%4 {-.000869
T . t £
—8=0 an.dt+C At dt + C fABdt
aSc T 0 "8 0 e 0
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TABLE V.- COMPUTATIONS ILLUSTRATING METHOD B - Continued

(b) Determination of CL, and Clg

29

Ja% 4 Ja¥s} N AB
t | (table III, | (table IIT AY t | (table III, | (teble III Ay
column @S column @s column @S column @5

0 0 o 0 1.8 | 0.001884 -0.071623 | -0.030434

1| 0 ~ .009703 | O 1.9 | .019360 ~-.0786Tk . 064502

.2 -.000922 .055812 .012909 |{ 2.0 . 036467 -.082513 .192411

.3| -.005175 . 072880 -.028063 {| 2.1 .051697 -.088063 . 322604

Ll - 013921 .0Th625 -.09142k || 2.2 .065082 -.095707 . 107066

5] <.0248T71 Moyt sl -.168381 |] 2.3 . 076895 -.08750L RITINE]

.61 -.035932 . 070698 -.253435 || 2.4 .08531k4 -.030227 .586746

.7 -.0L46216 . 067923 -.325120 || 2.5 088583 -. 024956 .530203

.81 -.054782 . 068691 -.395488 |} 2.6 .085705 -. 026422 .514713

.91 -.061513 . 067923 - o312 2.7 . 07780k -. 026702 L7812
1.0 -.066176 . 064712 -.495065 [] 2.8 . 066452 -.019651 31104
1.1 -.068518 .0Lk3246 -.529718 || 2.9 .052350 -.005864 .364215
1.2 | -.068301 .032077 -.501830 || 3.0 .037762 .000908 298661
1.3 | -.064585 -. 012565 -.505261 |{ 3.1 . 023846 . 005620 .227539
1.h] -.056328 -. 022862 -.425000 || 3.2 . 012066 .007958 .109150
1.5 -.o0hk150 ~. 026023 -.372095 {| 3.3 .001887 .010611 .092732
1.6 | -.030073 ~. 07260 -.266469 [| 3.4 | -.006638 . 009145 .010140
1.7 -.014737 -.075428 -.146952 || 3.5 | -.012536 .010175 -.04gk18

Ay = Cry M + CLy AB
0.087761  -0.053345| [Cr, 0.598132
-0.053345  0.10096k4| |Cig -0.33233%
CL,, = 7-09
cLs = 0.456
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TABLE V.- COMPUTATIONS ILLUSTRATING METHOD B - Concluded

(c) Final results from three sets of flight data using
method B with A = 0.5

: Probable
Flight 1 | error for | Flight 2 | Flight 3
flight 1

C1,, 7.09 0.113 6.68 6.78
CLg 0.456 0.105 0.402 0.420
Cry 0.062 . 0.008 . 0.057 0.053
Crg, 0,031 0.004 0.028 0.026
Crm, -0. 62l 0.026 -0. 670 -0.698
Cmy -0.149 0.019 -0.136 -0.126
| Cmg ~=0.075 0.010 -0.068 -0.063
Cumg -0.861 0.063 -0.813 -0.892

(01./da) h.21 3.79 3.52

ath/as 2.13 1.87 1.96

W



(a) Deterainaticn of K1, Kz, K, apd X§ from flight 1 data

3'063 N VOVN

rt rt nt T . rt t ) nt pr .
t A9 Joa.em: "Jo‘““ -JOJ ab AT 4t o) b a8 omm -Omat .JOJ oB &r 3t A9
0 0 0 0 [} 0 L2 -0 -0, 042488 -0.0683 -0, 03863 0.050ke6
.1 0 o -.00015 0 0 ].E - % —. O76kk - g -.oi';‘}o %
2 -, 0006TS -, 000027 -,00333 -. 00018 Hot 1. - 56 -, 050671 - Dﬁﬁ - 08Tk -.0
.3 - - -,0093 -. 00082 . 1.5 -1 -4 L4769 -, 06706 -, 09558 )
" — AaImaAn o O ot ~ n1m — A1 s10RAE 1K -, 131732 ~ 1187 LAl nEf1o Ay Oy
5 | -lcemse | -icoskhk - 0AT3 - 00h2T Zi“gﬁé LT -120101 | -.130%07 Cosmi6 - o8 133083
) - 0hhoto -.00T137 -.03203 -, 00T 16378 l.g ~, LORSER -, 1k21T0 - gﬁ% -.g&e -, 167503
7 -, 061712 - 012k69 -, 01531 -.01068 L 167505 L9 -, 0368 - 151759 -. 04230 - - 196353
.8 ~, O7B1Lh0 -, 015455 -.Oh6ok -.01495 163628 2.0 - 5 ~. 155437 -,03387 -, 0855k -.eoT:yzg
.9 - 00h1e0 -. 028085 -.05317 -. 01992 . T el ~.OhizR3 -. 165066 ~, 02518 -, 03000 -+ 2240043
Lo ~. 1050k -.m -. 09595 -. 02558 . 2.2 -, 024343 -, 168577 -.01283 -. 09006 Y-l ]
1,1 - 122385 - -, 06860 -.05188 dzraat 2,3 -, 002335 -, 169910 -, 00649 -, 0907 -. e
1 2.4 B -, 169068 -, 00126 -.092h1 -
t t t ot
X, 40 + 28 At - a0 At - f Ab dr &t = .ab
A L R A
T
0.183701393  0.1k1DAZHE9  O.CRHETOORS 0.08326| fiu -0. 0003Na3R
0.14100e%69  0.2h7E20311  0.O73939651 0. 136293337 0, 229G6E158
- 0.09H4TO029  0.07T3939651  0.Ck32099T) 0, 0kAT3INRE| (Ks -0, 005Bh 513N
0,081382276  0.136208337  0.042731%28  0,0TIMOERLT| IKg C.11972302%
Lo K i I L -
K = k.1k ~
Ip =923
15 - =077
IG = -1h, G2

——— e e e e ————— e ¢ —— e ———— e ———
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TATE ¥I,- COPURATIONS ILLUSYTRATING METBOD § - Continued
(b) Dotermiuaticn of Ky, Ko, X5, and Xg from flight 2 data

t b T t t
48 fABM: -f 28 At -ff A dr &t 58 t a0 faﬂdt - b dt -ftfaad-rat oy
0 0 ovo . Q 0 o Yo
0 0 ) 0 0 <} L 0. 140537 -0,081124 -0.075188 -0, k259 0,032391

.1 1] 0 . 000054 1} 1. - 16521 -, 0955539 -, 010101 -. 095559 -.0%300%

2 -. 000377 -, 000008 -, 002278 -, C00063 +013779 L5 -, 130030 -, 110267 -, 062688 - 06211 -.1832

.3 - -. 000200 -, 008715 - L6 -. 122660 - bl - gig}r? -, 068062 -, 1821

an -.013T76 -, 0010kG -. 016785 ~.C0LA6L L 1268166 L -, 102268 -, 13h53% - i -, 073056 - 221759

.5 - 02 - T -.ua:-ogi -. 0039m2 . 161506 1 -.g;zﬂn -.1h3710 -, 037H16 -. 0773 -.gm

.6 -, Ok - -.0333 - . 183005 19 - 09902 - 150417 - ;H;EEE -. 08058 -. 0

7 =, 0EhRA =;010212 =083 ~: 01022 -190186 2.0 -.aN27 ;150720 =; 020NN =, 0fioaTa =, 23230k
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NACA TN 2902 , 63

TABLE VI.- COMPUTATIONS ILLUSTRATING METHOD C - Concluded

(c) Final results using method C with A = 0.5

Flight 1 Flight 2
Accurate | Approximate | Probable | Accurate | Approximate

values values error values values
C1, - 1 T.21 + 7.00 / 0.106 7.59 7.3k
CLg | 0.37h 0.371 0.013 |  0.394 0.391
Cry 0.066 0.067 0.005 0.067 0.069
Cre, 0.033 0.034 0.003 o;o3u 0.03%
Cm, -0.624 -o.62f .0.073 -0. 706 -0.710
Cmg -0.158 | .-0.160 0.012 -0.161 -0. 164
Cmg, -0.079 -0.080 0.006 -0.081 -0.082
Cmg -0. 894 -0.887 0.032 -0.941 | -0.935
(0r/3a), | W46 | sy | 4.58
XL, /% | 175 1.73 | 1.84 1.83
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Figure 1.~ Sign conventions employed. Positive directions shown.
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Flgure 2.- Measured and computed flight 1 time histories of incremental
elevator displacement, pitching velocity, load factor, and tail load

showlng the fit of the data.
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