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SUMMARY

The laminar boundary-layer flow about a circular cone at large
angles of attack to a supersonic stream has been analyzed in the plane
of symmetry by a method applicable in general to the flow about conical
bodies.

At the bottom of the cone, velocity profiles were obtained showing
the expected tendency of the boundary layer to become thinner on the
under side of the cone as the angle of attack is increased.

At the top of the cone, the analysis failed to yield unique solu-
tions, except for small angles of attack. Beyond a certain critical
angle of attack, boundary-layer flow does not exist in the plane of sym-
metry, thus indicating separation. This critical angle is presented as
a function of Mach number and cone vertex angle.

INTRODUCTION

The supersonic aerodynamics of pointed bodies has considerable cur-
rent interest in connection with the design of aircraft and missile fuse-
lages. An important feature of the flow about such bodies is the behavior
of the boundary layer and, in particular, the flow separation which may
occur along the low-pressure side of the body due to angle of attack.

The present report will consider the development of the laminar boundary
layer on the surface of a right circular cone at an angle of attack to a
supersonic stream (see fig. l). The conical configuration may be con-
sidered an idealization of the nose portion of a supersonic aircraft
fuselage.

Outside a thin boundary layer on a cone, the nonviscous supersonic
flow (upon which the boundary layer itself depends) is "conical" in the
sense that physical quantities (such as velocity and pressure) are con-
stant along any ray proceeding from the cone apex. The description of
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this outer flow, contained in references 1 to 3 and elucidated in refer-
ence 4, is considered adequate for the purposes of this report, but sub-
Jject to restrictions which will be discussed subsequently.

In figure 2 is shown gqualitatively the circumferential pressure dis-
tribution on the cone surface predicted for various angles of attack
(see reference 4). These pressure distributions depend only on the char-
acter of the nonviscous flow beyond the boundary layer, on the assumption
that the boundary layer is extremely thin. When the angle of attack is
very small, the pressure decreases monotonically from the bottom of the
cone around to the top. For larger angles of attack there appears a
region near the top of the cone wherein the pressure gradient reverses
and the pressure increases toward the top. As the angle of attack is
further increased, this region becomes greater in extent.

As a consequence of the conical nature of the nonviscous flow, it
is shown in references 5 and 6 that the laminar boundary layer has para-
bolic similarity along generators of the cone; that is, velocity, pres-
sure, and density inside the boundary layer are constant along any para-
bola Esee fig. l) drawn in any one meridional plane (plane passing through
the body axis). 0f course, circumferential variation of these quantities
is to be expected when the cone is at angle of attack.

In reference 7 the effect of angle of attack on the laminar boundary
layer is analyzed, in the limit of very small angle of attack, with the
result that the boundary layer tends to be thicker on the top of the cone
than on the bottom (fig. 3(a)). This is to be expected since the fluid
near the base of the boundary layer has low inertia, is therefore
inclined to follow the direction of the circumferential pressure gra-
dient more closely than is the outer flow, and thus tends to drain away
from beneath the cone and accumulate near the top. No separation is
encountered because, for small angle of attack, the pressure gradient is
always favorable (fig. 2(a)).

For larger angles of attack, when the pressure gradient reverses
direction near the top of the cone (fig. 2(b)), experiment indicates the
formation of boundary-layer "lobes" (fig. 3(b)). When the angle of
attack is further increased, the lobe pattern finally breaks away from
the body to form a vortex street (fig. 3(c)).

Recently (reference 8), at the Lewis laboratory a brief experiment
was carried out in which a total-head probe was placed near the surface
at the top of a cone and pointed toward the cone apex (fig. 4(a)). The
cone was mounted in a supersonic wind tunnel, and the probe was used to
measure the total head in the boundary layer at a fixed height above
the surface as the angle of attack was varied by rotating the cone in
the meridional plane containing the probe. Figure 4(b) shows the
result of this test. The decrease in indicated total head as the angle
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of attack was increased from negative to positive values may be inter-
preted to mean an increase in boundary-layer thickness at the top of the
cone. Beyond a certain angle of attack, this tendency reverses, and the
boundary layer spparently becomes thinner as the angle of attack is
increased. This is a clear indication of the tendency to form lobes as
illustrated in figure 3(b).

In the present report of research conducted at the NACA Lewis lab-
oratory, the laminar boundary layer in the meridional plane of symmetry
of the flow is analyzed for large angles of attack in order to provide
velocity profiles on the Bottom of the cone and to provide a certain
degree of insight into the question of separation on the top.

SOLUTION OF BOUNDARY-LAYER EQUATIONS IN PLANE OF SYMMETRY
Boundary-Layer Equations in Plane of Symmetry

In reference 7, it is shown that the dimensionless laminar boundary-
layer equations for supersonic flow over a circular cone are

1 p'(e) 2 2 2, .
l}”f % p 8 +§é&p]fn - 75 exbo + 3(8)° + 2B = 0 (la)

1 1
[f+%§a_§olg+_z_ 2200, 5,00

2 2, ¢
%6 Co|BAN " Zg ExEro” FIEAMIN T 3
(1p)

2 2 '
T+ (£3)° + () = Ty + uy + w° (1c)
-1
p = %ﬁr pT (1a)

Equations (la) and (1b) are momentum equations, equation (lc) is an
energy balance, and equation (1d) is the equation of state. A com-
plete list of symbols is provided in appendix A. The functions
f(x,9») and g(\,9) are related to the two-component vector poten-
tial discussed in reference 6 and are defined according to the
relations

u = 1

(2)

w

i

ex

in a manner such as to satisfy the continuity. equation identically.

The coordinate A has been formed as follows:
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y
= /3 [(-E— >-l/2 o d:ax'l/ @ (3)

I

The coordinate ¢ is the angle between the vertical plane of symmetry

of the flow and any meridional plane of the body (fig. 1). Equations (1)
and (3) imply that parabolic similarity of the Blasius type exits in
meridional planes. As pointed out in references 5 and 6, this conclusion
of parabolic similarity applies for the boundary layer on any smooth
conically symmetric body in supersonic flow (for example, a cone of ellip-
tic cross section).

In reference 7, all quantities are made dimensionless by referring
them to the properties of the nonviscous flow at the outer edge of the
boundary layer when the cone is at zero angle of attack. 1In the present
report it will be convenient to use a different reference condition (sub-
script r) which will be defined subsequently. The following quantities
on the left are to be identified with the dimensionless groups on the

right:
U, W ~ u/ur, w/ur )
p ~p/ey
2
T ~ 2c.T/u, > (4)
2
P ~ /Py,
X,¥ ~ ppyX/Cliys ey y/Cuy

where the constant C arises from the assumption of the temperature-
viscosity relation of Chapman and Rubesin (reference 9):

" T
L = C (5a)
Tr

with C being defined as follows, in order to match equation (5a) to the
Sutherland formula at the cone surface (denoted by subscript w):

1

T\ 1+ S/T,
T‘) T T, + 8/17 (5v)

T

n

C

2
The quantity S may be taken as equal to (2160 R)Zcp/ur .
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The following additional physical assumptions are embodied in equa-
tions (1): :

(a) A thin boundary layer across which the static pressure is
constant

(b) Prandtl number 6f 1l and constant ratio of specific heats 1y
(c) No heat transfer through the surface

From equation (lc), since the case of Prandtl number of 1 and no
heat transfer is considered, T, in equation (50) may be taken equal to

the dimensionless stream stagnation temperature.
The boundary conditions on the functions f£(\,¢) and g(\,0) are:

At the outer edge of the boundary layer, the u and w velocity compo-
nents should take on the corresponding nonviscous values

(= ®) = uy (o) (6a)

i

wy (o) (6b)

At the cone surface, the u ‘and w velocities should vanish

gk(’)q’)

£2(0,9) = ex(0,9) =0 (6c)

and the normal velocity v should vanish. It is shown in reference 6
that this last requirement is met if

f(O,CP) = g(O,(P) =0 (Gd)

Equations (1), involving two independent variables, would be quite
difficult to solve in general. However, a certain amount of information
can be obtained by restricting consideration to the plane of symmetry,
thus yielding a tractable set of ordinary equations involving A as the
only independent variable.

In the plane of symmetry ¢ = O,x, w = gx = 0. Because u =1y 1is
even about the plane of symmetry and may be expected to be regular there,
fap = 0. The pressure and the density are also even, and therefore

p'(p) vanishes at ¢ = O,x. Thus, in the plane of symmetry, equation (lg)
reduces to the following equation:

2 B
(f + =z g(afm\ + 2f39 = O (72)
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Every term in equation (lb) vanishes at the plane of symmetry; and, there-
fore, in order to obtain a meaningful equation, it is necessary first to
differentiate equation (1b) with respect to ¢ and then drop terms which
vanish at ¢ = O,x. This procedure yields the following result:

T+ 35 8p/8\p = 30 (%w) "E e - Tt 28ane=0

(7o)

Equation (1lc) becomes

T + (f)\)2 =T + ul2 (7¢)

Equations (7) may be considered a set of ordinary differential equa-
tions for the functions f£(A,0) and g¢CL,O), or f(h,n) and gy(x),
depending on whether the solution is required at the bottom or the top of
the cone. According to equations (2), the result £f(A\,0 or =) may be
differentiated with respect to A +to give the profile of meridional vel-
ocity u din the plane of symmetry. The form assumed by the circumfer-
ential velocity profile w as >0 or = 1is given by gmx(k,o or n)
in the sense that, at a small angular distance d¢ away from the plune of

symetry, w = Eph de.

The boundary conditions (equations (6)) become, in the plane of
symmetry,

fy(=,0 or =) =u;(0 or =)

gp)N=,0 or =) =W1¢(0 or m) (8)
£3(0,0 or =) = gga(0,0 or =) = £(0,0 or x) = g,(0,0 or =) =0Q

In view of the first of equations (8) and of equation (7c), it is con-
venient to specify the reference condition (subscript r) to be that
existing at the outer edge of the boundary layer, for the particular
angle of attack under consideration, evaluated at either ¢ =0 or

¢ = nt, depending on whether the analysis pertains to the bottom or top
of the cone.

Because the pressure is assumed constant across the boundary layer,
equations (ld) and (7c) and the assumption of constant pressure across
the boundary layer (p = Pl) provide that

%=-T—=l+%—[l" (f),)z] | (9)

1 1
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From conventions (4), Ty = (F%5>A;lz. For convenience, the following

definitions are made:

go(X,0 or x) = %? ky(h) (10a)
2
k=35 wiw(o or ) (10v)

Equation (9) and definitions (10) are introduced into equations (7a) and
(70), and a value of p''( O or =) is assigned consistent with the non-
viscous equations at the outer edge of the boundary layer (p"(O or =)
may conveniently be obtained from equations (1b) and (6) by setting

BpAN = EpAan= O when A= =),

The following pair of simultaneous ordinary differential equations
then result:

(f + k)L + 2" =0 (11a)

2 2 2 1
(f + kpdy'' + 29" - k(y') 'g\lf'f'+(k+g 1+TI[1'(f*)2] -0

(11b)
and boundary conditions (8) become
£r(w) = ¥'(=) =1 (12a)
£1(0) =y'(0) =0 ; (12p)
£(0) = ¥(0) = 0 (12¢)

Two parameters appear: k, which depends essentially on angle of
attack, and T, which is essentially dependent on Mach number. If the
angle of attack (and hence k) is zero or nearly zero, equations (11)
become precisely those considered in reference 7 and may be solved quite
readily, since equation (llb) becomes linear and the solution of equa-
tion (1lla) is well known as the Blasius function. When 'k differs sub-
stantially from zero (moderate or large angle of attack), equations (11)
are both nonlinear and the solutions are interdependent. For any par-
ticular case, when only the stream Mach number, cone vertex angle, and
angle of attack are specified, the parameters k and Ty must be

obtained by recourse to a theory of the outer nonviscous flow.

Outer Nonviscous Filow

In references 1 to 3, the results of a theory of nonviscous super-
sonic flow about circular cones at angle of attack are tsbulated. The
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case of zero angle of attack (reference 1) is solved exactly in the sense
that no assumption of small vertex angle is made. The equations are then
expanded in powers of angle of attack with the use of the zero-angle-of-
attack solution as the first approximation. Terms linear in angle of
attack are presented in reference 2z, and terms proportional to the square
of angle of attack are presented in reference 3. Reference 4 clarifies
the gpplication of the theory to the computation of flow conditions at
the cone surface.

There are two objections to the use of this theory in the present
application:

(l) Neglect of terms in the expansion beyond that involving the
square of angle of attack may lead to an insufficiently accurate repre-
sentation of the flow at the large angles of attack which are of inter-
est. Unfortunately, no nonviscous theory is available that treats the
effect of angle of attack with greater precision. 1In reference 4, a com-
parison of the theoretical and experimental pressure dlstributlons is pre-~
sented for a cone of semivertex angle of 10° , at a Mach number of 2, and
of an angle of attack of 12.2°. The agreement shown is very good,
especially since the angle of attack is sufficiently large that the pres-
sure distribution is of the type shown in figure 2(b).

(2) In reference 10, Ferri points out that the method of expansion
used in references 2 and 3 is improper near the cone surface and leads
to an erronecus form of the entropy distribution around the cone. There-
fore, the theory cannot be applied if the vertex angle, the angle of
attack, or the Mach number is so large that the flow may not be considered
essentially isentropic. 1In reference 7, an argument is presented to the
effect that in the limit of infinitesimal angle of attack the presence of
a boundary layer ensures that the error in entropy distribution is of no
consequence even for large cone vertex angles. That argument in no way
applies to the present analysis because the angles of attack considered
are not infinitesimal. For the .purposes of this report, the use of refer-
ences 2 and 3 in their present form is justified only in cases for which
isentropic flow may be assumed.

According to reference 4, the velocity components at the cone
surface are, using the notation of references 1 to 3 for gquantities
tabulated therein,

uy (o)
%_ = 1 +<x§§cos o +
u u
2|0  1lx L (% 1x _ 1 e
a E+ZTl——COt®+2 13—Zaco‘0®+2cos‘2‘.<l>-+

(13)
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wil® W
l_(_)-:o,—_z-.—sinfp +q.2[—=2——csc® -/icot@] sin 2@ + -+ (14)
u u u u

The pressure and density are

pl£¢) =1l+allcos o +
b P
P —r . P —
a,2—=Q-+I-M +£-I—].—cot®+ —_§+£M2—}-1_Lcot®)cos 20+ -
P 2 Zp P 2 Zp
(15)
Dl((P)
pom =l+aécos¢+
P o]
PO 1 1 P2 1 _ 1
az[‘:+§M2+‘2"§:cot@ +<:.—+'2-M2 -gécot@ cos 20|+ °°
p ) p p

(186)

The barred quantities are those pertaining to the case of zero angle of
attack. From equations (10b), (13), and (14),

{ 2
W, -
+(1,:Z=~+2(1,2('—_.2”-'J:'- = 6?_“-)
=*% )

goree

or, approximately,
2
k:%i%—3~+2m2({i§-}§_3£_z_e_%_é];e_%) b o (17)
u bu 6 2] u T

. The plus or minus sign refers to @ = 0 or =, respectively. From con-
ventions (4), equations (13), (15), and (16), and the result of refer-
— — Yy - 1=
ence 1 that 1/T = %/ - ) = —s— M7,
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or, approximately,

u P PP

-2 2 2
2__—_“_2+2§(§_—_Q-)+ f—z+ﬂ—z——2:€{l £ o . - (18)
u\p

In figure 5 are shown k and l/Tl as functions of « for a cone

of semivertex angle of 7.5° and a stream Mach number of 3.1. From the
tabulations of reference 2, it may be inferred that under these condi-
tions the isentropic assumption leads to errors of less than 1 percent
in quantities proportional to the angle of attack.

Solution of Equationé at =0

Equations (11) have been solved, subject to boundary conditions (12),
at ¢ = 0 and various angles of attack for a cone of semivertex angle of
7.5° and a stream Mach number of 3.1 for which the values of k and
l/Tl are given in figure 5. The computations were carried out by
Dr. Lynn Albers of the Lewis laboratory and are described in appendix B.
The resulting boundary-layer profiles of meridional velocity u and
gradient of circumferential velocity ow/0¢ are shown in figure 6. The
curves for o = 0 are obtained from reference 7. The profiles show
clearly that, as the angle of -attack is increased, the boundary layer
becomes thimner on the bottom of the cone, and the shear stress at the
wall increases.

Skin friction. - The meridional and circumferential components of

the viscous shear stress at the bottom of the cone surface may be written
in coefficient form as follows:

k)
X CP=O _]Z;plulz E y=o

®=0
C =0
£
[ “’] ¢=0

=0 Zpyyy
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where the quantities on the right are in dimensional form. Application
of equations (1d), (2), (3), (4), (5), and (10a) yields

RX
_X ¢ = 2r''(0 19
. [fx]%o () (19a)
Ef(P =0 (190)
lo= 0
-
Ry aCf’
= —&E‘E = 36ky ' ' (0) (19¢)
-(p= O
where
p-U X
S

Variation of these skin-friction coefficients with angle of attack is
shown in figure 7 for a particular case.

Digplacement thickness. - In reference 11 it is shown that the dis-
placement thickness A for a cone at angle of attack is the solution of
the equation

2 ooy (8 - 8) + & [plwl(a ] aq,)] - 0 (20)
where o0 A
5, = (l - —p-u—>dy
b il
. > (21)
= pw
0 /

At ¢ =0, wy =0 and equation (20) may be solved directly
By + k8¢

A=t (22)

1+ k

where k is defined in equation (10b). From equations (5) and (9), with

8, defined in terms of a Reynolds number,



1z NACA TN 2844

_ Puydy

Rs, =-'\/ac—?5 E-f' +le(1-f'2)]dx (23a)
0

Using equations (10) and applylng 1'Hospital's rule to evaluate at
o= O the limit of the ratio w Wl appearing in equation (21) yield

‘\/_X [ VI -——(1 - f'z)]dx (23b)

OO'JU
e}
i

Therefore,
3 k \ : 1
’\/@;RA-:f{__Fk(f -y') + (L -£) E+-T_I(l+f'):| ax
0

(23c)

Figure 8 shows the variation of displacement thickness with angle of
attack for a particular case and again illustrates the expected progres-
sive shift of the boundary layer from bottom to top as the angle of
attack is decreased.

Failure of Method at ¢ =

Except for quite small angles of attack, equations (11) cannot be
solved at the top of the cone (w Over part of the range of angle
of attack, the solutions are 1ndeterm1nate; and, beyond a certain angle
of attack, the solutions do not exist at all. These properties of
equations (11) will be demonstrated and discussed in the following
paragraphs.

Asymptotic forms of equations. - The difficulties just mentioned may
best be inferred from the asymptotic forms of equations (ll) at large .
From equation (lBa) it is clear that, for large A\, £ and may be
written as follows:

A+ F(N) |

H
i

A+y (M)

=3
il
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where F'(®) = ¥'(w) = 0. Substitution into eqguations (11) yields the
asymptotic forms for large A

(L+ )\ +2F''' =0 (24a)

tt ‘lll -J; 1 -2— 1 i ..2...
(T+ret 27y -2k +3)¥ =3 F l+g (k+3 (24Db)
Indeterminate solutions. - Consideration will now be given to the

problem of obtaining the complementary solution of equation (Zéb).
Defining a new dependent variable

1+k XZ

cg=e 8 !

it}

yields the equation

2
15 7 1+ k 21~ _
G"‘-[Zk+-fz—+<—z——-> x]G_o (25)

This is essentially Weber's equation (reference 12, paragraph 16.5), and
the asymptotic solutions are

-5 \/_1;59 Eye
e 2
k+1/3
1+k 2

2 2
) 1+k L+k
e =\

Thus, the asymptotic complementary solutions of equation (24b) are

1+k k+5/9
- 2 -
v-e 41 G/E—Ex> 1+k (26a)

2

— 2R
v = (1/?2:157\) (260)

Because it is required that ¥'(e) = 0, solution (26b) is rejected
when k > - 1/3. If k< - 1/3, both solutions may be retained, and an
additional undetermined constant appears. When k >0 (at the bottom of
the cone), the complete solution of equations (11) exists and is unigque,
and solution (26b) is to be rejected in forming the asymptotic solution.
Therefore, if solution (26b) and the associated constant must be retained
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when k < - 1/3, it is clear that the complete solution for k < - 1/3
cannot be unique. This indeterminacy has been verified by numerical
integration of equations (11), as described in appendix B.

This indeterminacy arises because egssential information has been
lost by specializing the equations to apply only in the plane of symmetry.
When the equations are so written, it is implied that the boundary-layer
development in the plane of symmetry is affected only by conditions in
that plane. The lateral region of influence of points on the body in
the plane of symmetry grows parabolically (the shaded regions in
sketches (a) and (b)), according to the law of molecular diffusiord,

l<llllb

)" T
} }

(4 (v) (c)

'Top view of cone (¢ = 1) at positive angle of attack.

when, as in the present instance, there is no pressure gradient in the
stream direction. Fluild enters the boundary layer from the outer stream.
If the fluid then moves laterally (because of the angle of attack) out of
the region of influence of the plane of symmetry, as shown in sketch (a),
the flow is uniquely determined by outer stream conditions in the plane
of symmetry. Clearly, this is the case when ¢ =an and o« is small,
and when ¢ =0 and o has any positive value. When ¢ = n, except

for small angles of attack, the lateral motion of the fluid is inward
relative to the region of influence, as shown in sketch (b). This fluid
then brings into the region of influence of the plane of symmetry inform-
ation concerning boundary-layer development as it proceeds around the
cone from the bottom. Consequently, outer stream conditions at ¢ = =x
may not uniquely determine the boundary-layer characteristics.at o = =xn,
and indeterminate solutions of equations (ll) may be anticipated.

The condition k = - 1/3 specifies an angle of attack such that, at
® = x, the outer flow streamlines are just tangent to the parabolic region
of influence. This statement may be proved as follows: From definition
(10b), if k= - 1/3, then wy,/u; = - 6/2. Near ¢ =x (see sketeh (c)),
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vy =Wy, @ o= - W '%. Thus, when k = -1/3, wy/u1 =1/2. From this

last equation and the geometrical properties of parabolas, it may be
inferred that the streamlines are parabolas with focus at the cone apex.
Therefore, the situation shown in sketch (b) gpplies if k <« - l/ 3 and
equations (11) have no unique solution.

If k2 - 1/3, it might be inferred that equations (11) may be
solved uniquely. However, the condition k 2 - 1/3 is not sufficient,
but, rather, only necessary for uniqueness. Inspection of the profiles
shown in figure 6 for o = k = 0 indicates that, for 0> k = ~"l/3,
the streamlines within the boundary layer may be expected to incline more
sharply toward the plane ¢ = xt +than do the streamlines near the edge
of the boundary layer, and thus may bring information from beneath the
cone even though the outer ones do not. Therefore, the necessary condi-
tion for uniqueness would be (see equations (2) and (10a)):

W(p _3 ‘I’l A 9
(‘ﬁ' =2 %k \F(x > -3
max max
k>--3-'5/(%—,—) (27a)

or,

max

Figure 6 indicates that perhaps the maximum value of w'/f' is to be
found at A = 0, in which case criterion (27a) would become

1 £'°(0
<> = 3 {rid) (27)

Nonexistent solutions. - The solution of equation (24a) is
_ii&}?
Fir=e *%

The requirement that F''(®) = 0 is met only if k >- 1. If k $ - 1,
no solution of equation'(24a) exists which satisfies the boundary condi-
tlons, and, therefore, the Prandtl boundary-layer equations fail to des-
cribe the flow. This was first pointed out by Hayes in reference 5. The
Prandtl equations differ from the exact egliations essentially in that a
thin boundary layer is assumed. Thus, if k £ - 1, the boundary layer
cannot be regarded as thin. It may be noted that equation (22) implies
that, as k - - 1, the displacement thickness approaches infinity.
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Any boundary layer grows by the entrainment of fluid at its outer
edge. That is, fluid particles acquire vorticity by entry into the
boundary layer. The reverse process cannot occur - fluid particles can-
not leave the boundary layer, thus losing their vorticity. In the case
under consideration, it will be shown that when k < - 1, the streamlines
at the outer edge of the boundary layer would proceed outward relative to
the boundary layer, if the boundary layer were to retain parabolic simil-
arity. Because such a situation is physically impossible, the Prandtl
equations fail to yield a solution.

From reference 11, the normal velocity at the outer edge of the
boundary layer at @ =z 1is

.y n ] vi) .
vy U + (h A)(&-— - (28)

where h is a somewhat arbitrary definition of the outer edge of the

ov )
boundary layer and (é—i is obtained from analysis of the outer

Y
y=0
nonviscous flow. The equation of continuity for the outer flow, eval-
uated at the surface of the cone in the plane of symmetry, may be
written

u; 3 Owyp fovy
?*558«7*(65%:0:0 (29)

With equations (28) and (29) combined, the flow inclination at the outer
edge of the boundary layer is

V1_ 3 n-a 1 oWl
q=sz‘—3z‘“<l+a;l'&p—> (s0)

The Prandtl (thin) boundary layer may be expected to exist only if

oh Vi
&>U.l

or, with equation (30) introduced, if

ow
1 9 3
e T ll + == 5 (n -A)] (31)

If parabolic similarity is assumed (h and A each proportional to
+/x), inequality (31) becomes
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1% s
Gul op 2
or, from equation (10b),
k>-1
SEPARATION
The critical condition k = - 1 might be expected to be of physical

as well as analytical significance because some sort of catastrophic
thickening of the boundary layer is implied. In particuler, this critical
condition may reasonably be supposed to be connected with the phenomenon
of laminar separation. In order to explore this possibility, it is first
necessary to describe qualitatively what is meant by separation in three-
dimensional boundary-layer flow. Difficulty has been encountered in
establishing a satsifactory qualitative criterion for three-dimensional
separation (see, for example, reference 5). Therefore, in the subsequent
paragraphs, the general problem of three-dimensional separation will be
discussed, and then the particular case of the cone at angle of attack
will be considered.

General Considerations

Plane flow. - In plane flow, separation is customarily identified
by the appearance of reverse flow o=
(sketch (d)). In order to gener-
alize this concept to three-
dimensional flow, it is necessary
to consider the separated region d
as a whole. In plane flow, the
separation point of sketch (d)
might be regarded as the forward
boundary of a vortex sheet TT7 /T TTT] 77777 777777777777
embedded, or encapsulated, with- L*Separation point
in a region bounded by the body (d) Velocity profiles in plane flow.
and a stream surface meeting the
body (sketch (e). Sketch (e)
shows separation followed by
reattachment. Of course, the
sort of separation of greatest
engineering importance occurs
when such an embedded vortex
sheet rolls up to form a large
concentrated vortex, or is shed
as a vortex street, with the consequence that the outer flow is greatly
disturbed and a large pressure effect (form drag)} occurs.

Vortex sheet
(e) Embedded separation region.
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If a boundary-layer solution of the type shown in sketch (e) were
obtained, there would be little theoretical expectation of "rolling up".
That is, a vortex sheet completely embedded in a thin boundary layer
would be constrained to. remain flat against the body. However, if the
theoretically predicted vortex sheet extends downstream into a region
where the thin boundary-layer equations do not apply (that is, where- the
solution "blows up" predicting an infinitely thick boundary layer), then
in that region the vortex sheet would not be constrained to lie flat and
the rolling-up process could occur.

The foregoing discussion seems to provide the proper description of
what occurs behind a bluff body: A
complete solution of the thin laminar
boundary-layer equations for the flow
over a cylinder would probably yield
a streamline pattern of the form
shown in sketch (f). The boundary
layer would be predicted to gain
mass flow by entrainment as it pro-
ceeds around the body, until it
reaches the vicinity of the rear stag-
nation point. There, the mass flow
contained in the boundary layer must
finally leave the body and proceed .
downstream. The boundary layer (f) Possible boundary-layer
therefore cannot remain theoretically solution for cylinder.
thin, but rather must approach infin-
ite thickness in violation of the Prandtl assumptions. In this region,
then, the aft boundaries of the pair of vortex sheets are free to roll
up into concentrated vortices, thus distorting the outer flow in such a
way that the rolling-up process engulfs most of the region which would
otherwise be occupiled by a flat vortex sheet. The leading edge of the
sheet, however, i1s still constrained to lie flat against the body.

Vortex sheets

Three-dimensional flow. - The foregoing description of plane separ-

ation may be generalized to three-
dimensional flow as follows: A
separated region on a three- 7

dimensional body consists of a
vortex sheet embedded between
the body surface and a stream
surface attached to the body

in a closed curve, as shown in
sketch (g), which is a view of
the body from above. The arrows
indicate the direction of resul-

tant shear stress at the surface .
and outside the separated region.
The situation shown in the sketch

would correspond to separation (g) Separation in three-dimensional
flow with reattachment.

Separated
region
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and reattachment in plane flow. If somewhere within or at the boundary
of the separated region the theoretical boundary-layer soluticn would

a priori be expected to blow up, then the vortex system within the
separated region is free to roll up into a more or less vigorous system
of vortices.

Thus,_thin-boundary—layer theory can be used to obtain the follow-
ing information concerning laminar separation:

(1) The solution may establish the existence of a vortex sheet
which is embedded in a flat bubble on the surface and which could adhere
to the surface and remain part of a thin boundary layer, provided that
the Prandtl equations are valid everywhere in the separated region.

(2) The solution might predict the boundary layer to go to infinite
thickness somewhere in the separated region. If this happens, then the
separated region is free to roll up, thus providing a vigorous wake
(which, of course, is not amenable to boundary-layer theory).

For flow about a plane body, the boundary-layer solution is not
needed for predicting the breakdown of the Prandtl assumptions. Physical
considerations suffice to establish where (at stagnation point of outer
flow) and when (always) the breakdown occurs. In three-dimensional flow
this is not always so clear, and at least certain features of the solu-
tion are required to be known. In order that the boundary-layer equa-
tions be applicable, the solution must be such that the boundary layer
entrains fluid (that is, flow streamlines enter, but do not leave, the
boundary layer at its outer edge). In a cartesian system, where h(x,z)
is the outer edge of the boundary layer, this requirement may be written
as

uyhy + wih, > (Vl)y—h (32)

Equations (32) and (28) may be combined with the equation of continuity

in‘the form .
Bvl
i\ = -l:(plul)x + (olwl)z]
y=0

to yield

%[(h - A)plul] + aiz I:(h - A)plwl] >0

or, in vector notation,

div [(h - A)pl_g_l] >0 (33)
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where A 1is the displacement thickness, and d; 1s the velocity vector
in the outer flow evaluated at the body surface.

In many cases, circumstances may be found for which inequality (33)
cannot be satisfied. For example, for plane incompressible flow about a
cylinder and, as is customary, with u and x defined parallel to the
surface, inequality (33) may be written

dul

d
o (B -2 -

>
h -A Uy

As the rear stagnation point of the outer flow is approached, u; tends
to zero, while —dul/dx remains finite and positive. Therefore, since

h - A by definition must be greater than zero, d(h - A)/dx must
approach infinity in clear violation of the boundary-layer assumptions.

Separation on Cone at Angle of Attack

In the previous discussion, it was concluded that separation involv-
ing a strong vortex pattern occurs if a tentative boundary-layer solution
predicts an embedded vortex sheet coupled with a local breakdown of the
assumption of a thin boundary layer. In the case of the cone,
inequality (53) may be used to predict the circumstances under which the
boundary layer may not be regarded as thin: When the fact of parabolic
similarity is introduced (h - A proportional to +/x), inequality (33)
becomes

s) 3
(h - A) “Wl = = GU.l
2 T (34)

h - A > Wl

This inequality indicates infinite boundary-layer thickness only when
wy = O and, even then, only if wy is negative (which is true at the

top of the cone, @ = x) and larger in magnitude than % Buy. This is

true only for angles of attack larger than that for which k = -1 (by
equation (10b)). When the angle of attack is smaller than this critical
value, the right member of inequality (34) is always negative, and

d(h - A)/d¢ may be considered to vanish by symmetry at ¢ = m without
violating inequality (34).

The foregoing result may be explained on physical grounds as follows:
As the boundary layer proceeds around the cone, it entrains fluid which it
then conveys towards the top (symmetrically, from both sides of the cone).
In the plane cylinder case, the fluid similarly conveyed must finally erupt
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from the boundary layer when the stagnation point is reached. However,
on the cone, the boundary layer grows parabolically along generators;
and, hence, if the cross-flow is not too strong (small angle of attack),
the fluid brought to the top may simply become part of the growing
boundary layer. For larger angles of attack, the boundary layer cannot
grow at a rate sufficient to absorb the additional fluid, and eruption
occurs with the consequent breakdown of the thin-boundary-layer
assumptions.

Accordingly, it is proposed that when the angle of attack is less
than that for which k = - 1, a thin boundary layer covers the cone
(fig. 3(a)). For larger angles of attack, any vortex sheet present will
roll up to form attached lobes (fig. 3(b)); for still larger angles of
attack, a vortex street is produced.

Thus when k < - 1 (angle of attack greater than that for which
k = l), strong viscous cross forces (viscous 1ift) on the cone may be
expected. These forces are discussed by Allen in reference 13. Of
course, a weakness of the present analysis is that no indication is
given as to the strength of the rolled-up vortex system because, when
k = - 1, the presence of an embedded vortex sheet over the top part of
the cone has not been established. It seems likely that such a vortex
sheet does exist because a rather strong adverse pressure gradient
(fig. 2(b)) always exists when k = - 1. In fact, it may be shown (most
conveniently by evaluating equation (7a) gt A = -) that an adverse pres-
sure gradient exists when k < - 2/3.

Equations (35), (13), (14), and (10b) give the minimum angle of
attack for which the boundary layer may be expected to break away from
the surface and to form lobes at the top of the cone. This angle is
presented as a function of stream Mach number and vertex angle. Fig-
ure 9 shows the results of such a calculation. The critical angle of
attack is given as a ratio of angle of attack to semivertex angle for
convenience. The results show that, in general, separation involving
lobes occurs later (in terms of relative angle of attack o/®) for the
smaller vertex angles, particularly at higher Mach numbers. Figure 9
indicates the possibility of rather profound qualitative differences in
the flows at high Mach number about cones of different vertex angles.

The foregoing interpretation of the critical condition k = - 1 is
supported by the experimental result shown in figure 4. From figure 5
k= -1 when o = 6.2°, under the conditions of the test. Figure 4(b§

shows the measured total head rising as the angle of attack is increased
beyond 6.2°. Presumsbly this effect is caused by the the induced field
of the symmetrical pair of vortex lobes sweeping away the thick boundary
layer between, thus reestablishing a thin boundary layer at the top of
the cone.
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It may be of interest to note that if similarity also holds for the
turbulent boundary layer on a cone, and the similarity law is nearly
linear (rather than parsbolic as in the laminar case), separation would
first appear at a higher angle of attack than in laminar flow. In fact,
equations (10b) and (31) or (33) would yield the criterion k = - 4/3.

For the boundary layer produced by supersonic flow over any smooth
conically symmetric body in supersonic flow (such as a cone of elliptic
Cross section), inequality (33) and the condition of parabolic boundary-
layer similarity may be used to find a criterion equivalent to k = - 1
for the maximum angle of attack consistent with a thin boundary layer.

CONCLUSIONS

* The laminar boundary-layer flow about a circular cone at large angles .
of attack to a supersonic stream has been analyzed in the plane of symmetry
with the following results:

1. At the bottom of the cone, profiles of meridjonal velocity and of
the gradient of circumferential velocity were determined and showed the
expected tendency of the boundary layer to become thinner on the underside
of the cone as the angle of attack is increased.

2. At the top of the cone, except for very small angles of attack,
the analysis (which is restricted to the plane of symmetry) failed for
the following reasons:

(a) For angles of attack greater than some rather small value, the
boundary layer brings information from beneath the cone into the vicinity
of the plane of symmetry at the top. Therefore, the analysis, which deals
only with the plane of symmetry, yielded indeterminate solutions.

(b) For angles of attack greater than some angle (roughly of the
order of the cone semivertex angle), no boundary-layer solution is pos-
sible. The characteristics of the outer flow and the known parabolic
similarity of the boundary layer would together imply that, beyond this
critical angle, there would be a component of flow leaving the boundary
layer. This is physically impossible, since a boundary layer always
entrains fluid. Thus, beyond the critical angle of attack, no solution
can exist for equations which presume a thin boundary layer.

For three-dimensional flow it is proposed that a separated region be
regarded as a vortex sheet embedded in the boundary layer, remaining flat
against the body if the assumption of a thin boundary layer is valid
throughout the region. If, however, the boundary-layer assumptions break
down anywhere in the separated region, it is inferred that the vortex
sheet may roll up to form strong vortices which may either remain attached
or be shed as a vortex street.
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On the cone, therefore, the critical angle of attack beyond which
no boundary-layer solution is possible at the top of the cone represents
the maximum angle of attack for which the boundary layer is everywhere
thin or, alternatively, the minimum angle of attack for which major dis-
ruption of the flow may be expected because of the formation of strong
vortex lobes. Beyond this angle of attack, strong viscous cross forces
may be anticipated.

A similar criterion could easily be obtained for the boundary layer
on any smooth conically symmetric body in supersonic flow.

The assumption of a suitable similarity law suffices to establish

a similar criterion if the boundary layer on a conical body is turbulent.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 15, 1952

AR
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APPENDIX A

SYMBOLS
The following symbols are used in this report:

C constant appearing in temperature-viscosity relation
(equation (5a))

Cfx component of skin-friction coefficient in x-direction
Cr component of skin-friction coefficient in ®-direction
cp¢ specific heat at constant pressure

F(X) function appearing in asymptotic representation of f

(equations (24))

(N, 0) function related to meridional velocity u by equation (2)

g(x,¢) function related to circumferential velocity w by
equation (2)

h height of outer edge of boundary layer

k , related to circumferential gradient of circumferential

velocity in plane of symmetry (equation (lOb))

M Mach number

P static pressure

97 © velocity vector at oﬁter edge of boundary layer

R, Reynolds number, pyujx/uy

RAJRSXfR6¢ Reynolds gumb?rs, p1u18/ 1y, P1uyBy/HT, Olulﬁp/ul;
respectively

T absolute static temperature

u meridional component of velocity
v component of velocity normal'to surface

W circumferential velocity component
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X coordinate along generators of cone
v coordinate normal to surface
a angle of attack (positive as shown in fig. l)

ratio of specific heats

JAN displacement surface

By mass-flow defect associated with meridional velocity pro-
file (equation (21))

8¢ mass-flow defect associated with circumferential profile
(equation (21))

® semivertex angle of cone

e sine of semivertex angle of cone

A dimensionless variable (equation (3))

! coefficient of viscosity

o) density

® angular coordinate around cone

?(k) function appearing in asymptotic representation of
(equations (24))

v(A) function related to circumferential velocity w 1in plane
of symmetry by equation (10a)

Subscripts:

max max imum

r reference condition, nonviscous flow at surface, at ¢ = O
or @ = 3, whichever ig appropriate ’

1 evaluation at outer edge of boundary layer (alternatively,

nonviscous flow at surface)

Subscript notation for partilal differentiation has been used
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Superscripts:

! Primes denote ordinary differentiation with respect to A or @
- Bar over quantity indicates evaluation of nonviscous

flow at surface when cone is at zero angle of attack
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APPENDIX P

NUMERICAL SOLUTION OF DIFFERENTIAIL EQUATIONS
By Lynn Albers

The two simultaneous nonlinear ordinary differential equations (1lla)
and (11b) together with boundary conditions (12) constitute a two-point
boundary value problem. The method of numerical solution used applies
directly only to problems fow which all boundary conditions are specified
at a single initial point (the origin, in the present case). Each numer-
ical integration was therefore performed starting with boundary condi-
tions (12a) and (12b) and a tentative specification of f''(0) and
¥''(0). In each case, such integration was carried out for a sufficient
variety of conditions f£''(0) and V¥''(0) so that the correct set of
initial conditions yielding the proper behavior at A == (boundary con-
dition (12a)) could be inferred to the desired degree of accuracy.

Integration was performed according to the following basic scheme:
With the values of f£'''(A) and ¥'''(\) given at five closely spaced
values of A, fourth-degree polynomials may be passed through the two
sets of values of f''' and ¢'''. Then, if £, £', £'', ¥, ¥', and
¥'' are known at the fifth point, the polynomial representations of £''!'
and V¥''' may be integrated to yield £, f£', £'', ¥, ¥', and ¥'' at
the next (sixth) point. These quantities may then be substituted into
differential equations (11) to yield f£''' and V¥''' at the sixth point.
In this way, the solution may be extended one step at a time, in each
step by use of the solution at the five previous points. In order to
begin this procedure, the solution must first be found at five points
starting at the origin and must be subject to boundary conditions (le)
and (12c) and the tentative selection of f£''(0) and ¥''(0).

This preliminary calculation was done in the following manner:
£''7(0) was calculated directly from equations (11) and (12) and was
used as an initial estimate of f£''' at the next four points. Given
£(0), £'(0), anda £''(0), the values of f, f', and f'' were computed
al the second point by integrating a fourth-degree polynomial passed

through the five values of f'''. 1In a similar manner, V¥, ¥', and y''
at the second point were found. Direct substitution into equations (ll)
then yields improved estimates for f£''' and ¢''' at the second point

and thus an Improved polynomial representation of these functions which
may be used to obtain values of £, f£f', £'', ¥, ¥v', and ¥'' at the
second point, and so forth, until improved values have been obtained at
the fifth point. This procedure was repeated in an iterative manner
until convergence was obtained at each of the five initial points.

All calculations were performed on the IBM Card Programmed Electronic
Calculator. Results are considered correct to four significant figures.
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Figure 3. - Cross-sectional views of boundary layer on cone at
' various angles of attack.
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