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SUMMARY 

An investigation has been made in the Langley stability tunnel t o 
determine the effect of high- lift devices on the low-speed static­
lateral-stability derivatives of a 450 sweptback wing of aspect ratio 4.0 
and taper ratio 0.6. Comparison between the increments in the static­
lateral - stability derivatives due to flap deflec tion obtained f rom experi ­
ment and the increments evaluated by a simple sweep theory is also made. 

The results of the investigation show that, f or moderate and high· 
lift coefficients, an increase in trailing- edge flap span, with or wi th­
out a leading- edge slat, generally resulted in increased effective 
dihedral and directional stability . The leading-edge slats tended mainly 
to extend the trends obtained at low lift coeffi cients f or the dihedral 
effect to nearer maximum lift . An applicati on of simple sweep theory 
and measured lift and drag increments to the evaluation of the increments 
in the static - lateral-stability derivatives due to trailing-edge flaps 
indicates that the trend and approximate magnitude of the variation of 
these increments with flap span are predicted in the moderate and high 
lift -coefficient range . 

INTRODUCTION 

Requi rements f or satisfac t ory high- speed performance of aircraft 
have resulted in configurations that differ in many respects fr om 
previous designs . As a result of these changes, the designer has little 
assurance that the low- speed characteristics will be satisfactory f or 
any specific configuration. The l ow-speed characteristics of wings 
suitable f or high- speed flight and the effect of high-lift devices on 
static l ongitudinal characteristics of these wings have already been 
investigated extensively. There is, however, only meager published 
information on the effect of high-lift devices on the static lateral 
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2 NACA TN 2819 

stability characteristics of such wi ngs. In order to provide additional 
information on this subject, an investigation of the effect of high-lift 
devices on the static lateral stability characteristics of wings suitable 
for high- speed flight is being made in the Langley stability tunnel. 
This investigation is part of a general program being conducted in the 
Langley stability tunnel to determine the effect of arbitrary changes 
in configuration on the stability characteristics of typ ical airplane 
models. The present investigation is concerned with the effect of high­
lift devices on the static lateral stability characteristics of a swept­
wing---body configuration. The ,high-lift devices consisted of plain and 
split trailing- edge flaps of various spans employed with and without 
full -span leading- edge slats. 

The model used i n the present investigati on had a 450 sweptback 
wi ng of aspect ratio 4 and taper ratio 0.6. The model was similar to 
that used previously in an investigation of the effects of vertical­
t a il size and length on the static lateral and yawing characteristics 
of an airplane model (refs . 1 and 2). 

SYMBOLS 

The results of the t ests are presented as standard NACA coeff icients 
of f orce s and moments which are referred t o the stability axes system 
with the origin at the projection on the plane of symmetry of the quarter­
chord point of the mean aerodynamic chord of the wing. The positive 
directions of the forces, moment s , and angular displacements are shown 
i n figure 1 . The coeffi cients and symbols are defined as f oll ows: 

Cy 

l ift coefficient , 

drag coeffic ient, 

Lift 
qSW 

Drag 
qSw 

profile drag coefficient, 

lateral - force coefficient, 

rolli ng-moment coefficient, 

yawing-moment coefficient, 

Lateral force 
qSW 

Rolling moment 
qSwb 

Yawing moment 
qSWb 

• 
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Cm 

C Lmax 

C1 

C2 

Gl 

G2 

q 

p 

V 

Vn 

Vs 

Sw 

Sf 

b 

b s 

Yf 

yW 

YLW 

YLf 

pitching-moment coefficient, 
Pitching moment 

qSwc 

maximum CL for the specific configuration 

primary force coefficient, 

primary force coefficient, 

component of resultant semispan load directed normal to plane 
formed by velocity vectors V and Vn (see fig . 13), 1b 

component of resultant semispan load directed parallel to Vn 
(see fig. 13), Ib 

12/ dynamic pressure, ~V, Ib sq ft 

mass density of air, slugs/cu ft 

free-stream velocity, ft/sec 

component of free - stream velocity normal to wing quarter - chord 
line, ft/sec 

component of free - s'tream veloc i ty parallel to wi ng quarter­
chord line, ft/sec 

wing area, sq ft 

area of wing within flap span, sq ft 

wing span, perpendicular to plane of symmetry, ft 

slat span, perpendicular to plane of symmetry, ft 

flap semispan, measured from and perpendicular to plane of 
symmetry, ft 

lateral distance perpendicular to plane of symmetry, ft 

effective lateral center of pressure of wing lift load 
perpendicular to plane of symmetry, ft 

effective lateral center of pressure of increment in lift due 
to flap deflection, perpendicular to plane of symmetry, ft 

------- ' ---
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effe ctive lateral center of pressure of increment in drag due 
t o flap defle ction , perpendicular t o plane of symmetry, ft 

chord of wing, measure d par allel t o plane of symmetry, ft 

mean aerodynamic chord, ~ /b/2 c2 dyW; measured parallel 
Sw Jo 

t o plane of symmetry, f t 

mean chord, 
Sw 
1); measured par allel to plane of symmetry, ft 

chord of slat, measured par allel t o plane of symmetry, ft 

chord of flap, measured par allel to plane of symmetry, ft 

l ongitudinal distance rearward from airplane center of gravity 
t o wing aerodynami c center, ft 

longitudinal distance f or ward fr om wing aer odynami c center to 
center of pressure of lift load due to flap deflection, ft 

l ongitudinal distance f orwar d fr om wing aerodynamic center to 
center of pressure of drag l oad due to flap deflection, ft 

b 2 

Sw 
aspect ratio, 

effective aspect ratio of flapped part of wing, 

taper ratio , ratio of tip chord to root chord 

angle of sweep , positi ve f or sweepback, deg 

Yf 
A -

b/2 

angle of sweep of flap hinge line, positive for sweepback, deg 

angle of attack,. measured in plane of symmetry, deg 

induced angle of attack 

angle of side slip , deg 

flap deflect ion relative t o wing, positive whe n traili ng edge 
is dow n, measured in plane normal t o hinge line, deg 
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Cy 13 

section lift -curve slope when placed normal t o air stream 

section lift coefficient 

flap - effectiveness parameter, measured in plane normal to 
hi nge line 

increment in Cl13 , Cn13 , CYI3 due 

tion at constant a or CL (for 

(c l ) - (C l ) 
13 wi ng wi th flaps 13 wing 

to flap deflec-

example, 

wi thout flaps) 

increment in lift coefficient due to flap deflection at a 
specific angle of attack 

increment in profi le drag coefficient due to flap deflection 

( ~Do)With flaps - (CDo)Without flaps) 

Subs cr ipts : 

L left semispan of wi ng , retreating semispan f or positive 
sideslip 

R right semi span of wi ng, advancing semispan f or positive 
sideslip 

MODEL- COMPONENT DESIGNATIONS 

5 

The components for the various configurations used in the present 
investigation are identified herein by the f ollowi ng letter designations : 

w wi ng alone 

WE wi ng-body confi guration 

J 
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S slat 

Fl plain flap with outboard end at 0 . 4b/2 

F2 plain flap with outboard end at 0 . 7b/2 

F3 plain flap with outboard end at 1. Ob/2 

F4 split flap with outboard end at 0 . 4b/2 

F5 split flap with outboard end at 0.7b/2 

F6 split flap with outboar d end at 1.0b/2 

MODEL, APPARATUS, AND TESTS 

The general research model used f or the present investigation was 
designed to permit tests of the wi ng-b ody configuration alone or with any 
of various combinations of slats and traili ng- edge flaps . A sketch of 
the complete model is presented in figure 2, and a list of pertinent 
geometric characteristics of the various component parts is given in 
table I . 

The wi ng had 450 sweepback of the quarter -chord line, an aspect 
ratio of 4 .0, a taper ratio of 0 . 6, and NACA 65A008 airfoil sections 
parallel to the plane of symmet~y . The ordinates for the NACA 65A008 
airfoil section are given in table II. The wing was mounted along the 
body center line . The body was a body of revolution with a fineness 
ratio of 6 . 67 . The body profile followed a circular arc over the front 
half and was faired to a blunt trailing edge over the rear half. Ordi­
nates for the body profile are given in table III. 

The high- lift devices used in the tests consi sted of slats and 
plain and split trailing- edge flaps . The slats were of full span with 
a chord of 10 percent of the wing chord . This configuration was arbi­
trarily chosen t o give increments in lateral stability with no attempt 
made to obtain optimum longitudinal stability . The ordinates of the 
slat are given in table IV and the slat- extension data are presented in 
figure 2 . The chords of both the split and plain trailing- edge flaps 
were 20 percent of the wing chord . Three spans were used for both types 
of flaps which extended from the wing-body juncture to stations 40 and 
70 percent of the wing semispan and to the wing tip. The deflection of 
the two types of flaps differed in that the split flap was deflected 600 

from the lower surface or 54 . 60 fr om the chord plane, whereas the plain 
flap was deflected 400 from the chord plane. All parts of the model 
except the slats were constructed of mahogany. The slats were constructed 



• 

NACA TN 2819 

of metal to insure suffi cient strength because of their thin section . 
A complete list of the configurations investigated is presented in 
table V. 

7 

The model was rigidly mounted on a single - strut support at the 
quarter -chord point of the wi ng mean aerodynamic chord which coincided 
with the midpoint of the body length . Forces and moments were measured 
by means of a conventional six-component -balance system. Photographs of 
the model as mounted in the tunnel for testing are presented in figure 3. 

The tests of the present investigation were made in the 6- by 6 - f oot 
test section of the Langley stability tunnel. The dynamic pressure f or 
the tests was 39.7 pounds per square f oot, which corresponds to a Mach 

number of 0 . 16 and to a Reynolds number of 0. 89 X 106 based on the wing 
mean aerodynamic chord. The angle of attack was varied fr om _60 t o 240 

and the angle of sideslip fr om about 5° t o -50. 

CORRECTIONS 

Approximate jet-boundary corrections based on unswept-wing concepts 
were applied to the angle of attack, drag coefficient, and r olling­
moment coefficient. The dynamic pressure and drag coefficient were cor­
rected for blocking effects by the methods presented i n reference 3. 
The data have not been corrected for turbulence or support - strut inter ­
ference, i nasmuch as these effects are believed t o be negligible for 
the parameters with which this paper is co ncerned. 

ures 

RESULTS AND DISCUSSION 

Presentation of Results 

The basic data obtained in this investigation are presented in fig ­

CL2 
4 to 8 . A plot of CD - --- against a for the wing-body config-

rcA 
uration and wing-body configuration with slats is presented in figure 9. 
A comparison of the measured increments in the static - lateral - stability 
derivatives due to flap deflection and calculated increments are pre ­
sented in figure 10 for the wing used in the present tests . In addition, 
similar comparisons are made for the wing of reference 4 in figure 11 
and for the sweptback wing of reference 5 in figure 12 . 

• 
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Longitudinal Stability Characteristics 

The static-longitudinal-stability data are presented in figures 4 
to 7. Inasmuch as the results for the wing-body configuration are very 
similar to those presented in reference 6 where the analysis of the 
results is adequately covered, they are not discussed in this paper. 

For those configurations without slats (figs. 4 and 5), deflection 
of trailing- edge flaps, either plain or split, did not appreciably 
change the longitudinal stability characteristics from those obtained 
for the wing-body configuration alone up to about 0.75 maximum lift coef­
ficient, although the change in trim was as expected. The severity of 
the instability which occurred just prior to the stall for the wing-body 
configuration, however, became greater as the flap span was increased. 
With the leading- edge slats extended (figs. 6 and 7), deflecting the 
trailing- edge flaps had a slight beneficial effect on the longitudinal 
stability characteristics. 

In order to interpret data of configurations including a wi ng, 
consideration must be given to the angle-of-attack range over which the 
flow does not separate from the wing. As pointed out in reference 7, 
an indication of the limit of this range can be obtained by locating the 

CL
2 

initial break in the plot of CD - against angle of attack. A plot 
rr.A 

of this parameter is presented in figure 9 for the wing-body configura­
tion and the wing-body configuration with slats extended. The curve for 
the wing-body configuration without slats initially breaks at about 60

; 

Whereas, with the slat extended, the initial break is delayed until 
about 140

. For the wing-body configuration without slats, corresponding 
breaks were found in the CL' Cm, and CI~ curves. No such breaks 

were found f or the configurations with slat extended. Inasmuch as 
tares were not taken into account, the absolute values of the drag coef­
fi cients should not be considered as representative of free-air values. 
The increments in drag coefficient due to flap deflection and the varia­
tion of drag with lift, however, should be reasonably accurate. 

Although the increments in lift due to flap deflection for the 
plain flap were equal t o or greater than those for the split flap, the 
increments in drag were somewhat less for the plain flap than for the 
split flap . The lift - drag ratiO, therefore, for a given lift coefficient 
was higher f or the plain flap than for the split flap, either with or 
without the slat . 

------- - --- -
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Static Lateral Stability Characteristics 

The static lateral stability characteristics for the wing-body 
combination with plain and split flaps both with and without leading­
edge slats are presented in figure 8. 

9 

For the configurations without slats, the effect of flap deflection 
on CZS' CnS ' and CyS is generally similar to the effects found pre-

viously in reference 4. As discussed in reference 4, the short-span 
flap shifts the center of pressure inward from its position without 
flaps; consequently the CIS curve is shifted in a positive direction. 

Increasing the flap span generally shifts the curves in a negative 
direction because the center of pressure is moved outward from its posi­
tion with short-span flaps . In addition, the flaps delay the positive 
break in the CIS curve until higher lift coefficients are attained so 

that at high lift coefficients the value of CIS becomes more negative 

for all the configurations with flaps than for the configuration without 
flaps . 

The value of Cns = -0.001 for the wing-body configurati on is in 

good agreement with the results presented in reference 6 for this con­
figuration, and this instability is entirely due to the unstable moment 
of the body. Increasing the flap span gener ally tended to make CnS 
less negative (decreasing the directional instability) particularly at 
the higher lift coefficients. As a matter of fact, at about 0.9 maximum 
lift coefficient, the instability introduced by the body was nearly 
removed by the largest -span plain flap and fully removed by the largest­
span split flap. 

Additio n of full -span leading- edge slats to the various configura­
tions with a nd without trailing- edge flaps (figs . 8(c) and 8(d)) gen­
erally extended the trends of the CIS and CYs curves obtained at low 

lift coefficients to higher lift coefficients. 
erally introduce a slightly stable variation of 

However, the slats gen­
CnS with increasing 

lift coefficients until the final break occurs just before maximum lift . 
The shifts in the values of CIS due to trailing- edge-flap deflection 

were similar in nature but of different magnitude with slats added to 
the wing as compared to the wi ng without slats (compare figs . 8( c ) 
and 8(d) with 8(a) and 8(b)) . Although the slats generally decreased 
the slope of CZS against CL, they extended the linear part of the 

curve to nearly maximum lift, and, therefore, the maximum values of Cz 
S 

were greater negatively (greater dihedral effect) with slats than without 
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the slats . The effect of flap span on Cn~ was less definite with 

the slats than without the slats . 

The increments in Cl~' Cn~' and Cy~ due t o flap deflection at 

several lift coeffi cients are plotted against flap span for the various 
configurat ions in figure 10 . The data show that for a selected value 
of l ift coeffi cient 6Cl~ became more negative as the flap span 

increased (fig . 10(a)). In general 6Cn~ also increased slightly with 

increasing flap span ( f ig . 10(b)) . At any flap span, 6Cn~ varied 

erratically with lift up to about O. 9CLmax . At this value of CL, 

6Cn~ was almost always greatest . 

With the slat ext e nded , the increments in Cl ~ or Cn~ due to 

deflection of e i ther the split or plain trailing-edge flap were smaller 
generally than the increment obtained when the respective flaps were 
deflected with the slat clos ed . With the slat extended, the increm~nts 
i n Cl~ or Cn~ were smaller whe n the plain flaps were defle cted than 

when the split flaps were deflec ted. The larger displacement obtained 
when the split flaps were i nstalled , as compared with that obtained with 
the plain flaps with or without the slats, could be due to the fac t that 
the spl it flaps were deflected t o a larger angle . (Se e fig . 2 . ) 

Comparison of Calculat ed and Measured Value s 

In order t o estimate the effe ct of flaps on the static lateral 
stability at an early stage i n the design of swept -wing aircraft, theo­
retical expressions for the increments in Cl~ ' Cn~' and Cy~ due to 

flap deflection (6Cl~' 6Cn~' and 6Cy~ ) have been developed. A simple 

sweep theory similar t o that which is used in reference 8 t o develop 
stability derivatives for a wi ng alone was used herein with the addi ­
tional simplification that the increments in load due to flap deflection 
are concentrated at the respective centers of pressure of the l oads . 
The spanwise shift of the centers of pressure due to the presence of the 
body were not take n into a ccount in developing these expressions . Since 
the same simple sweep theory was used herein as was used in reference 8, 
it is subject to the same limitations . The calculated results, there­
fore , indicate the trends and only the approximate magnitude of the 
effects of the flaps on the static - lateral-stability derivatives . 
Because of the assumptions made in the development of the theory, the 
accuracy decreases r apidly below a flap span of O. 4b/2 and this circum­
stance should be borne in mind when the se results are applied to such 
short flap spans. The formulas obtained for the increments i n the 

I 
-----' 
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stability derivatives due to flap deflection are: 

6CLf A' + 2 cos 1\.( YLf 
- --2-- A' + 4 cos I\. tan I\. + tan I\.h) b!2 (1 ) 

3 tan ~(SiZ A x - xLf cos A YLf ) (x -xD YDf) 
2 + 2 b/2 + 6CD f + tan I\.h b/2 c' o Ac' 

(2) 

6CY13 
2(6CL~)2 ~ tan I\. A' + 2 cos ~(tan I\. + tan Ah~ - 6CDo (3) S tan I\. 2 A' + 4 rrA' .-f. cos 

Sw 

A full development of these formulas is given in the appendix. The total 
stability derivative for a flapped wing is obtained by adding the 
increment to the value for the wing alone at the angle of attack under 
consideration. 

The values of 6CI13, 6C n13 , and 6CY
13 

obtained by the use of these 

formulas in combination with the experimental values of 6CLf and 6CDo 
for the wing used for the present tests are presented in figure 10 f or 
values of CL = 0.5, 0.75CLmax' and 0.9CLmax. Both experimental and 

calculated values of 6CI13, 6C n13 , and 6CY13 are presented at lift coef-

ficients of 0.75CLmax and 0.9CLmax f or the wing of reference 4 (A = 2.61, 
1\.= 450

, A = 1) in figure 11, and for the sweptback wing of reference 5 
(A = 5, I\. = 350 , A = 0.5) in figure 12. For the comparisons at 0.75Cr. "'-'ID.ax 
and 0 . 9Cr ,the values f or the wing with flaps at 0.75CL and 0.9CT_ "'-'ID.ax max ~ax 

were compared with the values f or the wing without flaps at 0.75CLmax 

and 0 . 9CLmax. A comparison betwee n the calculated and experimental values 

in figures 10, 11, and 12 shows that, in general, the proper variation of 
the stability derivatives with flap span and the approximate magnitude 
of the values of the stability derivatives are predicted by the theory. 

I 

l~_ 
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The elementary considerations employed in this analysis, however, 
because of the exclusion of such items as separation and chordwise 
loading, do not appear t o be sufficiently rigor ous f or an exact solution 
to problems of this natur e . 

CONCLUSIONS 

The r esults of an investigation t o determine the effect of trailing­
edge - flap span on the static lat eral stability characteristics of a 
450 sweptback- wing--body confi guration with and without f ull - span l eading ­
edge slats indicate the f ollowing conc lusions : 

1 . At moderate and high lift coefficients, an increase in trailing­
edge flap span , with or without leading- edge slats , generally increased 
the effe ctive dihedral and the direc ti onal stability . 

2 . The leading- edge slats tended t o extend the trends obtained at 
low lift coeffic ients f or the dihedral e ffe ct t o nearer maximum lift . 

3. An appli cati on of simple sweep theory, together with experimental 
lift and drag increments , t o t he evaluation of the increme nts in the 
stati c - lateral - stability derivatives due to tra i l i ng - e dge flap s i ndica te s 
that the t r e nd and appr oximate magnitude of the variation of these 
increments with flap span ar e predic ted by the theory in the moderate 
and high l i ft - coeffi cient range . 

La ngley Aeronautical Laboratory , 
Nationa l Advisor y Committee for Aer onautics, 

Langley Field, Va . , August 29 , 1952 . 

--------
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APPENDIX 

INCREMENTS IN STATIC-LATERAL-STABILITY DERIVATIVES DUE TO 

TRAILING-EffiE FLAP DE-FLECTION FOR SWEPT WINGS 

In the development of the formulas for evaluating the increments 
in the static-lateral-stability derivatives (6C2~' 6Cn~' and 6Cy~) 
due to trailing-edge flap deflection, the incremental lift 6CLf and 

profile drag 6CDo coefficients for the particular wing under considera­

tion are assumed to be available from experimental data for use in the 
formulas. The derivatives presented herein are in the form of increments 
to be added to the wing-alone values at the angle of attack for which 
they were computed. 

The method used herein consists of evaluating the loads due to flap 
deflection with approximate consideration given to the effects of aero­
dynamic i nduction on each of the wing semispans. The location and 
orientation of forces due to flap deflection used in this analysis are 
shown in figure 13. The magnitude and orientation of the semispan loads 
under sideslipping flight give rise to the stability derivatives. It is 
realized that increments probably exist in the stability derivatives of 
unswept wings due to flap deflection which also should be included, but 
the means for their evaluation is not readily apparent. 

Centers of Pressure of Incremental Flap Load 

For the purpose of determining the flap - load centers of pressure, 
the wing is assumed to be at zero angle of attack (zero wing lift) where 
the entire load is due to flap deflection. The spanwise shift in the 
centers of pressure of the load that would result from the presence of 
a body was not taken into consideration. Experiment has shown that for 
a wing with flaps, the loading of the wing is high over the flapped part 
of the wing and that, outboard of the flap, the loading drops rapidly 
to zero at the tip. In this analysis, the loading is assumed constant 
over the flapped part of the wing and is assumed triangular outboard of 
the flaps with the maximum value varying directly with the flap span. 
(See fig . 14.) Comparison of the derivatives calculated by using the 
span loading obtained from lifting-line theory and the assumed span 
loading for several cases indicated that the difference between the 
derivatives was within the accuracy of the theory. The flap chord was 
selected as 20 percent of the wing chord, and the flap load was assumed 
to act at the 50-percent-chord line of the Wing. The incremental profile 

--- --~--------
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drag was assumed uniform across the flap span . The effect of taper was 
taken into account in the expression for the lift and drag centers of 
pressure which in this analysis depend only upon flap span and taper. 
The span - load distribution of a wing with flaps indicates that, for the 
purpose of determining the aerodynamic induction, the effective aspect 
ratio of the flapped part of the wi ng A' should be used rather than 
the aspect ratio of the wing . 

Expressions for the centers of pressure of the flap loads are 

YLf 
. b/2 

XLf 

e' 

xDf 

e' 

Yf 
1 + A + (7 + A)b/2 

1 (
Yf )2 (Yf)3 (9 - 5A) b/2 + 3(1 - A) b/2 

8 + A - (7 - 4A) Y f + 2 (1 _ A) (Y f) 2 
b/2 b/2 

2 

YLw 1 1 + 2A 
b/2 3 1 + A 

1. Yf _ ~(Yf ) 2 
2 b72 3 _b/2_ 

1 - A Yf 
1 - - 2 - b/2 

A tan A 1 + 2A YLf~.5(A - 1) + A t~n AJ _ 0.5 
6 1 + A - b/2 1 + A ~ 

A tan A 1 + 2A _ YDf(A tan A - 1.3~) -~ 
6 1 + A b/2 2 1 + A 1 + A 

Sideslipping Flight 

In sideslipping flight for a constant -chord swept wing, the span­
load distribution is considered, for this analysis, to be the same on 
both wing semispans although the magnitudes are different. The loads 
are affected by sideslip because of the manner in which sideslip affects 
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the velocities normal to the quarter-chord line . In sideslipping 'flight, 
the leading semispan (right semispan in this analysis) has less effective 
sweepback, whereas the trailing semispan (left semispan) has greater 
effective sweepback. The velocity component on the left semispan is 

cos(A + ~) altered, therefore, by the fa c t or For a flapped wing of 
cos A 

infinite span, the increment in lift due to sideslip on the left semi ­
span can, therefore, be expressed as 

Inasmuch as 

6 c z 0 
~=O 

6 cZ 0 cos A cos Ah 
A=O 

and for small angles of sideslip sin ~ =~, cos ~ = 1, and sin2~ is 
negligible, the increment in lift can be rewritten as 

(Al) 

The increment in primary f orce coefficient for a finite span wing 
is expressed as 

and 

The lift distribution resulting fr om sideslip is a ntisymmetrical with 
respect t o the plane of symmetry; therefore, the aspect ratio that 
determines the magnitude of the i nduced angle of attack i n the expres -

sion ai = CL is one - half of the wi ng geometric aspect ratio . Since 
rrA 

• 
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the aspect ratio is cons idered perpendicular to the relative wind, the 

A' cos2 (A + (3) 
effective aspect r atio become s ~ 2 Inasmuch as the induced 

cos A 
angle of attack in a plane par allel t o the plane of symmetry is 

cos A 
ai = co s(A + (3)' the expression f or 6CLL becomes 

As explained in refere nce 8 , the incrementa l primary force coeffi cient 
can be rewr itten as 

Now the lift increme nt due to flap deflection for an unswept wing is 
given by 

The introduction of sweep changes this expression t o 

The section lift coeff icient due t o flap deflection and the induced 
SW 

6CL:r -
Sf angle of attack may he written as 

therefor e , the expression f or a swept wi ng becomes 

• 

A' Sf co s A cos ~ 
Sw 
A I + 2 cos A 

and 
rrA ' 

(A2) 
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With the aid of equations (Al) and (A2), 6 C1L can be reduced to 

6CLf sin(A + Ah) A I + 2 cos A 
- f3 -2- cos A cos Ah A' + 4 cos A 

17 

The total of the symmetrical and unsymmetrical values of the primary 
force coefficient on the left semispan is 

(A4) 

and by similar analysis for the right semispan 

6CLf E sin(A + Ah) A' + 2 cos ~ 
Cl -- 1 + f3 R 2 cos A cos Ah A I + 4 cos A 

-
(A5) 

Continuing in a manner parallel with that of reference 8 permits 
the primary f orce coefficient C2L to be expressed as 

(A6) 

and 

(A7) 

Since the profile drag acts parallel to the air stream, the sweep 
of the flap hinge line does not enter the consideration . It can be 
shown, therefore, that 

6 CDo cos2 (A + (3) 

2 cos2A 
(A8) 
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and 

(A9) 

Rolling moment .- The increment in rolling-moment coefficient due 
to flap defle ction in sideslip can be expressed as 

(A10) 

Equations (A4) and (A5) can be combined with equation (A10) to obtain 

_ 6CLf A I + 2 cos l\. (tan l\. YLf 
4 + tan l\.h) b/2 2 A I + cos l\. 

(All) 

Lateral for ce .- The theory indicates that the increment in lateral­
force coeffi cient due to flap deflection in sideslip should be 

(A12) 

Substituting equations (A4) to (A9) into equation (A12) gives the fol­
l owing expr essions f or the derivative: 

tan l\. 
2 

A I + 2 co s l\. (tan l\. + tan l\.h~ - 6 CD 
A I + 4 cos l\. ~ 0 

Yawing moment .- The increment in yawing-moment coefficient due 
to flap defle ction in sideslip can be expressed as 

(A13 ) 

(A14) 
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With the aid of equations (A4) t o (A9), the incremental derivative 
becomes 

+ 2 cos 11. ( ) + 4 tan A + tan Ah -
cos A 

3 tan AI (sin I\. X - xLf + cos A YLf) + 
2 J \ A c' 2 b/2 

19 

(A15) 
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TABLE I 

PERTINENT GE OMETRIC CHARACTERISTICS OF MODEL 

Body: 
Length, in. 
Fineness ratio 

Wing: 
Aspect ratio . . . . . . . 
Taper rati o . . . . . . . 
Quarter-chord sweep angle, deg 
Dihedral angle, deg 
Twist, deg . . . . . 
NACA airfoil section 
Area, sq in. 
Span, in . 
Mean aerodynamic chord, in. 

Slats : 
Span ratio, 
Chord ratio, 

bs/b 
cs/c 

Trailing- edge split flaps : 
Chord ratio, cf/c. . . 
Deflection from lower surface, deg 
Outboard end of flap at -

Yf 
0 . 40b!2' in. . ............ . ... . 

Yf 
0 . 7%12' in. . ............... . ..... . 

Yf 
1.00b!2' in . 

Trailing-edge plain flaps : 
Chord ratio, cf/c..... . . . 
Deflection from chord line, deg 
Outboard end of flap at -

I. ,", Yf o . Lf-I.)---;-I ' in. 
b 2 

Yf 
0 .70b!2' in . 

Yf 
1 . 0~1 ' b 2 

in. 

21 

40 . 0 
6 . 67 

4 .0 
0 . 6 

45 
o 
o 

65AOOS 
324 

36 
9 .19 

0.S3 
0.10 

0.20 
60 

7.20 

12.60 

lS .OO 

0.20 
40 

7.20 

12 . 60 

lS .OO 

~ 



22 

TABLE II 

ORDINATES FOR NACA 65A008 AIRFOIL 

~tation and ordinates in percent airfoil chor~ 

Station 

o 
.50 
.75 

1.25 
2 . 50 
5·00 
7·50 

10 .00 
15.00 
20 .00 
25 .00 
30.00 
35 .00 
40.00 
45.00 
50 .00 
55 .00 
60 .00 
65 .00 
70.00 
75·00 
80.00 
85 .00 
90.00 
95.00 

100.00 

L. E . radius: 

Ordinate 

o 
. 615 
.746 
.951 

1.303 
1. 749 
2.120 
2.432 
2.926 
3. 301 
3.585 
3·791 
3.928 
3.995 
3.988 
3.895 
3.714 
3.456 
3.135 
2.763 
2.348 
1.898 
1. 430 

.960 

.489 

.018 

0.408 

- - ----------

NACA TN 2819 
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TABLE III 

BODY ORDINATES 

@tation and ordinates in percent body 1engt~ 

Station Ordinate 

0 0 
2 . 5 . 7 
5·0 1.4 
7 . 5 2 .1 

10. 0 2 .7 
12 . 5 3. 3 
15 .0 3.9 
20 . 0 4. 8 
25·0 5.7 
30 .0 6.3 
35 ·0 6.8 
40 .0 7 .2 
45 . 0 . 7.4 
50 .0 7 · 5 
55 .0 7 . 5 
60 .0 7 · 3 
65 . 0 7 ·2 
70.0 6. 9 
75 ·0 6. 6 
80 .0 6.2 
85 .0 5· 7 
90. 0 5. 1 
95 ·0 4. 5 

100 . 0 3.8 
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TABLE IV 

ORDINATES FOR SLAT AND MAIN AIRFOIL SECTION 

Q?tations and ordinates in percent airfoi l chor~ 

Slat Main airfoil1 

Upper surface Lower surface Upper surface 

Station Ordinate Station Ordinate Station Ordinate 

0 0 0 0 
. 498 . 622 .498 -. 622 
.747 .747 .747 -.747 

1 . 253 . 951 1.253 -. 951 
2 . 498 1.298 2 .000 - 1.173 2 .000 -1.173 
4. 996 1.751 2 . 667 -.098 2.667 -.098 
7 · 502 2 .116 3 · 333 . 338 3 · 333 . 338 

10 .000 2 .427 4.000 . 658 4.000 . 658 
15 .004 2 · 933 4. 667 . 924 4.667 . 924 

5 · 333 1.173 5.333 1.173 
6 . 222 1.449 6 .222 1.449 
7 .111 1 . 689 7. 111 1.689 
8 .000 1.902 8 .000 1 . 902 
8.889 2.116 8 . 889 2 . 116 
9 .778 2 . 311 9 .778 2.311 

10 .000 2.338 10.000 2. 338 
15.004 2 . 933 10 . 667 2.480 

11. 556 2 . 613 
15.004 2.933 

lBehind the 15-percent station, the upper surface of the airfoil 
is the same as the basic NACA 65A008 airfoil. 

Behi nd the 2-percent station, the l ower surface of the main air­
f oil is the same as the basic NACA 65A008 airfoil. 

I 

~ 
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TABLE V 

CONFIGURATIONS INVESTIGATED AND INDEX TO THE FIGURES 

HAVING DATA ON THESE CONFIGURATIONS 

Slats retracted Slats extended 

Configurationl Figure Configurationl Figure 

WB 4,5,8(a),8(b) WE + S 6,7,8( c ),8(d) 
WB + Fl 4,8(a),10 WE + S + Fl 6,8( c ),10 
WE + F2 4,8(a),10 WE + S + F2 6,8( c ),10 
WE + F3 4,8(a),10 WE + S + F3 6,8( c ),10 
WB + F4 5,8(b),10 WE + S + F4 7,8(d),10 
WB + F5 5,8 (b) ,10 WB + S + F5 7,8(d),10 
WB + F6 5,8(b),10 WE + S + F6 7,8(d),10 

lWE wing-body configurati on 
S slats extended 
F flap; subscript s 1 , 2, and 3 r efer t o plain flap of O. ~2' 

b b \ 
0.72, and 1 .02 , and subscripts 4, 5, and 6 refer to split 
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Figure 1 .- System of axes used . Arrows indicate positive direction of 

angle s , force s , and moments. 
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1 

Slat 
Section A-A 

(
Hmge Ime OBc~ 

~ChOnih~1 
"ioo 

r 60
0 

t ", ~ 
Plain COl 

Flops Jpllt 
Section 8-B 

- RIght wmg semIs pan shows slats m extended posItIon 

~1~~-------------- 4000 ~~----------------~ 

2000 --+---------~I t 
I 
~ 
N ....... 

Q25cand 
moment center -t----"'..-----~ 6.00 max dlam. 

OBOe 

Figure 2.- Dimensions of the model . Wing has aspect ratio of 4) taper 
ratio of 0. 6) and was mounted along the body center line . All dimen­
sions are in inches . 
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(b) 

(a) Wing-boiy configuration with full - span split flap . 

Wing-body configuration with slats and O . 7~ plain flaps . 
2 

Figure 3.- Model as mounted in the Langley stability tunnel for testing. 

~- -~~. ~~---
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Figur e 8 .- Variation of t he stat i c -later a l-stabil i ty parameters wi t h 
lift coefficient f or the va rious configurations tested . 
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Figure 8 .- Continued. 
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