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SUMMARY 

The natural-convection phenomenon is analyzed and it is found that 
the flow and heat transfer, in general) not only are functions of the 
Prandtl and Grashof numbers but also depend on a new dimensionless 
parameter . If this parameter is not negligibly small, the compression 
work and frictional heating may appreciably affect this mode of heat 
transfer. 

Consideration is given to the particular case of fully developed 
natural-convection flow of fluids with and without heat sources between 
two parallel long plane surfaces the temperatures of which are main
tained constant but not necessarily equal . These plates are oriented 
in the direction parallel to the generating body force. Solution of 
this problem yields detailed information on the velocity and tempera
ture distributions and heat transfer to be expected for such flows 
in tall narrow channels, on the effect of heat sources in the fluid, 
and on the effect of frictional heating on the process. It is found 
that the frictional heating and the heat sources increase the velocities 
and temperatures within the channel formed by the two surfaces. 
Increasing the ratio of the two wall- temperature differences (wall 
minus outside ambient) also leads to similar results. 

INTRODUCTION 

Flows which are generated entirely by the action of body forces 
(such as the graVitational force) on fluids with denSity variations 
due to heating are referred to as natural- or free - convection flows. 
It has previously been pointed out (see reference 1, for example) that 
natural-convection fl ows are of practical importance in aeronautics . 
The use of natural-convection flows in hollow passages in turbine rotor 
blades for cooling is one of the applications of this phenomenon in 
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practice. With the advent of the possibility of nuclear power, the 
natural-convection process becomes of even greater importance, because 
this mode of heat transfer appears in some of the many schemes for 
extracting the heat energy from an atomic pile. The use of li~uid 
metals (in which heat may also be generated by heat sources) as the 
heat-transfer fluid for such applications is being considered because 
of their suitable behavior at the high-temperature levels that would 
be associated with atomic power. 

To date the theoretical investigations of natural-convection heat 
transfer have been restricted to such simple configurations as the 
single vertical flat plate and the horizontal cylinder. Further, 
the fluid considered in these investigations is usually air. The 
work done on more complex configurations, such as the natural
convection flow in channels or tubes, is for the most part experimental 
or semiempirical . An extensive experimental semiempirical study was 
performed by Elenbaas, who in reference 2 analyzed in an approximate 
manner the natural-convection heat transfer between two parallel plates 
heated to the same temperature and aiso made measurements for the case 
of the flow of air. In reference 3 semiempirical Nusselt numbers are 
compared for experiments of air flow in vertical tubes of different 
cross section, and in reference 4 (primarily a summary paper) 
functional equations for the Nusselt number are obtained by means of 
similarity considerations (that is, essentially by dimensional 
analysis). These e~uations are then rewritten by correlation with 
experimental or approximately computed results to yield semiempirical 
formulas for the Nusselt numbers. More recently, experimental 
investigations of natural-convection flows of li~uid metals have been 
made; the results of such a study on horizontal cylinders are discussed 
in reference 5. None of this work on the more complex configurations 
yields detailed information on the velocity and temperature distribu
tions, and it does not apply for fluids containing internal heat 
sources. Further, the results predicted by these semiempirical 
formulas deviate in some cases from the existing experimental data. 

Therefore, in order to answer some of the many pending ~uestions 
concerning the natural-convection flow of various fluids in enclosures 
and to obtain information on such flows of fluids containing heat 
sources, t4is phenomenon is analyzed herein. Particular consideration 
will be given to a simplified but representative case; namely, the 
natural-convection flow between two long parallel plates at constant 
temperatures oriented parallel to the direction of the generating 
body force. This specific problem not only retains many of the 
physical characteristics associated with natural-convection heat 
transfer but also leads to a tractable mathematical problem. 
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ANALYSIS 

General Considerations 

In general, the differential e~uations governing the laminar steady 
flow of a viscous, compressible, heat-conducting fluid which is subject 
to a body force are, in rectangular Cartesian tensor notation (see 
reference 6), 

(1) 

II 

(3 ) 

P = P(P,T) (4) 

~ = ~(T) (5 ) 

and 

k = k(T) (6) 

(A complete list of the symbols used herein is presented in appendix A.) 
E~uations (1), (2 ), and (3 ) express, respectively, the conservation of 
mass, momentum, and energy; e~uation (4) represents a thermodynamic 
e~uation of state; and e~uations (5) and (6) represent the Yiscosity
temperature and thermal-conductivity - temperature variations. If ~ 

and k are assumed to be constant and if the coefficient of 
volumetric expansion f3 is introduced in the body force term (see 
appendix B), e~uations (2 ) and (3 ) become 

and 

(2a) 

PCyUj ~j " Q - P ~~ + k dX~~~j + {~~ (~~+ ~D -~ (:~y}3a) 
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where PD = P - Ps ' e = T - Ts ' and the subscript s denotes a reference 

condition usually taken to be the hydrostatic condition. 

In a manner similar to that of reference 7, e~uations (2a) and (3a) 
(neglecting heat sources) can be written in dimensionless form as 

(2b) 

and 

(3b) 

by letting ui = Ui/U, e* = s/sw, xi = xi /d and p = p/pij2. Here, 
U should denote a uni~ue velocity which characterizes the flow, and 
in the case of forced-convection flows this is taken to be the pre
scribed reference velocity Uoo (as for example, the free-stream 
velocity) . From e~uations (2b) and (3b) it can then be seen that the 
solutions of the dynamic and thermodynami c problems for the forced
convection flow (at velocity Uoo ), taking into account also the body 
force action, are given in terms of four parameters; namely, the 
Grashof number Gr, the Reynolds number Re, the Prandtl number Pr, 
and the dimensionless temperature number e . The parameter e is 
defined 

and it is argued that if U} < < cp (Tw - Ts) or, e~ui valently, if 

Sa < <Sw' then the compression work and frictional dissipation terms 

(the last two terms, respectively, in e~uation (3b )) can be neglected 
with respect to the conduction and convection. For the case of pure 
natural-convection flows, there exists no uni~ue prescribed character
istic velocity Uoo , so that the parameter e as well as the Reynolds 
number Re" becomes meaningless . E~uations (1), (2a), and (3a) still 
hold, but now instead of using U 00 as a reference velocity to obtain 
dimensionless e~uations, some group of the physical ~uantities (such 
as fX' SW' and ~ ) which are directly connected with the natural-
convection phenomenon must be utilized. Such a group was found in 
references 1 , 2, and 8 to be 

U (7) 
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(For convenience, f X is here taken to be the negative of the X-component 

of the body force per uni t mass. ) Hence, with this expression for U 
as the reference velocity, the dimensionless forms of the momentum and 
energy equations for the case of natural-convection flow are 

and 

Setting 

1 "(}e* 
Pr Gr dXjdXj 

(3fxd _ 
Gr ---- = K, equation (3c) can be written as 

cp 

(3c) 

(3d) 

The new dimensionless group ~fxd/cp which appears here was first 

encountered in the analysis of reference 9. It does not appear explicitly 
in that reference, however, since for the particular case considered it 
was approximated by PgdjP by means of the state equation for a gas, 
and this last expressi on was negligibly small. This group was also 
obtained in reference 5 by a formal dimensional analysis, but its 
physical significance and function were not discussed. By comparison 
of equations ' (2c ) and (3d) with (2b ) and (3b) it can be seen that for 
the case of pure natural- convection flow the Grashof number is 
analogous to the Reynolds number for forced flows and the factor K 
is analogous to the dimensi onless temperature number 8 . In fact, 
Gr and K are, respective ly, simply Re and e based on U as 
given in equation (7). Therefore, for pure natural- convection flows 
the influence of the compression work and frictional dissipati,£n terms 
in the energy equation should be determined by the parameter K and 
not by 8 . Previously, the effects of the compression work and 
frictional heating had been neglected in the natural-convection 
phenomenon on the basis of qualitat ive arguments showing that 8 was 
always small; in order to do so a guess had to be made of the value of 
the reference velocity. Since it has here been demonstrated that K, 
and not 8 , is critical in determining the influence of the compression 
work and frictional heating on the flow and heat transfer in the purely 
natural-convection process, it must be determined whether in actual 
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practice K is always negligibly small. If K is always very small, 
then, of course, there would be no need to extend the previous work in 
this respect . However, calculations show that even under relatively 
mild conditions, moderately large values of K are possible. When it 
is further realized that the three prime physical factors in the 
natural-convection process, fX ' ~,and 8w' appear in the numerator of 

the expression for K and that in the more recent applications these 
could easily be many times those values usually associated with this 
mode of heat transfer (for example, fX could be as much as 105 g in a 

centrifugal field, and ~ and 8w also could be much larger . in atomic 

energy applications), it becomes clear that in many practical cases the 
compression work and frictional heating will influence the natural
convection flow and heat transfer . 

An interesting and different characteristic of the natural
convection phenomenon becomes evident if the compression work and 
frictional heating are taken into consideration. In this case, for 
example, the frictional heating is added to the physically imposed 
heat and should act as a heat source in the fluid and, hence, tend to 
increase the flow velocities . 

Specific Problem 

To solve the system of equations governing the natural-convection 
flow and heat transfer would at best be a formidable task because of 
the nonlinearity of the equations and because of the interrelation 
of the equations of motion with the energy equation. The consideration 
of the compression work and frictional heating terms in the energy 
equation makes the problem still more complicated. Therefore, in order 
to obtain equations which are tractable mathematically, it is necessary 
to make some simplifying assumptions . In this report, therefore, 
consideration is given to a simplified configuration which leads to
less complicated equations but which, nevertheless , retains the 
essential physical behavior of the natural- convection process . In 
this way detailed velocity and temperature distributions can be 
computed, and the effects of heat sources and of frictional heat can 
be studied . 

Fully developed flow between long parallel plates with constant 
wall temperature. - The simplified configuration to be studied is the 
fully developed laminar natural- convection flow between t wo long 
parallel plane surfaces or plates which are oriented in the direction 
of the generating body force (see fig. 1) and which are open at the 
ends to the ambient fluid . The surface temperatures are constant, but 
one surface may be at a different temperature from the other. For 
such a configuration it is assumed that the velocity, as in the more 
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familiar Poiseuille flow case, and temperature depend only on the trans
verse coordinate Y. The simultaneous assumption of these two conditions 
implies that there is always a net heat flow to the walls and also t hat 
the transverse velocity component V vanishes identically. Under t hese 
conditions equation (1) is identically satisfied, and the system of 
equations (2a) and (3a ) be comes 

d2U 13Pfx dPD 
0 (8) 

dy2 
+-- 8 - dx = j.l 

ClPD 
0 (9) dy 

and 

d 28 + H:. (dU\2 + ~ :::: 0 
dy2 k dY) k 

(10) 

where now the mor e familiar notation Ul = U, U2 = V, Xl = X and 

X2 = Y is used. The product 13P in the coefficient 13PfX/j.l in 

equation (8) can be written as N for fluids, . as is discussed in 
appendix B. For gases, the density p can always be combined with 
the absolute viscosity j.l to form the kinematic viscosity v, and 
v should be evaluated at some convenient and representative reference 
point (as, for example, at the average of the wall temperatures). 

By equation (9), PD is seen to be a function of X alone. 

Since U and e have been assumed to be functions of Y alone, it 
is evident from equation (8) that dPD/dX must be a constant. Hence 

the pressure gradient dP/dX inside the channel differs from the 
hydrostatic pressure gradient by at most a constant, since 

dPs 
dX + constant 

However, the pressure difference required to accelerate the fluid 
from the hydrostatic to the fu lly developed condition and the pressure 
difference to decelerate i t back to the hydrostatic condition must be 
finite . Therefore; since the channel is assumed very long, the 
pressure gradient inside the channel becomes equal to the hydrostatic 
pressure gradient , and equation (8) may be written as 

d2U 13PfX 
+ -- 8 = 0 

dy2 j.l 
(8a) 

-\ 
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At this point several interesting observations can be made concerning 
e~uations (8a) and (10). First of all, in e~uation (8a) as in the forced 
Poiseuille flow e~uation, the inertia terms (left side of e~uation (3c )) 
vanish, but now the driving (buoyancy) term (second term in e~uation (8a)) 
is a function of the transverse coordinate; whereas, in forced 
Poiseuille flow the driving term (pressure gradient) is a function of 
the longitudinal coordinate. 

If the frictional heating term (second in e~uation (7)) is neglected, 
the energy e~uation is independent of the velocity distribution, but the 
e~uation of motion, which yields the velocity, is dependent on the tempera
ture. This state of affairs is the opposite of that occurring in the 
forced-convection Poiseuille flow. Also, the convection and compression 
work terms in the energy e~uation (3a) now vanish. Although these last 
effects are eliminated, the solution of this simplified problem should 
not only yield practical results for the natural-convection flows in 
tall-narrow channels but should also show the effect of heat sources 
in the fluid (last term in e~uation (10)) and the effect of frictional 
heating (second term in e~uation (10)) on the natural-convection 
process. 

The boundary conditions associated with this problem are as 
follows: the fluid must adhere to the walls of the channel (the no-slip 
condition of viscous fluids) or, mathematically, 

u(o) == UCd) == 0 

and the temperature of the fluid at the plate must e~ual the plate 
temperature, or 

and 

e (d) 

Let 

u 
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Equations (8a ) and (10 ) become 

u " + "]; =o 

"];" + (u,)2 + oK = 0 

where a = Qd2/k8wO and K = Pr K = Pr Gr 

differentiation with respect to y . 

The boundary conditions are 

and 

where m 

u(O ) = u(l ) = 0 

"]; (0 ) = K 

9 

(11) 

(12) 

and the primes denote 

It is i nteresting that in this particular problem it is necessary 
to have a priori information on three temperatures (Ts ' TwO' and 

essentially TW1 ) in order to determine the a ctual temper ature distri 

bution, and that these appear expl i citly only a s the ratio of two 
temper atyre differences in the analys i s. Combina tion of equations (11) 
and (12 ) to eliminate the dependent variable "]; yields 

(13 ) 

with the boundary condi t i ons 

u(O) = u(l ) = 0 

u ' , (0) == -K (14 ) 
and 

u ' ' (1) == - mK 

For convenience, the heat - source distribut i on is taken to be 
uniform, so that Q and hence a are constants. The method of 
solution to be described is in no way dependent upon this restriction; 
that is, Q and a could be functions of the independent variable, 
and the same method could be applied in principle. In order to solve 
the given boundary value problem (equat i ons (13) and (14)) a method 

- - - -- -~-~~-
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of successive approximations is employed. The e~uation for this techni~ue 
can be written 

(15) 

where r = 0, 1, • •. denot es the order of the approximation and where 
u'_l = 0 by definition . It should be noted that r == 0 yields the same 

e~uation as would apply when the frictional heating is neglected. By 
elementary ~uadratures the zeroth-order (r = 0) approximation Uo is 

4 ai 
uo = K ~ 7T yi (16) 

1=1 1 . 

where 

1 (4m. + a. + 8 ) al == 24 

a2 == - 1 

- ( m 
a. 

1) a 3 == + - -2 

and from e~uation (11) 

4 
~ ai (i-2 ) 

't 0 = - uO" = -K ~ Y 
i=2 (i-2 )! 

(17) 

The next higher approximation (considering now frictional heating) is 

(18) 

where 

al == 350.2 + 32Omo. + 3280. + 792m2 + 1392m + 840 

a 3 - 2(510.2 + 444m.0. + 5640. + 1008m2 + 2352m + 1680) 

--~-.~-~-- --- --- - - -~-

o 
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a5 -1008(4m + ~ + 8 ) 

a6 -84(~2 + 6m~ + 6~ + 8m2 + 8m - 64) 

a7 24(~2 + 4m~ + 44~ + 72m - 72) 

a8 18 (3~2 + 12m~ - 28~ + o 12m2 - 24m + 12) 

-80~ (m + ~ - I) 

and 
2 10 

'tl = 'to K "'" 0 Co 1) a
l
oy(i-2) - 576 (2520) ~ 1 1-

1=3 
(19) 

Equations (16) and (17) yield the velocity and temperature distributions, 
neglecting the frictional heating; and equations (18) and (19) hold for 
small but significant values of K and) hence, show the effect of con
sidering the frictional heating to a first approximation. To obtain 
solutions for somewhat larger K, it would be necessary to continue 
with the iterative procedure described previously to obtain the 
higher-order approximations . Such a scheme becomes extremely tedious, 
and, furthermore, the convergence of the method can be established by 
comparison with a direct numerical solution of the complete boundary
value problem (equations (13) and (14)). Some discussion of these 
numerical results relative to the solutions given by equations (16) 
to (19 ) will . be presented herein, and a more complete and detailed 
account of the numerical results together with a detailed account of 
the numerical solution procedure used is in progress. Comparison of 
these solutions obtained fr om equations (18) and (19), in which the 
frictional heating is considered to a first apprOXimation, to the 
numerical solutions, in which the frictional heating is completely 
accounted for, should indicate the range of applicability and accuracy 
of equat i ons (18) and (19). 

RESULTS AND DISCUSSION 

Velocity a nd Temperature Distributions 

The relations between the actual and dimensionless velocities and 
temperatures as determined from the various transformations in the 
analysiS are 
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(20) 

and 

(21) 

where U and e denote the actual, and ~ and u denote the dimen
sionless quantities. For a given heat - transfer fluid and configuration 
(as specified through K and m) and for a given heat - source intensity 
(as specified through a) the dimensionless velocity and temperature 
distributions in equations (20) and (21) can be computed from equa
tions (16) to (19). These computations will be accurate within the 
limits of the method of solution; that is, for small K. For 
larger K, computations of u and ~ can best be determined by 
direct numerical solution of equations (13) and (14). The range of 
applicability of the solutions given by equations (16) to (19) will be 
discussed more fully subsequently. Representative velocity and 
temperature distributions wete calculated for values of K = 0.5, 
3 .0) and 10.0. 

The particular values of ratio of wall-temperature differences m 
chosen for the computations correspond to the following interesting 
cases: (1) m = -1) in which the arithmetic average of the wall 
temperatures is equal t o the temperature of the ambient fluid (that 
is) (Tw + Tw )/2 = Ts); (2) m = 0) in which one wall is at the 

1 0 
reservoir or ambient temperature; (3) m = 1, in which both walls are 
at the same temperature) and) hence) the effect of the wall - temperature 
difference is eliminated; and (4) m = 2, in which the wall temperatures 
are unequal but both are maintained at higher or lower temperatures 
than the ambient. 

Combinations of K and m used in the computations and the figure 
in which the results are plotted are given in the following table: 

, 
K 0.5 0. 5 0 . 5 0. 5 3 . 0 3 . 0 3 .0 3.0 10 . 0 10 . 0 10.0 10.0 
Ratio of wall-temperature 

differences m -1 0 1 2 - 1 0 1 2 - 1 0 1 2 
Velocity- profile figure 

number 2 (a) 2 (b) 2 (c) 2 (d) 3(a) 3 (b) 3 (c ) 3 (d) 4(a) 4(b) 4( c ) 4 (d) 
Temperatur e - profile 

figure number 5 (a) 5 (b) 5 (c ) 5 (d) 6(a) 6 (b) 6 (c) 6(d) 7(a) 7 (b) 7(c ) 7 (d) 
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For each K and m combination profiles were calculated for ~ = 0 , 
10, and 100 with frictional heating neglected (given by equations (16) 
and (17 ) and denoted by Uo and ~o on the figures), with frictional 

heat ing included to a first approximation (given by equations (18 ) 
and (19 ) and denoted by ul and ~l)' and, in several specific cases, 
with fr i ct ional heating completely accounted for (given by the 
numer i cal solution of equations (13) and (14) and denoted by u 
and ~). 

The computed results presented herein pertain specifically to a 
configuration wherein the body force is acting in the negative 
X-direction and at leas t one wa ll temperature is always greater than 
the ambient (that is, Tw>Ts). 

Effe ct of different wall-temperature configurations (m varying) 
and heat sources (~varying ). - Examination of typical cases in 
f igures 2 to 7 shows t hat , as expected, an increase in the heat-source 
parameter ~ or an increase i n the wall-temperature parameter m 
results i n l arger velocities and higher temperatures. The velocity 
prof iles change in such a way that the net mass through-flow, as 
repre sented essentially by the area under the u-curves, increases 
with m and ~ fr om zero at m = -1 and ~ = O. The velocity 
prof iles be come more symmetric with increasing ~,and for ~ = 0, 
negligible fri ctional heating, and m = 1, the profiles are s i milar 
to the Poiseuille profiles. For any given set of conditions, a 
de crease in the net mas s t hrough-flow or even no net mass through-flow 
can, of course, be obtained by adjusting the wall-temperature ratios 
s o that m t akes on l arger negative values. It can also be seen 
f r om the t emperature distribut ions that, as previously predicted, in 
all cases conSidered, either heat is being transferred to both walls 
or heat is flowing from one wall out through the other . For the case 
of no heat s ources in the fluids and neglecting frictional heating, 
the temperature distributions, as are to be expected, are just the 
conduct i on profiles. 

Eff ect of frictional heating. - The effect of frictional heating 
can be seen i n fi gures 2 t o 7 by comparing the curve s computed by 
neglect ing frictional heating (denoted by subscript zero) with those 
computed by including frictional heating as a first approximation 
(denoted by subscript unity) for a given set of conditions. Numerical 
solutions of equations (13) and (14) obtained for several specific 
sets of conditions are a l so included (with no subscripts) for com
par i son with the approximat e solutions. For K = 0 . 5 and all ~ 

and m conSidered, the frictional heating effect is small; that is, 
the ul and ~1 and u and ~ curves are not appreciably differ-

ent fr om the Uo and ~ O curves, respectively. However, even for 
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values of K relatively near unity, as is here represented by the case 
K = 3} there are conditions of m and ~ in which the frictional 
heating begins to alter the results appreciably. This s ituation could, 
depending on m and ~, also occur for even lower values of K. In 
fact there are many combinations of K, m, and ~ for which the 
frictional heating becomes important. For example, the deviation 
between the solutions neglecting frictional heating (denoted by subscript 
zero) and those including the frictional heating to a first approxi
mation (denoted by subscript unity) for the ca se ~ = 0 first become 
marked for K = 10 and m = 1 (see figs . 4 ( c ) and 7(c)). This deviation 
is more pronounced the higher the value of K for given m and ~ . As 
was previously stated, moderately l arge values of K (or K) can be 
obta ined under r elatively mild conditions . For example} for the natural
convection flow of a ir under the influence of gravity at room tempera
ture, with ew equa l to 10000 R and the Gra shof number equal to 107, 
K is approximately 12 . 1 (K = 16 . 8) ; for the flow of water in a gravi 
t a tional field with 8w of 1500 R a nd a Grashof number of 108, K is 

approximately 26.1 (K = 3.7). From the specific computations made 
herein, i t can be seen that for Q = 10, the deviation mentioned previ 
ously first becomes apparent for K = 3 and m = 2 (see f iLS . 3(d) and 
6(d)); and for Q = 100, a large difference exists for K = 3 and m = -1 
(figs . 3(a) and 6(a)). Hence, on the basis of the computations presented 
here i n, it can roughly be sta ted that the solutions as given by equa
tions (16) and (17) will be suffici ently accurate up to the limits 
previously s tated . Beyond these limits the solutions including frictiona l 
heating effects to a first order (equations (18) and (19)) should be used . 
It should be kept in mind, however, that more detailed computations are 
necessary to define these limits more precisely . 

Numerical solutions which completely include the fr ictional hea ting 
effects and which are denoted by u and ~ without subscripts are al so 
presented in the figures only for the cases of (K, m, Q) of (3, -1, 0), 
(3,1, 0) , (10, -1,0), (10,1,0), (10,2,0), (3,1,10), (3,1,100), 
and (10, 2, 10) in order to show the relative accuracy of the ul and 
~l solutions. For most of these cases, these numerical solutions 

coincide with the ul and ~l solutions; but in the higher internal

heat-gen~ration cases (as given by high K, m, and Q), these two sets 
of solutions differ (see figs . 3(c), 6(c), 4(d), and 7(d)). A signi 
ficant difference indicates tha t the ul and ~l solutions, as given 

by equations (18) and (19), respectively, ar e not sufficiently accurate. 
For the range of values of K, m, and ~ computed here, it appears 
tha t equations (18) and (19) could well be used for Q = 0 for all 
K and m in this range} for ~ = 10 up to values of K = 10 and m = 2 
(figs . 4(d) and 7(d)), and for ~ = 100 up to K = 3 and m = 1 
(figs . 3(c) and 6(c)) . Beyond these limits, equations (18) and (19) 
lose their a ccuracy, and the complete numerical solutions of equations (13) 
and (14) should be used . 

---~--~- -_._---
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The consideration of frictional heating not only changes the shape 
of the temperature profiles but also leads to flows with increased 
velocities , as was expected. This change of temperature profile 
appreciably alters the temperature gradients at the walls and hence 
the heat transfer. 

In addition to these trends, the consideration of frictional heating 
leads to other interesting results. These results, which were obtained 
in computing the numerical solutions which completely take into account 
the frictional effects, are that two solutions exist for a given set 
of conditions and that there exists a critical set of conditions beyond 
which no solutions exist. Physically, the presence of two solutions 
predicts the existence of two heat -transfer and flow states for a given 
set of conditions, which appears to be a situation analogous to that 
in a Laval nozzle. The existence of critical conditions appears to be 
similar to the thermal-choking phenomenon. One of the two flow states 
mentioned (the one encountered first physically) corresponds, as is 
seen in the figures, to the ul and ~l solutions (or, more accurately, 

the u and ~ solutions); but the other, computed here only for the 
case of K = 10, m = 2, and ~ = 0, denoted by the curves l abeled u(2) 

and ~(2) on figures 4( d) and 7(d), r epresents velocities and tempera
tures many times larger than the others at the same conditions . These 
results are being further investigated. 

Actual values of the velocities and temperatures can be computed 
from equations (20 ) and (21 ) and figures 2 to 7. Since so many factors 
appear in those expressions, it is clear that there is considerable 
freedom in choosing the fluid and the physical conditions to obtain 
almost any given flow and heat transfer. For example, if Gr = 2X106 , 
fX = 6g, and Bw = 1000 R for air at standard room conditions a 
(Ts = 5000 R), a maximum ve l ocity . of 382 feet per second and a maximum 

temperature of almost 7000 R would be obtained with both walls at the 
same temperature (that is, m = 1 ). These conditions could very easily 
be obtained in an extremely mild centrifugal force field. 

For such computations to have quantitative significance, it should 
be kept in mind that .this analys is pertains only to laminar flows. It 
i8 not possible to stat e under what conditions the transition from 
laminar to turbulent flow will occur , because no general stability 
theory exist s for natural-convection flows. The only available natural
convection stability information is the experimental result indicated 
in reference 10 that transition on a single verti cal plate occurs at a 
Grashof number of approximately 109 • (All values of Gr used in the 
numerical examples herein were less than 109 .) There is, in fact, 
relatively little general stability information for forced-convection 
channel flow with heat t ransfer, so that it is not even possible to 
obtain a rough transition criterion by relating the present problem t o 
an equivalent forced-convection problem. 
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Although computations are presented herein only for a particular 
configuration, the analysis itself and the approximate solutions given 
by equations (16) to (19) are in no way limited to a single configura
tion. A change only in the body force direction (sign) merely alters 
the flow direction; that is, the sign of the velocity changes, or, in 
mathematical terminology, the velocity is an odd function of the body 
force. If there are no heat sources in the fluid and the effects of 
frictional heating are negligible, a change in the surface thermal 
condition (say, from Tw>Ts to T,.<Ts) would also result in a 

change in flow direction. However, when either heat sources are 
present or frictional heating is not negligible, or both, the anti
symmetry with respect to 8w is disruptedo For the case Tw> Ts ' the 

internal heat (due to heat sources or friction) increases the flow in 
a given direction as is shown in figures 2 to 4; but for Tw <Ts, this 
heat tends to retard the flow in a given direction and, if large enough, 
can change the flow direction. These effects can be seen in figure B, 
where the velocity distributions are presented for a r epresentative 
case (K = 10, m = 2, a, = 0, 10, 100) where Tw < Ts' The associated 

temperature profiles are given in figure 9. Frictional heating is 
appreciable for a, ~ 0 and 100 but not for a, ~ 10; and although f or 
a, = 100 the flow is again i n the same direction as for the same case 
for Tw > Ts (fig . 4(d)), the velocities are smaller for Tw< Ts. 

Unfortunately, there are no experimental results available with 
which to compare the results predicted herein. The experiments of 
Elenbaas (reference 2) were made with short plates, and, consequently, 
there were variations of velocity and temperature profiles with the 
longitudinal distance. Such variations were not considered in this 
analysiS. 

Heat Transfer 

The heat - transfer coefficients for the natural-convection process 
considered he·re can be expressed in terms of Nusselt numbers. For the 
case where the walls are not at the same temperature (that is, m f 1), 

Nu == hd (dT) 
k = dY 0 d (Tw 

) 1 

d 

where the double subscript O,d signifies that the temperature gradient 
is to be evaluated at either Y = 0 or Y = d, depending on which wall 
is under consideration. By means of the various transformations in the 
analysis this expression can be written 

.-- ---.---- ---~----------



3V 

L 

N 
(J) 
....J 
o 

NACA TN 2863 17 

Nu _ 1 (d~' 
- (m-l)K dy 10 1 , 

By use of equation (19), the Nusselt number for the wall at y = 0 is 

Nuo = (m:l) ~ + ~ - 1 + 

48(2~20) (510,2 + 444m0, + 5640, + 1008m2 + 2352m + 1680U 

and for the wall at y = 1 

NUl = (m:l) [m - ~ - 1 -

48(~520) (510,2 + 564mo, + 4440, + 168Om2 + 2352m + 10088 

The Nusselt numbers were computed from these expressions over a range of 
values of K for m = - 1 , 0, and 2, and a, = 0, 10, and 100) and are 
presented in figures 10 and 11 . In general, the Nusselt numbers increase 
with increasing K, m, and 0,. Comparison of figures 10 and 11 shows that 
for m = -1 the Nusselt numbers for the wall at y = 1 are larger than 
for the wall at y = O. However, as m increases to 2, this result is 
reversed. 

When the walls are at the same temperature (m = 1) the Nusselt 
number can be written as 

(
dT) d ' 

Nu = dY 0 ew 

and from the transformations in the analysis, this equation becomes 

Nu = 1: (d~) 
K dy 0 

Again from equation (19) 

Nu = [~ + 48(2~20) (510,2 + 10080, + 50408 
The Nusselt numbers computed for this case are presented in figure 12. 
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CONCLUSIONS 

An analysis of the natural-convection phenomenon shows that the 
flow and heat transfer not only are functions of the Prandtl and 
Grashof numbers_but also depend upon a new dimensionless factor, K. 
For values of K which are not negligible, the frictional heating and 
compression work may appreciably alter the results. Consideration was 
given to the particular simplified case of the fully developed natural
convection flow of fluids With and without heat sources between two long 
parallel surfaces oriented in the direction parallel to the generating 
body force. These surfaces were taken to have constant but not 
necessarily equal temperatures . The velocity and temperature distribu
tions for this special case were determined, and it was observed that 
increasing the wall-temperature ratio increased the flow velocities, 
the net mass through-flow, and the temperatures. The effect of the 
heat sources was also found to increase velocities, temperatures, and 
mass flows. The frictional heating appreciably altered the velocity 
and temperature profiles in some cases, showing that the velocities 
were increased and the heat transfer at the walls was greatly changed 
by this effect. Consideration of the frictional heating also led to 
the prediction of two flow and heat-transfer states for a given set of 
conditions and to a critical set of conditions beyond which no solutions 
existed. These last two results are being more completely investigated. 

Lewis Flight PropulSion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, October 6, 1952 
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APPENDIX A 

SYMBOIS 

The following notation is used in this report: 

ai coefficients in successive approximation solutions 

specific heat at constant pressure 

specific heat at constant volume 

characteristic length (specifically distance between plates) 

components of body force per unit mass, i = 1, 2, 3, 

negative of X-component of body force per unit mass 

f3 f xevt13 

Grashof number, · 2 
v 

graVitational force per unit mass (or acceleration due to 
graVity) 

heat-transfer coefficient 

dimensionless parameter, Pr Gr f3
f xd 
cp 

dimensionless parameter, KjPr 

thermal- conductivity coefficient 

r at io of wall - t emperature differences, TWl - Ts/TWQ - Ts 

a constant 

Nusselt number 

pressure 

hydrostatic pressure 
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Pr 

p 

Q 

Re 

T 

u 

u 

u 

v 

y 

y 

e 

e 

e* 

NACA TN 2863 

Prandtl number 

dimensionles s pressure 

heat added by heat sources 

Reynolds number 

temperature 

longitudinal velocity component 

characteristic reference velocity 

velocity components, i = 1, 2, 3, 

prescribed reference velocity in forced-convection flow 

dimensionless longitudinal velocity component 

dimensionless velocity components, i = 1, 2 , 3, 

transverse velocity component 

rectangular Cartesian coordinates, i = 1, 2, 3, ••• 

dimensionless coordinates, i = 1, 2, 3, 

coordinate 

dimensionless coordinate 

dimensionless heat-source parameter, Qd 2jkBw 

pfd(aTj p )lp coefficient of volumetric expansion, l J 

ratio of specific heats 

dimensionless temperature difference, ejew 

-------.~----~----~------~-
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absolute viscosity coefficient 

v kinematic viscosity coefficient 

p density 

dimensionless temperature 

Subscripts: 

a denotes adiabatic condition 

i, j rectangular Cartesian tensor and summation subscripts 

r successive approximation subscript 

s denotes a reference condition (usually taken as the 
hydrostatic condition) 

w denotes wall conditions 

denotes condition at y ~ 0 

denotes condition at y ~ 1 

Superscripts: 

(2) denotes second flow and heat - transfer stat e 

-~~---~ ---- -- ---.-
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APPENDIX B 

DERIVATION OF BUOYANCY TERM 

It is often convenient in natural-convection studies to express 
the body force term (first term on right side of e~uation (2)) as a 
buoyancy term. To this end, the case is considered in which the sur
face (specifically here, the channel) and the fluid are at the same 
temperature and there is no flow. E~uation (2) then becomes 

OPs 
Pafi - dX; = 0 (Bl) 

i 

where the subscript s indicate~ the hydrostatic condition, and 
e~uation (Bl) then expresses the fact that under this condition the 
body force is in equilibrium with the hydrostatic pressure gradient. 
This e~uilibrium is, of course, upset if there is a temperature 
variation in the flow field, and the unbalanced force, which is the 
buoyancy force, causes a flow to be established. In order to intro
duce the buoyancy term into the equation, the body force and pressure 
terms in equation (2) 

can be written 

where PD == P - P s . 

dP S dPD 
Ps, f l· + (p - P )f. - ~ - ~ 

S l oXi oXi 

Hence, in view of e~uation (Bl), these terms become 
dPD 

Ps)fi - dx: 
l 

(p - (B2 ) 

The pressure gradient in the preceding expression appears in just that 
form in equation (2a), but no~ the buoyancy term is to be expressed 
in terms of a temperature difference. It is first assumed that the 
density is a function of temperature alone, so that equation (4) can 
be written 

P==P(T) (B3 ) 

In the case of a liquid, t his assumption is evident; whereas, in the 
case of a gas, it implies that the pressure changes are small as com
pared with the absolute pressure. If the coefficient of volumetric 
expansion ~ is introduced, e~uation (B3) can be written 

o 
t-
CD 
(\J 

--------~- - --------- --- - - --- - ---~ 
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dp = - I3pdT (B4) 

The writ ing of the density "difference in expression (B2) in terms of 
a temperat ure difference can now be effected in one of several ways, 
depending on t he specific problem. 

Most of the theoretical work done to date applies only for t he case 
of small temperature differences. Rence, for that case t he different ials 
in equation (B4) are replaced by differences t o yield 

The buoyancy term in equati on (B2) then becomes 

CB5 ) 

as it appears i n equat i on (2a ) . 

If the ana lysis is not t o be limited to the case of small tempera
ture dif fer ences, equat ion (B5) can be obtained in either of the 
f ollowing ways, depending on whether the fluid is a liquid or a gas . 
For liqu ids , it is assumed that I3p = N where N i s a constant. A 
numerical che ck of this a ssum.ption shows that it is reasonable under 
commonly encountered cond i tions for most fluids; in particular, if 
the constant is evaluat ed at t he ambient condit ion, the variation of 
I3P over a l arge range of t emperature is small. (For unusually large 
t emperatur e ranges N could be evaluated at some other appropriate 
conditi on .) As a result of thi s assumption a linear densit y
t emperature variation is obta ined from equation (B4), and t hen by 
direct subst i tution equation (B5) is obtaf ned . For gases, the 
equat i on of state is 

P = PRT CB6) 

wher e R is t he gas constant o 

Substitut i on into the 

b;::::~:it:~Yt:l:Sp; TT;] fi 

It need now only be assumed that the differ ence between P and Ps 
is everywhere small; therefore 

(:a 7) 
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By definition, ~ = liT for gases, so that the final desired form 

is obtained. In this case, ~ is evaluated at the hydrostatic condi
tion . An e~uivalent form could also be obtained where the density 
would be evaluated at that condition and ~ could be variable. 
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