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SUMMARY

Experimentally determined influence coefficients are presented for
the deflection of two solid delta wings - one wing of constant thickness
and the other of constant thickness ratio - having a carry-through-bay
chord smaller than the wing root chord. A theoretical method of analysis
is demonstrated for the constant-thickness wing under tip load, and the
theoretical results are compared with the experimental results. The
theoretical tip-load deflection for a constant-thickness delta wing
elastically supported by a carry-through bay of width 35 percent of the
wing root chord is twice as large at the tip as the theoretical tip-load
deflection for a similar wing clamped 100 percent of the chord at the
root.

INTRODUCTION

Design requirements of delta-wing aircraft may dictate the incorpora-
tion of a carry-through-bay chord smaller than the wing root chord. Use
of a smaller carry-through-bay chord reduces the bending and torsional
stiffness and results, consequently, in increased deflections for a given
loading. The purpose of this paper is to present the results of deflec-
tion tests of two solid delta wings having a carry-through-bay chord
smaller than the wing root chord amd to demonstrate a theoretical method
of analyzing such combinations of wing and carry-through bay.

Results of deflection tests are presented for two solid delta wings
of identical plan form having 55° leading-edge sweep, 10° trailing-edge
sweep, and a carry-through-bay chord of approximately 35 percent of the
wing root chord. One wing is of constant thickness equal to 3 percent
of the wing root chord. The other wing has a hexagonal section with a
constant maximum-thickness ratio of 3 percent.

The method of analysis derived in the appendix is based on the theory
of reference 1 and differs from that of reference 1 in the derivation and
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use of the boundary conditions. The derivation in the appendix is for
the special case of a constant-thickness delta wing under tip loading.
The equations to be solved may be readily extended from reference 1 to
apply to wings of arbitrary shape and loading.

SYMBOLS
a,b,d,e wing dimensions, in. (see fig. 9)
( wing root chord, in.
2 distance from root to tip, in.
D uniform load, 1b/sq in.
t thickness of wing, in.
tav average thickness of wing, in.
w deflection, in.
Koy coordinates, in. (see fig. 9)
D plate stiffness, Et3/12(1 - u2), 1b-in.
D plate stiffness based on average thickness,

Etey-/12(1 ~ p2), ib-in.

E Young's modulus of material, 1b/sq in.

P tip load, 1b

v Poisson's ratio of material

Py Py function of x, coefficient in power series for deflec-

tion where subscripts b and w stand for bay and
wing, respectively

TEST SPECIMENS AND METHOD OF TESTING

Two solid delta-wing specimens with identical plan form having
55° leading-edge sweep, 10° trailing-edge sweep, and a carry-through-bay
chord smaller than the wing root chord (fig. 1) were tested in this
investigation. One wing was of constant thickness equal to 3 percent of
the wing root chord and was cut from l-inch-thick 75S-T6 aluminum-alloy
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plate; the other wing was of hexagonal section with a constant maximum-
thickness ratio equal to 3 percent of the wing root chord and was a
casting of aluminum alloy No. 355 heat-treated to the T-61 condition.

The specimens were supported by clamping the l%-inch-5quare support
tabs. (See fig. 2.)

Loads were applied consecutively from the tip to the root at the
load stations shown in figure 3. Holes of l3/32-inch diameter were
drilled for the loading fixtures as the tests proceeded inward toward
the root. All loads were applied symmetrically about the longitudinal
center line by a winch supported overhead and were measured by proving-
ring dynamometers as shown in figure 4. The tip-load deflections were
checked by dead-weight loading.

On the constant-thickness wing, a 1000-pound load was applied to
each of the loading stations. On the cast-aluminum wing, however, the
load applied varied from only 28 pounds at the tip to a maximum of
400 pounds at the root to avoid exceeding the elastic limit of the cast
material.

Deflections were measured by dial indicators located at the deflec-
tion stations shown in figure 3. Note that the deflection stations and
load stations were coincident except at stations 1 and 16 at the corners
of the wing.

RESULTS AND DISCUSSION

The deflection data are presented in the form of influence coef-
ficients in tables 1 and 2. Since there was no appreciable deflection
of the support, the deflection data were obtained directly from the gage
readings. Each value given in these tables is the average of the two
cross-coupling coefficients; for example, the deflection of station 16
resulting from load at station 1 is averaged with the deflection of
station 1 resulting from load at station 16. Deviations from the mean
are given in parentheses. The influence coefficients for the constant-
thickness wing are based on a 1000-pound load. Those coefficients for
the constant-thickness-ratio wing are based on a 100-pound load, although
the loads used varied from 28 pounds at the tip to 400 pounds at the root.

The tip-load deflection of the 1l-inch constant-thickness wing is
compared in figure S with that computed by the theory derived in refer-
ence 1 and extended in the appendix of the present paper. The deflec-
tions are plotted in terms of the dimensionless parameter wD/P12. The
experimental tip deflections exceed the theoretical values by approxi-
mately 15 to 20 percent. One of the reasons for this discrepancy is
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that the experiment indicated deflections at the corners of the carry-
through bay whereas the theory assumed zero deflection. This deflection
is present because the wing is supported at the tabs rather than at the
corners of the carry-through bay. The fact that the deflection at one
corner of the carry-through bay is different from that at the other
corner indicates that there is a twist at the root of the delta wing
about an axis normal to the root. If the theoretical values are changed
to include this twist (by a rigid-body movement of the wing), the agree-
ment between experiment and theory would be improved over the entire
wing. This correction accounts for about one-half the discrepancy at the
tip. 1In addition, a change should be made in the theoretical results,
based on these observations of nonzero deflection at the corners of the
carry-through bay, to give the correct spanwise slope at the root. No
attempt has been made to effect this correction because of the difficulty
of obtaining measurements of small slopes very close to the root. If
this correction were made, however, experiment and theory would be in
even closer agreement.

The influence coefficients of table 1 were used to approximate the
deflected surface of the constant-thickness wing for a uniform load.
The results of this approximation are shown in figure 6 where the deflec-

tions are plotted in terms of the dimensionless parameter wD/le‘r in
which p 1s the uniform load in pounds per square inch.

The tip-load deflection and the computed uniform-load deflection
for the constant-thickness-ratio wing are shown in figures 7(a) and 7(b),

respectively, where wD/P12  and wﬁ/plu are the dimensionless parameters.
In these expressions, D 1s the plate stiffness based on the average
thickness of the wing outboard of the root chord line.

The theoretical tip-load deflections obtained in the appendix from
the analysis of the constant-thickness delta wing are compared in figure 8
with those obtained from the theory of reference 1 for a constant-thickness
delta wing having the same plan form but having its entire root chord
clamped. The conclusion is made that removal of 65 percent of the wing
root chord of this wing increases the tip deflection for tip load by
approximately 100 percent.

CONCLUDING REMARKS

In order to obtain tables of influence coefficients, deflection tests
were conducted on two solid, 55°, delta wings - one wing of constant thick-
ness equal to 3 percent of the wing root chord and the other with a con-
stant maximum-thickness ratio equal to 3 percent of the wing root chord -
having a carry-through-bay chord smaller than the wing root chord. The
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experimental tip-load deflections of the constant-thickness wing exceed
those computed by the Present theory by approximately 15 to 20 percent
at the tip. A great part of this discrepancy can be attributed to the

difference between the root support in the experiment and that assumed
in the theory.

The theoretical tip-load deflection for a constant-thickness delta
wing elastically supported by a carry-through bay of width 35 percent of
the wing root chord is twice as large at the tip as the theoretical tip-

load deflection for a similar wing clamped 100 percent of the chord at
the root.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., January 23, 1953.
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APPENDIX

THEORETICAL DEFLECTION UNDER TIP LOADS OF A CONSTANT-THICKNESS
DELTA WING HAVING A CARRY-THROUGH-BAY CHORD

SMATIER THAN THE WING ROOT CHORD

The theory of reference 1 1s used in this appendix to study the
problem of a solid constant-thickness delta wing having a carry-through-
bay chord smaller than the wing root chord and loaded transversely at
the tips. The present problem is idealized so that the wing has the
plan form shown in figure 9 and is supported by point supports located
at the corners of the carry-through bay. In reference 1 the assumption
that the chordwise deflections at any spanwise station may be expressed
by the first few terms of a power series is used to simplify small-
deflection thin-plate theory by means of the principle of minimum
potential energy. If the series is limited to the first three terms,
as will be done in the present analysis for both the triangular wing
and the carry-through bay, that is, if parabolic chordwise deflections
are assumed, the following expressions give the transverse deflection:

For the triangular wing,
v = owo(x) + you(x) + y2qp(x) (1)

and, for the carry-through bay,

W= @ o(x) + ey (x) + yzmbz(X) (2)

where x and y are the coordinates shown in figure 9.

The potential energy of the system under consideration is

2..\2 2.\2 2
Potential energy = D <§—%> + (§—%> + 2u é_% QEK +
2 ox oy ox Byz

2(1 = u)( azgy>f}dx dy - Pw(1,0)




NACA TN 2927 -

where the integral is to be taken over the total area (both the triangular
wing and the carry-through bay) with the appropriate values of W being
used. Substitution for w from equations (1) and (2) gives

0
Potential energy = %f {a'bl (cpbo")z + 2a oPpo"Pp1" + 3 K%l..)z -
b

2%0”%2i’ + 28 04 "Ppp" + aps(Ppz”)Z + hap Ppp” +
l‘”‘(E’Lblcpbo" + APy + ab3q)b2")q)b2 i
2= H)EbJ_(CDbl')z + habz%l'qxbz' + Lta.b3<q)b2’) ﬂ}dx +

1
1 1w\ 2 " "
§£ {"‘wl(q’wo R Py * - - }dx - Poo(2)

where

and the primes denote differentiation with respect to x.




8 NACA TN 2927

Minimization of the potential energy by means of the calculus of
variations gives

Il
(@)

®(Potential energy)

Il

0
f_ . {ablCPbO"Bq)bO" * oz (Po 0%+ Pu1"890") +

' 1

3 (o1 BP0+ Ppo " * Byp"0%p0") +

2, (Po1 oz + Poz"Pp1") * BpsPyg"ORy," +
Hop) P PPbz + 2 K%l%o" + apPp1" * 8y3Pp2" ) 0Ppp *
Pz (%015%00" + #2001 * %35%2"] '

# - “)[ablq)bl'aq’bl' + 2apy (P 'Oz +

Pz OPpy ') + ”%3‘%2'6%2]}‘“ i

l
JE {%wlmwo 59,0 + awZ(@wO BPy * . .j}dx -

P8g, (1)
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Integrating by parts and collecting terms results in

0
0 = j_b {Mbo"&:pbo + Vip "By + Ebz’ + oM o+ 4(1 - uz) a’blqlb‘z‘_l BquE} dx +

1
£ {Mwo"f’q)wo + VB, + E’wz' +2uM o+ B(L - uz)awlq’w:;I SPyo p ax +

0
(Mboa%o' M0 "+ MpaBopo' - VioBPyo - Vi By, - Vb26%2> .
)
(%5%0' FMnBen '+ Mepbaye' - Veodoyo - Vidgyp - Vw25%2>0 .
Pog,0(1) (3)

wWhere

Mon = o(n+1)P0 * ab(n+2)®bl” & ab(n+3)@b2" & Zuab(n+1)®b2

Ven = Mpn' - 2(1 - p)n Ebnq’bl' = Z&b(ml)%z]

and similarly for M, and an.

Equation (3) must hold for all admissible variations in w - that is,
all variations that satisfy conditions of symmetry, continuity, and

constraint. In terms of the ¢'s, these boundary conditions are as
follows:

Symmetry at x = -b,

@bol("b) = CPbl'(-b) = CPbg'(-b) =0 ()-l-)
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continuity at x = O,
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Pol0) = 9,4(0) Pp1(0) = 91(0) @ 5(0) = o 5(0)

Ppo' (0) = Py’ (0) Pp1' (0) = 9,1 (0) Pp2' (0) = yp' (0)

| and zero deflectionat x=0; y=4, y=4 + a
Pyo + 4o + d2 > =0
wl q>w2 x=0
[;WO +(d +a)p, + (@ + a)2¢wé} . 0
=

(5)

(7)

(8)

Since the variation of the ¢'s 1is entirely arbitrary in the interior
of the triangular wing and of the carry-through bay, it follows from
equation (3) that the following differential equations hold

Moo

(9)

(10)

(11)

(12)

(13)

(14)
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Since 8®b0’ Sle, and 6@b2 are arbitrary at x = -b, the natural
boundary conditions are found to be

Vpo(=b) = V3 (-b) = v 5(-p) =0 (15)

Since BQun, BPy1, BPuos BP0’ 6@wl', and Od@up' are arbitrary
X =

Vo(2) = -P V1(2) = Vi2(2) = 0 (16)

= M1 (2) = Mp(2) =0 (17)

-
~
N

|

Since Bg,y' = S@WO" Smbl = 8,1, and By’ = 8¢W2' at x=0,

M (0) = M(0) M, (0) = M (0) M- (0) = M _5(0) (18)

By virtue of equations (4), (6), and (9) to (18), equation (3) has
now been reduced to

[F05%00 + 10961 + V2®0z - (VugBPuo + VB0 + Ve2z)] o = ©

By using equation (5), this relation becomes

(0 - V0)39y0 + (V1 - Vi1)o0yy + (Vo2 - VWZ)S%ZJ}(:O =40 (19)

This equation must be satisfied for all variations of dgq, 6@Wl,
and Bg,, that satisfy conditions (7) and (8). Thus, elimination of

the 3¢'s from equation (19) and from conditions (7) and (8) (with
the dp's replacing the ¢'s) gives

E(d +a)Vpy - (24 + a)Vpp + vb] " = E(d +a)Vyo - (24 + &)V, + sz]

= Y= x=0
(20)
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Equations (%) to (8), (15) to (18), and (20) constitute the complete set
of 24 boundary conditions that are required for the solution of the six
simultaneous fourth-order differential equations (9) to (14).

The differential equations (12) to (14) may be solved for the
triangular wing portion in a manner similar to that presented in
appendix B of reference 1. Substitution for the unknown of general

%
solutions in the form (l - %) leads to the following characteristic
equation from which 7 may be determined:

26 - 6<l6>»12 + l)f‘ + EZOQ» 4 i J_" t)xl“ + 4BO(L + 2e )2 +§|72 ;

h[%ZBO L o x16 + 80(4 + L u>xlh + 96(1 + 5 €)X12 + E] = 0
1 -u 1-pu 2

where

>
._l
I
(el K
\%] OV
~~
'_l
1
=
p—

and

m

I
T
ol
e

aV)

+

oo

The differential equations (9) to (11) may be solved for the carry-

X%
through bay by taking general solutions of the form e 66. Substitu-
tion of this expression for the unknown in the differential equations
leads to the following characteristic equation from which & may be
determined:

i
<62 = 16x22> (6” + 80x,%8% + 320 = f ﬁ x22> =0

where

Xz =

o |

%(l - u)
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After extensive manipulation, the coefficients in equations (1)

and (2) for the particular wing under consideration are found to be as
follows:

For the triangular wing,

EE%E = 0.050037x,3*%%3° 4 0.0098970x, °+8872 _ 0.091550%,T+5119
P1
O.48972x12 - 2.9746%) + 1.6705
D
D7 _ 0. 2822, 2:0235 _ 0.2628hx; ** 72 | 0,17833¢ 6-5119 ,
Pl 1 1
0.93032x; - 1.1k2L
PwzD

—5— = 0-2506kx,1+9235 1 0.10185x,3-8872 . 0.16025x %5119 _ . 026679

where

3 le_z{.
- 2
and, for the carry-through bay,
D
?9%_ = -0.095452 cosh(z.u5u8 %) + 0.51484 cosh(o.84621 %) +
P1

0.095228 cosh(l.l612 %) ~ 0.094054 sinh(z.usuS %) .

0.35477 sinh(o.8u621 %) + 0.078223 sinh(l.l612 %) +

2
0.019590 37 + 0.039181 % - 0.39795
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Pl 0.21915 cosh(z.usués E) - 1.2002 cosh<o.8u621 5) - i
P1 b b
0.10692 cosh (1.1612 %) + 0.21593 sinh<2.l+51+8 %) -
0.82703 sinh(0.81+621 %) —0.087831 sinh<1.1612 %) + 0.80911
f%?g = -0.12303 cosh(Z.hShB %) + 0.67381 cosh(0.8h621 %) -

0.12123 sinh(z.usua %) + 0.46431 sinh<0.8l+621 %) - 0.39422

From these equations for the coefficients and from equations (1)
and (2), the deflections at any point can be found. The theoretical

deflections of the triangular wing are shown in figure 5 where they are
compared with those found by experiment.
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TABLE 1.- EXPERIMENTAL INFLUENCE COEFFICIENTS FOR CONSTANT-THICKNESS DELTA WING

[Deflections are in inches per 1000 pounds)

Deflection stations

Load (a)
stations
i, 2 3 s 5 6 T 8 9 10 1L 12 13 C 1y 15 16

1 (-0.009) | (-0.019) | (-0.008) | (-0.008) |(-0.011) (-0.004) [ (-0.003) | (-0.001) | (-0.004) | (-0.003) (-0.001) (-0.004)

1.%402 1,041 .796 .700 .490 .299 | 0.L40k4 .286 Al .090 .043 .169 | 0.030 .013 0.000 -.026
2 (.009) (-.008) | (-.002)| (-.004) | (-.006) (-.002) [ (-.001) | (-.001) | (-.002)| (-.003)| (.001) | (-.001) | (-.001) | (-.003)

1.041 .831 .616 .580 .392 .228 .358 .243 .139 .068 .028 .170 .025 .009 .000 -.019
3 (.020) (.009) (.003) (.002) | (-.00%)| (.00S) (.001) (-.003) (.002) (-.001) | (-.004)

.796 .616 .528 bk .326 <222 .240 .180 .120 .072 .0k0 .08k .020 .012 .002 -.020
N (.008) (.002) | (-.002) (-.o0k4) | (-.006)| (.002) | (-.001)| (-.001) (-.001) | (-.001) (-.001) [ (=.001)

.700 .580 b2k 459 .286 .150 .304 197 .104 .042 .012 .172 .021 .003 -.001 -.013
5 (.009) (.o04) | (-.002) | (.003) (-.003)|(-.001) | (-.001) (-.001) | (-.003) [(-.001) (-.002)

.90 .392 .326 .286 .22k L1hh <181 .132 .083 .ok47 .024 .082 .016 .007 .000 -.013
6 (.o11) (.007) (.o0k) (.006) (.oo4) {.o04) (.002) (.001) (-.001) (.002) | (.o001L) (-.002)

.299 .228 .222 .150 L1k .138 .075 .070 .063 .052 .037 .00k .009 .011 .003 -.0Lk

(-.006) [ (-.001) (.001) | (-.o04) (-.002) | (-.001) (-.001) | (-.001)|(-.001) (-.001)

7 Loy .358 .2k0 .30k .181 .075 .247 .150 .066 .017 -.003 .178 .017 -.00L -.002 - .00k
8 (.003) (.003) | (-.002) (.o01) (.o01) | (-.002)| (.002) (-.001) | (-.001)| (.001) (-.001)

.286 .243 .180 .197 .132 .070 .150 .102 .053 .021 .005 .100 .012 .00L -.001 =005

(.002) (.001) (-.001) | (.002) (-.002) (-.001)
9 SIghL .139 .120 .10k .083 .063 .066 .053 .039 .02k .013 .032 .008 .00k .000 -.006
0 (.001) (.001) (.o01) (.001) | (-.001) (.oo1) (-.001) [ (-.001) (-.001)

.090 .068 .072 .042 047 .052 .017 .021 .o24 .027 .022 -.007 .00k .007 .002 -.007
11 (.00k) (.001) (.o002) (.002) (.002) (.002) (.001) (.001) (-.001) (-.001)

.0L43 .028 .0ko .012 .02k .037 | -.003 .005 .013 .022 .029 -.018 .001 .007 .005 -.002
12 (.003) (.003) | (-.o01) (.002) (.002) | (-.001) (.002) (.001) (.001) i (-.001)

.169 .170 .08k 172 .082 .00k .178 .100 .032 -.007 -.018 .184 .013 -.006 -.002 .002
13 (.001) (.o01) (-.001)( (.001)

.030 .025 .020 .021 .016 .009 .017 .012 .008 .00k .001 .013 .00k .001 .000 =001
i (.001) (.oo1) (-.001) (.o001)

.013 .009 .012 .003 007 .011 | -,00L .001 .00k .007 .007 -.006 001 .oou\ .00L - .00k
15 (.oo1) (.001) (.oo1) (.oo1) (.oo01)

.000 .000 .002 -.001 .000 .003 | -.002 -.001 .000 .002 .005 -.002 .000 .00L .002 .009
16 (.003) (.003) (.003) (.001) (.001) (.o01)| (.o01) (.001) (.001) (.002) (~.001)

-.026 -.019 -.020 -.013 -.013 -.01% | -.00k4 -.005 -.006 -.007 -.002 .002 | -.001 -.00k .009 .085

%Values in parentheses are deviations fram the mean value.

o1

L262 NI YOVN




TABLE 2.- EXPERIMENTAL INFLUENCE COEFFICIENTS FOR CONSTANT-THICKNESS-RATIO DELTA WING

EDeflections are in inches per 100 pounda]

Deflection stations
Load a)
stations
al 2 3 4 5 6 T 8 9 10 il 12 13 14 15 16
1 (-0.017) [ (-0.007) | (-0.006) | (-0.002) (-0.001) | (-0.003) [ (-0.002)| (-0.001)| (0.00L) (~0.002)
1.637 .508 .265 .190, .116 | 0.055 0Tk .05L .029 Nkl .001 | 0.020 .002 [ 0.000 [0.000 | 0.000
2 (.016) (-.003) -.001) (-.001) (-.001) (-.002)
.508 .398 .183 .165 .092 [ .040 .069 046 .025 .008 .001 | .023 .002 .000 .000 .000
3 (.007) (.002) (.001) (.001) (.001) (.001) (-.001) | (-.001)
.265 .183 .152 .099 LOTh | .OkL .042 .032 .021 .010 .003 [ .009 .001 .001L | .000 | -.001
X (.006) (.o04) | (-.003) (-.001)|(-.001) (-.001) | (-.001)
.190 .165 .099 .163 .063 | .023 .066 4 .018 .005 .000 | .027 .003 .000 .000 | .000
(.002) (-.002) (.001) (.o01) (-.001)
S 116 .092 .07k .063 .O47 | 025 .03k .02k .01k .006 .002 | .012 .002 .000 | .000 | -.001
(.001) (.001) (.oo1) (.o01)
6 .055 .04o .okl .023 .025 | .028 .009 .010 .010 .008 .00k | -.002 .001 .001 .000 | -.002
(.002) (.oo1) | (-.o001) (.001) (.o01)
7 .07k d .0k2 .066 .034 [ .009 .082 .031 .0L1 .001 | -.00L| .036 .002 .000 | .000 | .00L
(.003) (.o01)
8 .051 .046 .032 .04o .024 [ .010 .031 .018 .009 .002 .000 [ .019 .002 .000 .000 | .000
(.001) | (-.001) | (-.001) (.001)
9 .029 .025 .021 .018 .0l [ .010 .011 .009 .007 .003 .00L | .005 .001 .000 | .000 .000
(-.001)
10 .011 .008 .010 .005 .006 | .008 .00L .002 .003 004 .003 | ~.00L .000 .001 .000 | -.001
(-.001) (-.001) (~.001)
11 .001 .001 .003 .000 .002 | .00k -.001 .000 .001 .003 o ~.002 .000 .001 | .000 | -.00L
(.001) (-.001)
1z .020 .023 .009 .027 .012 | -.002 .036 .019 .005 -.00L -.002| .072 .002 -.001 .000 .001
(.002) (.002) (.002) (-.001)
13 .002 .002 .001 .003 .002 | .00L .002 .002 .001 .000 .000 | .002 .001 .000 | .000 | .000
(.o01) (.001) (.o01) (.o01) (-.001)
1L .000 .000 .001 .000 .000 | .0OL .000 .000 .000 .00L .001 | -.00L .000 .001 .000 |
(.o01)
15 .000 .000 .000 .000 .000 | .000 .000 .000 .000 .000 .000 | .000 .000 .000 .000 .000
16 .000 .000 -.001 .000 -.001 | -.002 .001 .000 .000 -.001 [ -.00L{ .00L .000 000 | .000 .0k,

8Values in parentheses are deviations from the mean value.

Ve
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833 55° All corner radii, g"

Support tabs

23333

| 667

T ! 6033 1

(a) Constant-thickness delta wing.

t=1"at root
[ t=0 at tip
'
L L i

(b) Constant-thickness-ratio delta wing.

Figure 1.- Delta wings having a carry-through-bay chord smaller than the
wing root chord. All dimensions are in inches.

«
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r ]
([ 1]
L ] /—Support tabs
e i
[ | [N e Nl ]
|

Figure 2.- Method of supporting the delta wings.

19




NACA TN 2927

20

NOMINAL COORDINATES OF LOAD AND DEFLECTION STATIONS

Deflection
station

—ANng 0+ ON=-NDOOF ONON0 N

oooooooooooooooo

OHOANOWDW MO NO -0 -
—~ — NN AN

At S -t O OO
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Figure 3.- Location of load and deflection stations.
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Figure L4.- Test setup.
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o—o Experiment

——  Theory

Figure 5.- Comparison‘of experiment with theory for the tip-load
deflections of constant-thickness delta wing.

Figure 6.- Uniform-load deflections of constant-thickness delta wing
computed from experimental influence coefficients of table 1.
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(a) Tip-load deflections.

(b) Uniform-load deflections computed from experimental
influence coefficients of table 2.

Figure 7.- Deflections obtained from experiments with constant-thickness-
ratio delta wing.
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Carry-through-bay chord
smaller than wing
root chord

————— Entire root chord clamped

Figure 8.- Comparison of theoretical tip-load deflections of wing having
carry-through-bay chord smaller than wing root chord with deflections
of wing having entire root chord clamped.
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Figure 9.- Coordinate system used in the analysis of the appendix.
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