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SUMMARY 

An analytical and experimental investigation on pressure distri 
bution about wedges was initiated because of some problems encountered 
in transporation cooling; the results o~tained are of general inter 
est and application. The analytical investigation of incompressible 
flow abo~t finite wedges showed that decreasing the tunnel -wedge 
ratiO (the tunnel -wedge ratio is defined as ratio of tunnel height to 
maximum wedge thickness) decreased the pressure coefficient at all 
ch:Jrdwise lo·.::ations; an increase in wedge angle with an unbounded 
stream (infinite tunnel -wedge ratio) caused a pressure coefficient 
increase in the forward region and decrease in the rear region of tbe 
wedge . It was also fo~~d that even for a wedge in an unbounded stream 
the region :Jf applicability of the infinite wedge - type veloc ity distri 
bution assumed in the solution of l aminar boundary layer equations is 
approximated only within 10 percent for a limited leading- edge region . 
Additional calculations indicated that use of a theoretical instead of 
m1 experimental pressure distribution sho~ld be satisfactory for beat
transfer predict ions f01" regions not unduly influenced by flmv separ
ation . 

Comparison of theoretical and experimental pressure distribu
tions about wedges in compressible subsonic flow showed poor agree 
ment for a wedge angle of 300 and a tunnel -wedge ratio of 2 .8 , prob 
ably because of flmv separat io:J.. For wedge angles from gO to 200 and 
essentially unbounded streams (tunnel -wedge ratio of 10J) , the results 
from a simple mapping Karman- Tsien method were in good agreement with 
experiment for Mach numbers to 0 .700 . A hodograph method predicted 
results in good agreement ",ith experiment for an essentially unbounde9. 
stream, even for Mach numbers close to unity . 
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INTRODUCTION 

The question of the influence of the tunnel wall on the pressure 
distribution over a finite wedge arose in connection with some prob 
lems encountered in obtaining heat - transfer results for transpiration 
cooling . Prediction of the coolant flow emitted from a porous wedge, 
used as a test vehicle, necessitated knowledge of the pressure dis
tribution about the reference solid wedge . This distribution was 
obtained by placing a 300 solid wedge with a 2-inch chord in the tunnel 
used for the porous wedge investigation. The resulting tunnel-wedge 
ratio was 2.8 where this ratio is defined as the ratio of the height 
of the t'L~~el to the maximum thickness of the wedge. Attempts were 
made to correlate the data with analytical solutions available in the 
literature. 

In addition to the use for transpiration cooling analyses, wedges 
may be used as the leading section of compressor and turbine blades 
and wings, and are also usef ul in the solution of the laminar b8undary 
layer equations . Experimental Mach number and pressure distributions 
obtained from interferometer measurements are given in references 1 and 
2. A review of the different theories for the p8tential flo '", about 
wedges in an unbounded stream is also given in reference 1 . The theo
retical effects of compressibility may be obtained for sub30nic flow 
by either the method of reference 3 or, if the incompressible pressure 
distribution is known, by use of Prandtl- Glauert or Karman- Tsien correc
tions . 

For laminar boundary layer solutions, the stream velocity in the 
pctential flow is assumed to increase in proportion to some power of 
the distance from the leading edge . This type of velocity distribution 
is realized in the two- dimens i onal, incompressible flow about wedges 
infinite in the chordwise direction with an unbounded stream, that 
is, an infinite wedge with a tunnel -wedge ratio of infinity . Such 
boundary layer solutions are given in references 4 to 6; references 5 
and 6 give solutions for porous surfaces with large temperature dif 
ferences between the surface and the main stream. In act~tal pract ice, 
however, only finite wedges can be used . In addition, experiments 
would usually be conducted in a wind tunnel, so that the influence 
of the tunnel wall on the wedge pressure distribution is important . 
Hence, if results of boundar y layer theory are to be correlated with 
experiment , it is necessary to have an estimate of the region on a 
finite wedge in a bounded stream where the infinite wedge - type flow 
assumed i n this theor y is appr oximately realized . 
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In the present report, experimental pressure distributions were 
determined and flow visualizat i on studies were made for the 300 wedge 
with a tunnel -wedge ratio of 2 . 8 and upstream Mach numbers of the order 
of 0 . 350. Theoretical and experimental pressure distributions for the 
300 wedge were used to predict the heat transfer to the wedge by the 
methods of reference 7. Analytical pressure distributions for tunnel 
wedge ratios from 2.8 to 170 and wedge angles from 00 to 400 were 
calculated for incompressible flow. The re gion of applicability of 
the infinite wedge - type pressure distribution for a finite wedge in 
a bounded stream was analyzed . 8ince no direct comparison of experi
mental and theoretical pressure distributions for upstream Mach num
bers close to -~ity ~as found in the literature, a comparison of 
previously published experimental and theoretical results was also 
made . 

APPARAT08 

Wedge 

For the present experimental invest igation a 300 wedge was mach
ined from Inconel stock. The wedge had no afterbody because of space 
limitations in the tunnel . Stati c -pressure taps ( 0 . 020- in . diam . ) were 
drilled perpendicular to the surface at three different spanwise and 
various chordwise locations and connected to the ends of the wedge 
with drilled passages . Into these passages steel tubing was silver 
soldered for attachment of the f lexible tubing which led to the manom
eter board. Rods on each end of the \-ledge held it in place and acted 
as pivots for orienting the wedge at zero angle of attack . The geo
metry and pressure tap locations for the wedge are shown in table I. 
The resulting tunnel -wedge ratio for this configuration is 2 .83. The 
pressures on the wedge were read differentially with the upstream 
static pressure, the manometer fluid being water . Pressure readings 
at different spanwise locat i ons agreed within less than 1 percent for 
the same chordwise location . 

Test Facility 

In the test facility, laboratory air passed successively through 
a standard A.8.M .E. orifice, a combustion chamber, a plenum chamber 
(where stagnation temperature and pressure were measured), and the test 
section and into the exhaust system . For the present investigation no 
f uel was added in the combustion chamber . The plenum chamber and tunnel 
sections are shown in figure 1 . The inlet duct to the test section 
extended into the plenum chamber to insure a uniform velocity profile in 

3 
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the test section . Care was taken in assembly of the entrance and test 
sections so that no protuberances existed in the f l ow passage. 

The flow passage of the entrance and test sections downstream of 
the inlet duct was nominally 3 inches square with four outer walls spaced 
at 3/8 inch intervals to minimi ze heat loss for any high temperature 
work ( see fig. 1) . The 3- inch- square cross section was maintained for 
about 23 chord lengths (46 in . ) upstr eam of the wedge. Stagnation pres 
sure was also measured with a total - pressure probe about 8 chord lengths 
ups tream of the wedge. This pressure probe was read differentially with 

a wall static tap 4~ chor d lengths ahead of the wedge. The wall static 

pressure was also read absolutely) the manometer fluid being water for 
both the differ ent i al and absolute readings. These pressure readings 
were used to calculate the upstream Mach number . 

Flow Visualization 

In an attempt to confirm the two- dimensionality of the flow about 
the wedge) f low visualization studi es were made . In these studies hydro
gen sulfide gas r eacted with a mixture of glycerin and lead carbonate 
painted on the wedge and side walls . After the hydrogen sulfide was 
intr oduced through static taps on the wedge and side walls, its paths 
along the wedge and on t he walls were observed as brown traces on a white 
background. More details of visualization methods for gas flow about 
turbine blades are r eported in reference 8 . 

'lEST PROCEDURE 

Pressure taps symmetrically located closest to the leading edge on 
either side of the wedge ( see table I) were used to set the angle of 
attack to zero. When the pr essures at these taps agreed within 0 .1 inch 
of water) the pressure r eadings on the wedge were taken for the following 
upstream conditions : 

Mo PO) p '-PO) T' ) 

in. water abs in . water OR 

0 . 266 435 .0 21.9 560 
. 286 466.9 27 . 3 552 
. 328 421 .7 32 . 6 560 
.403 444.2 52 . 5 558 
. 464 513 . 0 81. 7 555 

Symbols are defined in the appendix. 
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ANALYSIS 

Analytical methods to determine the static-pressure distribution for 
flow about finite wedges are given. The static pressure on the wedge is 
incorporated in a pressure coefficient which is defined by 

(1) 

For isentropic incompressible flow, the pressure coefficient is related 
to the velocity by 

f.
U
U
O
)2 Cp,i ::a 1 - ~ (la) 

For isentropic compressible flow, the pressure coefficient is related to 
the Mach number by 

~~ 1 2)r:l 1 + i (r- l ); 
(lb) 

1 + '2 (r-l)M 

The pressure gradient in the direction of flow is given in dimensionless 
form by the Euler number which is defined by (ref. 9) 

Eu x dp x dU 
- - pu2 dx = 11 dx 

The last equality results from Bernoulli's equation. 

(2) 

The usual corrections for the effects of compressibility (Prandtl
Glauert and Karman-Tsien methods) which apply for subsonic flow are given; 
in addition, the theory of reference 3 for flow over a finite wedge in ~~ 
unbounded stream is utilized. 

Incompressible Flow 

Infinite wedge, unbounded stream. - For an infinite wedge in an 
unbounded stream, the velocity variation on the wedge surface is given 
by (ref. 4) 

m 
U = cx 

I ; 
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Differentiation of equation (3) and use of equation (2) show that 
m :Eu . By a conformal transformation of the region outside the wedge, 
it may be shown that the exponent m or the Euler number is related to 
the wedge angle by 

e 
Eu = ----2n-e 

for 

This result has already been given in reference 10. 

(4) 

The velocity distribution given by equation (3) has been used 
extensively in solution of the laminar boundary layer equations under the 
assumption that the Euler number is constant for a given solution. 

Finite wedge) bounded stream. - In actual practice, only finite 
wedges can be constructed and experiments with them would probably be 
conducted in a wind tunnel . Hence the pressure distribution about a 
finite wedge in a finite, bounded stream must be determined. For the 
case of incompressible flow about a finite wedge in a bounded stream, 
recourse is made to the mapping theorem of Schwarz and Christoffel for the 
theoretical approach . A general discussion of the Schwarz - Christoffel 
theor em is given in refer ence 11 . To obtain the pressure distribution 
about a wedge centr ally located in a rec tangular tunnel, it is necessary 
to consider only the upper half of the wedge because of flow symmetry . 
The region to be analyzed is shown schematically in figure 2. The wedge 
is assumed to have an afterbody of infinite length to simplify the anal
ysis . The theory, of course, precludes any separation of the flow. By 
a Schwarz - Chr i stoffel transformation the boundary of the flow region of 
the physical or z -plane i s transformed into the real axis of the 
S-plane, z and S being complex variables . The following points may 
be specified : 

1 . The leading edge E in the z- plane shall map into the point ( t , O) 
in the s - plane . 

2 . The trailing edge D in the z-plane shall map into the point (1,0) 
in the s -plane . 

3 . The infinite point BooC~ in the z-plane shall map into the point 

(0,0) in the S-plane . 

4 . The infinite points A~ and F~ shall map into negative and 

positive infinity, respectively) in the S-plane . 
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The transformation from the S-plane to the z-plane for this configuration 
can be obtained from the theorem of Schwarz and Christoffel as 

dz 
dS 

where S and t are constants to be determined . 

(5) 

In the physical or z-plane the flow is from a source of output 
UOa/2 at Aro to a s ink of intake UOa/2 at Bro· In the S -plane this 

requires a sink of strength UOa/2n at the origin. The flow induced by 

the sink in the ~ -plane is characterized by the complex potential 

The complex velocity in the z- plane) being the derivative of the poten
tial) is obtained from equations ( 5) and (6). 

e 
2n 

dw _ dw d(: _ UOa (L-!.) 
dz - d~ dz - 2nS S - 1 

As S ----->tro (Fro in the z- plane)) the derivative of the potential must 

give the upstream velocity Uo 

and the limit of the term in parentheses in equation ( 7 ) is given by 

e 

lim (s - tl) 2n = 1 
S-)ro S -

so that S = a/2n . At s = 0 (Bro 

dw' UOa 
er ations require that dz = ~. 

in the z-plane)) continuity consid-

derivative and of S = 0 

Substitution of th i s value for the 

into equation ( 7) gives 

t (~) 
2n 
e 

(8 ) 
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Thus the constants S and t ar e deter mi ned as functions of the wedge 
angle and tunnel -wedge ratio . 

The real veloc i ty on the wedge surface is evaluated by obtaining 
the absolute value of dW/ dz on the wedge surface . This surface corre 
sponds to the segment DE ( fig . 2) of the real axis of the ~ -plane where 
~ = (1,. 

e 

I~: I I~ = DI 
211 

D = = DO 

e (9) 
211 

= DO (~) (1, - 1 

for 

Equation Cla) is used to f ind the pr essure coef fic i ent for a finite wedge 
in a bounded stream 

e 

1 - (~)11 
(1, - 1 (10) 

for 

l < (1, < t 

Cp,i may be evaluated , ther ef ore , when the relation between (1, and x 

in the ~ - and z-pl anes is established . This relation is obtained by 
numerical integration of equation ( 5) as follows . 

Since the flow over the wedge surface in the z-plane, which maps into 
the segment DE of the real axi s of the s -plane, is of interest, points 
appropriately spaced between (1, = 1 and (1, = t are chosen . On this 
segment, Izl = x and ~ = (1, ; so that f rom equation (5), 

d ( x / L ) 
d(1, - i l ~~1 s 

- La, I~) \t - (1, 

e 
211 

1 a 
iT b(1, 

e 
211 

(
(1, - 1) e --- sin t - (1, 2 (11) 

N 
co o 
(JI 
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from which 

x (CL) 
L 

1 _ a sin (e / 2{ CL ~ ( CL _ 1 )2
B
• Cia 

brr CL t - CL (12) 

1 

for 

Then x/L may be obtained with the aid of equation (12) and the finite 
difference integration formula (ref . 12, p. 243). 

2 
nh[l + E: 6, + n{ 2n- 3) 6,2 + n{n- 2) 6,3 

2 12 24 + 

n{6n3 - 45n2 + 110n - 90) 6,4 + n{2n4 - 24n3 + 105n2 - 200n + 144) 6,5 + 
720 1440 

n (12n5 
- 210n

4 + 428~~ ~~ 725n
2 

+ 7672n - 5040) 6,6 + .. J 
, 0 

~13) 

If accurate results are to be obtained from this numerical integra
tion, the nature and behavior of the function d(x/L)/dCL must be known 
for 1 ::::' CL < t . In particular, for value s of CL in the ne ighborhood of a 
maximum or minimum value of d(x/L)/dCL, it is necessary to use smaller 
values of n and h than those which may be used in other regions. At 

maximum or minimum values of d(x/L)/dCL, d2(x/L)/dCL2 must vanish. Dif
ferentiating equation (11 ) and equating this result to zero yield the 
quadratic equation in CL 

t - 1 l 
l) ( t - CL[j 

(14) 

If equation C14) has no real r oots, d(x/L)/dCL has no maximum or minimum 
values . If equation (14) has real roots, say ~ and CL3 with ~<CL3 ' 

then d(x/L) / dCL increases for l<CL <~ to a maximum at CL = ~, 

decreases for ~ < CL ~CL3 to a minimum at CL = CL3 , and finally increases 
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for CL3 :5.CL < t, becoming infini te as CL~t. Hence, for a given tunnel

wedge configuration, ~ and CL3 may be determined from equation (14), 
if they exist, and appropriate values of nand h may be used in 
equation (13) to determine x/L. 

For the corresponding Euler number distribution along the wedge, 
use of equations (2), (9), (11), and dU/dx ~ dU/dCL/dx/dCL yields 

e 
2" (t - 1) x U ~ 

Eu ~ - a- .--e- i Uo (CL
b Sln 2" 

l)(t 
(15) 

Hence the Euler number may be calculated for each value of CL by use of 
the results from the finite - d i fference calculation. At the leading edge 
(the stagnation point) , corresponding to CL = t, the right side of equa
tion (15 ) becomes indeterminate. It' can be shown, however, by use of 
L'Hospital's Rule that as CL approaches t, the Euler number approaches 
the value given by equation (4) for an infinite wedge of angle e in an 
unbounded stream. 

An independent check of the velocities obtained by this mapping 
method was obtained for e = 300 and alb = 2.8 by employment of a 
mechanical stream-filament method . This method uses steel wires for the 
streamlines and the orthogonal lines . Upon proper alinement of the wire 
network, the velocity ratio ujuo is given by the ratio of the length 

of the rectilinear square upstream of the body to the length of the rec
tilinear square on the surface of the body. Details of the method are 
given in reference 13 . The r esulting flow pattern for the test con
figuration is shown in figure 3 . Velocities obtained from this network 
agreed within 2 percent with those calculated from the mapping method. 

Finite wedge, unbounded stream . - The flow about a finite wedge in 
an unbounded stream can be deduced in a manner similar to that used for 
the bounded stream . For this configuration employment of the theorem of 
Schwarz and Christoff el yields for the wedge surface 

Ia e x 
( CL) 1 - i (~ ~ ~2n dCL (16) = L 

- 1 

f or 

- 1 :5. CL :5.1 

~ 
) 

( 1 
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and 

e 

(
1 _ 0,)21C 

D :=; DO 1 + a, 

so that 

e 

Cp , i = 1 - ( ~ ~ ~f( (17 ) 

for 

and 

(18 ) 

In this transformation, X/L = 0 corresponds to a, = 1, that is, r (1) = 0, so that from equation (16) 

e 

(~)21C 
1 - a, 

For evaluation of this integral and for the integration of equa
tion (16 ) , the finite - difference formula (ref . 12, p. 243) is again used . 
As in the case of a finite wedge in a bounded stream, the Euler number 
given by equation (18) approaches the value given by equation ( 4 ) for an 
infinite wedge of angle e in an unbounded stream as the leading edge is 
approached (a, ~l) . 

A linearized theory for 
flow about a finite wedge in 
appendix B of reference 1 . 
is given by 

the pressure distribution for incompressible 
an unbounded stream is presented in 

The pressure coefficient on the wedge surface 

(19) 
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Because of the limitat i ons of the linearized theory, the point of zero 
pressur e coeff icient is f ixed at x/L = 0 .5 regardless of the wedge 
angle , as is seen by equat i on (19 ). Exami nation of equations (16) and 
(17 ) , obtained by the mappi ng method, shows that Cp,i = 0 does not 

always occur at x/L = 0 .5 , but its location will vary depeniing on the 
wedge angle . 

Compr essible Flow 

Several theor et i cal appr oaches have been used to account for the 
influence of compr ess ibility on the pressure coeff icient for appreciable 
subsoni c Mach number s ( see r ef. 14). Wi~h respect to ease of utilization, 
the simpler theor i es ar e the Prandtl -Glauert and Karman- Tsien methods 
which cor rect the i ncompr essible pressure coefficient for Mach number . 
The Prandtl- Glauer t method gives 

( 20) 

and the Karman- Ts i en method gives 

(21) 

~l - Mo
2 

+ 

Thus the pr essure coefficient for compressible f low is obtainable 
if the upstr eam Mach number and the incompr ess i ble pr essure coeff icient 
are known . 

Finite wedge , bounded str eam . - The Prandtl- Glauert and Karman- Tsien 
cor rect i ons ar e, strictly speaking, applicable for an unbounded stream, 
or at least where the i nt erfer ence fr om the tunnel wall is small . Quali 
tative estimates of t he compr essibility effects , on the other hand , may 
be ob tained by use of these met hods . The Karman-Tsien method, rather 
than the Pr andtl- Glauer t method , was used to investigate compressibility 
effects on the experimental test conf igurat i on e = 300

, a l b = 2 .8, since 
Cp ,i i s lar ge over most of the wedge and the Karman- Ts i en cor rection is 

i n better agr eement with experiment i n thi s range ( ref. 14, p . 246) . 

Fin i te wedge , unbounded str eam . - The pressure distribution f or a 
fin i te wedge in an unbounded s tream may be obtained quite readily by 
equations (19 ) and ( 20) . The resul t has alr eady been gi ven in 
ref er ence 1 a s 

(\) 
(JJ 
o 
(Jl 
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e ln x/L 
• r 2 1 - x/L rr 'V l - Mo 

( 22) 

It is anticipated that equation ( 22) will become less valid when 
Mo is close to unity. In this case the solution from a hodograph method 

given in reference 3 also may be utilized . The series representation of 
x/L on the wedge surface given by equation (53) of r ef erence 3 is, in 
the notation of the present report, 

x/L ( 23) 

for 

N> NO > 0 

1 2 

x/L = 1 + 2N 3 N3 Z (_l )r (:rr) K 1 C~o) 12 ( r~N) ( 24 ) 0 
r =l 3 3 

for 

NO >N > 0 

where 

r = summat i on index 

3 

NO == ( 2/3)( 1 _ Mo2)2 
( 25 ) 

3 

N == ( 2/ 3 ){ 1 _ M2 ) 2 

v = ~Y + 1 ) e 2 

and Ip and KP are modified Bessel functions of the first and second 

kinds, respectively. The modified Bessel funct i on of the second kind KP 
is related to Ip by (ref . 12, p . 317) 
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The modified Bessel function of the first kind ~ is tabulated in ref 

erence 15 ) so that it and the modified Bessel function of the second kind 
K ar e obtainab l e . 

p 

Examinat i on of equat i ons ( 23 ) ffild ( 24) shows that equation ( 23) is 

for the front portion of the wedge) since here M2 5 Mo2 so that N~NO ; 

equation ( 24 ) is f or the rear portion) since there M2 ~ Mo2 so that 

NO > N. With this in mind) equations ( 23 ) and ( 24) can be solved for x/ L 

by assigning values N) NO) and v and calculating the modified Bessel 

functions over the range of r. 

In the so- called transonic approximation) the pressure coefficient 
is appr oximated by the relati on given in references 3 ) 16) and 17 ) which 
is) in the notion of the present report) 

2 ( 2 2) 
Cp = r+l Mo - M (lc) 

Since assigned values of N and NO fix M and MO by equa-

tion ( 25 )) Cp can be calculated by u.'le of equat i on ( lc ) for the hodograph 

method for the finite wedge) unbounded str eam . Thus Cp is calculable 

for the hodogr aph method) and by use of equation ( 22 ) Cp for linearized 

subsoni c flow may be calculated . These calculations may then be used for 
comparison with the experimental pressure coefficients obtained from data 
in reference 1 . 

RESULTS AND DI SCUSSION 

Analyt ical r esults of the i ncompressible flow abo~t finite wedges 
will be presented and the effects of wedge angle and tunnel -wedge ratio 
will be discussed . An estimate will be made of the region of applicabil i ty 
of the infinite wedge - type fl ow ( constant Euler number) assumed in bound
ary layer theory . Predic t i ons of heat transfer to the 300 wedge for a 
tunnel -wedge r at i o of 2 . 83 will also be given . The results of the flow 
visualization studies on the 300 test configuration as well as a compari
son of analytical and experimental pressure distributions for this wedge 

C\) 

CD 
o en 
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will be shown. Comparison between compressible theory and experimental 
pressure distributions of reference 1 will be made for subsonic f low . 

Analytical 

Effect of wedge angle. - Pressure coefficients were calculated by 
use of equation (10) for incompressible flow (Mo = 0) about gO, 150

, 

and 200 wedge angles; the chordwise location corresponding to each coef
ficient was obtained by equation (12 ). The tunnel-wedge configurations 
are those for which experimental data are given in reference 1. For 
each of these configurations the tunnel -wedge ratio is sufficiently large 
that tunnel wall influence i s relatively insignificant . The pressure 
distributions for finite wedges in an unbounded stream (a/b =~) were 
also calculated using equations (17) and (16). These analytical results 
for incompressible flow about finite wedges are presented in figure 4 and 
table II. Figure 4 ( a) shows a plot of computed pressure coefficient 
against chordwise location f or 00 < e S.400 . Note that the location of the 
zero pressure coefficient moves downstream with increasing wedge angle. 
Figure 4 (b), a cross plot of figure 4 (a), shows the variation of the 
pressure coefficient at various chordwise locations . Figure 4 indicates 
that the pressure coefficient increases with increasing wedge angle over 
the forward region and over the rear region the pressure coefficient 
decreases with increasing wedge angle . Table II gives the analytical 
results for finite wedges in unbounded, incompressible streams (alb =~, 
Mo = 0) . 

The Euler numbers for the tunnel -wedge configurations were calcu
lated by equations (15) and (18); the results are given as figure 5. 
The Euler numbers must tend to the values for infinite wedges as 
x/ L ~ 0; these values may be calculated by equation (4). Only in a small 
region close to the leading edge does the Euler number approximate a 
constant value in the flow direction, even for this case of an unbounded 
stream . Thus, if an average Euler number be taken for each wedge angle 
in the ra.11.ge 0 s..x/L < 0 . 2, the deviation from this value is ::t,10 percent 
at x/L = 0 and x/L = 0.2, respectively. The solutions of the boundary 
layer equations given in references 4 to 6 and elsewhere assume a con
stant Euler number in flow direction, whereas figure 5 shows that a con
stant nonzero Euler number cannot be obtained with a finite wedge . It 
may be deduced, therefore, that for an experimental realizat~on of an 
infinite wedge-type pressure gradient, it would be advisable to adjust 
the bounding walls of the tunnel to impose the proper pressure distri 
bution on the test body . 

Effect of tunnel -wedge ratio . - Pressure coefficients for various 
tunnel - wedge ratios ranging from about 110 to 2 .8 for e = 200 are 
given in figure 6(a) as a function of the chordwise location. To indi 
cate better the influence of tunnel - wedge ratiO, a cross plot of 



16 NACA TN 2942 

figure 6(a) was made in figure 6(b ) . For decreasing values of alb the 
pressure coefficient decreases f or all x/ L shown . The r egion of a l b 
where the i nfl uence on Cp,i i s small is seen to be of the order of 100 

or mor e , at least for the incompressible f low considered here . For the 
tunnel -wedge rat i o of the current experiments, alb = 2 . 8 , the wall prox
imit y has a decided influence on the p ressure coefficient. 

The ef fect of the tunnel-wedge ratio on the Euler number distribu
tion f or a 200 wedge is given in figure 7 . The Euler number decreases 
with increasing tunnel -wedge ratio. The slope of the Euler number curve 
near the l eading edge decreases quite markedly f or appreciable tunnel 
wedge r at iOS ; hence conditions here more closely approximate those for 
an infinite wedge. 

Heat transfer . - Predictions of heat transfer to a 300 wedge with a 
tunnel -wedge ratio of 2 . 83 were made using the methods of reference 7 
for an impermeable wall with small temperature differences . The results 
are shown i n figure 8 , where Nu/~ReO is plotted against the chor dwise 

locat i on . Curves 1 , 2, and 4 show the effect of using different methods 
for heat - t r ansfer predi ction . Curves 2 and 3, which were obtained by 
the same heat - transfer method, show the effect of using different pres 
sure distributions . The exper imental pressure distribution f or the test 
configuration will be given later . I t should be emphasized that all the 
curves shown on figure 8 are theoretical, since no heat - transfer data 
were obtained in the pr esent investigat i on . 

Of the different heat- transfer methods utilized in figure 8 , the 
equivalent wedge - type method is considered to be the best means of pre 
dicting heat- transfer results ( r ef. 7 ) . Curve 2 in figure 8 will there 
fore be used as the criterion . A compar ison of curves 1 and 2 shows 
that the equivalent infinite wedge and the equi valent wedge-type methods 
predict practically the same results for 0 '5:..x/L5..0 .3, but as x/L 
increases from 0 . 3 the deviation between curves 1 and 2 becomes greater. 
Curve 4 , calculated by the infinite wedge, constant Euler number method, 
differ s from the criterion, curve 2, by 8 per cent at x/L of 0 .3 and 
22 percent at 0 . 8 . It may be concluded, therefore , that close to the 
leading edge of the body (x/ L ~ 0 . 3), use of either of the equivalent 
methods gives the s ame results, at least f or the impermeable wall case . 
Aft of the leading- edge regi on , the equivalent wedge-type method should 
be used . 

Curves 2 and 3) which use theoretical and experimental pr essure dis 
tribut i ons ) respect ively) and the equivalent-wedge type heat - transfer 
method show curve 3 deviating from curve 2 by about 6 per cent at x / L 
of 0 . 3 and 9 percent at 0 .8 . This deviation i s believed to be due mainly 
to the infl uence of separati,on on the experimental pressure distribut i on. 
For regions where separation is less influent i al (xJL ~ 0 . 3) , the use of 
the theoretical pressure distribution should be sat i s f actory if accu
racies in heat - t r ansf er predict ions of the order of 5 percent are 
tolerable . 
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Experimental 

Flow visualization. - The results of the flow visualization studies 
for the test wedge at an upstream Mach number of 0 . 410 are shown in fig
ure 9. The support rod and pressure leads on the wedge are also vis ible . 
To exhibit better the effect of the flow on the paint, figure 9(a) shows 
the wedge after painting before insertion in the tunnel . The photograph 
in figure 9 (b) was taken after the visualization run was made and the dark 
traces of the hydrogen sulfide which emanated from the static -pressure 
taps may be seen. Note that the trace on the wall followed the wedge 
contour very well and there is no apparent tendency for any secondary 
flow . This is also borne out in the front view of the wedge in fig -
ure 9(c ). Here it can also be seen that the flow causes the paint to 
form ridges (White) parallel to the side wall, confirming the two
dimensionality of the flow. 

Pressure distribution. - The experimental pressure distributions 
obtained from the 300 wedge for a tunnel-wedge ratio of 2.8 are shown in 
figure 10 for different upstream Mach numbers along with the theoretical 
pressure coefficients obtained from equation (10) for Mo = 0 and from 

equation ( 21) for MO t O. The trends of the experimental data regarding 

effects of chordwise location and compressibility on the pressure coef
ficient follow those predicted theoreticall¥. The absolute values, how
ever, are consistently greater than predicted . This effect is probably 
attributable to the influence of the trailing- edge separation on the 
wedge pressure distribution. Close to the leading edge, where the influ
ence of separation should be small, the deviation between theory and 
experiment is relatively slight . Similar influences on the pressure dis 
tribution due to separation from cylindrical bodies are noted and dis
cussed in reference 18. 

From the experimental pressure coefficients Cp for the lowest test 

Mach number Mo = 0.266, the incompressible pressure coefficients Cp,i 

may be calculated by the Karman- Tsien method (eq . (21)). Then these 
values of Cp,i may be inserted in equation (21) and Me assigned the 

value 0.464, and new pressure coefficients calculated for comparison with 
the data at this Mach number. The pressure coefficients so obtained are 
given by the dashed line in figure 10 . It is seen that the dashed line 
yields smaller numerical values of Cp than the experimental data for 

Mo = 0 . 464, probably because the Karman- Tsien formula is strictly appli 

cable only for an unbounded stream, whereas the proximity of the tunnel 
wall in the experiment increases the influence of compressibility. 

The Ka~man- Tsien formula corrects the pressure coefficient for dis 
turbanc e s caused by the body in the flow f i eld . For the case of small 
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tunnel - wedge ratio, however , an addit i onal correction is needed for the 
change in flow area . The eff ects of area change may be estimated by use 
of equation ( 3 . 26 ) of r ef erence 14 . Because the area change is of smaller 
order of magnitude than the disturbances for most investigations, a 
detailed examination of this method was not made for the present exper 
iments . 

Experimental Mach number distributions for various wedges are given 
in r eference 1 for the transonic speed range and large tunnel -wedge 
ratios. Experimental pressure coefficients may be calculated fr om these 
data with equation (lb ). For the tunnel-wedge ratios used in the exper
iments ( see table II), theoreti cal pressure coefficients and chordwise 
locat i ons may be computed f or incompressible flow by equations ( 10) and 
(12 ) (bounded stream) and extended to comyressible flow by equation ( 21) ; 
or, since the tunnel -wedge r atio is large, equation (17 ) (unbounded 
stream) may be used f or the incompressible solution . Results of calcu
lations using equations (10) and (12 ) are presented in figure 4 . Theo
retical pressure coeffi cients may also be calculated by equation ( lc ) 
the chor dwise location then bei ng given by equation ( 23) or ( 24 ) when 
the tabulated values of the Bessel functions in reference 15 are used . 
Hereinafter use of equations (10) and (12) ( from Schwarz - Christoffel 
mapping theorem) in conjuncti on with equation ( 21) will be designated 
the mapping - KT (Karman-Ts i en) method ; use of equation ( 22 ) will be 
defined as the l inearized method ; and use of equations ( 23 ) and ( 24 ) 
will be called the hodograph method . 

The experimental pressure coeff i cients calculated from the results 
of reference 1 for wedge angles of 9 0 and 150 and an upstream Mach num
ber of 0 . 824 are shown in figure ll ( a ). The point of zero pressure 
coeffi c i ent moves downstream with i ncreasing wedge angle, as was shown 
analytically in figure 4 ( a ). The experimental shift in chordwise loca
tion of this point due to an angle i ncrease from 90 to 150 is about 

1 
72 percent fr om figure ll ( a) , whereas the predicted shift from fi g-

ure 4 (a) would be about 7 per cent . The locations of the points of zero 
pressure coeff i c i ent shown in figures 4(a) and ll (a) differ, however, 
because of the influence of upstream Mach number . 

The experimental results for a wedge angle of 200 and an upstream 
Mach number of 0 . 700 are compar ed with the theoretical linearized, 
mapping- KT, and hodograph methods in figure ll (b) . This figure indicates 
that the mapp i ng- KT method agrees best with experiment f or this wedge 
angle and upstream Mach number. It i s to be expected that the mapping 
method would be better than the linearized method, since the mapping 
method considers the influence of the wedge angle on the pressure coef
ficient whereas the linearized method does not . The hodograph method, 
which provides the most accurate theoretical computation, should also 
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be in good agreement with experiment . The fac t that the experimental 
val ues fall below those predicted by the hodograph method is poss ibly due 
to compensating eff ects involving the influence of viscosity and the sub 
sequent formation of boundary layer. (A qualitative discussion of 
boundary layer influence on wedge pressure distribution i s given in 
ref. 16 . ) The boundary layer would tend to make the experimental wedge 
act roughly as a wedge with a slightly larger angle than the geometric 
wedge, and from fi gure 4 (a) it can be seen that this would tend to 
decrease the pressure coefficient over the rear part of the wedge. Since 
the mapping- KT method here predicts lower values of Cp than does the 

hodograph method, the experimental data are in somewhat better agreement 
with the mapp ing-KT method than with the hodograph method . I t appears 
therefore that the mapping- KT method, which is easier to apply than the 
hodograph method, may be used to obtain wedge pressure distributions at 
least for Mo < 0.7 and e < 200

. 

Only the hodograph method, however, i s in good agreement with 
experiment f or Mach numbers close to unity, as may be seen in fig-
ure ll(c) f or Mo ~ 0 . 892. Near the leading edge, wher e the local Mach 

number is small, the mapping-KT and linearized methods are in good 
agreement with experiment . The hodograph method is lower than experi 
ment because at the leading edge (M = 0) the hodograph method yields 
Cp = 0 . 662 by equat i on (lc ). For the mapping-KT method, Cp = 1 .378 by 

equations (la) and ( 21) . A pressure coefficient of unity is obtained 
from equation ( lb) by setting M = 0 and using the first two terms of a 

-"L 
, -1 

b · . 1 . f (.1 + '2- 1 M~ 2\ F th l ' . d th d l nomla expanslon 0 \ . ~ ) or e lnearlze me 0, equa-

tion ( 22) , Cp is asymptotic to the ordinate at x/L = O. 

Aft of the leading- edge region, the linearized and mapping-KT 
methods do not properly predict the influence of the upstream Mach number. 
The hodograph method, on the other hand , is in good agreement with exper 
i ment over most of the wedge. 

SUMMARY OF RESULTS 

The results of an analytical and experimental investigation of the 
pressure distribution about wedges in bounded and unbounded subsonic 
streams are as f ollows : 

1 . The analytical solutions showed that , to properly estimate the 
wedge pressure coeffiCient, it is necessary to make a detailed examination 
of the flow with due considerat i on to the r elative chordwise location, 
wedge angle, tunnel- wedge ratio, and upstream Mach number. 
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2 . It was found from the analytical results for an unbounded stream 
that the region of applicability of the infinite wedge - type velocity 
distribution assumed in the solution of laminar boundary layer equations 
is approximated only within 10 percent for a limited region near the 
leading edge . For tunnel -wedge ratios of the order of 5 or less (bounded 
stream), the infinite wedge - type velocity distribution is realized only 
at the leading edge . 

3 . Predictions of heat transfer to a 300 wedge with small tunnel 
wedge ratio ( 2 .8 ) showed that use of the theoretical pressure distribu
tion rather than of the experimental may be satisfactory if the desired 
accuracy in the heat transfer is of the order of 5 percent and the region 
is not markedly inf luenced by flow separation . 

4 . The experimental pressure coefficients for the two - dimensional 
flow over the 30° wedge with a tunnel -wedge ratio of 2 .8 were not in good 
agreement with the theory for a fin i te wedge in a bounded stream, prob 
ably because of the influence of flow separation on the experimental 
results . 

5 . Comparison of prevtously published experimental results and 
theory in the high subsonic region for large tunnel - wedge ratios (greater 
than 100) indicated that the s imple mapping Karman- Tsien method was in 
good agreement wi th experiment f or wedge angles from gO to 200 and 
upstream Mach numbers to 0 . 700 . For Mach numbers of the order of 0 .900 
and a wedge angle of 200

, the hodograph method was in better agreement 
with experiment than either the mapping or linearized methods. 

Lewis Flight Propulsion Laboratory 
National Advisory Commi ttee for Aeronautics 

Cleveland, Ohio , January 6, 1953 

[\J 

co 
o 
U1 



l 

C\) 

en 
o 
CJ1 

NACA TN 2942 21 

a 

b 

c 

Eu 

H 

h 

k 

L 

M 

m 

N 

Nu 

n 

APPENDIX - SYMBOLS 

The following symbols are used in this report : 

points on fig . 2 

tunnel height 

maximum wedge thickness 

pressure coefficient, Cp 
_ p - PO 
- 2 

Po DO 

2 

constant of proportionality, e~ . (3) 

dp 
- x dx 

Euler number, Eu =7 
heat-transfer coefficient 

width of interval in finite difference integration, e~. (13) 

modified Bessel function of first kind of order p 

modified Bessel function of second kind of order p 

thermal conductivity 

length of wedge surface 

length of afterbody 

Mach number, U/~yRT 

exponent in e~ . (3) 

3 
2 

function of Mach number, N = 2/3 (1 - M2) 

Nusselt number, HL/k 

number of intervals advanced from initial value in finite 
difference integration, e~ . (13) 
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p 

p' 

R 

r 

S 

s 

T 

T' 

t 

U 

v 

w 

x 

Y 

z 

y 

static pressure 

total pressure 

gas constant 

Uo p L 
Reynolds number, 

summation index, eqs . (23) and (24) 

NACA TN 2942 

constant in transformation for finite wedge in bounded 

stream, S 

constant in transformation for finite wedge in unbounded 
stream, eq. (16) 

static temperature 

total temperature 

constant in 

stream, t 

velocity 

transformation 
2n: 
e 

_ ( alb \ 
- alb - i) 

function of wedge angle, v 

complex potential 

for finite wedge in bounded 

distance along wedge surface measured from leading edge 

spanwise distance on wedge surface 

complex variable of phYSical plane 

real component of S 

ratio of specific heats, y 1.4 

finite difference operator 

complex variable of transformed plane 

(\J 
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e wedge opening angle 

absolute viscosity of fluid 

p density of fluid 

Subscripts: 

° condition upstream of body 

i incompress ib1e 

1 initial value in finite difference integration, eq. (13) 

2, 3 real root 

undisturbed region, upstream or downstream of wedge 
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TABLE I. - GEOMETRY AND PRESSURE TAP LOCATIONS 

FOR 300 WEDGE 

~ll dimensions are in inchesJ 

~300 

2.05 

Pressure t.ap 
locations 

y x 

Lower surface 

2.42 0 .37 
2.42 .75 
2 .42 1.08 
2 . 42 1.27 
2 .42 1.53 
2.38 1.92 
1.45 .49 
1.45 .88 
1.45 1.40 
1.45 1.66 

.48 .37 

.48 .75 

. 48 1.08 

. 48 1.27 

.48 1.53 

. 48 1.92 

Upper surfa ce 

2 .42 0 .37 
2.42 .75 
1.45 . 49 
1.50 .88 

.48 .37 

.48 .75 

T 
1.06 

25 
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TABLE II . - THEORETICAL PRESSURE COEFFICIENTS FOR 

FINITE WEDGES IN UNBOUNDED, INCOMPRESSIBLE STREAMS 

CALCULATED BY EQUATIONS (16) AND (17) 

[ alb = co; Mo = 0 J 

X/L Cp,i 

e = 9° ' s/L = 0 . 5008 L\ , 
0 . 0000 1 . 0000 

. 0338 . 1595 

~ . 0555 . 1369 
. 2651 . 0535 
.4687 . 0100 
. 5189 . 0000 
. 5688 -. 0100 
. 7660 -. 0566 ~ . 9104 - .1162 
. 9592 -.1586 

X/L 1.0000 - co Cp,i 

e = 15° ; s/L = 0;-4997 e = 20°; s/L = 0 . 4986 

0 . 0000 1 . 0000 0.0000 1 . 0000 
. 0304 .2631 . 0385 . 3204 
. 0591 . 2175 . 0623 .2790 
. 2747 . 0874 .2830 .1149 
. 4800 . 0165 . 4896 . 0221 
. 5301 . 0000 . 5397 . 0000 
. 5799 -.0169 .5892 -. 0225 
.7746 -. 0958 .7346 -. 0987 
. 9150 -. 2010 . 9189 -.2764 
. 9599 -.2780 .9622 -. 3870 

1.0000 -co 1 . 0000 -co 

e = 30°; s/L = 0.4955 e = 40°; s/L = 0 .4907 

0 . 0000 1.0000 0 . 0000 1.0000 
. 0367 .4570 .0697 . 4928 
. 0629 . 3991 .2611 . 2651 
. 2994 .1673 . 4772 . 0862 
. 4575 . 0653 .5775 . 0000 
. 5583 . 0000 .76 51 -. 2071 
. 7499 - .1518 .8932 -.4704 
. 8838 -. 3352 .9697 -. 9238 
. 9661 -. 6335 1 . 0000 -co 

1 . 0000 -co 
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Figure 1 . - Schemati c diagram of test setup for 30° wedge. (Al l dimensions are in inches.) 
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Figure 2 . - Relation between physical and transformed planes for finite wedge in 
tunnel. 
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Figure 3 . - Tbeoretical flow pattern obtained by wire mesb for wedge opening angle e of 300 and tunnel-wedge 
ratio alb of 2 . 8 . 
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(a ) Computed pressure coefficient against chordwise location. 
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(b) Compu t ed pressure coeffi cient against wedge angle . 

Figure 4 . - Influence of wedge angle on pressure distribu
tion . upstream Mach number, O. I 
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(a) Computed pressure coefficient against chordwise location. 

Figure 6 . - Influence of tunnel-wedge ratio on pressure distri
bution for 200 wedge. Upstream Mach number, O. 
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(a ) Painted wedge and side wall prior to subjection to air flow or hydrogen sulfide . 

Figure 9 . - Results of flow visualization studies on 300 wedge with tunnel-wedge ratio 
of 2 . 8 . 
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(b) Hydrogen sulfide traces on wedge and side wall (side view). 
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Figure 9 . - Continued. Results of flow visualization studies on 300 wedge with tunnel
wedge r atio of 2.8 . 
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(c) Hydrogen sulfide and f l ow trace s on wedge (front view). 

Figure 9 . - Concl uded . Results of f low visualization studies on 30° wedge wi tb tunnel-wedge r atio of 2.8. 
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Figure 10 . - Comparison of experimental and theoretical pressure 
coefficients for 300 wedge with tunnel- wedge ratio of 2.8. 
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(b ) Wedge angle, 200 ; ups t ream Mach number, 0 . 700 . 

Figure 11 . - Comparison of experiment wit h theory for l arge 
tunnel- wedge r a t i o (a/b>lOO ) . 
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Figure 11. - Concluded. Comparison of experiment with theory 
for large tunnel-wedge ratio (a/b>lOO). 
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