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A NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2983 

LINEARIZED POTENTIAL THEORY OF PROPELLER 

INDUCTION IN A COMPRESSIBLE FLOW 

By Robert E. Davidson 

SUMMARY 

The potential of the linearized flow for a lifting-line propeller 
of arbitrary circulation distribution at subsonic advance is derived in 
cylindrical harmonics. From the potential the induced angle at the 
lifting line is obtained. The series expression for the induced angle 
is divergent as is to be expected for lifting lines in supersonic flow, 
but this divergence is removed when the supersonic lifting-line induc­
tion is removed. A phenomenon resembling resonance in vibrating systems 
introduces itself in that one term in the series becomes very large com­
pared to the others. The main consequence of this phenomenon is that 
the lift distribution cannot be arbitrarily prescribed; on tne other 
hand, the inverse problem, in which the propeller geometry is given, 
is acceptable. 

JNTRODUCTION 

In order to calculate the induced angle of attack of the propeller 
blade sections for compressible flow, the velocity potential for the 
complete flow field must be derived. Inasmuch as the equation of motion 
changes from an elliptic type to a hyperbolic type at the radius where 
the propeller blade, or the blade prolonged, is at Mach number one, the 
disturbance potential turns out to be of mixed elliptic and hyperbolic 
character. With incompressible flow, the distant boundary condition 
i s certainly that the disturbance potential must be zero far out radially 
and far upstream. However, with compressible flow, the possibility of 
propagation of disturbances far ahead, especially in a closed wind tun­
nel, must be admitted. Therefore, the one problem becomes two; the 
elliptic field, which is essentially incompressible, and the hyperbolic 
are determined by different physical conditions. 

The velocity potential is obtained by superposing suitable solutions 
of the compressible equation of motion on the known far - wake velocity 

I 
J 



2 NACA TN 2983 

potent ial, which is also a s olution of t he compressible equation of 
motion. This far-wake potential extends only downstream of t he pro­
peller and pr ovides the j ump in potential at t he trailing vortex sur­
faces and the downstream feature that the far wake must be the same as 
f or incompressible flow except f or random wave motion or noise. There­
f ore, the problem reduces t o superposing the elliptic and hyperbolic 
fields in such a manner that certain physical conditions are met at 
the propeller plane where the far-wa ke potential is cut off, an obvious 
condition being continuity of the velocity vector. The cut-off of the 
f ar-wake potential at the propeller plane creates the liftinG lines 
t here, since t his t ermination of the surfaces of a potential discon­
tinuity is equivalent to a lifting line. 

In t he differentiation of the potential at the lifting line, a 
difficult y is t o be anticipated in that a lifting line has infinite 
wave drag in supersonic flow, and this condition is part of the theory 
inasmuch as no restrictions are placed on tip Mach number. Some of 
t he hyperbolic induction attributed to the lifting line must therefore 
be separated. This unwelcome induction is found in the hyperbolic 
f iel d bu t is absent in the elliptic field, as would be expected. 

For the most part, only the case of propeller operation in a closed 
circular wind tunnel is considered, although the way the potential may 
be obtained in free air is indicated. The only reason for emphasizing 
t he t unnel is that, where series occur in the tunnel theory, integrals 
occur f or free air. The series seem more amenable to investigation 
than the integrals, and it is believed that free air is the limiting 
case in which the tunnel diameter approaches infinity. 

SYMBOLS 

B number of blades 

M advance Mach number, Via 

V advance velocity 

R.P. real part 

a velocity of sound 

i 0 
t t~e 

Ua axial disturbance velocity, positive downstream 
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Ut 

Uz,Ur,Ua, 

tangential disturbance velocity, positive in direction of 
propeller rotation 

disturbance velocities in positive directions of coordi ­
nates Z, r, and 0-, respectively 

3 

I 

YnBj argument of j th extreme value of Bessel function of order nB 

x, P,o-

z,r,a.. 

r(p) 

¢ 

cp,1jr 

CLi 

f3 h _ M2 

S 

Pa,PT'PS 

ill 

Subscripts : 

i 

c 

dimensionless cylindrical coordinates (e ~. (4)) 

cylindrical coordinates 

circulation at P 

disturbance velocity potential 

complementary parts of velocity potential ¢ 
induced angle of attack at blade 

helical angular coordinate (e~ . (7)) 

particular values of p for propeller tip, tunnel wall, 
and sonic radius, respectively 

angular velocity, radians per unit time 

incompressible 

compressible 

Partial differentiation is indicated by subscripts . 

VELOCITY POTENTIAL FOR FLOW rn A CLOSED CmCULAR WrnD TUNNEL 

For a linearized theory the disturbance velocity potential ¢ 
must satisfy the e~uation 

J 
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in which z2,r2,a2 are cylindrical coordinates fixed in the distant 
fluid) t is the t i me) and a the velocity of s ound. In coordinates 
which rotate and advance with the propeller, the flow is s teady after 
the propeller has been in operation for a sufficiently long time under 
constant conditions. Let zl,rl,al be the coordinates in the moving 
system with zl along the propeller axis of rotation and with positive 
directions downs t ream, outward from the axis, and counter to the pro­
peller rotation, respectively (see fig . 1). I f V is the velocity of 
advance of the propeller and rn the angular velocity, substitution of 
the t ransformations 

(2) 

into e~uation (1) leads to the steady- flow e~uation 

This e~uation has a more compact form in a third coordinate system x,p,a 
differi ng from the zl,rl,al sys tem only in the length scale; that is, 

rnzl 
x = 

V 

In this new coordinate system e~uation ( 3) becomes 

(4 ) 

In the helical coordinates of Goldstein and Reissner (refs. 1 and 2, 
respectively ) e~uation (5) becomes 

(6) 
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through the transformation 

s = a, - x 

In the far wake, the oblique system used in equation (6) has advantages 
because of the helical nature of the flow. However, except for far-wake 
considerations, equation (5) is preferred because of its orthogonal 
coordinate system. In equation (6) if M = 1) then 0 = 0 and the 
equation suffers the degeneration typical of the linearized equations 
of flow in that the coefficient of the ¢xx term is no longer repre­
sented by 0 with sufficient accuracy. Therefore the advance Mach 
number must not be too close to one. 

Equations (5) and (6) may be shown to change from an elliptic type 
to a hyperbolic type on a cylinder concentric with the propeller axis 
of rotation with a radius such that the corresponding p is 

1 Ps = ---

~ 
V (32 

( 8) 

where (3 = Vl - M2. As one would expect, equation (8) defines the 
cylinder on which the resultant velocity of the undisturbed stream in 
the moving coordinates is equal to the speed of sound. Because of the 
change in type of the equation of motion, mixed elliptic and hyperbolic 
components will generally occur in the complete solution. 

The potential given by Reissner in reference 2 for the far wake 
is already in a usable form for compressible flow because it satisfies 
equation (5) or (6). This potential is for a propeller of arbitrary 
circulation distribution. Adapted to the case where a circular wind 
tunnel is present, Reissnerts potential ¢w for the far wake takes 
the form 

Br( p ) r ~ ~ _2(_1)n () 
:;: '"'-- ~ + L nB hn p sin nB S 

<=:11 2n n=l 
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where 

hn(P) 

f Pa dr 
r( p) K'(s)s -- ds 

P ds (lOa) 

( Pa < P < PT ) 

(lOb ) 

In the s e equations Pa and PT are the values of P for the 

propeller t i p and the tunnel radius, respectively, B is the number of 
blades, r = r ( p ) the circul ation distribut i on depending only on p, 
and K(p) and I( p ) are abbreviations f or KnB(nBP) and InB(nBP), 

respect i vely, whi ch are Bessel functions of imaginary argument . The 
primes on K'(p) and I'( p) denote differentiation wi th respect to p, 
not wi t h respect to the argument nBp . The angle S is zer o halfway 
between vortex sheets from adjacent blades and is limited to - ~ < S < ~ 

~ B B 
with the vor tex sheets at ±~, ± lB' . 

It is i mmediately apparent that the Reissner potential, independent 
of x, is a solution of equation (6) and hence of equation (5), because 
for a potential i ndependent of x, equation (5) is Laplace's equation 
in the p,S system. Therefore) the Reissner potential equation (9 ) is 
considered as the f irs t component of the velocity potential for the pro­
peller wi th compressible flow, but i t s regi on of application is only in 
back of, or downstream of , the propeller plane . Thus, the jump in ¢ 
at the helical surfaces trailing from the blades is pr ovided . Therefore, 
the flow divides naturally into t wo resions, one in front and the other 
in bac k of the pr opeller plane) both inside the tunnel wall. The rest 
of the problem cons ists in adding suitable s olut i ons of equation (5) in 
front and in bac l~ of the propeller in order to take account of the 
phys ical condi t i ons . 
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The appropriate solutions of equation (5) are 

(11) 

as may be verified by direct substitution. The constants nand 1 are 
free . The tunnel-wall boundary condition requires that 

(12) 

where yriB' is the argument of the Bessel function in equation (11) at 
the jth exireme value. From equations (8) and (12) 

= 1 
[3 

where the plus sign is chosen to define In j. 

Equation (11) now becomes 

IiF = 
B 

(
±1 .+i~)X 

nJ p 2 
e S 

(14 ) 

The notation IiF refers to Ii in front or back of the propeller plane, 
B 

the F going with the upper sign in the braces, and the B with the 
lower. The meaning of the two functions, one above the other, in braces 
is that the upper function is used when Inj is real) the lower, when 
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imaginary. It is convenient to use rnk to indicate the imaginary 
val ues. The upper function is called, for convenience, the elliptic 
s olution because it dies out exponentially with x, and the lower is 
called the hyperbolic because it oscillates without dying out. This 
complication, two possibilities for function character, must be accepted 
because of the mixed flow. 

Two more physical conditions, altogether different, have been 
imposed in the choice of ± instead of + in equation (14) for the two 
functions ~ in the braces. The origin of x has been set at the 
propeller plane with x positive downstream; for the elliptic functions 
the choice of signs is obviously that which makes the solution vani sh at 
x :: -reo. The choice in the hyperbolic case is such that, since -iInk 

is positive, the solutions oscillate for given values of nand k 
with higher frequencies in front than in back of the propeller, in 
accordance with the physical obsoervation in reference 3 that waves are 
crossed with higher frequency in front than in back, proceeding in the 
axial direction. 

The rest of the problem is to make superpositions of equation (14) 
on the Reissner potential, which occupie s only the region in bac k of 
the propeller, in such a way that the flow is continuous in the propeller 
plane off the lifting lines. 

Because of the discontinuous nature of the first term in eq~­
tion (9), the compressible fields which must be superposed on the two 
terms composing equation (9) must be determined separately. For this 
purpose, let 

(0 < x) 

(x < 0) (16) 

in which o/R is the first, or discontinuous, function in Reissner's 

potential (eq. (9)), ~ is the second, or continuous one, ~ and ~ 
B B 

are the solutions of the form of equation (14), and o/OF are degenerate 
B 

s olutions of the form of equation (14) with n = O. Now the origin for 
the coordinate ~ must be decided; this is taken to be halfway between 

- ____ 0 ______ ---

__ I 
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blades . The angles a and S are now the same at x = 0, with the 

nearest blades (lifting lines) at a = S = ±~) x = 0 . The angles 

9 

S = ± ~ in the x)p,S system are at the nearest trailing vortex sheets 

on each side of S = 0. 

The compressible potentials *B and *F which accompany the dis ­

continuous Reissner function *R are now determined to provide con­

tinuity at the propeller plane . From e~uation (9 ) 

(17a) 

! ~ ~ - 2( _l)n (Ycl3 j ) inB(a- x) ( . ) 
*R = R. P. £:.Jl L L r .J nB - - P e -l 

n=l j=l nB nJ PT 

where the second form is obtained from an expansion of a - x in a 
Fourier sine series and another expansion of r(p) in the form 

r(p) (18) 

in which rnj is real. This Fourier- Bessel type of expansion is used 

repeatedly herein. In particular) the arguments of the Bessel functions 
are always adjusted thr ough the fre~uency coefficient Ycl3j/PT to make 

the extremes fall at the tunnel wall PT; in which case r nj is given 

by (see ref . 4, p. 174 ) 
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The function ~R' which is limited to the regi on downstream of the 
propeller, causes a discontinuity in the axial velocity and in the 
potential at the propeller plane x = O . In order t o avoid differentia­
tion of eQuation (17b), the discontinuity in axial velocity brought by 
~R can b e obtained from eQuation (17a) directly and eliminated with a 

degenerate term from eQuation (14) obtained by setting n = 0; the 
result is 

(20 ) 

in which Aoj 
introduced by 

is to be determined. No discontinuity of potential is 

~OF' and the di scontinuity in axial velocity is canceled 
B 

by 

From eQuations (17a) and (20), eQuation (21) becomes 

By using eQuation (18), the coefficients Aoj become 

1 I3PT 
-- f 
2 I OJ 

YO j 

(21) 

(22) 

The discontinuity in axial velocity brought by the Reissner term ~R 

is therefore canceled by superposing the potentials 
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Only the discontinuity in potential at x = 0 caused by *R 
remains. This discontinuity is canceled by requiring that 

and, in order to prevent introduction of a discontinuity in axial 
velocity at x = OJ by requiring that 

~ *~ = [d *~ 
@x ~x=O @x ~ x=O 

11 

(24 ) 

(26) 

in which *R comes from equa t ion (l7b)J and *F is written in the form J 
B 

adopted from equation (14 ), 

j = 

~ ~ )ko -2( _l)n 

21t n=l j =j o nB 
k =l AnkF 

B 

in which Anj and Ank may be complex; that is, 
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The range k = 1, 2, 3, . .. ko denotes the hyper bolic terms, and 

j = jo' jO+l' jO+2' ... 00 denotes the elliptic. Here, ko denotes 

the l ast hyperbolic t erm in the summation and jo = kO+
l

· Substituting 

equations (17b ) and (27) into equation (25) gives 

(28) 

and, similarly, substituting equation (27) into equation (26 ) gives 

lnj + i 
nB I 

~ a n j F + ianjF 
Ps 

(29 ) 

\iln k + :~ a nkF + iariliF 

Equations (28) and (29 ) each break into two equations corresponding 
to the real and imaginary parts which yield the following soluti ons for 
the elliptic field: 

1 nB 
2 2 fn j 

InjPS 

and f or the hyperbolic field 



The coefficients given by equations (30) and (31) are now to be used in equation (27). Then 
according to equations (15) and (16 ), the ~ part of the potential given by collecting equa­
tions (17a), (24), and (27) is, for the region in back, 

y' 

i3 PT (y," ~ - OJ x Y' J O ...QJ. P i3PT 
O. P e 

J T 

Bf(p) B ~oo 1 
~ + ~ + ~ = --(ex. - x) + - - - r 0 . 
R OB B 2n: 2rc j=l 2 J + 

j= 

k=ko r ~ l-nB 
R,P, ! f.. ~ -2(_1)n 1 nj InjPs2 

+ i 

n=l j =j o DB 2 
k=l Irnk l li(l + 

and in front, 

00 

B L 1 ~OF + ~F = - - - fO' 21{ . 1 2 J J= 

, 
i3PT (y' YOj 
yo--: J O OJ p)e i3PT x 

OJ PT + 

R,P, ~ 2.::- L:: _2(_1)n 1 nJ In'p 2 - i 00 ~~ rH -~ 
n-l . . nB - J S 

- J=JO 2 
k=l r . '( ~ 1 -1 + 

-unkPsi) 

(Y~j ~ nB -- P 
PT 

(Y~k p) nB P
T 

inBa. e 

(
-7.nj +i nB )x 

e PS2 

e i(Unk+~~)x 

(32) 

t~' ~I I (Inj+i':I!-)x nB ~~_J P PS2 
PT e 

J t~k rnBa

1 i(-ilnk~IX 
nB -- p ePS / 

PT 

(33) 

~ 
(") 

:» 
1-3 
!2: 
f\) 
\0 

& 

I-' 
\..N 

-\ 
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Equations (32) and ( 33) comprise the final results for the 0/ part 
of the potential ¢. 

Now consider the ~ part . The procedure is nearly the same, only 
this time the discontinuity in axial velocity will not be dealt with 
separately because the ~ part of Reissner's potential is a smooth 
Fourier development in a - x which can be differentiated. The con­
tinuity conditions a t the pr opeller plane x = 0 become 

[~Jx=o 

in which ~ is the second term in equation (9 ) . This te r m may be 

written, in the x,p,a system, as 

or, alternatively, 

_ R P B ~ ~ -2(-1) h J YnBj inB( a -x)(. ) CXl CXl n (') 
~ - . . - L L . nB -- P e - l 

2~ n=l j =l nB nJ PT 

where 

and hnj is real. 



The ~ a r e obtained from equation (27) with ~ replaced by ~ a nd some new coeffi ­
B 

cients Bnj substituted for Anj ' 

The ~ part of the potential now becomes, with the Bnj 
(35) in a manner similar to that for Anj' 

deter mined from equat i ons ( 34 ) 
and 

<Xl n 
~ + ~B ~ R.P. ~ ~ - 2(-1) hn(p)einB(~-X)(_i) + 

n~l nB 

R.P . 

j= 
k~ko n 

~:t L - 2(-1) ! 
211: 1 " nB 2 

n~ J ~JO 

k~l 

j= 

~~RP B~~ n tj 

, , 21r - 2(-1 ) 1 
n~l j ~jo nB 2" 

k~l huk 

hnj 

huk 

-nB 
2nj13 2 + i 

i ( l + nB \ 
- U n j (3

2) 

( , ~ YnBj 
JrrB - p 

PT I i~ 
e 

JnBt~k p) 

(-2nj+i~)X 
e PS2 

e 
i (Unk+ ~2)X 

( 39) 

- nB JnB(Y~j p) I Ie (2nj+i~2)X 
-- - i 

2nj132 

JnBr~k p) re
inlh 
t(-ilnlrt~~)x t l + nB ~ - U nkl32 

(40) 

Equations (39 ) and (40 ) added to equations ( 32) and (33 ) determine the velocity potential 
for the propeller in accordance with equations (15) and (16) , 

~ 
() 

:x> 
1-3 
~ 

I\) 
\0 
CP 

'VJ 

r-' 
\Jl 
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PRANDTL INDUCED VELOC I TIES AT THE LIFTlllG L INE 

The Prandtl induced vel oc i ties , i n the sense used herein , are analo ­
gous t o t hose of the conventional lift ing- l ine wing and pr opel ler theo­
rie s of Prandtl and Goldst ein . More spe cifically , the Prandt l induced 
veloci t ies are t hose which must be presumed t o be already present at 
the posit i on of t he b l ades i n order t o as sume that the airfoils retain 
locally t heir same performance as in two-dimensional flow. With i ncom­
pressible f low, i t was verified experiment ally tha t the induction could 
be de termined wi t h suf f icient accura cy by assuming the wi ng or blade t o 
shrink into a l i fti ng l i ne and then applying the Bi ot -Savar t law over 
the t rai l ing vorti ce s excl uding the l i fting l i ne . Thi s s i mplificati on 
of the intri ns i c general t hree- di mens i onal pr oblem has long since 
proved i t s wor th . Therefore i t i s natural t o s ee k extensions i n 
appr oachi ng the compress ible pr oblem. On the other hand, i t i s dan­
ge r ous t o rely on experi ence with incompr ess i ble flow f or guidance in 
supersoni c matter s . Si nce the pr esent pr oblem concer ns a mixed subsoni c 
and supersoni c f low, i t will be expected that quest i ons will ari se whi ch 
wi ll have t o be settled by considerat i ons of both subs oni c and super­
soni c flow. Fi nally, for thos e who are mor e intere s t ed in the gener a l 
three - dimens i onal pr oblem rather than an engi neering concept, i t i s 
r emar ked tha t the theory is st i l l applicable t o a l i ft i ng-surface 
pr oblem when thos e steps are omitted which specialize t o t he lifting 
l i ne. 

The induced velocities , or disturbance velocities, are given by 
differentiat ions of ¢, but the algebraic sign is still open to a choice 
which is made so that a forward-thrusting propeller pushes the air rear­
ward in t he far wake. If the propeller is assumed to produce positive 
thrus t when r(p ) is positive, then the vel ocities in the positive 
directions of the coordinates must be 

-¢z 
1 

-¢r 
1 

(41) 

which may be chec l\:ed by means of the Re issner \)rR term, which produces 
the bas i c distur bance veloc i ty in the f a r wa ke , as follows: 

Since 

Br( p) ) 
= --- (0.,1 - m zl 

2n' V 

---- - ---
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~l is seen to be negative, but since the propeller rotates in the 

negative ~l direction, ~l is a velocity in the same direction as 

the rotation, as it should be; on the other hand, uZl is positive, 

but since zl is positive downstream, uZl is positive downstream, 

also as it should be . 

In propeller theory, it is customary to consider an axial veloc­
ity ua and a tangential velocity Ut, which are positive downstream 
and in the direction of propeller rotation. Since uZl is positive 

downstream, but ~l is positive against the propeller rotation, 
ua = uZl and Ut = -u~l' Therefore, from equations (41) and (4) 

17 

U a = - ~ ¢x 
V 

(42) 

determine the conventional axial and tangential velocities from the 
velocity potential in the x,p,~ system. 

It is immaterial whether the differentiations in equations (42) 
and (43) are applied to ¢F or ¢B when the differentiation, which 

is not straightforward, is made at the , lifting lines. Suppose ¢B is 
used and consider first the ~ part of ¢ (eq. (32)). For the ~x 
differentiation, the second term in equation (32) cancels one-half of 
the first term. If it is permissible to differentiate the remaining 

term, then at x = 0 and ~ = ~, which means· the lifting line, 

oo~ n (') E B -2(-1) 1 YnBk n 
- ~ 2' rnktYnB -p- p (-1) -ilnk-
2rt n=l k=l nB T 

(44) 
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that is, the * part of ¢x at the lifting line is one-half of the 
far -wake va lue plus some effects from the hyperbolic part of the com­
press i ble f ield. The differentiation in t he ~ direction is made with 
regard for the Fouri er development of the saw-tooth function which can 
be recognized in eQuation (32) at x = O. For x = 0 it is seen that 
the . i in the first brace gives a term 

R.P . 

j=oo 

co k=ko n 
J2... ~ L -2(-1 ) ~ 
2rc fu J =JO nB 2 

k=l 

but f r om e ~uation (170) thi s term is just 

_ ~ _Br_(:....p_) ~ 
2 2rc 

and, therefore, · the differentiation of this term cancels one-half of the 
differentiat i on of the first term in e~uation (32) . In other words, the 
derivative of the above Fourier seri es with respect to ~ is to be 
interpreted a s the derivative of the sloping part of a saw-tooth func ­
tion of ~ which the seri es actually represents, the differentiation 
be·ing performed off the teeth of the saw- tooth function. This choice 
of interpretati on is justified by the f act that by so doing the theory 
gives the corr ect results when degenerated to incompressible flow. 

Since R .p.(ei~) contr ibutes nothing at ~ = ~, formal differen­

tiation of the r est of e~uation (32) gives 

co ko 
~LL 
2rc n=l k=l 

_2(_1 )n 1 r _T (yrisk ~ (_ l)n (nB) 2 
--~---~ - nl~nB ---- p ----- -~-----

nB 2 PT - 1 i2 2 
- nkPS 



Therefore, the ~ part of ¢~ is also one-half of the far-wake va~ue plus some effects from 
the hyperbolic field. 

Next e~uation ( 39 ) is differentiated. The differentiation of the real part along x, for 

x = 0 and ~ =~, gives 

d 00 n 
diC( 'PH + ct13) = ~ L -2 ( -1) . hn ( P ) ( -1 ) n nB + 

n=l nB - 1 

j=oo 

k=ko 
~ ~ ~ _2(_1)n l: 
2Jr n=l j=jo nB 2 

k=l 

hnj 

~ 

JnEt~j p) 

YnBk (I) JnB PT P 

nB 

(_l)n 

nB+ tilnk - --i-~-~-kl3-) :-P-S~ 

However , from e~uation (38) , the nB terms in the last brace cancel one-half of the ~ 

by the same considerations as for e~uation (45). Therefore, e~uation (46) becomes 

~ D 
~- 00 ~ nIt 2 ~ ~('PH + ct13) = ! _"'t'R_ + _B L L -2(-1) ! ~nB Y_nB_k P (_l)n -Unk _ ----'-(nB_)_ 

ox x=o 2 Ox: 2:lt n=l k=l nB 2 PT . ~ Q2 2 
-l~nk~ Ps 

~4 

(46) 

term 

(47) 

~ 
f;; 
1-3 
~ 

I\) 
\0 

& 

I-' 
\0 
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and, s i rni l ar ly , 

l2XPR - -- + 
2d::r. 

Equations (44), (45), (47) , and (48) give ¢x and ¢~ at the 

lifti ng l ine, but they must be expected to i nclude some i nduction from 
the l ifting l i ne i tself . This part of the induction must be discarded 
i n order to have the Prandtl induced velocities a t the lifti ng line. 
I t should be possible to recognize t he i nducti on of the lifting line 
f r om an inspection of equations (44), (45) , (47), and (48) . In equa­
tions (44) and (45), the double summation has coefficients fnk which 
depend directly on the circulation distribution r ( p ) along the lifting 
line ; whereas hnl~ i n equations (47) and (48) depend on hn(p) which 
expresses the f ield produced by r ( p ). Therefore, the hyper bolic terms 
in equations (44) a nd (45) are now discarded as being caused by t he 
lifti ng l i ne itself . 

Some further explana t i on of this step is perhaps desirable. I t is 
this opera t i on which makes the l i ft i ng- line concept applicable 
although the flow has partly supersonic character. The lifting ~ine in 
supersonic flow has i nfinite wave drag which sbows up i n the fact that 
the velociti es associated with the ~ part of the Reissner potential 
are expressed by series which do not converge (eqs . (44) and (45)). 
Furthermore, i f the theory is allowed to degenerate to the case of a 
l arge number of blades at a l arge dis t ance from t he axis s o that the 
potent ial may be considered i ndependent of radius, the r epr esentat i on 
of a n i nf i ni te staggered cascade in supersonic flow is obtained, the 
proper t ies of which are already known . Then the hyperbolic terms i n 
equat i ons (44) and (45) are seen to represent just the self- induced 
f i eld of each cascade element by itself . On t he other hand, it is the 
self- induced field which must be t a ken out i n or der to obtain the 
Pra ndtl i nduced velocities. Therefore the indicated re j ection is in 
accordance wi th the l ifting- l ine concept . 
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Substitution of equations (44) and (47) into equation (42) gives 

00 1<0 )n (' ~ E - B ill - 2( - 1 1 YnBk n. 
== ua . - - - L ~ - hn0nB -- P (-1) -lLnk-

l 2n V n==l k=l nB 2 PT 

and substitution of equations (45) and (48) into equation (43) gives 

i n which the bars denote the Prandtl induced velocity, the subscripts c 
a nd i refer to compressible and incompressible, respectively, and the 
terms in r nk have been discarded. 

DISCUSSION 

The Bessel functions in equations (49) and (50) are those shown in 
figure 2. It is shown subsequently that these functions are distributed 
over the radius in such a way that the first inflection point of the 
Bessel function in the koth term falls on or very near the sonic radius. 
For the lower k terms the first inflection point is progressively more 
outboard of the sonic cylinder so that at k ~ 1 it is near the tunnel 
wall with the first extreme (a maximum) of the Bessel function right at 
the tunnel wall. For k = 2 , the second extreme (a minimum) is at the 
tunnel wall, and so forth for the succeeding values of k as is seen 
from inspection of the arguments of the Bessel functions (see fig . 3) . 
Finally, a t k == ko, which is the hyperbolic term with the largest k, 
the maximum number of oscillati ons of the Bessel function occur and 
these oscillations are all confined between the sonic cylinder and the 
tunnel wall, because as was pointed out above, the first inflection 
point of the koth Bessel function falls at or near the sonic cylinder. 

The process of distributing the Bessel functions over the radius 
i nfluences the values of Lnk obtained from equation (13). This fact 
brings up the significant point that Lnko can approach zero and thus 

produce an effect similar to resonance in a vibrating system; each 
narrow range of conditions for resonance is an extra degree reduced by 



22 NACA TN 2983 

the square-root opera tion in e quation (13). An identically zero value 
of 2nko means that some additional considerations are required. How-

ever, when later the case of a propeller in free air is taken up, the 
summations over j and k pass to radial integrations in which the 
difficulty of zero 2nko appears as a square-root singularity which 

causes no trouble and provides the first hint that a near-zero value 
f or 2nk is to be regarded as a necessary feature of the theory due 
t o a resonance property of the flow in a tunnel. 

Generation of the coefficients hnk '- The coefficients hnk are 

those in a Fourier-Bessel expans i on of the Reissner far-wa ke radial 
function hn(p). The functions hn(P) have the appearance shown in 
fi gure 3. The function hn(P) has a discontinuity in its first deriva­
tive because, when hn(p) is added to r , the resulting function must 
be smooth i n order to make equation (9) give a continuous flow at 
P = Pa · Also s ketched in figure :5 are the Bessel functions for given 
values of nB used in the expansion of hn(p). These functions have 
their extreme values on the tunnel wall PT as is required by the , 

YnBk arguments ---- p. Only the Bessel functions for the hyperbolic terms 
PT 

in the velocity potential are shown, the ones appearing in equations (49) 
and (50). The value k = 1 corresponds to the Bes sel function with the , 

YnBk first extreme value at P = PT because, from the argument ---- p, 
PT 

when P ranges from P = 0 to PT it generates the Bessel function 
up to the first extreme value. The koth function is the one with first 
inflection point and Ps nearly coinciding. Thus, for the case repre­
sented, k takes on the values k = 1 to k = ko = 4 which correspond 
to hyperbolic terms in the velocity potential. The terms with higher 
numbers of extremes are not shown because they have elliptic flow 
character, and they would merely produce more and more oscillatory por­
tions inboard of the sonic cylinder P = PS' 

It has been stated that the first inflection point of the koth 
Bessel function falls at or near the s onic radius. A more precise 
statement, however, would be that the koth Bessel function has its 
argument equal to its order at or near the sonic radius. However, the 
i l~lection point has more meaning for visualization purposes . Further­
more, it can be shown that the argument at the first inflection point 
is nearly equal to the order, if the order is not too small, with incon­
siderable error as may be seen from figure 2. This coincidence that 
t he koth Bessel function tends to have an argument equal to the order 
at or near the sonic radius will now be demonstrated and it is to be 
inferred that this coincidence also applies to the first inflection 
point. It will appear that the coincidence of the argument with the 



NACA TN 2983 

order is exact if 

shows that 

or, 

= O. 

23 

For a zero value of 2nke' equation (12) 

which states that the argument of the koth Bessel function is equal to 
the order nB at the sonic cylinder p = Ps if 2nko is exactly zero. 

If 2nko is not exactly zero, then equation (51) is still nearly 

true. Thus, from equation (12) 

which shows that since 2nk is imaginary, corresponding to hyperbolic 
terms, the argument of the Bessel function at the sonic cylinder is less 
than nB. The reverse would be true if the terms were elliptic so that 
2nj would be real from equation (12). It appears then that, in fig-
ure 3, the koth Bessel function has its argument equal to nB just 
outboard of or at PS' depending on whether 2nko is merely close to 

zero or identically zero. Further, the hyperbolic terms with k lower 
than ko have their oscillatory portions more and more outboard of the 
sonic cylinder p = Ps as k decreases from ko· 

The sonic cylinder and tunnel-wall radius in relation to the first 
aEpearance of hyperbolic solutions in the velocity Eotential.- The 
hyperbolic solutions first enter the velocity potential when the sonic 
cylinder comes inside the tunnel wall. If equation (13) is written in 
the form 
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then since the hyperbolic solutions have imaginary Ink the proof of 
this statement is seen to consist in showing that the smallest possible 

I 

value for YnBk 
nB 

is unity, which is shown to occur when ko = 1 and 

nB~oo . This proof wi ll place a lower limit on PT for the occurrence 

of imaginary Ink; that is, PT must be greater than Ps for imaginary 
Ink to occur. Therefore, the solutions cannot change type unless the 
tunnel wall is outsi4e the sonic cylinder. It is obvious that the 

smallest value of YnBk must occur for k = 1 because with this value 
nB 

of k the argument of the first extreme must be less than all succeeding 
arguments . I t, therefore, remains to show that the smallest value for 

I 

YnBl 
~ 

is unity, which follows from a formula on page 143 of reference 5 
that holds when nB is large, 

o .808618 3.fiill 
1 + + 

nB 

Hence 

I 

lim YnBl 
1 

nB~oo nB 

which completes the proof. 

Diagrammatic point of view of zero Inko in relation to the 

argument of the Bessel function.- Figure 4 gives a view looking down 
the vertical axis in f i gure 2 showing the traces of the extremes of 
JnB(Y) on the nB,y plane. The slopes of these traces approach unity 
as nB and y become large, a property of the Bessel function. For 
a given propeller operating condition, PT and Ps may be calculated; 

PT by plotting in figure 4 the function -- nB, it is possible to tell by 
Ps 

inspection of the figure how many hyperbolic solutions are present in 
each k-wise summation, and the possibility of a zero value for Inko 

may be appreciated. From eQuation (51), the condition for zero Inko 
is 
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I 

YnBko 

PT 
If the line -- nB intersects one of the traces of the extremes on an 

Ps 
integral value of nB, then the corresponding 2nko will be zero. For 

example, if the dashed line through the origin in figure 4 represents 
PT 
-- nB eS 
k = ko 

for a given operating condition, then 

2 would be zero. 

for nB = 8 and 

The dashed line in figure 4 may also be taken as an indication of 
what parts of the Bessel functions JnB(Y) are used for the elliptic 
and what parts for the hyperbolic solutions at any given operating con­
dition. Equation (13) shows this separation beca~se imaginary Ink are 

given by equation (13) so that the solutions are hyperbolic when 

or 

which 
, 

YnBk 

PT , 
nB -- > YnBk 

Ps 

means that for hyperbolic solutions, the traces of the extremes 

must be below the dashed line PT nB. Since the slopes of traces Ps 
of the extremes approach unity as 

hyperbolic solutions occurs when 
PT line -- nB also has slope unity 
Ps 

nB~oo, the first appearance of 
PT 
-- = 1, because for this case the 
Ps 
(shown as the solid straight line 

through the origin in fig . 4). 

The suppression of resonant terms.- The discussion of the resonant 
terms is based on the assumption that in the series expression for the 
induced velocities, or the i nduced angle of attack at the blade, only 
one zero of 2nl~ can occur within a finite number of terms in the 
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series . I n the author's opinion, this is true but a rigorous pr oof is 
lac king . From a practical point of view, the series doe s not need to 
be computed to a great number of terms, because the higher terms express 
their contributions to the i nduced angle through oscillatory functions 
of higher a nd h i gher freQuency so that they eventually become unimportant 
i n a pract ical solut i on . Thus the Question of how many resonant terms 
must be dealt with can be answered for practical purposes by the fact 
that in a series of a reasonable number of terms only one zero of Znka 

can occur at a time so that there is j ust one resonant term . 

Consider a propeller operating at conditions which ma ke a particular 
Znka exactly zero. With this zero of Znka is associated a resonant 

term or mode in the series expression for the induced angle of attack. 
Now suppose the propeller to be twisted so that the angle of attack 
with respect to the zero- lift angles of the airfoil sections is eQual 
to the resonant mode mult iplied by some finite constant factor. This 
propeller, according to the theory, is subject to degenerate compressi ­
bility effects, which can be seen without calculation as follows: 

(1) Since infinite induced velocities are physically impossible, 
it is seen from eQuations (49) and (50) that hn~ must be zero; that 
is) the lift distribution of the propeller must be such that hnko is 

zero so that the ratio hnka Q appearing in those eQuations has a 
Znka 0 

finite value. 

(2) The only value for hnka/Znka which produces zero hnka is 

that which makes the resonant induced angle exactly cancel the blade 
twist so that the lift is zero all along the blade. 

Therefore the only solution compatible to both the compressible and 
incompressible components of the induction is that the lift remains 
zero with the indeterminate ratio hnka/Znka taking whatever value 

is necessary to mal~ the resonant mode exactly compensate the prescribed 
angle of attac k . I t seems reasonable to expect a similar suppression of 
the resonant mode when the angle - of-attack distribution is arbitrary. 
Therefore, i n compressible flow) the arbitrary prescription of lift 
must always be made with the restriction that hnka for the resonant 

mode be zero. The corresponding propeller geometry is seen to be 
i ndeterminate in that the geometric angle of attack can be altered 
in proportion to the induced angle of the resonant mode without changing 
the prescribed lift distribution. 

The other problem, i n which the propeller geometry is given instead 
of the lift distribution ) is more realistic. Here, the lift distribu­
tion must a gain yield no resonant mode (hnka = 0) and is determined 
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according to the requirement that the lifting properties of the blade 
and the induced angles due to all the modes including the resonant mode 
with finite hnko/1nko must produce the lift distribution by which the 

modes are determined. In practice this solution would be obtained by 
an iteration process. 

Assume a propeller of fixed geometry. The lift distribution, or 
otherwise r(p), is to be determined along the blade. If the resonant 
term is assumed to be zero, such a distribution along with the distribu­
tion of induced velocities and induced angles can be determined. Sup­
pose, however, that a resonant term occurs in the induced velocities 
and, correspondingly, in the induced angles. The induced angles are 
then infinitely sensitive to small changes in the lift distribution and 
some special considerations are necessary. 

The lift distribution with the resonant term assumed to be zero 
will in general produce some value of the resonant coefficient (hnko)r' 

To prevent the introduction of infinite induced angles and thus to make 
the lift distribution consistent with the induced-angle distribution, 
the lift distribution must be so modified as to result in zero values 
of hnko so that hnko/1nko will be finite. 

hnko 
Suppose that ---- = 1, and compute the corresponding change of 

lnko 
induced angle Dai(P) and the accompanying change in circulation dis­
tribution ~r(p). From ~r(p) compute ~nko from equations lO(a) 

and lO(b), and an equation similar to (19). Now because hn(p) ~ r ( p) 
and ~r(p) ~ Dai(P), take C so that 

and adjust the induced angles and the circulation by adding C ~(p) 

hnko 
and C ~r( p), respectively. This is equivalent to taking ---- = C 

lnko 
where hnko = lnko = O. The process is inexact, of course, because of 

the effect of the added ~(p) on the induced velocities, and succes­
sive approximations are therefore required. 

The above iteration process may be performed mentally on the 
hypothetical propeller defined at the beginning of this section in 
which the propeller was twisted with an angle of attack with respect 
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to the zero-lift angle of the airfoil sections equal to the induced angle 
of attac l~ of the resonant mode multiplied by a constant factor. It will 
be seen that the process gives the correct result, which is zero lift 
over the whole blade. The validity of the iteration process is t hus con­
firmed to the extent that the abovementioned hypothetical propeller 
actually does produce no lift. The latter question appears to require 
experimental verification. This requirement is not surprising when it is 
recalled that the Prandtl l ifting-line wing theory, in which lifting 
lines were to be replaceable by finite chords of the same circulation, 
could not be rigorously jus t ified and had to await experimental 
verification . 

VELOCI'IY POTENTIAL IN FREE AIR 

The velocity potential in free air has a form different from that 
where a tunnel is present; the difference is analogous to. the change 
of a Fourier series into an integral when the interval of expansion 
becomes infinitely great. As far as the induced velocities are con­
cerned, it is believed that they will be not much different from those 
with the tunnel present. Therefore, the free-air potential will not 
be derived in detail. 

From Hankel1s i ntegral (see eq. (3) on p. 453 of ref. 6) 

the function ~ in the Reissner potential as PT~oo can be represented 
by 

where Fn.(R) becomes hn(p) by comparison with equation (36) and the 

function fn(i) is given by 
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The function hn(P) used here must suit the boundary conditions of the 
far wake, obtained from eQuations (10) by letting PT--><X" 

By analogy with eQuation (11) and by using a form of eQ~tion (57), 
choose 

(60) 

which is a solution of eQuation (5) if differentiation under the integral 
is permissible. The physical conditions may now be imposed by methods 
similar to those in the case where a tunnel was present. It will be found 

that the functions CnCr) contain the radical /72 - (nB~2 in the 
Ps 

denominator, and this radical is the counterpart of lnj (see eQ. (13». 
Therefore, the summation over j for the tunnel case passes to an inte­
gration over 7 where the possible infinity caused by lnj in the 
denominator becomes in free air a sQuare-root singularity in the inte­
gration, which should cause no difficulty. 

NUMERICAL EXAMPLE 

A two-blade propeller is assumed to operate at an advance Mach 
number M of 0.8193, with P at the tip eQual to unity; therefore, 
the advance ratio V/nD is ~,and the circulation distribution is 

r*(p) 

where 

r* (62) 
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is a nondimensional form for r and V/nD is the conventional parameter 
in which nD i s tne angu~ar velocity in revolutions per unit time multi­
plied by pr opeller diameter D. The circulation r* is plotted in fi g­
ure 5, from equation (61), along wi th the correspondi ng induced quan­
tities uai/V, UtijV, and ~ii: where ~ii is the induced angle of 
attack for incompressible flow expressed in radians. No particular 
significance is to be attached to the factor 1/6 in equation (61) or 
to the precise choice M = 0 .8193. 

If equations (49) and (50) are written as 

where 6Ua and 6Ut are the changes due to compressibility, then 

(Xl t )n (' ) E B CD -2(-1 1 YnBk n . - - L - hn0nB -- P ( - 1) - l t nk 
21r. V n=l k=l nB 2 PT 

I f * * hnk' based on r i ns t ead of r , is defined as 

(64 ) 

( 66) 
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the compressibility effects in ratio to the incompressible c~n be 
determined from e~uations (65) and (66 ) as follows: 

where 

( 1)[ 2 ~ 2 *" Y nBk. ( nB ) 
nBhnk J nB - p- P -l l nk - 22 

T - ilnk~ Ps 

*" 

31 

(68) 

(69) 

The coefficients hnk and - ilnk are tabulated in tables I and II 
for the first six terms in the n-wise summation. These coefficients, 
with the very complete tabulation of the Bessek functions in reference 7, 
are used to calculate ank( p) and tnk(p) which are tabulated in 
tables III and IV. 

The ratl'os bUa/V and bUt/V i h t ib' wh c express he compress llity 
~i/V uti / V 

effects in ratio t o the velocities in incompressible flow are plotted 
against p in figure 6. The compressibility effect is seen to be very 
small, less than 4 percent. 
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Before discussing the induced angle of attack, s ome explanati on of 
the velocity diagrams i n fiGure 7 may be desirable . Figure 7(a) shows 
the conventional velocity dia gram of i ncompressible-flow propeller 
theory . Figure 7 (b) shows the compressibility effects superposed on 
the i ncompressible . Since only the part of the dia8ram showi ng the 
induced veloc i ties is i mportant, an enlargement of this part is shown 
in fi gure 7 (c). The l i ne s A-A, B-B, and C-C which are the sides of 
the induced angles may all be drawn parallel to the local helical 
direction i n a small- disturbance flow. 

I f hai is the change in induced angle of attack accompanying ~ua 

and ~Ut , then from f i gure 7 

p ~ua ~Ut 
r==== + r=====, 11 + p2 /1 + p2 

V 11 + p2 
u~~ 

which , by using equat i ons (68) and (69 ), can be put i n the form 

where 

(74 ) 

Values of ~k(P) are tabulated i n table V. The ratio hat/~i plotted 

in figure 6 is seen to be very small; this fact indicates that the induced 
efficiency is reduced only 1 or 2 percent by compressibility , to the 
accuracy provided by six terms in the summation over n . 

In figure 8, partial sums of ank (P) are plotted so that the con­

tribut i on of succeeding terms can be seen. There is a shift in the 
convergence with the addition of the fifth term. This shift is caused 

* by an unusually large hnk at n = 5, ko = 3· 
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It should be noted that, although the induced angle has been calcu­
l ated for a prescribed circulation distribution, nothing is said about 
the shape of the propeller required to give this circulation distribu­
tion. At some n, there may be an 2nk sufficiently close to zero so 
that a strongly oscillatory induced-angle distribution is finally 
indicated and a n unusual blade- angle distribution would result. Appar ­
ently, a degree of arbitrariness is lost in giving arbitrary circulat i on 
distributions if they are to be related to reasonably shaped propellers . 
More realistic is the view that the propeller shape is prescribed and 
then the performance is calculated . This approach would mean i n the 
present example that, after the calculation of the induced angle, its 
effect on the initial circulation distribution would be calculated, 
after which the new distribution would be used for a new induced- angle 
calculation . In the process, the resonant mode would be suppressed, 
and a reasonable induced-angle distribution a nd a circulation distribu­
tion somewhat different from that of the prescribed propeller in a n 
incompressible flow would result . 

CONCLUDING REMARKS 

The velocity potential for a l ifting- line propeller with subsonic 
advance velocity but unrestricted tip speed has been derived i n cylin­
drical harmonics. The theory is for a linear equation of motion and must 
be restricted to advance Mach numbers not too close to one . 

From the velocity potential, the induction at the blade has been 
obtained with a view to preserving a strict analogy to the induced­
angle- of- a ttac k concept embodied in Prandtl's lifting- line wi ng theory 
which has been carried over to pr opellers by Goldstein and Reissner. 

The Prandtl i nduced angle of a ttac k becomes representable by the 
basic incompressible results plus some compressibility effects expressed 
i n infinite series. Among the terms i n the series there is always at 
least one which becomes magnified with indefinite greatness in compari ­
son with the others, an effect resembli ng resonance i n vibration theory . 

A numerical example is provided i n which a limited number of terms 
in the series expression for the induced angle of attack have been 
calculated for a propeller with a reasonable lift distribution. The 
compressibi l ity effect appears to be negli gibly small , but it must be 
noted that there was no resonant term among the terms calculated . It 
is remarked that the arbitrary prescription of the lift distribution 
cannot be made if resonance is to be considered. 

Although the present calculation indicates that the nonresonant 
terms in the velocity potential produce only a small compressibility 
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effect on the induct i on at the blade , i t is not certain that the res onant 
term, or near - resonant terms, would not make a significant contribut i on . 
I n othe r wo~ds, if an example were chosen fo r calculation i n wh ich the 
pr opeller geometry were prescribed instead of the l ift distribution, a nd 
if the operating conditions of the propeller were chosen to make a certain 
convenient term resonant, then, after complet i ng a somewhat laborious 
i teration process, a significant compressibility e ffe c t mi ght be observed 
as a result of the direct consideration of the relation of r esonance to 
a r ealistic physical problem . I t is the au thor's opi ni on that t he calcu­
lation could probably be made with sufficie nt accuracy by considering 
only the i nduction of the Reissner potential and the resonant term wi th 
the nonresonant terms neglected. One mi s ht be led further to expect 
such a calculation to explain the experimentally observed dips i n the 
lift distri butions of pr opellers operating at tip speeds above a Mach 
number of 1 .00; unfortunately, the explanation WOuld not be completely 
clear, however, because there is always the uncertain effect of compressi­
b i lity on t he airfoil pr operties in the transonic range which is proba­
bly a cons i derable cause of the dips in the lift distribution . 

Wi th regard to experimental verifi cations there is one check which 
would seem to be sati sfactorily definite . I t consists i n test i ng a 
propeller i n a circu lar wind t unnel a t an operating conditi on producing 
a n exact resonance fo r a part i cular term or mode i n the series expres ­
sion for the i nduced angle of attac k . I f the blade - angle distribution 
for the blade i s so designed that the airfoi ls have, with r e spect to 
zero l ift, an angle - of - attack distribution the same as ( or differing 
only by a constant facto r from) the i nduced a ngle of attack of the 
resonant mode, then, accor d i ng to the theory, the propeller could 
support no loa d . The propeller would need to be constructed with s ome 
accuracy i n the blade- angle d i stribution but the other design particu­
lars would be arbi t rary . I n part i cu lar , the airfoils might j ust as 
well be symmetric . 

Langley Aer onautical Laborat ory, 
Nati onal Advi s ory Commi ttee for Ae r onautics, 

La ngley Field, Va . , July 7, 1953 · 

J 
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TABLE I. - COEFF IC IENTS hiik 

.~ 1 2 3 4 5 6 

1 0 .010442 0 .008512 0 .005774 0.003776 0.002412 0.001485 
2 -. 000300 .003183 .003381 .003089 
3 - .00581·n - .000830 

TABLE II.- TABULATION OF -ilnk 

~ 1 2 3 4 5 6 

1 3·4966 7 .8164 12 .1428 16 .4777 20. 8245 25 ·1683 
2 6 .1113 11.4201 15·9732 20.4635 
3 8.2499 14.1980 
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TABLE III .- ESSENTIAL PART OF THE INOOCED- AXIAL-VELOC ITY CALCULATION ank(P) 

~ 1 2 3 4 5 6 

P = 0 ·3 

1 - 0 .001702 -0.000066 - 0.000003 I --------- --------- ---------
2 .000009 -0 .000006 --------- ---------
3 0 .000017 ---------

~ - .001702 - .000066 .000006 -. 000006 .000017 ---------
k=l 

p = 0 .4 

1 -0.002949 -0 .000198 - 0 .000014 -0 .000001 --------- ---------
2 .000045 -. 000049 -0 .000007 - 0 .000001 
3 .000222 .000004 

~ - .002949 -. 000198 .000029 - .000050 .0002l5 .000003 
k=l 

P = 0 ·5 

1 - 0 .004468 -0 .000457 -0.000051 -0.000006 - 0.000001 ---------
2 .000134 - .000229 -. 000051 -0.000010 
3 .001384 .000037 

k'l.. 
L - .004468 - .000457 .000083 - .000235 .001332 .000027 
k=l 

P = 0 .6 

1 -0.006192 -0 .000881 -0.000138 - 0.000023 -0 .000004 -0.000001 
2 .000308 - .000735 -. 000226 - .000062 
3 .005122 .000194 

t - .006192 - .000881 .000170 .- .000758 .004892 .000131 
k=l 

p = 0 ·7 

1 -0.008036 -0.001499 -0 .000307 

I 
-0.000066 - 0.000014 -0.000003 

2 .000560 - .001756 -. 000711 - .000257 
3 .012522 .000630 

f= - .008036 - .001499 .000253 -. 001822 .011797 .000370 
k=l 

P = 0.8 

1 -0.009)44 -0 .002311 -0.000593 -0 .000160 -0.000044 - 0 .000012 
2 .000838 -. 003296 - .001670 -. 000756 
3 .020977 .001352 

t - .009)44 -. 002311 .000245 - .003456 .019263 .000584 
k=l 

P = 0 ·9 

1 -0.011811 - 0.003298 -0.001017 -0.000330 -0.000109 -0.000036 
2 .001040 -. 004963 - .003040 - .001662 
3 .023273 .001907 

~ - .011811 - .003298 .000023 - .005293 .020124 .000209 
k=l 
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TABLE IV. - ESSENTIAL PART OF THE INDUCED-TANGENTIAL-VELOCITY CALCULATION tn.k( p) 

:~ 1 2 3 4 5 6 

P = 0 · 3 

L 0.001643 0 .000084 0.000004 -------- --------- --------
2 - .000005 0.000004 --------- -------
3 - 0 .000009 ---------

1<0 
L .001643 .000084 -.000001 .000004 - .000009 --------
k=l 

P = 0.4 

1 0.002846 0.000252 0.000021 0.000002 --------- --------
2 -. 000026 .000035 0 .000006 0.000001 
3 - .000122 - .000002 

1<0 
L .002846 .000252 - .000005 .000037 - .000116 - .000001 
k=l 

P = 0 ·5 

1 0 .004312 0.000581 0.000074 0 .000009 0 .000001 --------
2 - .000079 .000167 .0C0042 0 .000009 
3 - .000761 -. 000024 

~ .004312 .000581 -.000005 .000176 - .000718 -. 000015 
k=l 

p = 0 .6 
--

1 0.005976 0 .001121 0.000198 0 .000035 0.000006 0 .000001 
2 - .000181 .000535 .000188 .000057 
3 - .002818 - .000123 

~ .005976 .00ll2l .000017 .000570 - .002624 -.000065 
k=1 

P = 0·7 

1 0 .00TI56 0.001909 0 .000442 0 .000102 0.000023 0 .000005 
2 - .000330 .001280 .000591 .000237 
3 -. 006889 - .000398 

~ .007756 .001909 .000112 .001382 -. 006275 - .000156 
k=1 

P = 0 .8 

1 0 .009598 0.002942 0 .000853 0.000247 0 .000071 0.000020 
2 -. 000493 .002403 .001389 .000697 
3 - .011541 - .000855 

~ .009598 .002942 .000360 .002650 - .010081 -. 00138 
k=1 

P = 0 ·9 
-

1 0.011400 0 .004198 0.001464 0.000511 0.000177 0 .000060 
2 -. 000612 .003618 .002529 .001532 
3 - .012804 - .001206 

~ .011400 .004198 .000852 .004129 - .010098 .000386 
k=l 
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TABLE v.- ESSENTIAL PART OF THE INruCED-ANGLE-OF- A'l"rACK CALCULATION "nk(P) 

;-." n 1 2 3 4 5 , 
, 

p - 0 · 3 

1 0.004557 0 .0002}9 0 .000012 -- ----- - --------- --------
2 - .000012 0.00000, --------- --------
} - O.00Cl021 --------

~ .0()i.557 .000239 0 .0000051 - .00002l --------
k=l 

t~ .004557 .004796 .004796 .004 5 .004784 0 .004784 

p = 0 .4 

1 0.005116 0 .000474 0.000041 0.000004 --------- --------
2 - .000041 .000056 .000011 0 .000002 
} - .000165 - .000002 

t .005116 .000474 0 .000062 -.000174 0 

~~ .005116 .005590 .005590 .005652 .005476 .005476 

p - 0·5 

1 0 .005112 0.000747 0.000096 O. OOooll 0.000002 ------- -
2 - .000072 .000176 .000046 0.000010 
} - .000664 - .000024 

t .0051l2 .000747 .000025 .000167 - .00061.) -.000014 
k-1 

~t .005112 .005659 .005665 .006072 .005456 .005442 

P = 0.6 

1 0 .004592 0 .000965 0 .000161 0 .0000» 0.000006 0.000001 
2 - .000066 .000»1 .000131 .000043 
} - .001l94 - .000065 

~ .004592 .000965 .0000~5 .000}64 - .001057 - .000021 
k-1 

~~ .004592 .005577 .005672 .006o}6 .004979 .004956 

p - 0·7 

1 0.003661 0.001l26 0.000260 0 .000067 0 .000015 0.000004 
2 -.000054 .000403 .00023} .000106 
} - .000722 - .000065 

~ .00}661 .001126 .000226 .000470 - .000474 .000025 
k-1 

~~ .00}661 .004767 .005013 . 005463 .005009 .005034 

P = 0.6 

1 0 .002465 0.001115 0.000361 0.0001l1 0 .000033 0.000014 
2 .000033 .000224 .000244 .000162 
3 .001436 .000006 

~ .002465 .001ll5 .000}94 .000335 .001713 .000184 
k-1 

f:~ .002465 .00}56o .003974 .004)09 .006022 .006206 
n=1 k:l 

p = 0 ·9 

1 0 .001125 0 .000937 0 .000393 0.000150 0 .000055 0.000019 
2 .000141 - .000247 .000041 .OOOU4 
3 .00}712 .000206 

~ .001125 .000937 .000534 - ·000097 .003S06 .000341 
k-1 

i:~ .001125 .002062 .002596 .002499 .006307 .006646 
n"'1 k=l 
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Figure 2.- The function JnB(Y). 

y 

.~ 

20 

O'l ------, > ' 

~ 
~ 
f\) 
\0 

&1 

+" 
t-' 



42 

)1 ----- _---_--I -" I 
1----~hn(P) 

I I 
I 
i 

NAeA TN 2983 

I 
O~---=~~=---------+-----~----~----~~ 

k = 3 

o~---=~~~--------~--------~~L---~--~ 

k=2 

o~------==~~~--~~--------~--~--~ 

k = I 

o 

Figure 3.- Schemat ic r epresentation of the Bessel functions JnB(Y) in 

relation to t he functions r(p) and hn(p). 
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Figure 4. - Traces of the extremes of JnB (Y) on the nB,Y plane . 

43 



.10 

.08 

.06 

r* 

04 

02 

o . 1 .2 .3 .4 .5 

P 

.6 .7 

04 

.02 

.8 .9 0 ~I .O 

Figure 5 .- Circulation distribution and corresponding incompressible 

induced quantities. r* = ~ Pvil - p2; B = 2. 
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Figure 7 .- Induced velocities at the blade. 
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Figure 8 .- Partial sums of ~nk(p), the essential quantity in the induced­

angle-of-attack calculation . 
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