o

NACA TN 2983

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 2983

LINEARIZED POTENTIAL THEORY OF PROPELLER
INDUCTION IN A COMPRESSIBLE FLOW
By Robert E. Davidson

Langley Aeronautical Laboratory
Langley Field, Va.

Washington
September 1953




NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2983

LINEARTZED POTENTTAL. THEORY OF PROPELLER
INDUCTION IN A COMPRESSIBLE FLOW

By Robert E. Davidson

SUMMARY

The potential of the linearized flow for a lifting-line propeller
of arbitrary circulation distribution at subsonic advance is derived in
cylindrical harmonics. From the potential the induced angle at the
lifting line is obtained. The series expression for the induced angle
is divergent as is to be expected for 1lifting lines in supersonic flow,
but this divergence is removed when the supersonic lifting-line induc-
tion is removed. A phenomenon resembling resonance in vibrating systems
introduces itself in that one term in the series becomes very large com-
pared to the others. The main consequence of this phenomenon is that
the 1ift distribution cannot be arbitrarily prescribed; on the other
hand, the inverse problem, in which the propeller geometry is given,
is acceptable.

INTRODUCTION

In order to calculate the induced angle of attack of the propeller
blade sections for compressible flow, the velocity potential for the
complete flow field must be deérived. Inasmuch as the equation of motion
changes from an elliptic type to a hyperbolic type at the radius where
the propeller blade, or the blade prolonged, is at Mach number one, the
disturbance potential turns out to be of mixed elliptic and hyperbolic
character. With incompressible flow, the distant boundary condition
is certainly that the disturbance potential must be zero far out radially
and far upstream. However, with compressible flow, the possibility of
propagation of disturbances far ahead, especially in a closed wind tun-
nel, must be admitted. Therefore, the one problem becomes two; the
elliptic field, which is essentially incompressible, and the hyperbolic
are determined by different physical conditions.

The velocity potential is obtained by superposing suitable solutions
of the compressible equation of motion on the known far-wake velocity
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potential, which is also a solution of the compressible equation of
motion. Thils far-wake potential extends only downstream of the pro-
peller and provides the jump in potential at the trailing vortex sur-
faces and the downstream feature that the far wake must be the same as
for incompressible flow except for random wave motion or noise. There-
fore, the problem reduces to superposing the elliptic and hyperbolic
fields in such a manner that certain physical conditions are met at

the propeller plane where the far-wake potential is cut off, an obvious
condition being continuity of the velocity vector. The cut-off of the
far-wake potential at the propeller plane creates the lifting lines
there, since this termination of the surfaces of a potential discon-
tinuity is equivalent to a 1lifting line.

In the differentiation of the potential at the lifting line, a
difficulty is to be anticipated in that a lifting 1line has infinite
wave drag in supersonic flow, and this condition is part of the theory
inasmuch as no restrictions are placed on tip Mach number. Some of
the hyperbolic induction attributed to the lifting line must therefore
be separated. This unwelcome induction is found in the hyperbolic
field but is absent in the elliptic field, as would be expected.

For the most part, only the case of propeller operation in a closed
circular wind tunnel is considered, although the way the potential may
be obtained in free air is indicated. The only reason for emphasizing
the tunnel is that, where series occur in the tunnel theory, integrals
occur for free air. The series seem more amenable to investigation
than the integrals, and it is believed that free air is the limiting
case in which the tunnel diameter approaches Infinity:

SYMBOLS
B number of blades
M advance Mach number, V/a
) advance velocity
REPS real part
a velocity of sound
|
t time

Ug axial disturbance velocity, positive downstream
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Ut tangential disturbance velocity, positive in direction of
propeller rotation

Ug , Uy, Ug, disturbance velocities in positive directions of coordi-
nates 2z, r, and a, respectively

yﬂBj argument of jth extreme value of Bessel function of order nB
X5 050 dimensionless cylindrical coordinates (eq. (4))

Z 5 Ly cylindrical coordinates

E(p) circulation at p

@ disturbance velocity potential

@,V complementary parts of velocity potential ¢

o induced angle of attack at blade

o= T 0E

¢ helical angular coordinate (eq. (7))

Pg s P, Pg particular values of p for propeller tip, tunnel wall,
and sonic radius, respectively

» angular velocity, radians per unit time
Subscripts:
i incompressible

c compressible

Partial differentiation is indicated by subscripts.
VELOCITY POTENTIAL FOR FLOW IN A CLOSED CIRCULAR WIND TUNNEL

For a linearized theory the disturbance velocity potential ¢
must satisfy the equation

1 1 1k
— = + — + — + L
a2 Pt ¢r21‘2 rp ¢r2 r,2 ¢@2@2 Pz (1)
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in which 2zo,rp,ar are cylindrical coordinates fixed in the distant
fluid, t 1is the time, and a the velocity of sound. In coordinates
which rotate and advance with the propeller, the flow is steady after
the propeller has been in operation for a sufficiently long time under
constant conditions. Let z1,ry,a; be the coordinates in the moving
system with z7 along the propeller axis of rotation and with positive
directions downstream, outward from the axis, and counter to the pro-
peller rotation, respectively (see fig. 1). If V is the velocity of
advance of the propeller and  the angular velocity, substitution of
the transformations

2, = 2zp + Vt o = an + ot r| =ro (2)

into equation (1) leads to the steady-flow equation

2 wPr 2
v 1 1 1 oV _
¢le1<1 a2> t e tE Pyt r,2 ¢°°1°~1(l a2 > 210y 2 °
(3)

This equation has a more compact form in a third coordinate system X,P,a
differing from the z,,rj,a; system only in the length scale; that is,

Z wr
N 1

= L)
v v (04 G.l (

In this new coordinate system equation (3) becomes

Bl = M2) + g + % B, + Le Boa(l - P22) - 2 M2 =0 (5)
P

In the helical coordinates of Goldstein and Reissner (refs. 1 and 2,
respectively) equation (5) becomes

¢xx62 = ¢pp it %¢p et ¢§C(l 7t p..2) - 2¢CX =0 (6)
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through the transformation

t=a-x (7)

In the far wake, the oblique system used in equation (6) has advantages
because of the helical nature of the flow. However, except for far-wake
considerations, equation (5) is preferred because of its orthogonal
coordinate system. In equation (6) if M =1, then B =0 and the
equation suffers the degeneration typical of the linearized equations

of flow in that the coefficient of the ¢xx term is no longer repre-
sented by B with sufficient accuracy. Therefore the advance Mach
number must not be too close to one.

Equations (5) and (6) may be shown to change from an elliptic type
to a hyperbolic type on a cylinder concentric with the propeller axis
of rotation with a radius such that the corresponding p is

Py = —— (8)
ik
-5-1
B

where B = V1 - M2. As one would expect, equation (8) defines the
cylinder on which the resultant velocity of the undisturbed stream in
the moving coordinates is equal to the speed of sound. Because of the
change in type of the equation of motion, mixed elliptic and hyperbolic
components will generally occur in the complete solution.

The potential given by Reissner in reference 2 for the far wake
is already in a usable form for compressible flow because it satisfies
equation (5) or (6). This potential is for a propeller of arbitrary
circulation distribution. Adapted to the case where a circular wind
tunnel is present, Reissner's potential ¢w for the far wake takes
the form

X n
gy =E) ) 2 > 1) (p)sn nBg (9)
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where

I(p)K'(pp) [P

O
e f T'(8)s G + T %Edg -
0

% I'(pp) YO
¥e
I(e) | T K'(ee T (p <pa) (108)
-K(p)I'(ep) + I(p)K'(pp) [Pa _, ar
h = =
n(p) T (on Jg I'(e)e 5 (P < P < pp)

(10p)

In these equations p, and pp are the values of p for the

propeller tip and the tunnel radius, respectively, B 1is the number of
blades, I =T (p) the circulation distribution depending only on p,
and K(p) and I(p) are abbreviations for K,p(nBp) and I p(nBp),

respectively, which are Bessel functions of imaginary argument. The
primes on K'(p) and I'(p) denote differentiation with respect to p,
not with respect to the argument nBp. The angle ( 1is zero halfway
between vortex sheets from adjacent blades and is limited to - % e

B
with the vortex sheets at * &, & ;g, « @ G

It is immediately apparent that the Reissner potential, independent
of x, is a solution of equation (6) and hence of equation (5), because
for a potential independent of x, equation (5) is Laplace's equation
in the p,{ system. Therefore, the Reissner potential equation (9) is
considered as the first component of the velocity potential for the pro-
peller with compressible flow, but its region of application is only in
back of, or downstream of, the propeller plane. Thus, the jump in
at the helical surfaces trailing from the blades is provided. Therefore,
the flow divides naturally into two regions, one in front and the other
in back of the propeller plane, both inside the tunnel wall. The rest
of the problem consists in adding suitable solutions of equation (5) in
front and in back of the propeller in order to take account of the
physical conditions.
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The appropriate solutions of equation (5) are

+1+inB jé- %]x
b= JHB[EPQ212 + (nB)2<%% - %) einBae[: (B > (11)
B

as may be verified by direct substitution. The constants n and 1 are
free. The tunnel-wall boundary condition requires that

pTvé2znj2 * (nB)Q(Eé = l) = yﬂBj (12)

where yﬁB- is the argument of the Bessel function in equation (11) at
the jth extreme value. From equations (8) and (12)

' 2 >
1 [ 7B (nB)
an = E—— Ly 5 (15)
B P Pg
where the plus sign 1s chosen to define 1pj.
Equation (11) now becomes
~ =
F % Tl .+1 X
. s
YnBj ( nJ Py
JI‘].B — P e
op
. ~
at
B , 1] +(-1ink)+22 x
YnBk Pg
-
Co

The notation up refers to p 1in front or back of the propeller plane,

B
the F going with the upper sign in the braces, and the B with the

lower. The meaning of the two functions, one above the other, in braces
is that the upper function is used when an is real, the lower, when
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imaginary. It is convenient to use Ipkx to indicate the imaginary

values. The upper function is called, for convenience, the elliptic
solution because it dies out exponentially with x, and the lower is
called the hyperbolic because it oscillates without dying out. This
complication, two possibilities for function character, must be accepted
because of the mixed flow.

Two more physical conditions, altogether different, have been
imposed in the choice of % instead of ¥ in equation (14) for the two
functions p in the braces. The origin of x has been set at the
propeller plane with x positive downstream; for the elliptic functions
the choice of signs is obviously that which makes the solution vanish at
x = to. The choice in the hyperbolic case is such that, since -iipk

is positive, the solutions oscillate for given values of n and k
with higher frequencies in front than in back of the propeller, in
accordance with the physical observation in reference 3 that waves are
crossed with higher frequency in front than in back, proceeding in the
axlal direction.

The rest of the problem is to make superpositions of equation (lh)
on the Reissner potential, which occupies only the region in back of
the propeller, in such a way that the flow is continuous in the propeller
plane off the lifting lines.

Because of the discontinuous nature of the first term in equa-
tion (9), the compressible fields which must be superposed on the two
terms composing equation (9) must be determined separately. For this
purpose, let

fg =Vg+ Pg * Vg + Vo + Pp (o< x) )

fp = Vg + VoF * P (x <0) (16)

in which g is the first, or discontinuous, function in Reissner's

potential (eq. (9)), ®g 1s the second, or continuous one, Vp and @p

B B

are the solutions of the form of equation (14), and Vop 2are degenerate
B

solutions of the form of equation (14) with n = 0. Now the origin for

the coordinate o must be decided; this is taken to be halfway between
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blades. The angles o and ( are now the same at x = 0, with the
nearest blades (lifting lines) at a = ¢ = % %, x = 0. The angles

E =% % in the x,p,{ system are at the nearest trailing vortex sheets
on each side of ( = 0.

The compressible potentials WB and wF which accompany the dis-
continuous Reissner function R are now determined to provide con-
tinuity at the propeller plane. From equation (9)

= BP(Q)(G - x)
21

YR (172)

g =RE. 2 > }i ’_el(ﬂ;i anJnBGEﬁ p>einB(a-x)(—i) (170)
T

n=l Jj=1

where the second form is obtained from an expansion of o - x in a
Fourier sine series and another expansion of F(p) in the form

f(6) = 2 Moyl 5 > (18)

in which Tnj is real. This Fourier-Bessel type of expansion is used

repeatedly herein. In particular, the arguments of the Bessel functions
are always adjusted through the frequency coefficient ygBj/pT to make

the extremes fall at the tunnel wall pp; in which case Fnj is given
by (see ref. L4, p. 174)
2 P Y
"B
Ppnj = f pI‘(p)JnB<———‘l %do (19)
by

2 200
DT2 e <}%> EnB(yr'J.Bjﬂ
J
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The function g, which is limited to the region downstream of the
propeller, causes a discontinuity in the axial velocity and in the
potential at the propeller plane x = 0. In order to avoid differentia-
tion of equation (17b), the discontinuity in axial velocity brought by
YR can be obtained from equation (17a) directly and eliminated with a

degenerate term from equation (14) obtained by setting n = 0; the
result is

1
Tos >
J
00 ! 2z b
" Y03 <BQT (20)
Z gupeli=—RiE

in which AOj is to be determined. Nc discontinuity of potential is

introduced by g, and the discontinuity in axial velocity 1s canceled
B

E B o)y - ] E%] = [ai_o{l (21)
ox 2x %x=0 x=0 dx _Jx=0

From equations (17a) and (20), equation (21) becomes

by

Br(o) B = Yoj Y03 5 <= Yoj 505
22 E - Doslgte) 2 S a2

By using equation (18), the coefficients AOj become

The discontinuity in axial velocity brought by the Reissner term VR
is therefore canceled by superposing the potentials
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y .

1 + %X

BN _1, Ber (Yo P
= = = — — 2
WOF Ox Z 2 yx . O(DT e ( )

0J
Only the discontinuity in potential at x = 0 caused by wR
remains. This discontinuity is canceled by requiring that
& = 2

EkR__Jx=O @{B]x=0 ELIF])FO ( 5)

and, in order to prevent introduction of a discontinuity in axial
velocity at x = O, by requiring that

el B, e

in which Vg comes from equation (17b), and Vp 1s written in the form,

B
adopted - from equation (1k4),
nB
1 1, :+i—x)x
YB3 < 1 pg2
Anjr| [TnB\ > i
£ 2l | RN s >
jg: - oinBa nB
\IIF +lln.k+—_
B a==isig YnBk Pg’
k=1 AnkF | MPnB{—— o J
B Pp &
(27)

in which Anj and Ank, may be complex; that is,

nj = 8pj + 1ap;

. 1
Ank =ank + lap,
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The range k =1, 2, 3, . . . kg denotes the hyperbolic terms, and
J = jo, jO+l’ j0+2, . . . o denotes the elliptic. Here, ky denotes
the last hyperbolic term in the summation and jO = k0+l' Substituting
equations (17b) and (27) into equation (25) gives
Ppgl-i) anjp + lapsp anjF + ianjF
+ = (28)
Pnk(-1) anip + ianyp enyF + l8yp

and, similarly, substituting equation (27) into equation (26) gives

~ = P —
nB ot nB g1
-1nj + i — &njB * 18n3B 1nj P L = anjF + lanjF
Ps fa
< > = 4 > (29)
ifilpk + nEr ankp + iaﬂkB f-ilnk + EEE a8 t iaﬁkF
0s®/ | L P8
— -~ =

Equations (28) and (29) each break into two equations corresponding

to the real and imaginary parts which yield the following solutions for
the elliptic field:

—
— - _ 1 nB
anjF = 8njB = - 5{_—%7;1‘113
nJj
~ (30)
1 = o = l
8njF = “®njB > Tnj
)
and for the hyperbolic field
=
Bk = 8pkg = O
a =% -1 + e
nkf ~ 7 - nk 5) > (31)
-ilnkps
a’lll.kB = %Pnk Lo L 2




The coefficients given by equations (30) and (31) are now to be used in equation (27). Then
according to equations (15) and (16), the { part of the potential given by collecting equa-
tions (17a), (24), and (27) is, for the region in back,

ij N
i o i
Br(p) B < 1 Bop _ (Y03 BA
llf"'\lf +llj= (CL-X)'F——Z—-—POJTJO—'pe +
R OB B Ox 25 = 2 ij Py
~ =
~ N .nB
' -1, s+i=——\x
J= 2 IR I PN 0 :h < nJ psz>
i) nJ nBl=—==20 e
B -2(-1)" 4 T8 \,_inBa
re 235 B 2 e .
DR nB 2 : i(ilpq4+ X
n=1l j Jo B Y Bk nk 5—2
k=1 M| [EfL + g ROk e 57 |
=l 2 i =
1anpS _ J
(32)
and in front,
1
= Bo Ve 31;2 *
B 1 T 0J JE
v + Yo = — zz: == Fo3 Jb<———- >e +
( N
@ o) 1 -+i§§— X
- = e < nJ g 2)
== -nB nBj S
1_ Fn' | ) i JnB —r— e
© = n : 1 :Pa? 2t >
RERANERL S -2(-1)" 1 J s L L inBas _—
en =3 =3 nB 2 1 1<—1lnk+——§\x
0 y Ps=/
k= r . nB nBk
nk if-1 + : JnB P— e
'17'111{082 P i - p,
_ L,
(33)

¢g62 NI VOVN

¢T
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Equations (32) and (33) comprise the final results for the y  part
of the potential (.

Now consider the ¢ part. The procedure is nearly the same, only
this time the discontinuity in axial velocity will not be dealt with
separately because the @p part of Reissner's potential is a smooth

Fourier development in a - x which can be differentiated. The con-
tinuity conditions at the propeller plane x =0 become

EPR]x=o * EPB]X=O - EPF])(:O (34)

Ex&hlzo ' E%ﬂm B :(—fl:o (35)

in which ¢r 1is the second term in equation (9). This term may be

written, in the x,p,a system, as

)n

_ B Z‘” -2(-1
CPR _— R-P- ET'(- T

n=1

e g e el (36)

or, alternatively,

where
[oe) y' .
na(p) = > hanma(% p> (38)
J=i iy

and hnj is real.




The ©@p are obtained from equation (27) with V¥ replaced by ¢ and some new coeffi-

B
cients an substituted for Anj-

¢g62 NI VOVN

The @ part of the potential now becomes, with the an determined from equations (34)
and (35) in a mamner similar to that for Anj,

Pr + Pg = R.P. —%Zﬂ %)—n- hn(o)einB(“'x)(-i) -

n=1 =
a4 B [ ST
j=eo (2 ) YnB; " g
k=i hpj B2 + 1 JnB o e
e S -2(-1)" 1 ) T | tua ~ -
21 . nB 2 >ﬁ ¢ {1 11— |X
s= I B YiBK ps?
k=] how| |11 + : 5 JnB o= P e
llnjB L J s =
) il (39)
= (/B
1 1.
- (_nB ~N r ynBj < nJ+l¥2‘>X
J=e h, - - i Jnp\—— ¢ &
= B -2(-1) 1 -
IR a2 i R SN G FT e AP
n=1 f{—JO el e . (yan p> ; Ps
= 1f-1 + ——— —_—
i ( 'iznk32> ~nB 2 L <
S J (14»0)

Equations (39) and (40) added to equations (32) and (

3%) determine the velocity potential
for the propeller in accordance with equations (15) and (15)

a1
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PRANDTL INDUCED VELOCITIES AT THE LIFTING LINE

The Prandtl induced velocities, in the sense used herein, are analo-
gous to those of the conventional lifting-line wing and propeller theo-
ries of Prandtl and Goldstein. More specifically, the Prandtl induced
velocities are those which must be presumed to be already present at
the position of the blades in order to assume that the airfoils retain
locally their same performance as in two-dimensional flow. With incom-
pressible flow, it was verified experimentally that the induction could
be determined with sufficient accuracy by assuming the wing or blade to
shrink into a 1lifting line and then applying the Biot-Savart law over
the trailing vortices excluding the lifting line. This simplification
of the intrinsic general three-dimensional problem has long since
proved its worth. Therefore it is natural to seek extensions in
approaching the compressible problem. On the other hand, it is dan-
gerous to rely on experience with incompressible flow for guidance in
supersonic matters. Since the present problem concerns a mixed subsonic
and supersonic flow, it will be expected that questions will arise which
will have to be settled by considerations of both subsonic and super-
sonic flow. Finally, for those who are more interested in the general
three-dimensional problem rather than an engineering concept, it is
remarked that the theory is still applicable to a lifting-surface
problem when those steps are omitted which specialize to the lifting
line.

The induced velocities, or disturbance velocities, are given by
differentiations of ¢, but the algebraic sign is still open to a choice
which is made so that a forward-thrusting propeller pushes the air rear-
ward in the far wake. If the propeller is assumed to produce positive
thrust when P(D) is positive, then the velocities in the positive
directions of the coordinates must be

- o R (41)
LU == Up = - = o
21 g “1 1 P 1 o Ty ¢G1
which may be checked by means of the Reissner R term, which produces

the basic disturbance velocity in the far wake, as follows:

Since
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Ugy is seen to be negative, but since the propeller rotates in the
negative o direction, u“l is a velocity in the same direction as

the rotation, as it should be; on the other hand, Uz is positive,
but since 2z 1s positive downstream, Uz is positive downstream,
also as it should be.

In propeller theory, it is customary to consider an axial veloc-
ity uy and a tangential velocity uyt, which are positive downstream

and in the direction of propeller rotation. Since uzy is positive

downstream, but Yo is positive against the propeller rotation,

ug = Uz end ug = -ug . Therefore, from equations (41) and (&)
Uag = = = Px (42)
A
w1l

determine the conventional axial and tangential velocities from the
velocity potential in the x,p,a system.

It is immaterial whether the differentiations in equations (h2)
and (43) are applied to @y or @p when the differentiation, which

is not straightforward, is made at the.lifting lines. Suppose ¢B is
used and consider first the  part of ¢ (eq. (32)). TFor the 1y

differentiation, the second term in equation (32) cancels one-half of
the first term. If it is permissible to differentiate the remaining

term, then at x =0 and o = %, which means- the 1ifting line,

o) 1l
EE(WR'*‘VOB‘*‘VBH "33 "
x=0
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that is, the  part of ¢X at the 1ifting line is one-half of the
far-wake value plus some effects from the hyperbolic part of the com-
pressible field. The differentiation in the @ direction is made with
regard for the Fourier development of the saw-tooth function which can
be recognized in equation (32) at x =0. For x =0 it is seen that
the 1 1in the first brace gives a term

( . 2
nBj
Tnj JnB(—— p>

Jﬂ)o
k=kq P
BN -2(-1)" 1 ) & 1nBo,
R.P. = e > (1)e
2n £ = nB 2 1
n=L J=Jo InBk
k=1 ol Popl—— o
P )

-

but from equation (17b) this term is just

and, therefore, the differentiation of this term cancels one-half of the
differentiation of the first term in equation (32). In other words, the
derivative of the above Fourier series with respect to a 1is to be
interpreted as the derivative of the sloping part of a saw-tooth func-
tion of o which the series actually represents, the differentiation
being performed off the teeth of the saw-tooth function. This choice
‘of interpretation is Jjustified by the fact that by so doing the theory
gives the correct results when degenerated to incompressible flow.

Since R.P.(einB@> contributes nothing at o = %) formal differen-
tiation of the rest of equation (32) gives

3 1
E,;(WR’fWOB*“\lfBﬂ " x|
x=0




Therefore, the  part of ¢ is also one-half of the far-wake value plus some effects from
the hyperbolic field.

Next equation (39) is differentiated. The differentiation of the real part along x, for

=0 and a = %, gives

© n n
Lo +op) = &> Emy() s

n=1 =
(" 1 R ~ ~
=00 ynB
e i
B < -2(-1) 1 n
21 2 Z nB 2 g 1 (1073 ?
n=1 J=jg YnBk (HB)2
k=1 hnk JnB ‘W pJ nB + -llnk - m
I ~+‘nkP™Pg
-
(46)

However, from equation (38), the nB terms in the last brace cancel one-half of the Pr term
by the same considerations as for equation (45). Therefore, equation (46) becomes

0o 2
Bo+o)] 12,2 > S 2 RS L s B (i - BE | )

=0 n=1 k=1 -12.1.820.2
q,% nkB ps

¢862 NI VOVN

61
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and, similarly,

e} 1
O ) ==
EG(CPR + %l{:o =

7

C(:_—

B

+

R
&

|+

© ! n 2
%Z -21(1];1 hnkInB<yan p>(-1) (nB) (48)

b -1 ilnkBE

Equations (44), (45), (47), and (48) give @, and @, at the

lifting line, but they must be expected to include some induction from
the 1lifting line itself. This part of the induction must be discarded
in order to have the Prandtl induced velocities at the 1lifting line.

It should be possible to recognize the induction of the 1lifting line
from an inspection of equations (4k4), (45), (47), and (48). In equa-
tions (4k4) and (45), the double summation has coefficients Tpx which
depend directly on the circulation distribution I'(p) along the lifting
line; whereas hp). in equations (47) and (48) depend on hp(p) which
expresses the field produced by I'(p). Therefore, the hyperbolic terms
in equations (4L4) and (45) are now discarded as being caused by the
lifting 1ine itself.

Some further explanation of this step i1s perhaps desirable. It is
this operation which malkes the lifting-line concept applicable
although the flow has partly supersonic character. The 1lifting line in
supersonic flow has infinite wave drag which shows up in the fact that
the velocities assoclated with the ¢ part of the Reissner potential
are expressed by series which do not converge (egs. (L&) and (45)).
Furthermore, if the theory is allowed to degenerate to the case of a
large number of blades at a large distance from the axis so that the
potential may be considered independent of radius, the representation
of an infinite staggered cascade in supersonic flow is obtained, the
properties of which are already known. Then the hyperbolic terms in
equations (44) and (45) are seen to represent just the self-induced
field of each cascade element by itself. On the other hand, it is the
self-induced field which must be taken out in order to obtain the
Prandtl induced velocities. Therefore the indicated rejection is in
accordance with the 1ifting-line concept.
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Substitution of equations (44) and (47) into equation (42) gives

[ee) kO n ! 2
_ — B w -2(-1)" 1 <%an > n (nB)
Ty =T, - 22 S G T S ER R L S
%c 1 e V g;; ;;; nB i Pr : 'ilnkB2pSE
(49)

and substitution of equations (45) and (48) into equation (43) gives

00 ko n ! n 2.
S8y, e Yol R,

n=1 k=1 -1l,xB

- = B
utc —uti +_2—J_t—

|-
<€

in which the bars denote the Prandtl induced velocity, the subscripts c
and i refer to compressible and incompressible, respectively, and the
terms in 'k have been discarded.

DISCUSSION

The Bessel functions in equations (49) and (50) are those shown in
figure 2. It is shown subsequently that these functions are distributed
over the radius in such a way that the first inflection point of the
Bessel function in the koth term falls on or very near the sonic radius.
For the lower k terms the first inflection point is progressively more
outboard of the sonic cylinder so that at k = 1 it is near the tunnel
wall with the first extreme (a maximum) of the Bessel function right at
the tunnel wall. For k = 2, the second extreme (& minimum) is at the
tunnel wall, and so forth for the succeeding values of k as is seen
from inspection of the arguments of the Bessel functions (see fig. 3).
Finally, at k = kp, which is the hyperbolic term with the largest Kk,
the maximum number of oscillations of the Bessel function cccur and
these oscillations are all confined between the sonic cylinder and the
tunnel wall, because as was pointed out above, the first inflection
point of the kyth Bessel function falls at or near the sonic cylinder.

The process of distributing the Bessel functions over the radius
influences the values of 1, obtained from equation (13). This fact

brings up the significant point that ano can approach zero and thus

produce an effect similar to resonance in a vibrating system; each
narrow range of conditions for resonance is an extra degree reduced by
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the square-root operation in equation (13). An identically zero value
of 1lnky means that some additional considerations are required. How-

ever, when later the case of a propeller in free air is taken up, the
summations over j and k pass to radial integrations in which the
difficulty of zero ano appears as a square-root singularity which

causes no trouble and provides the first hint that a near-zero value
for 1pk 1s to be regarded as a necessary feature of the theory due
to a resonance property of the flow in a tunnel.

Generation of the coefficients hpk.- The coefficients hpyx are

those in a Fourier-Bessel expansion of the Reissner far-wake radial
function hp(p). The functions hy(p) have the appearance shown in
figure 3. The function hn(p) has a discontinuity in its first deriva-
tive because, when hn(p) is added to ', the resulting function must
be smooth in order to make equation (9) give a continuous flow at

P = pg. Also sketched in figure 3 are the Bessel functions for given
values of nB used in the expansion of hp(p). These functions have
their extremg values on the tunnel wall pp as is required by the

Y
arguments gBk p. Only the Bessel functions for the hyperbolic terms
g
in the velocity potential are shown, the ones appearing in equations (M9)
and (50). The value k = 1 corresponds to the Bessel function with the

¥
first extreme value at p = P because, from the argument —%EE P
T

when p ranges from p 0 to pp it generates the Bessel function
up to the first extreme value. The koth function 1s the one with first

inflection point and pg nearly coinciding. Thus, for the case repre-
sented, k takes on the values k =1 to k = kg = 4  which correspond
to hyperbolic terms in the veloclty potential. The terms with higher
numbers of extremes are not shown because they have elliptic flow
character, and they would merely produce more and more oscillatory por-
tions inboard of the sonic cylinder p = pg-

It has been stated that the first inflection point of the kpth

Bessel function falls at or near the sonic radius. A more precise
statement, however, would be that the kgpth Bessel function has its
argument equal to its order at or near the sonic radius. However, the
inflection point has more meaning for visualization purposes. Further-
more, it can be shown that the argument at the first inflection point
is nearly equal to the order, if the order is not too small, with incon-
siderable error as may be seen from figure 2. This coincidence that
the kgth Bessel function tends to have an argument equal to the order
at or near the sonic radius will now be demonstrated and it is to be
inferred that this coincidence also applies to the first inflection
point. It will appear that the coincidence of the argument with the
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order is exact if ano = 0. TFor a zero value of ano, equation (12)
shows that

nB 1
Pl =
At Py nBkgp
or,
yl
=290 g = mB (51)
e

which states that the argument of the kyth Bessel function is equal to
the order nB at the sonic cylinder p = pg if lnko is exactly zero.

If 1lnk, 1s not exactly zero, then equation (51) is still nearly
true. Thus, from equation (12)

1

Y
_——;ﬁk pPg = /(I’LB)E + pSQBQanz (52)

which shows that since 1., 1is imaginary, corresponding to hyperbolic
terms, the argument of the Bessel function at the sonic cylinder is less
than nB. The reverse would be true if the terms were elliptic so that
lnj would be real from equation (12). It appears then that, in fig-
ure 3, the koth Bessel function has its argument equal to nB just
outboard of or at pg, depending on whether ano is merely close to
zero or identically zero. Further, the hyperbolic terms with k lower
than kg have theilr oscillatory portions more and more outboard of the
sonic cylinder p = Pg @B k decreases from kO'

The sonic cylinder and tunnel-wall radius in relation to the first
appearance of hyperbolic solutions in the velocity potential.- The
hyperbolic solutions first enter the velocity potential when the sonic
cylinder comes inside the tunnel wall. If equation (13) is written in

the form
2
— b EE an _ DT
B e
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then since the hyperbolic solutions have imaginary 1lpx the proof of

this statement is seen to concist in showing that the smallest possible
1

N

value for B

is unity, which is shown to occur when kg =1 and
nB—>». This proof will place a lower 1limit on pp for the occurrence
of imaginary 1lpi; that is, pp must be greater than pg for imaginary

lnk to occur. Therefore, the solutions cannot change type unless the
tunnel wall is outside the sonic cylinder. It is obvious that the
smallest value of Xﬁgg must occur for k = 1 Dbecause with this value

of k the argument of the first extreme must be less than all succeeding
arguments. It, therefore, remains to show that the smallest value for
1

o
—%%£ is unity, which follows from a formula on page 143 of reference 5
that holds when nB 1is large,

Vi 5
nBl _ 0.808618 B N

nB nB

Hence

. InBl _
lim - 1 (54)

nB—sw

which completes the proof.

Diagrammatic point of view of zero lnko in relation to the

argument of the Bessel function.- Figure 4 gives a view looking down
the vertical axis in figure 2 showing the traces of the extremes of
JnB(y) on the nB,y plane. The slopes of these traces approach unity
as nB and y Dbecome large, a property of the Bessel function. For
a given propeller operating condition, pp and pg may be calculated;

[
by plotting in figure 4 the function él nB, it is possible to tell by
S
inspection of the figure how many hyperbolic solutions are present in
each k-wise summation, and the possibility of a zero value for lnko

may be appreciated. From equation (51), the condition for zero kg
is
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S s
YaBy g nB (55)

p
If the line —E nB intersects one of the traces of the extremes on an

S
integral value of nB, then the corresponding ano will be zero. For

example, if the dashed line through the origin in figure 4 represents
o
5§-nB for a given operating condition, then ano for nB = 8 and

k = ko = 2 would be zero.

The dashed line in figure 4 may also be taken as an indication of
what parts of the Bessel functions Jpp(y) are used for the elliptic
and what parts for the hyperbolic solutions at any given operating con-
dition. Equation (13) shows this separation because imaginary 1lpx are

given by equation (13) so that the solutions are hyperbolic when

L a2
2 YnB
(nB)® k)
02 Pr

or

which means that for hyperbolic solutions, the traces of the extremes
yéBk. must be below the dashed line gg nB. Since the slopes of traces
of the extremes approach unity as nB-—, the first appearance of
hyperbolic solutions occurs when gg = 1, because for this case the
line ;2 nB also has slope unity (shown as the solid straight line

S
through the origin in fig. 4).

The suppression of resonant terms.- The discussion of the resonant
terms is based on the assumption that in the series expression for the
induced velocities, or the induced angle of attack at the blade, only
one zero of 1.y can occur within a finite number of terms in the
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series. In the author's opinion, this is true but a rigorous proof is .
lacking. From a practical point of view, the series does not need to

be computed to a great number of terms, because the higher terms express

their contributions to the induced angle through oscillatory functions =
of higher and higher frequency so that they eventually become unimportant

in a practical solution. Thus the question of how many resonant terms

must be dealt with can be answered for practical purposes by the fact

that in a series of a reasonable number of terms only one zero of ano

can occur at a time so that there 1s just one resonant term.

Consider a propeller operating at conditions which malke a particular
Inky exactly zero. With this zero of lnkg, is associated a resonant

term or mode in the series expression for the induced angle of attack.
Now suppose the propeller to be twisted so that the angle of attack
with respect to the zero-lift angles of the airfoil sections is equal
to the resonant mode multiplied by some finite constant factor. This
propeller, according to the theory, is subject to degenerate compressi-
bility effects, which can be seen without calculation as follows:

(1) Since infinite induced velocities are physically impossible,
it is seen from equations (49) and (50) that hy must be zero; that
is, the 1lift distributiog of the propeller must beé such that hnkO is

n
zero so that the ratio are - 9 appearing in those equations has a

nkg O

finite wvalue. -

(2) The only value for hnko/lnko which produces zero hnko is

that which makes the resonant induced angle exactly cancel the blade
twist so that the 1lift is zero all along the blade.

Therefore the only solution compatible to both the compressible and
incompressible components of the induction is that the 1ift remains
zero with the indeterminate ratio hnko/lnko taking whatever value

i1s necessary to make the resonant mode exactly compensate the prescribed
angle of attack. It seems reasonable to expect a similar suppression of
the resonant mode when the angle-of-attack distribution is arbitrary.
Therefore, in compressible flow, the arbitrary prescription of 1ift

must always be made with the restriction that hnko for the resonant

mode be zero. The corresponding propeller geometry is seen to be
indeterminate in that the geometric angle of attack can be altered

in proportion to the induced angle of the resonant mode without changing
the prescribed 1ift distribution.

The other problem, in which the propeller geometry is given instead
of the 1ift distribution, is more realistic. Here, the 1ift distribu-
tion must again yield no resonant mode (hnko = 0) and is determined -
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according to the requirement that the 1ifting properties of the blade
and the induced angles due to all the modes including the resonant mode
with finite hnko/znko must produce the 1ift distribution by which the

modes are determined. In practice this solution would be obtained by
an iteration process.

Assume a propeller of fixed geometry. The lift distribution, or
otherwise TI'(p), is to be determined along the blade. If the resonant
term is assumed to be zero, such a distribution along with the distribu-

tion of induced velocities and induced angles can be determined. Sup-
pose, however, that a resonant term occurs in the induced velocities
and, correspondingly, in the induced angles. The induced angles are
then infinitely sensitive to small changes in the 1ift distribution and
some special considerations are necessary.

The 1ift distribution with the resonant term assumed to be zero
will in general produce some value of the resonant coefficient (hnko)r'

To prevent the introduction of infinite induced angles and thus to make
the 1ift distribution consistent with the induced-angle distribution,
the 1lift distribution must be so modified as to result in zero values
of hnko so that hnko/lnko will be finite.

hp
Suppose that ; 50 = 1, and compute the corresponding change of
nko
induced angle Aaj(p) and the accompanying change in circulation dis-
tribution AI(p). From Al(p) compute Abhpy, from equations 10(a)
and 10(b), and an equation similar to (19). Now because hp(p) = I'(p)
and Al(p) « Aai(p), take C so that

c Ahnko = '(hnk6>r (56)
and adjust the induced angles and the circulation by adding C Aaj(p)
hn
and C Al(p), respectively. This is equivalent to taking - 0 . &
nko

where hp =1 = 0. The process is inexact, of course, because of
kg T *nkg

the effect of the added AI'(p) on the induced velocities, and succes-
sive approximations are therefore required.

The above iteration process may be performed mentally on the
hypothetical propeller defined at the beginning of this section in
which the propeller was twisted with an angle of attack with respect
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to the zero-1ift angle of the airfoil sections equal to the induced angle
of attack of the resonant mode multiplied by a constant factor. It will
be seen that the process gives the correct result, which is zero 1lift
over the whole blade. The validity of the iteration process is thus con- -
firmed to the extent that the abovementioned hypothetical propeller

actually does produce no 1ift. The latter question appears to require
experimental verification. This requirement is not surprising when it is

recalled that the Prandtl 1ifting-line wing theory, in which lifting

lines were to be replaceable by finite chords of the same circulation,

could not be rigorously Jjustified and had to await experimental

verification.

VELOCITY POTENTIAL IN FREE AIR

The velocity potential in free air has a form different from that
where a tunnel 1s present; the difference is analogous to the change
of a Fourier series into an integral when the interval of expansion
becomes infinitely great. As far as the induced velocities are con-
cerned, it is believed that they will be not much different from those
with the tunnel present. Therefore, the free-air potential will not
be derived in detail. .

From Hankel's integral (see eq. (3) on p. 453 of ref. 6)

Fn(R) =L Y d7fo Fn(s)Inp(7s)Jnp(7R)s ds (57)

the function PR in the Reissner potential as pp—>= can be represented
by

© n
%R = R.P. %Zf‘g—”-f: 72a(7) 38 (0)e B (L )ay  (58)

n=1

where Fp(R) becomes hp,(p) by comparison with equation (36) and the
function f£,(y) 1is given by

fn(7) =/; hy(x)JIpp(7s)ds (59)
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The function hn(p) used here must suit the boundary conditions of the
far wake, obtained from equations (10) by letting pp—>.

By analogy with equation (11) and by using a form of equation (57),

choose
2
e L)
% w0 ) P P
B -2(-1)n\jf inBo, S s
- D ¢ 1% J
cP% e . nF(7)7 n(7)Ing(rp)e e dy

B

(60)

which is a solution of equation (5) if differentiation under the integral
is permissible. The physical conditions may now be imposed by methods
similar to those in the case where a tunnel was present. It will be found

2
that the functions Cp(y) contain the radical |[y2 - LEE%— in the
P

denominator, and this radical is the counterpart of 1y (see eq. (13)).
Therefore, the summation over j for the tunnel case passes to an inte-
gration over 7 where the possible infinity caused by lnj in the
denominator becomes in free air a square-root singularity in the inte-
gration, which should cause no difficulty.

NUMERICAL EXAMPLE

A two-blade propeller is assumed to operate at an advance Mach
number M of 0.8193, with p at the tip equal to unity; therefore,
the advance ratio V/nD is x, and the circulation distribution is

p Vl - p° (61)

r*(p) =

[0 R

where

[* = %’P (62)
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is a nondimensional form for [' and V/nD is the conventional parameter
in which nD i1is the angular velocity in revolutions per unit time multi-
plied by propeller diameter D. The circulation r* is plotted in fig-
ure 5, from equation (61), along with the corresponding induced quan-
tities ﬁéi/V, Eti/V, and  of, . where a4 is the induced angle of

attack for incompressible flow expressed in radians. No particular
significance is to be attached to the factor 1/6 in equation (61) or
to the precise choice M = 0.8193.

If equations (49) and (50) are written as

Ug,

Eai + Aua (63)

€

where Au, and Auy are the changes due to compressibility, then

< ~2(-1)" YnBk n| . (nB)®
Aug = - é% - :E: E?: - % hnkJnB<—5—— p|(-1) " |Filnk - 5 5 }
Vn=l k=1 nB g -11nkB“Pg
(65)
o & ol Yapke \(-1)® (mB)°
B lw -2(- 1 =
Muy = — = = i————h p> (66)
& P ngl =] mB 2 nkJnB( A
If hn, based on I'* instead of T, is defined as
* Bw
hpk = — hnk (67)

y2
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the compressibility effects in ratio to the incompressible can be
determined from equations (65) and (66) as follows:

k
- = = § E 68

fo = 2/V _ 1 % £ (p) (69)

Uty /V bxp Uty /V =1 k=1

where

v, B)2
ank(p) = é% h;k Jn]3<—§§Iﬁ > -1lpk - ——L——%§—7§ (70)
T -1lnkB™Pg
2 x Ynpk \ (uB)?
tnk(P) = = hnidng P 5 (71)
PP /-i1,,B

The coefficients hpy and -ilp; are tabulated in tables T and II
for the first six terms in the n-wise summation. These coefficients,
with the very complete tabulation of the Bessel: functions in reference i
are used to calculate api(p) and t,,(p) which are tabulated in
tables IIT and IV.

Dug [V - Aut [V
Eéi/V g, /V
effects in ratio to the velocities in incompressible flow are plotted

against p in figure 6. The compressibility effect is seen to be very
small, less than 4 percent.

The ratios which express the compressibility
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Before discussing the induced angle of attack, some explanation of
the velocity diagrams in figure 7 may be desirable. Figure 7(a) shows
the conventional velocity diagram of incompressible-flow propeller
theory. Figure 7(b) shows the compressibility effects superposed on
the incompressible. Since only the part of the diagram showing the
induced velocities is important, an enlargement of this part is shown
in figure 7(c). The lines A-A, B-B, and C-C which are the sides of
the induced angles may all be drawn parallel to the local helical
direction in a small-disturbance flow.

If Aaj 1s the change in induced angle of attack accompanying Aug
and Aug, then from figure T
|

p Aug - Luy
Loy = “5 + o2 1+ p° =1 2%%0 e + te EE%} (12)
‘ VvVl + p2 B

which, by using equations (68) and (69), can be put in the form

© %
éa;i— = ai > > anx(p) (73)

where

oa(p) = 2z [pani(e) + & tui(o)] (74)

Values of ank(p) are tabulated in table V. The ratio Aﬂi/“ii plotted

in figure 6 is seen to be very small; this fact indicates that the induced
efficiency is reduced only 1 or 2 percent by compressibility, to the
accuracy provided by six terms in the summation over n.

In figure 8, partial sums of apy(p) are plotted so that the con-

tribution of succeeding terms can be seen. There is a shift in the
convergence with the addition of the fifth term. This shift is caused
by an unusually large hﬁk at n=5, kg =3.
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It should be noted that, although the induced angle has been calcu-
lated for a prescribed circulation distribution, nothing is said about
the shape of the propeller required to give this circulation distribu-
tion. At sbme n, there may be an 1Ilpx sufficiently close to zero so
that a strongly oscillatory induced-angle distribution is finally
indicated and an unusual blade-angle distribution would result. Appar-
ently, a degree of arbitrariness is lost in giving arbitrary circulation
distributions if they are to be related to reasonably shaped propellers.
More realistic is the view that the propeller shape is prescribed and
then the performance is calculated. This approach would mean in the
present example that, after the calculation of the induced angle, its
effect on the initial circulation distribution would be calculated,
after which the new distribution would be used for a new induced-angle
calculation. In the process, the resonant mode would be suppressed,
and a reasonable induced-angle distribution and a circulation distribu-
tion somewhat different from that of the prescribed propeller in an
incompressible flow would result.

CONCLUDING REMARKS

The velocity potential for a lifting-line propeller with subsonic
advance velocity but unrestricted tip speed has been derived in cylin-

drical harmonics. The theory is for a linear equation of motion and must

be restricted to advance Mach numbers not too close to one.

From the velocity potential, the induction at the blade has been
obtained with a view to preserving a strict analogy to the induced-
angle-of-attack concept embodied in Prandtl's lifting-line wing theory
which has been carried over to propellers by Goldstein and Reissner.

The Prandtl inducéd angle of attack becomes representable by the
basic incompressible results plus some compressibility effects expressed
in infinite series. Among the terms in the series there is always at
least one which becomes magnified with indefinite greatness in compari-
son with the others, an effect resembling resonance in vibration theory.

A numerical example is provided in which a limited number of terms
in the series expression for the induced angle of attack have been
calculated for a propeller with a reasonable 1ift distribution. The
compressibility effect appears to be negligibly small, but it must be
noted that there was no resonant term among the terms calculated. It
is remarked that the arbitrary prescription of the 1lift distribution
cannot be made if resonance is to be considered.

Although the present calculation indicates that the nonresonant
terms in the velocity potential produce only a small compressibility
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effect on the induction at the blade, it is not certain that the resonant
term, or near-resonant terms, would not make a significant contribution.
In other words, if an example were chosen for calculation in which the
propeller geometry were prescribed instead of the 1lift distribution, and
if the operating conditions of the propeller were chosen to make a certain
convenient term resonant, then, after completing a somewhat laborious
iteration process, a significant compressibility effect might be observed
as a result of the direct consideration of the relation of resonance to

a realistic physical problem. It is the author's opinion that the calcu-
lation could probably be made with sufficient accuracy by considering
only the induction of the Reissner potential and the resonant term with
the nonresonant terms neglected. One might be led further to expect

such a calculation to explain the experimentally observed dips in the

1ift distributions of propellers operating at tip speeds above a Mach
number of 1.00; unfortunately, the explanation would not be completely
clear, however, because there is always the uncertain effect of compressi-
bility on the airfoil properties in the transonic range which is proba-
bly a considerable cause of the dips in the 1ift distribution.

With regard to experimental verifications there is one check which
would seem to be satisfactorily definite. It consists in testing a
propeller in a circular wind tunnel at an operating condition producing
an exact resonance for a particular term or mode in the series expres-
sion for the induced angle of attack. If the blade-angle distribution
for the blade is so designed that the airfoils have, with respect to
zero 1lift, an angle-of-attack distribution the same as (or differing
only by a constant factor from) the induced angle of attack of the
resonant mode, then, according to the theory, the propeller could
support no load. The propeller would need to be constructed with some
accuracy in the blade-angle distribution but the other design particu-
lars would be arbitrary. In particular, the airfoils might just as
well be symmetric.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 7, 1953.
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TABLE I.- COEFFICIENTS hy),
n
i 2 5 4 5 6
1 0.010442 | 0.008512 | 0.0057T74 | 0.003776 | 0.002412 | 0.001485
2 -.000300 | .00%183 | .003381 | .003089
3 -.005847 | -.00083%0
TABLE II.- TABULATION OF -ilp
il 2 3 L 5 6
1 3.0966 | 7.8164 | 12.1428 | 16.4777 | 20.8245 | 25.1683
2 6.1113 | 11.4201 | 15.9732 | 20.4635
b) 8.2499 | 14.1980
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TABLE III.- ESSENTIAL PART OF THE INDUCED-AXIAL-VELOCITY CALCULATION ank(p)

n
1 2 3 I 5 6
k
PI=l0:H
il ~0.001702 -0.000066 -0.000003 I T S e
2 .000009 . =0.000006 | mmmmmemmem | mmmmmeeee
3 0.000017 | = ==mm-m-m--
% -.001702 -.000066 000006 - .000006 .000017 | = —--emmm--
k=1
p=0.4
ak ~0.002949 -0.000198 -0.000014 ojoloeoionly | [EEE e e I e
2 .000043 -.000049 -0.000007 -0.000001
3 .000222 00000k
zko:_ -.002949 -.000198 .000029 -.000050 .000215 .000003
k=1
p=0.5
1 -0.004468 -0.000457 -0.000051 -0.000006 -0.000001 | = —mmm—————
2 .000134 -.000229 -.000051 -0.000010
3 .001384 .000037
¥y
-.004468 -.000457 000083 -.000235 .001332 .000027
k=1
p=0.6
i ~0.006192 -0.000881L | -0.000138 -0.000023 -0.000004 -0.000001
2 .000308 -.000735 -.000226 -.000062
5) .005122 .000194
% -.006192 -.000881L .000170 ~-.000758 .004892 .000131
k=1
p=0.7
1l -0.008036 -0.001499 -0.000307 -0.000066 -0.000014 -0.000003
2 .000560 -.001756 -.000711 -.000257
3 .012522 .000630
% -.008036 -.001499 .000253 -.001822 .011797 .000370
k=1
p=0.8
1 ~0.0099k4 -0.002311 -0.000593 -0.000160 -0.000044 -0.000012
2 .000838 -.003296 -.001670 -.000756
5) -020977 .001352
g‘ -.009944 -.002311 .000245 -.003456 .019263 000584
k=1
p =0.9
1 -0.011811 -0.003298 -0.001017 -0.000330 -0.000109 -0.000036
2 .001040 -.004963 -.003040 -.001662
3 .023273 .001907
i -.011811 -.003%298 .000023 -.005293 .02012k4 .000209

i
o
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TABLE IV.- ESSENTIAL PART OF THE INDUCED-TANGENTIAL-VELOCITY CALCULATION tnx(e)

L 2 3 4 5 6
p=0.3
a1 0.001643 0.00008% 0.000004 -
2 -.000005 0.000004
3 -0.000009 | =—e———m-
kg
> .001643 -00008k -.000001 .00000k -.000009 | mmmmmee-
=1
p=0.4
1 0.002846 0.000252 0.000021 0.000002
2 -.000026 .000035 0.000006 0.000001
3 -.000122 -.000002
ko
g .002846 .000252 -.000005 .000037 -.000116 -.000001
=1
P =0.5
1 0.004312 0.000581 0.000074 0.000009 0.000001 [ ==mmmee-
2 -.000079 .000167 .000042 0.000009
5) -.000761 -.000024
éi- .004312 .000581 -.000005 .000176 -.000718 -.000015
=1
p =0.6
1 0.005976 0.001121 0.000198 0.000035 0.000006 0.000001
2 -.000181 .000535 .000188 .000057
5) -.002818 -.000123
% .005976 .001121 .000017 .000570 -.002624 -.000065
k=1
p=0.7
18 0.007756 0.001909 0.000442 0.000102 0.000023 0.000005
2 -.000330 .001280 .000591 .000237
3 -.006889 -.0003%98
% .007756 .001909 .000112 .001382 -.006275 -.000156
k=1
p=0.8
1 0.009598 0.002942 0.000853 0.000247 0.000071 0.000020
2 ~.000493 .002403 .001389 .000697
3 -.011541 -.000855
% .009598 .002942 .000360 .002650 -.010081L -.00138
k=1
p=0.9
it 0.011400 0.004198 0.001464 0.000511 0.000177 0.000060
2 -.000612 .003618 .002529 .0015%2
3 -.012804 -.001206
)
>0 .011400 .004198 .000852 .004129 -.010098 .000386
k=1
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TABLE V.- ESSENTIAL PART OF THE INDUCED-ANGLE-OF-ATTACK CALCULATION oy (p)

g e 1 2 3 4 5 5
p=0.3
1 0.004557 0.000239 0.000012 |  meeeeee-
2 -.000012 0.000009
3
% -004557 .000239 0 000009 -.000021 | eeeeeeee
k=1
-004557 004796 004796 004805 .00L 784 0.004784
n=1 k=1
p = 0.4
1 0.005116 0.000474 0.000041 0.00000% [ emeeeeeem |
2 -.000041 .000058 .000011 0.000002
3 -.000185 -.000002
i 005116 000474 [ .000062 -.000174 0
.005116 005590 .005590 005652 005478 .005478
n=1 k=1
p=0.5
1 0.005112 0.000747 0.000098 0.000011 0.000002 | —eemmeee
2 -.000072 .000176 000046 0.000010
3 -.000664 -.000024
? .005112 000747 -000026 .000187 -.000615 -.000014
=1
.005112 005859 .005885 .006072 005456 005442
n=1 k=1
p=0.6
1 0.004592 0.000985 0.000181 0.000033 0.000006 0.000001
2 - .000086 000331 000131 000043
3 -.001194 - .000065
?: .00k592 000985 000095 000364 -.001057 -.000021
=1
i; 004592 005577 005672 006036 -004979 004958
n=1 k=1
p=0.7
1 0.003661 0.001126 0.000280 0.000067 0.000015 0.000004
2 - .000054 000403 000233 .000106
3 -.000722 ~.000085
% 003651 001126 000226 000470 -.000k7h -000025
k=1
2 i .003661 004787 .005013 .005483 .005009 .005034
fi=l f=
p=0.8
3 0.002465 0.001115 0.000361 0.000111 0.000033 0.000014
2 .000033 000224 000244 .000162
3 001436 .000008
% 002465 .001115 00039k -000335 001713 000184
k=1
n
002465 003580 -00397h4 004309 006022 .006206
n=1 k=1
P =0.9
ik 0.001125 0.000937 0.000393 0.000150 0.000055 0.000019
2 .000141 -.0002k7 000041 .000114
3 .003712 000208
g 001125 -000937 000534 -.000097 -003808 -000341
k=1
001125 .002062 .002596 002499 006307 006648
n=1 k=1

~_NACA —
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Figure 3.- Schematic representation of the Bessel functions JnB(y) in

relation to the functions

F(p) and hn(p)-
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Figure 7.- Induced velocities at the blade.
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