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AND SUPERSONI C TRAILING EDGES 

By Frank S . Malvestuto) Jr. 

SUMMARY 

Theoretical expressions have been derived by means of linearized 
supersonic- flow theory for the lateral force due to sideslip CY~ ' the 

yawing moment due to sideslip Cn~' and the rolling moment due to side­

slip CL~ for tail arrangements consisting of a vertical triangular 

surface attached to a symmetrical triangular horizontal surface. The 
results are valid, in general, for a range of Mach number for which the 
leading edges of the tail surfaces are swept behind the Mach cone from 
the apex of the arrangement and the trailing edges of the tail surfaces 
are ahead of the Mach lines from the tips. 

A series of design charts are presented which permit rapid estimates 
to be made of the force and moment derivatives. A discussion is also 
included on the application of the expressions for the pressure distri ­
butions determined herein t o other plan-form shapes of the tail surfaces 
and possible wing--vertical- tail arrangements. A solution to a two­
dimensional "mixed type" boundary- value problem which is needed in the 
present analysis but which may also be of interest in other "conical 
flow" analyses is presented in an appendix. 

INTRODUCTION 

The prediction of the stability of complete airplane and missile 
configurations re~uires a knowledge of the aerodynamic forces and moments 
acting on all the component surfaces of the airframe and the rates of 
change of these forces and moments with the attitude, velocity, and 
acceleration of the associated surfaces. The rates of change of the 
aerodynamic forces and moments when linearly related to the attitudes) 
velOCities, and accelerations are commonly called stability der ivatives . 
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2 NACA TN 3071 

Theoretical estimates of stability derivatives for a variety of 
wing plan forms with f lat-plate cross sections are now availab le . Infor­
mat ion, however, relating to the stability derivatives contributed by 
various nonplanar tail systems is still meager . Most of t he available 
derivatives are for configurations composed of low-aspect-ratio surfaces 
(refs. 1 to 3) . In reference 4, however, sideslip derivatives have been 
presented for tail arrangements for which all the plan-form edges are 
supersonic . In r eferences 1 and 5 approximate estimates of the darnping­
in-roll derivatives for cr uciform arrangements wi th high- aspect- ratio 
surfaces have also been r eported . 

The purpose of t he present paper is to provide theoretical estimates 
of the lateral force, the rolling moment , and the yawing moment produced 
by the s i des lipping motion of a tail arrangement consisting of a triangu­
lar vertical surface attached to a symmetr ical triangular hor izontal sur­
face . The l eading edges of the tail s urfaces are subsonic ; the trailing 
edges, supersonic. Consideration has also been given to the application 
of the results presented herein to other plan-form shapes of the tail 
surfaces and poss ible wing--vertical-tail combinations. 

The analysis is performed within the framework of linearized 
s upersonic - flow theory . I nasmuch as the linearized perturbated flow 
wi t hin the Mach cone from the apex of the tail is conical (the arrange­
ment i s a conical body) , the analys i s reduces to the soluti on of a sin­
gular integral equation associated with a two - dimensional "mixed type" 
boundary- value problem . The solution is obtained by an application of 
the general methods for eval uat i ng these integral equations that have 
been propounded by Muskhelishvili in r eference 6. 

SYMBOLS 

The or ientation of the tail arrangement with respect to the X, Y, 
and Z body axes and the positive directions of the velocities, forces, 
and moments ar e indicated in f i gure 1 . 

X, Y, Z 

Yl' zl 

v T] + 

z x + 

¢(X,Y,Z) 

u, v , w 

is 

iy 

body- axes coordinates 

r ectangular coordinates in plane parallel to YZ-plane 

linearized velocity-potential function 

X-, Y- , and Z- components of perturbation velocity, respec ­
tively (v and w are also def ined in the v-plane as 
being parallel to t he Tj - and s-axes, respect ively) 

. . 
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z' = x' + i y ' 

uc ' vc ' Wc 

u*, v*, w* 

V 

M 

B ~ M2 - 1 

P 

q 

6p 

4?/ q 

a 

~ 

cr 

bH/ 2 

h 

bV 

d 

xh 

xd 

e l , e2 

SE 

Sv 

complex velocities , Uc = u + iu*, Vc = v + iv*, 

and w = w + iw* c 

harmonic conjugates of the u- , v-, and w-velocities, 
respectively 

free - stream velocity 

free - stream Mach number 

free -s tream density 

free - stream dynamic pressure , 1 V2 - p 
2 

pressure difference across surface 

pressure coefficient 

angle of attack, radians 

angle of sideslip, radians 

common root chord of vertical and horizontal tail 

semispan of horizontal tail 

transformed semispan of horizontal tail in v-plane 

span of vertical tail 

transformed span of vertical tail in v-plane 

transformed semispan of horizontal tail in z-plane 

transformed span of vertical tail in z-plane 

arbitrary real constants 

area of horizontal tail 

area of vertical tail 

3 
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angle i n plane of horizontal tail between a ray through 
origin and X- axis 

Yo angle between leading edge of horizontal tail and X- axis 

t tan y 

to := tan Yo 

E 

r := tan E 

ro := tan Eo 

cn(u / k) 

dn( u / k) 

sn(u/ k) 

:= AH 

4 

angle in plane of vertical tail between a ray through 
origin and X- axis 

angle between leading edge of vertical tail and X- axis 

AV 

2 

aspect ratio of horizontal tail) 

aspect ratio of vertical tail) 
b 2 

V 

Sv 

4 tan y o 

2 tan EO 

Jacobian elliptic functions of argument u and 
modulus k 

complete elliptic integrals of second kind with moduli k 

and ~ l - k2 ) respectively 
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K, K' 

5 

complete elliptic integrals of first kind with moduli k 

and ~l - k2 , respectively 

G t:H K'(k) + E'~k~ 2k 

y lateral force) see figure 1 

L' rolling moment, see figure 1 

N yawing moment, see figure 1 

Cy lateral-force coefficient, 
y 

rolling-moment coefficient, 
L' 

1 V2b S 
~ VV 

N 
yaWing-moment coefficient, 

Subscripts : 

H horizontal tail 

v vertical tail 
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ANALYS I S 

Gener al Considerations 

The ob ject of the ensuing analys is is to determine the aerodynamic 
pressures and corresponding forces and moments acting on the surfaces 
of the tail ar rangement sketched in figure 1 that are produced by the 
sides lipping mot ion of the tail . The leadi ng edges of the horizont al 
and vertical surfaces are subsonic (within the Mach cone from the apex 
of the system) and the trailing edges are supersonic and at zero angle 
of sweep . I t is stipulated that the tail surfaces are of zero camber 
and vanishingly small thickness . I t is apparent that this tail con­
figuration in sideslip attitude is equivalent (by rotation) to a right 
tr iangular wing at an angle of attack with a tr iangular end plate or 
f in at zero geometriC angle of attack attached to its streamwise edge . 
Such an arrangement is sketched i n figure 2 ) and f or convenience this 
or ientation of the tail arrangement i s considered in t he following 
analysis . With the orientation shown i n figure 2) the surface approxi­
mately in the horizontal plane and at a constant geometric angle of attack 
is tentatively called the "wing" and the surface in the vertical plane 
and at zero geometric angle of attack i s tentatively called the "fin . " 

The analysis is based on linearized three- dimensional supersonic ­
flow theory . Spec ifica lly) solutions of the linearized three - dimensional 
potentia l equation 

o ( 1) 

are sought that sat i sfy certa in boundary condi tions assoc i ated with the 
wing- fin arrangement . (These boundary condit i ons are discussed subse ­
quently . ) I nstead of equati on (1) , consider the following group of 
equati ons : 

(2a) 

B2v xx: - vyy - vZZ o (2b ) 

(2c ) 
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which define the component- disturbance - velocity fields associ~ted with 
the velocity potential of equation (1) and are more appropriate for the 
ensuing analysis. Once a proper solution to equation (1) or (2) has 
been obtained, the expressions for the lifting pressure may be readily 
determined from the linearized momentum equation 

4> 2 d 
-- = - - t::.¢(X,Y,Z) 
1 V2 V dX 
~ 

or 

4> 2 
-- == - t:,u(X, Y, Z) 
1 V2 V 
~ 

where t::.¢ is the velocity-potential difference across the surface 
and 6u is the corresponding longitudinal velocity difference or 
pressure - velocity difference across the surface. Equations (3) are 
consistent with the linearized theory only if the magnitudes of the 
perturbation velocities are equal across the lifting surface . When 
the magnitudes of the perturbation velocities are not equal across the 
lifting surface, equations (3) should contain differences in the squares 
of the disturbance velocities v and w. The squared terms lead to 
derivatives which are linear functions of ~; therefore, these terms 
vanish because our primary interest is the evaluation of the rate of 
change of the aerodynamic forces and moments as ~ approaches zero. 

Because of the conical geometry of the wing-fin arrangement, the 
following analysis to determine the required solution for the pressure 
employs the concepts of conical- flow theory. This concept implies that 
all disturbance- velocity quantities such as u, v, and w remain con­
stant along rays emanating from the origin (apex of arrangement) and 
hence become functions of only two independent variables that specify 
the d irection of the ray. 

Busemann (ref . 7) initially showed that the assumption of conical 
flow implies mathematically that the disturbance - vel ocity fie l d within 
the Mach cone of the system is governed by an elliptic differential 
equation, and by a transformation of coordinates this equation reduces 
to the two- dimensional Laplace equation with respect to either the u, 
v, or w perturbation velOCity . The problem of obtaining a solution 
to equation ( 1 ) or (2) therefore reduces to one of obtaining a solution 
to Laplace's differential equation in two dimens ions subject to certain 
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boundary conditions . These considerations lead naturally to a mode of 
solution using complex- function methods ( refs. 8 to 10) and associated 
integral- equation concepts . The followi ng sections present an analysis 
and solution of the wing- fin problem based on these procedures. 

Prescribed Flow Conditions 

A sketch of the wing- fin arrangement showing the body axes used in 
the analysis is presented in figure 3. Denoted also in this figure are 
the prescribed values of the disturbance velocities u, v, and wand 
their spatial derivatives in the plane of the wing and plane of the fin. 
These prescribed values of the velocities and the ir derivatives are 
determined from a knowledge of the boundary conditions, the symmetry 
conditions, and the equations of irrotationality . 

The boundary conditions are as follows: 

On the Mach cone surface, 

u = v = w = 0 

on the wing surface, 

and on the fin surface, 

From symmetry considerations (see ref. 10) it can be shown that in 
the plane of the wing the antisymmetric u- and v-velocities are zero off 
the wing. I n the plane of the fin, however, the tangential velocit ies 
are not zero off the fin because the arrangement lacks symmetry with 
respect to the XZ- plane; i n fact ) these velocities must be continuous 
across this region. 

The use in the equations of irrotationality of the given boundary 
values of the velocities, together with values of the velocities deter­
mined from symmetry conditions, produces the additional prescribed 
values of the velocity derivatives denoted in figure 3 and needed in 
the analysis. It is also stipulated that, as the leading edges are 

, -

/ ------
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approached, the disturbance velocities become locally i nfinite as the 
-1/2 power; that is, the flow around the subsonic leading edges behaves 
in the same manner as the flow around the leading edges of thin flat 
plates i n an incompressible flow ( see refs . 9 and 10) . This stipula­
tion on the type of edge singularity can be used in order to obtai n 
a unique solution to the integral equation of the boundary-value problem 
that is solved subsequently (s ee appendix A). 

Transformation of Supersonic Conical Flow to 

Two-Dimensional Incompressible Flow 

The transformation of the supersonic conical-flow equation in u, 
v, or w to the two-dimensional Laplace equation was initially conceived 
by Busemann and expanded in concept and usefulness by many researchers, 
in particular, Lagerstrom, Germain, and Multhopp . Excellent discussions 
of the entire subject are given in the reyorts by these investigators 
(see refs. 10, 8, and 11, respectively). Only relations pertinent to the 
present analysis are therefore considered herein and the reader is referred 
to the references for proofs and detailed discussions of the relations to 
be presented. 

Figure 4 is a sketch of an arbitrary crossflow plane in the XYZ- space. 
The fact that the body is conical and wholly contained within the Mach 
cone from the apex of the system demands that the u, v, and w dis ­
turbance velocities are homogeneous of zero order and are uniquely defined 
in any crossflow plane; that is, the U- , v-, and w- velocities have the 
functional form 

u uf£ '!:.) 
\X'X 

w = w(~ '!:.) x'x 

Now if the X-, Y-, and Z-coordinates are transformed in the following 
manner: 

Yl = B! 
X 

zl = B~ 
X 

( 4) 
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then equations ( 2) defining the u- , v-, and w-velocities are transformed 
into elliptic differential equations in the two variables Yl and zl' 

Application of the nonconformal transformation ( see ref. 11) 

v 1') + i~ = 

transforms the u-, v - , and w-velocities from t he ylzl-plane to the 

v-plane in which each of the disturbance vel ocities satisfies Laplace's 
equation; that is, in the v-plane, 

<Ju 0 

~ = 0 

where <J is the Laplacian operator (02 
+ 02

). The effect of the 
01')2 os2 

trans formation expressed by equation (5) is to de form the doubly con­
nected annular region between the Mach cone and the body in the ylzl- plane 

(see fig. 4) into a doubly connected open- slit r egion i n the v-plane (see 
fig . 5) . The continuous cut (1,00,-1) in the v- plane corresponds to the 
Mach circle in the ylzl- plane . I f the v- plane is considered a s compos ed 

of two sheets, then the region external to the Mach circle in the 
Ylzl-plane transforms i nto the l ower sheet of the v-surface and is con-

nected to the upper sheet through the branch cut (1,00, -1), that is, the 
transformed Mach circle . The transformation does not distort the hori­
zontal and vertical axes , and hence the shape of the wing- fin arrange ­
ment i s pr eserved ( except for s ca l e ) in the v- plane . 

I t should be pointed out that , since the wing-fin contour is trans­
formed to one sheet (the upper sheet) of the double -sheeted v-surface, 
the correspondence between the velocities in the crossflow plane of the 
original XYZ-system within the Mach circle and the upper sheet of the 
v-surface is 1 : 1 . Furthermore , since the transformation is conformal in 
the neighborhood of the 1')- and s - axes, the prescribed values of the 

. . 
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velocities and their spatial derivatives which are constant along the 
wing plane and fin plane in the original space remain constant along 
the ~- and t-axes in the v-plane . 

If the complex veloci ties Uc = u + iU*, Vc = v + iv*, and 

Wc = w + iw* are considered in the v-plane, then from the analysis of 
Hayes and Multhopp (refs. 9 and 11) the ensuing compatability relations 
(which take the place of the e~uations of continuity and irrotationality) 
provide the necessary relat ions in the v-plane for attempted sol utions: 

-iB 

B - du v c 
(6a) 

(6b ) 

In terms of t he real parts of uc ' vc ' and wc' the re l ations of e~ua­

tions (6) are as follows (see ref . 11): 

For t = 0 and - 1 < ~ ~ 1, 

B Clu Clv 
= - ~ -

Cl ~ Cl ~ 

B Clu ~ 2lw 
= 

Cl ~ Clt ~l - ~2 

( 7) 

B Clu :J 2lw 
Cl ~ ~ 1 - ~2 Clt 

av 1 2lw -
a ~ ~ l _ ~2 a t 
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and for 11 0 and S f 0, 

oW 
- B ~ l + S2 oU - -

Os s Os 

oV -B lOu 
Os s 011 

( 8) 

ov B 1 AU 
all s Os 

By using these relations , general solutions for the u, v, and w dis­
turbance velocities can be determined, provided a solution exists for 
anyone of the ve l ocities. 

Evaluation of the u Perturbation Velocity 

(Pres sure Velocity ) in the v-Plane 

The evaluation of the u perturbation velocity in the v-plane 
takes on its simplest form when the complex sidewash velocity Vc along 

the wing- fin contour is initially determined and the u-velocity is then 
derived from the sidewash velocity by using equations (6) or (7). The 
expression for the sidewash velocity along the contour has been evaluated 
i n appendix A by obtaini ng a soluti on to the integral equation defining 
the sidewash in terms of its prescribed boundary values . 

I n appendix A the expression for Vc is initially derived in a 

z-plane which is obtained conformally from the v-plane by the following 
transformation: 

z = x + iy = + 

where the plus sign is valid for x > 0 and the minus sign for x < o. 
Figure 6 is a sketch of the z -plane and shows that the wing- fin contour 
of the v-plane becomes a slot along the real axis (the x-axis) of the 
z-plane . The details of the transformation from the v- to the z-plane 
are given in appendix A. In the z-plane the expressions for the u-, 
v-, and w- velocities can be expressed much more compactly and simply 

. . 
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than in the v-plane and for this reason many of the following solutions 
for the velocities are given in this plane . The expressi ons for the 
real and imaginary parts of the complex sidewash velocity along the 
transformed contour in the z-plane as derived in appendix A are as 
follows : 

v(x,o+) 

v*(x,o+) == (e + e2\\~ 
\1 xn~ 

where el and e2 are arbitrary real constants. 

( 10) 

The u- velocity is immediately determined from the following rela­
tions in the v-plane that can be determined from equations (6): 

B du == dv 
( - 1 - T] -

dT] dT] 

B du == -s ov* 
dS dS 

I n the z -plane these relations become 

B ou(x,O+) 

ox 

B 
dU(X,o+) 

Ox 

B 
ou(x, o+) 

ox 

.1 2 .1 2 2 ov(x,O+) = - ~ l + h VX - xh 
Ox 

- ~l + h2 ~Xh2 _ 
2 ov*(x 0+) 

x ' 
dx 

= Vl + h2 YXh2 - x2 ov*(x, O+) 

ox 

~ T] < l ' = ' s 0) (11) 

(T] == o · , S ~ 0) (12) 

(- xh ? x ? 0) 
(14) 

(0 ~ x~ Xh) 

J 
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Equation (13) r e l at es the u- and v- ve locities along the transformed 
wing contour i n t he z- pl ane ; equati on (14) relates the v*- and 
u-ve l ocit i es along the transformed fin contour i n the z- plane. 
I ntegration of equations (13) and (14) , with equations (9) and (10) 
for v and v* taken into account, produces the following solution 
for the u- velocity : 

u (x,O+) - xhlJ~_ 
x J ~xd - x 

The relat i onship between el and e2 is easily determined by using 

equation (15) in the following manner : In the v-plane u(O-,O+) is 
known to be zero from the physical boundary conditions . Hence in the 
z-plane u (x,O+) is zero at x = -~. I n equation (15) for the 

u-velocity, if x i s set equal to -xh and u(x,o+) i s set equal 

to zero, the following relation between and is obtained: 

(16) 

The same relation between el and e2 is also obtained from the con-

dition that the circulation along a 
contour must be zero ( see r ef. 11). 

of e2 , into equation (15 ) y ields 

closed path enclosing the wing- fin 
The substitution of el , in terms 
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u (x,O+) = ~...l..1_+_h_2 e2 (1 + Xh)1 ~ 
B '\ x ~ xd - x 

The constant e2 has been evaluated in appendix B and may be simply 

expressed as 

where 

k 

15 

In the eQuation for G, K'( k) is the complete elliptic integral of the 

first kind with modulus ~l - k2 , and E'(k) is the complete elliptic 

integral of the second kind with modulus ~ l - k2 . The parameter k 
necessary for the determination of G may be expressed in terms of the 
geometric characteristics of the tail system ( see appendix B) . These 
r elationships are illustrated in figure 7. 

The u -velocity along the contour in the z- plane is now uniQuely 
given as 

u(x,o+) (18) 

The expressions for the u- velocity along the wing and fin contours 
in the v-plane (see fig . 5) are easily obtained from eQuation (18) through 
the use of the transformation 
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z x + iy = t 

where) as pr eviously stated) the plus sign is valid for x > 0 and the 
minus sign for x < O. In the v- plane the expressions for the u-velocity 
a l ong the contours become : 

Along the wing (0 ~ ~ ~ d)) 

along the upper half of the fin (0 ~ ~ ~ h)) 

+ u( ~) 0-) = Va. (1 + h) 
BG \ - ~ h2 _ ~2 

and along the lower half of the fin (-h ~ ~ ~ 0)) 

(20) 

(21) 

The equation for u on the l ower half of the fin (eq. (22)) has been 
obtained from equation ( 21 ) for the upper half of the fin by applying 
the known condition of antisymmetry of the u- velocity with respect to 
the ~-axis . 

The expressions for the pressure distributions for the wing and 
fin follow immediately from equations (20) to (22) through the use of 
the following linearized pressure -velocity relation: 

p = -pVu 
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where p represents the disturbance pressure. The use of equation (23) 
yields the following expressions for the pressure coefficient for the 
wing and the fin: 

On the wing (0 ~ ~ ~ d)J 

on the upper half of the fin (0 ~ s ~ h)J 

-- == 
1 ,,2 -Pv 
2 

(24) 
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and on the lower half of the fin (- h 2 S 2 0), 

4> " : ~l h ,2) h - ~h2 _ s2 

~pV2 ~ h2 _ ~d2 + h2 + ~ h2 _ s2 
2 

-'2l ~+ 
h 

,~ 
h + ~ h2 _ s2 

Vh2 - Vd2 + h2 _ ~h2 
( 26) 

Evaluation of Pressure Relations for the Vertical- and 

Hor izontal- Tail Combi nation in the Original Space 

The results of the preceding analysis (in particular, eqs. (24) 
to (26)) allow the evaluat i on of the pressure coefficients for the wing­
fin arrangement in the or iginal XYZ-space . It is convenient, however, 
at this point to return to the orientation of the arrangement that is 
shown in figure 1 so that the wing now becomes the vertical tail and 
the fin the hor i zontal tail . It should be recalled that for convenience 
in the preceding analysis the tail arrangement of figure 1 was rotated 
to the position shown in figure 2 and the vertical tail ( the lifting 
surface ) was tentatively called the wing and the horizontal tail ( the 
end plate ) was tent at i vely called the fin . With this point in mind the 
following expr essions for the pressure coefficient apply to the vertical­
and horizontal- tail combination orientated as shown in figure 1 and obey 
the sign conventions indicated therein . The expressions for the pres ­
sure coeffi cients in the original XYZ- space are obtained from equa-
tions (24), ( 25) , and ( 26 ) by the following transformation of the T],S 
variables ( fig . 5 ) to the ~,~ variables by using equations (4) and (5) : 

In the plane of the vertical tail (or wing) , 

1] B ~ = B tan E = Br 
X 

(27) 

d Bbv B tan Bro 
BAV 

::= EO ::= --
cr 2 

(28) 

/ 



where r is the slope of a r ay from the apex) by is the span) EO is the semiapex angle) 

and AV is the aspect ratio of the vertical tail . 

I n the plane of the horizontal tail (or fin)) 

B~ 
S X B tan I' Bt 

~ 1 _ B2 (~)2 ~l - B2tan21' ~l - B2t 2 

bR AH 
B - B t an I' Bto 2c;r 

B -
h = 0 4 

== = 

1 -B\bH r ~l - B2tan21'0 ~l - B2t o
2 ~ A 2 1 - B2 l~ 

2cr 

(29) 

( 30) 

where t i s the slope of a ray from the apex) bH/ 2 is the semispan) 1'0 is the semivertex 

angle ) ~nd AH is t he Dspect ratio of the horizont al t~il . The substitution of equations (27 ) 

to (30) into the pressure - coefficient equations (24 ) t o (26 ) result s in the f ollowing rel~tions 
for the pressure coefficient for t he or i gi nal tail ~rr~ngement i n t he XYZ- space of f i gure 1 : 

For the vertical tail) 

2 2 
Bt ~ B to o + B2r2 + 

2 2 ~l - B2t 2 1 - B to 

(1~2) =~(l + mo JI C 

lB2r2 + 1 
B2t o

2 B2t 2 2 2 B2t o
2 

B
2

t 0
2

\IB2r2 + ~ 2 ~ ~B ro + 1 _ B2t 2 B2t 2 
2

PV 
V ~l 

0 
1 - B to 0 

(31) 

~ 
~ 
\..N o 
-J 
f-' 

f-' 
\0 

-- -1 
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for the l eft ha lf of t he hor i zontal tail ) 

(~)H 
2~ 

BG 

Bt o 

Jl _ B2t02 \! B
2

t 0
2 

11 - B2t 2 o 

1 - 2 2 

( 

Bto 

2 B to ~l - B2to-~t02 

B2t 2 

B2t 2 

Bto II B
2

t 0
2 

B2t 2 

'~=1=-=B::;:2:=t=0:;;-2 + ~ 1 _ B2t
o 

2 1 _ B2t 2 

IIIB2r 2 B
2

t 2 o + __ 0 

1 _ B2t 2 
o 

_ \/ B
2

t 0
2 

1 _ B2t 2 o 

B2t 2 

1 _ B2t 2 

Bto ,/ B2t 0
2 B2t 2 

~ l _ B2t
0

2 - yl - B2t 0
2 - 1 - B2t 2 

\ ro + + - ---JB2 2 B2t0
2 ~ B

2
t 0

2 
B

2
t

2 

1 - B2t 0
2 1 _ B2t 0

2 1 _ B2t 2 

and for the right half of the horizontal tail) 

(~:2t 
2~ 

BG 

Bto 

~ 1 _ B2t -2/ B
2

t 2 o \ ___ 0 

1 _ B2t 2 o 

Bto 

B2t 2 0 

Bt B2t 2 B2t2 
o + \ 0 

~ 1 _ B2 t 0
2 1 _ B2t 0

2 1 _ B2t 2 

If B
2

t 2 
B2t 0

2 B2t 2 
B2ro 2 + 0 _ ~ 

1 - B2t 0
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The parameter G appearing in these expressions may be determined from 

figure 8 wherein the variation of with BAV is B2Ai ~ 16 _ 1 G 

4 B2A 2 
H 

presented for different values of BAH ' In order to facilitate esti-

B2AV2 J 16 - 1 with 

4 B2AH2 
mations of G from figure 8, the variation of 

BAV for various val ues of BAR is presented in figure 9. 

An idea of the spanwise variation in pressure and resultant pressure 
for a typical vertical- and horizontal - t a il combination may be obtained 
from figure 10. These results were obtained by use of equations (31) 
to (33) . 

I t is of interest to know the expressions for the pressure coeffi­
cients for limiting cases of the tail arrangement obtained, for example, 
by setting the horizontal- tail span equal to zero or l etting all the 
leading edges coincide wi th the Mach cone tra ces in the plane of the 
tail surfaces (sonic leading edges) . Such expressions are obtained from 
the general expressions - equations (31) to (33) - for the pressure coef­
fiCients, provided the l imiting values of t he parameter G are avail­
able . The values of G for a number of limiting cases of the tail 
arrangement have been evaluated . These values of G, together with the 
corresponding expressions for t he pressure coeffiCients, are presented 
in table I . It should be noted that results presented in table I for 
various limiting arrangements are identical to previously published 
results (refs. 4, 12, 13, and 14) that are available for some of these 
limiting arrangements. 

Evaluation of Forces and Moments 

The resultant aerodynamic forces and moments acting on the tail 
arrangement in a sideslip attitude are easily obtained by use of the 
pressure- coefficient expressions given by equations (31) to (33). The 
expressions for the resultant forces and moments to be deter mined obey 
the standard sign convent i on indicated in figure 1 . 
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Lateral- force derivative Cy~ .- For the tail arrangement in a posi­

tive sideslip attitude} the later al force is defined as 

y 

where (Dp) is the pr essure coefficient for the vertical tai l and Sv 
~ v 

represents the vertical- tail area . The minus sign is prefixed to the 
integral so that the later al force obeys the s ign convention indicated 
in figure 1. I t is clear that the horizontal tail gives a null contri­
bution to the lateral force . The lateral- force derivative is defined as 

The substitution into equation (35 ) of the expression for (~)v obtained 

from equation (31) yields ) after int egration} the following expression 
for Cy~ : 

As stated previously} estimates of the factor 
figures 8 and 9. The variation of BCy with 

(3 
of BAH is presented in figure 11 . 

G can be obtained from 
BAV for various values 

_J 
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Rolling- moment derivative CL§' - The rolling moment produced by 

a positive sideslip attitude of the tail is defined as 

23 

where SH represents the horizontal- tail area . Note that the horizontal 
tail contributes a positive moment to the total rolling moment . The 
rolling-moment derivative is defined as 

Substituting into e~uation ( 37) the expressions for (~)v and (~)H 

obtained from e~uations (31), (32), and (33) and then performing the 
necessary integrations yields 
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and 

f
B2Al (1 - B2Al) + B2Ay2 J 

-2 2 ~ 16 \ 4 4 _ 1 (1 + BAH\ ~ _ 
BAH 4 / ~ 
4 

B2A~ (1 _ B2Ay2\ + B2AY~ 
16 4) 4 j 

~1 _ ~H ~ B:;l ~ _ B2:i) + B2:i (1 + ~H) + 3:~ 
~-----=~--~------------------------~ x 

Var iations of and with BAV and are presented 

in figures 12 and 13, respectively _ 

_ ___ ----.J 
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Yawing-moment derivative Cn§. - The yawing moment about an axis 

through the apex of the arrangement is given by 

( the horizontal tail offers no contribution to the yawing moment) ; 
N may also be written as 

N xY 

25 

(40) 

where x is the x-coordinate of the point at which Y acts (often 
referred to as the center of pressure). An examination of the equation 

for (~) (eq. (31)) shows that it is conical in form; hence, the qv 
point X will be for a triangular vertical tail. This statement 

may be expressed in equation form as 

dx dz 

x = ( 41) 

The yawing-moment derivative may now be simply expressed as follows: 

2 
- Cr 4 Cn13 
3 (42) = - - Cy = 

- 3Av CyI3 bV f3 

or, by utilizing equation (36), 

16. ( 3
BA

H 
B2A 2 B2AH2 ) V 

(43) Cnf3 + + 
3B2AV2G ~16 - B2AIf 4 16 - B2A 2 

H 
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For convenience , the variation of Cn~ with BAV for a range of values 

of BAH is presented in figure 14 . I n order to determine Cn~ for some 

other position of its moment axis, the following transfer formul a is 
needed: 

- Cy 
(

7, + x ~ 
bV ~ 

(44) 

where 7, is the distance parallel to the x-axis between the new position 
of the moment axis and the apex of the tail . Considering equation (41), 
equation (44) may also be written as 

)~ + ~)Cy 
\ bV 3AV ~ 

DISCUSSI ON OF RESULTS 

In the foregoing section general expressions for the sideslip der i va­
tives Cy~ (eq. (36)), C 7, ~ ( eqs . (37) to (39)), and Cn~ (eq. (43)) 

were derived . It is of interest to present results for some limiting 
cases of these expressions . Table II contains analytical expressions 
for these derivatives for the same l imiting cases of the tai l arrange ­
ment that were considered for the pressure coefficients presented in 
table I. For the limiting case BAv = 2, that is, for a vertical 
tail with a sonic leading edge ( the Mach line coincides with the leading 
edge ), the variation of BCy~ , BC7,~, and Cn~ with BAH is presented 

in figure 15 . In a similar manner the variation of these derivatives 
with BAV for BAH = 4 (the leading edge s of the horizont al tail are sonic) 

is presented in figure 16 . From figure 14 the result that the yawing­
moment- coefficient derivative of the vertical tail Cn~ is finite for 

BAV = 0 is at first sight surprising. One would expect a l l derivatives 

to vanish when the disturbance surface (the vertical tail) vanished; 
however, it is to be recalled that the derivative Cn~ is made non-

dimensional with respect to SVbV and, although the yawing moment N 

vanishes as SV---+ 0 ) the ratio N/ Syby which is in essence the coeffi­

cient remains finite s i nce by ~O as Sv --7 0 and SVbV gives an 
infinitesimal of the same order as N when Sv ~ O. 
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An indication of the variation of with Mach 

number for fixed aspect ratios of the vertical and horizontal tails can 
be obtained from figures 17, 18, and 19, respectively. The results pre­
sented in these figures for supersonic leading edges (the Mach lines 
behind the leading edges) were obtained from reference 4. 

Although the results of the analysis presented herein are for a 
tail arrangement consisting of triangular horizontal and vertical sur­
faces, the results could be easily extended so as to include tails with 
sweptback or swept forward trailing edges but of zero taper (as sketched 
in fig. 20), provided the angle of sweep of the trailing edges is less 
than the sweep angle of the Mach lines from the apex of the trailing 
edges (s upersonic trailing edges). This limitation follows of course 
from the classic results of linearized flow theory that disturbances 
propagate only downstream and the pressure coefficients presented 
herein for the triangular surfaces would also be valid for sweptback 
or swept forward trailing- edge surfaces with the stated limitation. 

I t i s of interest to note that t he express ions for the pressures 
presented in tabl e I for the case where the l eading edges of the hori ­
zontal tail are sonic are also valid for the wing--vertical-tail 
arrangements sketched in figure 21, provided of course it is r ealized 
that the wing must be at zero angle of attack and that the Mach lines 
from the apex of the vertical tail that are in the plane of the wing 
must intersect the trailing edge of the wing. 

CONCLUDING REMARKS 

App l ication of linearized theory has enabled an evaluation of the 
lateral force due to sideslip Cy~, the rolling moment due to side-

slip Cl~' and the yawing moment due to sideslip Cn~ for a tail 

arrangement consisting of a vertical triangular surface attached to a 
symmetrical horizontal triangular surface. A series of design charts 
have been prepared which permit rapid estimates to be made of all the 
derivatives for a range of Mach number for which the leading edges are 
subsonic and the trailing edges are supersonic. 

The expressions for the pressure coefficients determined, in addi­
tion to being valid for the plan forms considered herein, are also valid 
for tail arrangements with sweptback or swept forward trailing edges but 
of zero taper, provided the angle of sweep of the trailing edges is less 
than the sweep angle of the Mach lines from the apex of the trailing 
edges. 

_ J 
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The expressions for the pressures also apply without change to cer ­
tain wing --vertical- tail arrangements , provided the wing i s at zero angle 
of attack and the Mach lines from the apex of the vertical tail that are 
in the plane of the wing intersect the trailing edge of the wing . 

The solution presented for the two-dimensional "mixed type" boundary­
value problem and needed in the present analysis is fundamental for prob­
lems involving vertical- and horizontal-tail combinations and is suitable 
for application to more complex systems than those considered herein . 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., October l6, 1953 . 



NACA TN 3071 29 

APPENDIX A 

EVALUATION OF THE LINEARIZED DISTURBANCE VELOCITY 

ALONG THE CONTOUR OF THE WING-FIN 

ARRANGEMENT IN THE v-PLANE 

The evaluation of the tangential disturbance velocity along the 
wing-fin contour in the v-plane can be performed by an application of 
techniQues discussed by Muskhelishvili in his book on singular integral 
eQuations (ref. 6). 

First, the v-plane is conformally transformed into the z-plane 
by use of the transformation 

z = x + iy = ± (AI) 

where the plus s i gn is valid for x > 0 and the minus sign is valid for 
x < O. In the z- plane (see fig . 6) the image of the wing- fin contour is 
a slot along the real axis (the x-axis) . The branch cut (1,00,-1) in the 
v-plane representing the original Mach circle retains itself along the 
r eal axis in the z- plane . 

Since the z-plane is a conformal map of the v-plane, the complex 
velocities uc = u + iu*, vc = v + iv*, and wc = w + iw* which satisfy 
the Laplace eQuation in the v-plane also satisfy the Laplace eQuation in 
the z-plane. The given boundary values of u, v, and w and their 
spatial derivatives which are constants along the real and imaginary axes 
in the v-plane therefore r emain constant in the z- plane along the real axis . 

It will be found expedient to determine the variation of v-velocity 
(the real part of vc ) along the wing-fin image (from x = -xh to 

x = xd) ' I nasmuch as this lateral velocity i s antisymmetric with respect 

to the ~-axis in the v-plane and the wing-fin contour i s symmetric with 
r espect to the ~-axis J it is necessary to consider a solutiJn for v in 
only the upper half of the v-plane and therefore i n only the upper half 
of the z-plane. Figure 6(b ) is a sketch of the upper half of the z-plane 
and shows the appropriate boundary values of v and v* along the real 
axi s . From the boundary condition that w = aVon the wing , it is 
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poss ible to determine that v* = ° (or constant) a l ong the wing segment 
xh ~ x ~ xd i n the f ollowing manner . By us ing e~uations (6a) and (6b) , 

the r p.lat i on in t he v- plane between Vc and Wc i s f ound to be 

Along the wing axi s v 
expr essed as 

i 

~ , and by us ing e~uation (A2) dv* can be 

1 
d v* = ~==:::::;-

~ l - TJ2 

dw (-1 ~ TJ ~ 1) 

(A2) 

Now w = Const ant al ong the wing s egment ° ~ TJ ~ d or dw = OJ hence , 
v* = Constant . Thi s const ant may be set e~ual to zero ( see r ef . 6 ) . 
Thi s condi t ion v* = ° r emains valid al ong the i mage of the wing segment 
i n the z- plane . 

There is one factor in the transformation of the wing-fin contour 
from the v- plane t o the z-plane that re~uires particular attention. 
Note that the point ih representing the leading edge of the fin in 
the v- plane t ransforms into the or i gin in the z- plane and that the two 
faces of t he fin spr ead out along t he real axi s of the z- plane , one on 
e ach s i de of the origin, and form a continuous segment (-Xh, O,Xh) ' Now 

i f the origin is approa ched from above along the line x = 0, the 
v-vel ocity will become infinite in the immediate neighborhood of the 
origin even though the origin does not represent a free edge such as 
xd where singularities in the boundary functions are usual ly allowed. 

This discontinuity in v follows directly from the behavior of the 
v-vel ocity in the neighborhood of the fin leading edge ih in the 
v-plane. In this plane as the fin edge ih is approached from above 
a l ong is, the v-velocity becomes a singularity of order -1/2; hence, 
in the z-p1ane as the origin (the image of the point ih) is approached 
from above along iy, the v- velocity becomes a singularity of order - 1. 
The fact that the singularity in the v- velocity near the origin in the 
z-plane is of - 1 order arises from the double -valuedness of the trans ­
formation from the v-plane to the z-plane. For the subse~uent analysis 
t he point to remember from the present discussion is that the v-velocity 
function does not continuously approach its prescribed val ues for all 
points of the open segment -xh < x < xh but becomes discontinuous as 

the origin is approached along x = 0 . Along the rema i ning segments 
defining the wing- fin image in the z -plane , t he v - ve loci ty can be shown 
to approach its boundary values continuous ly except at free edges where 
singularities are of course allowed. 
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As indicated previously, the solution for Vc is based upon the 

analysis of reference 6. In order to associate the present analysis 
directly with the general treatise on boundary-value problems in refer­
ence 6, one additional transformation is needed; this transformation is 

z' = 2 (A4) 

In figure 22 the transformed wing-fin contour in the z'-plane is sketched 
and the corresponding boundary values of v along L' and v* along 
L" are noted. It should be noted that only the upper half of the 
z'-plane is being considered with boundary conditions prescribed along 
the axis of reals. The problem at hand of determining Vc may be named 

the two-dimensional mixed-type boundary-value problem for the half plane. 

It is well-known (see refs. 6, 8, and 11) that the solution to this 
type of boundary-value problem essentially involves the solution of the 
singular integral e~uation along L 

where 

f 
L 

L(x' ) 

1 v(x') dx' = iJr7,(x') 
'L x' - ~ 

indication that the principal part of t he integral is to be 
t aken 

union of smooth nonintersecting arcs or a group of dis­
connected segments L' and L" al ong axi s of r eal s 

prescribed b01mdary function along L that must be at least 
continuous within the open inter val s L' and L" of L 
(7,(~ ') in t he pr e sent case would correspond t o pr escript i on 
of ve x ') and V*( x ' ) along L' and L", respectively) 

unknown function along L that is to be determined so as 
to be holomorphic in the region excluding L and approach 
on L the 7,(~) condition wher ever prescribed (W(x') corre­
sponds to vc(x') in the present instance) 

In reference 6, Muskhelishvili presents a thorough study of the 
integral equation (A5), wi th particular attention given to the existence 
and uniqueness of solutions. The case where L(x') is real and imaginary 

J 
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along alternating segments of L (mixed-type boundary values) has 
received detailed attention. It is this case that is of primary inter­
es t in the present analysis for the solution of Vc along the given 

boundary and is now considered in detail . 

Specifically) the unique function vc(x')O+) = v(x',O+) + iv*(x')O+) 

sati sfying equation (A5) i s needed; t h i s function i s to be holomorphic in 
the upper half plane y ' > 0 ) to be bounded at infinity) and to satisfy 
t he given boundar y conditions ( see f i gs . 22 and 23) 

on L' ) 

(A6a) 

on Lit 
) 

(A6b) 

where f(x') and g(x') are continuous and finite along the open inter­
vals of L' and Lit and are bounded and zero at one end point of each 
interval but may have - 1/ 2 power singularities at the other end point of 
these intervals. In addition) it is assumed that g (x') for lar ge values 
of x' is subject to the conditions 

and 

where 

lim g(x') lim g(x') 
x '~ oo x'~-oo 

g (x') _ g ( oo) < Constant 

(x')o, 

g (oo) ::: lim g(x') 
x ' - "too 

(a, > 0) (A7) 
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From the subsequent analysis it can be seen that inequality condition (A7) 
is satisfied in the present case. The general unique solution for Vc 

satisfying conditions (A6) and (A7) is given by Muskhelishvili (ref. 6) 
p. 253) as 

where 

d~ + Constant 
~ - X' 

= [f( ~) 
bg(~) 

p 

on L' 

on L" 

= II (~ - a j ) 
j=l 

P 

jT}l ( S - b j ) 

(A8) 

and a jb j ( j = 1, 2, •.• p ) define the disconnected segment s a lbl , 

a2b2, • . • along t he axis of r eal s ( see f i g . 23). The application of 
t he gener al solut i on (A8) to t he particular case her e i n r e quires s ome 
additional cons i der ations . First note t hat in t he pr esent instance ~ 

along L', 

v(x I )0+) _ f(x I )0+) = 0 (A9a) 

and along L" ) 

v*(x ' )0+) _ g(x ' )0+) = 0 (A9b) 

Now consider a modi fication of the given boundary-val ue problem in which 
the singular i ty in V(X')O+) in the neighborhood above x I is temporarily 

o 
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neglected . For this case v approaches zero uniformly as xo ' is 

approached from above. With thi s stipulation and conditions (A9) the 
general solution (AS) reduces to the complementary solution (or homo­
geneous solution) 

(A10) 

where e l is an arbitrary constant . The constant el has been evaluated 

in the body of the paper (see eq. (16)). 

Consider now the contribution to the solution of the singularity 
i n v (of the order - 1) as Xa' is approached from above along x' = xo'. 
This contribution to the solution is represented by the integral term on 
the right-hand side of equation (AS) and can be eval uated by use of the 
following expediency. Assume the boundary is cut at xo ' and then dis-

placed an infinitesimal distance 2E parallel to itself; this open 
region is then filled in by a 2E segment of the Xo = xo ' line that 

i s normal to the boundary . Now the modified boundary in the infinitesimal 
neighborhood of xo ' contains the singularity in v that was originally 

in the immediate neighborhood above Xa'. Along this modified portion of 

the boundary between x ' 0 - E 

form 

v(xo ' ± 

where 

and 

and 

E) = 

0.
1 

x ' 0 + E the v-function takes on the 

Constant 
(All) 

~(~ - o.l)(~ - ~) 

x ' - E o 

Equation (All ) mere~y represents the transformations of the original - 1 
singularity from the x' = xo ' line to the Yl = 0 line) the unit sin-

gularity redistributing itself as two - 1/2 power singularities) one at 
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xo ' - E and one at 

equation (All) for 
expression for the 

35 

xo ' + E. Substituting the expression for v from 

h(~) in equation (AB) r esults in the following 
singul arity contribution to the complex v-velocity: 

(A12) 

Appl i cation of the mean-value theorem for the prescribed infinitesimal 
range of integration allows equation (A12) to be more simply expressed as 

where e ' 2 

lim 
€-+O 

is an arbitrary constant and the term 

(A13) 

{R-bl 
~ - al 

has been made 

part of the constant . I ntegrating equation (Al3) and then letting E ~ 0 
yields 

(A14) 

The constant e2 has been evaluated in appendix B. 

This procedure for obtaining equation (A14) for Ec(x'] 2 is by no 

means general; however, an evaluation of the integral of equation (A12) 
together with detailed considerations of the modification of the original 
boundary near x' = xo ' (discussed previously) l eads to the same expres-

sion for ~C(x']2 that is given by equation (A14) . 

The complete solution for the complex v-velocity in the z' -plane is 
given by the sum of equations (A10) and (A14). Transforming these rela­
tions to the z-plane by use of equat i on (A4) yields the following equation 
for the v-velocity in the z-plane along the boundary -xh ~ x ~ xd: 

J 
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The real and imaginary parts of equation (A15) correspond to equations (9) 
and (10) that are used in the determination of the expressions for the 
pressure velocity . 
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APPENDIX B 

EVALUATION OF CONSTANT e2 

The constant e2 may be evaluated by an integration of the w-veloc ity 
(the downwash velocity) along the ~-axis in the v-plane (fig. 5) f r om 
point d (the image of the wing leading edge) t o unity (the end point of 
the Mach cone image) . Since the w-velocity is constant (equal to aV) 
a long the wing segment 0 ~ ~ ~ Cd - E)E~O and equal to zero at ~ = 1, 

then the integration of the downwash between the definite limits 
1) = (d - E )E~O and 1) = 1 is a known quantity and the constant 
i s readily determined . 

The ensuing analysis makes use of the z- plane (f ig . 6) which, as 
ind icated in appendix A and the body of the paper, is obtained from the 
v-plane by a conformal transformation . In the z-plane the downwash 
velocity w(x,O+) in terms of the u-velocity may be expr essed as follows 
(see eqs . ( 7)): 

w(x,O+) lim 
E~O 

The normal derivat ive :y u (x, O+) may be expres s ed in terms of the known 

u-velocity distribution over the wing- fin contour through the classic 
relation (from refs. 6 and 11) 

d 
- u (x,O+) 
dy 

where 

(-xh '£ x' '$ ~; 

xd < x ~ 1) (B2) 
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(The functional notation :y u (x,o+) is used to indicate 

: u(x,O+ ) = lim ~ u( x,y~ .) Incorporating equation (B3) into 
y y~O+ \9y 'J 

equation (B2 ) results in 

0 ~l + h2 
- u (x,O+) 
oy :rrB 

the following expression: 

e2~[~ 1 xh + x ' 

Ox x - x' xd - x ' 
- xh 

xh + x' J 
xd _ x , dx ' 

dx ' + 

(-xh ~ x I ~ xd; 

~ < x ~ 1) (B4) 

Evaluating the integrals in equation (B4) and differentiating the result 
with respect to x yields 

(xd < x ~ 1) (B5) 

Insertion of equation (B5) f or ~ u (x,O+) into equation (Bl) yields the 
oy 

following integral expression for the downwash: 

(B6 ) 
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where 

and f on the integral sign indicates that the finite part of the inte ­
gral must be taken. The evaluation of the integrals of equation (B6) have 
been performed in appendix C. The following expression results for the 
downwash: 

where K' (k) and E' (k) represent the complete elliptic integrals of 

the first and second kinds, r espectively, each with modulus 
The quantity k is functionally defined as 

k 

The downwash expression (B7) can be compactly expressed as 

Then e2 is evaluated as 

~ l - k2 . 

(B8) 

(B10) 
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where G in the z-plane is defined by 

(Bll) 

In the original space) that is) the XYZ- space (see fig. 1)) the expressions 
for k and G become 

k = 

or 

k = 

1 - Bto~B2ro2(1 - B2t o
2) + B2t o

2 - (1 - B2to2) ~1 - B2ro2 

~ B2ro2 (1 - B2t o
2) + B2t o

2 - Bto 

G = 

-;::=========2=k====== __ F_H K t (k) + E t (k~ 
B2AV2 \1 _ B2AH2) + B2AH2 BAH [ 

4 
k J 

4 16 16 4 

G 

(B12) 

(B14) 

The variation of k with BAV (Av is the aspect ratio of the vertical 
tail) for different values of BAH ( AH is the aspect ratio of the 

horizontal tail ) is presented in figure 7 . Similarly) the variation 
of G with BAV for various values of BAH may be obtained from fig -

ures 8 and 9 . 
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APPENDIX C 

EVALUATION OF INTEGRALS APPEARING I N THE EXPRESSION 

FOR THE DOWNWASH 

From appendix B the integral expression f or the downwash is given by 

(ell 

The index f indicates that the finite part of the integral must be taken . The integrals appearing on the right- hand side of equation ( Cl ) a r e essentially elliptic and can be transformed into the standar d form (plus elementary integrals) by use of the linear transformation 

k - ~ 
1 + 

1 - ~ 
X 

'T ( C2 ) 
k - XtJ. 

+ x 
1 - kxd 

The transforms for ~ and xh are 

2k + k2xh + xh 
~ 

k2 + 2kxh + 1 

- 2k + k2~ + xd 
xh 

k2 _ 2kxd + 1 
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wher e 

Substitut i on of equations (C2 ) and ( C3) into the downwash expression) 
equation (Cl)) yields 

(C4) 

It is obvious from inspection that equation (C4) can be written in 
a mor e compact form; however ) the presented form of equation (C4) is 
appropriate for rapid examination of limiting cases of the wing- fin 
a rrangement (for example) when xh = 0) that is) when the fin disappears) 

the corresponding downwash integral is readily ascertained) . The inte ­
grals appearing in equation ( C4) are readily evaluated with the a id of 
the following substitutions : 

, = sn( u / k ) 

cn(u / k) 
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where sn(u/k), cn(u/k), and dn(u/k) represent the Jacobian elliptic 
functions of argument u and modulus k. The evaluation of the inte­
grals is as follows: 

I n order to evaluate the f inite parts of the integrals 

and 

the following relation for the finite part was found most convenient : 

(c6) 

where A(~) is an integrable function in the closed interval ab o 
Studies of finite -part concepts are presented in r eferences 15 and 16 . 
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Application of equation ( c6 ) results in the following evaluations of the 
preceding integrals: 

d . k411 d , 

(, 2 1 )3/2,~ - ~ (~2k2 _ 1)3/ 2 
\ - k2 V,- - 1 l/k. 

= k31K ~ + k4 lK ~ du _ ~ 
d.n2 ik ' d.n2u l' k ' 2 

K+iK' U K+iK' 

= 0 
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Limiting 
cond1tions 

11m G - .. 
Av 0 

AH 0 

• --~1+~ ~
'( BAH) 

BAH 1 _ _ 

4 

I--

11m G .... 
BAH-t4 

or 

(~~2 _ a2<o2)G • 

TABLE 1. - StM-tARY OF PRESSURE COEFFICIENTS FOR VARIOUS LIMITING CASES 

OF THE GDlERAL TAn. AlmANGEMENT SHOWN m FIGURE 1 

I 

Pt-e88ure coefficient 

Slender tail 

(AH 0; AV -+ 0) 

Vertical taU alone 
(AH • 0 ; 0 S BAv ~ 2) 

Lead1rl1J edge of vertical tail sonic 
lBAv - 2; a ~ BAH ~ 4) 

LeadI", edge of bor1%.onta.l taU lIon1c 
lBAB - 4; a'S BAv ~ 2) 

(
""\ 1 l~<O 
qiv • G ~1 _ 02t,,2~02 _ r2 

Leading edges of horizontal &nd vert.1ca1 tails Bonlc 
(BAV • 2 ; BAH' 4) 

*For the horizontal taU, pressure coefficients are presented only for the right panel. 

_ 1 _ ~ l _ B2:l 
k • • 

BAv 
""2 

Reaarks 

Evaluated in 
ref. 12 

Evaluated in 
ref . 1, 

Con-eapooda 
to prea .. ure 
load1.ng on 
one panel of 
sYtt=etrlcal 
t r 1angular 
\ling; evalu­
ated in 
ref . 14 

Eva1uated in 
rets. 14 
and 4 

Eval. ua ted in 
ref. 4 
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TABLE II . - SUMMARY OF SIDESLIP DERIVATIVES FOR VARIOOS LIMITING 

CASES OF THE GENERAL TAn. ARRANGEMENT SHOWN rn FIGURE 1 

Derivative 

Slender tail 
(AH -> 0; Av -> 0) 

<AVi}AH ~) 
Cy~ = - 2AH \2 + I AV- + 4"" 

Cy~ = -

Vertical tail alone 
(AH = 0 ; 0 ~ ]lAV :; 2) 

* 4"12 ~1 - ~1 -~ 
Cn~ • --''-}E- '"""'( k"")-BA-

v
--''--

-- l 

I 
I 
; 
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Remarks 

Evaluated 1n 
ref. 12 

Evaluated 1n 
ref. 13 

r--------------------------------------------------------------- ----- --
Leadtng edge of vertical tall Bonic 

(BAV = 2; 0 :; ]lAH :; 4) 

C
y 

= _ 41'2 (}BAH + 4) 
~ B(4 + BAH)}/ 2 

C
n 

• 8~(3BAn + 4) 

~ }( 4 + BAH)}/2 

Leading edge of horizontal tatl sonic 
(BAH·4; 0:; BAV :; 2) 

Evaluated in 
ref . 14 

Leading edges of horizontal and vertica l tails Bonic 
(BAv = 2; BAH = 4) 

r------------------------------~~--~~~------------------.-----------~ 

1 _ ~l _ B2~l 
k • _-'-:::--_"­

BAV 
2 

C =!l 
n~ 3 

Can be evaluate6 
from ref . 4 
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Figure 1. - Sketch of tail arrangement showing positive directi ons of 

vel ocities, forces, and moments. 
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Figure 2 .- Orientation of tail arrangement for analysis . The horizontal 
surface) labeled wing) was originally the vertical tail . The vertical 
surface) labeled fin, was originally the horizontal tail. 
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Figure 3.- Sketch of wing- f in arr angement showing pert inent values of 

the u , v , and w disturbance vel ocities and their spatial derivative s . 
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Figure 4 .- Sketch of typical crossflow plane and its orientation in the 

X, Y, Z axes system . 
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Figure 5 .- Sketch of wing- fin arrangement in the v = ~ + i ~ plane showing 
values of the u- , v- , and w- velocities and their derivatives along the 
real and imaginary axes . 
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(b) Upper half of z- plane showing boundary values 

of v and v* along axis of r eals. 

Figure 6. - Sketch of z- plane including b oundary values of v and v* 
along axis of reals . 
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(a) Spanwise pressure distribution along a section k- m of vertical tail . 
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(b) Spanwise pressure dis tri bution along a section l - k - l of 
horizontal tai l . 

Figure 10 . - Spanwi s e pr essure distribut i ons along section k-m of vertical 
tail and section l - k - l of hor izontal tail . M = 1 .17; AV = 2; AH = 4 . 



BC~ 
'IB 

• 

-4.8 
f3A H 

40~~ 
3.0~~ 

~ 20~~ ~ ~ ---/5~~ ~ ~ ~ :::--V 

/O~~ 1\ ~ ----- --~ ...... 

t'0 ~~ ~ r-'- ~ ~ r-----~ t:::: ;~~ f\. ...::::?: V l.------' ---- l.-----

l\\ ~ ~ ~ ~ v ~ 
------

v 
~ c: l----- i------ ~ ~g~ ~ L.-------- --- .----::::. 

~ ~ V / I-----"' ~ ~ f-'" 
~ 

----
l.------ .--;;::::. ~ 

-4.0 

-3·2 

-24 

~~ ~ 
V t-------- I-' V V 

~ ~ .---:::: 

~ V l----~ P ;...---

~ ~ --
-!.6 

~ V V P V-
~ ~ 

~ ~ ~ ~ 
- ·8 

~~V 
o .2 .4 .6 .8 1.0 /.2 14 /.6 1.C3 

BAv 

Figure 11 .- Variation of BCy~ with BAV for various values of BAH' 

~ ---~ 
~ 
l.------

...--::: 
I=---

2.0 

~ 
(") 

> 
f-3 
2: 
\.>J o 
~ 

\Jl 
\0 



-2 

I I 
I 

-2.0 
8AH 

-Ie. 

8(Cy,)v 

4.00~ 
3.o0~ ~ 

2.o0~ ,\ ~ ~ t=:----:: 

'.50 -\\ 
.-::;:::; ~ ::::--::-:: ~ 

~ ~ ~ ~ 
;:::::.-: :::=:-::::: ~-::::: ~ ~ 

~:!~~ '\ ~ ---=:::::: ~ ~ 
~ l\\ ~ ~ ~ ~ ~ r:-- --

~ ~ t::=----::: r::=--:: t:------
-25 ~ ~ ~ ~ ~ t:---

v 

~ 
/:: :::---~ :---

~ ~ V v 

-1 6 

-.8 

~ 
V V ~ ~ r=::: 

~ ~ -----~ ~ 
-.4 

~~v 
~ 

o .2 .4 .6 .8 10 12 14 /.6 IS 

BAv 

Figure 12.- Var i ation of B(C l ~)V wi th BAV f or various values of BAH' 

, 

1 

W 
~ -l __ I 

I 

2 .0 

0'\ 
o 

~ 
(") 

;I> 

~ 
\..N 
o 
-.l 
f--J 



L-

2.0 

1.5 

B(C Zf3 )H 1.0 

.5 

o 2 
BAH 

3 4 

Figure 13. - Variation of B (C ~ ~) H with BAH for various values of BAV ' 

--l 

~ o 
:t> 
1-:3 
~ 

\..N 
o 
-.J 
I-' 

G\ 
I-' 



L 

r 
~nl8 

5.6~, ~~--~~~'--r~~--~~~II----~--r-~~ 

BAH 

4.8 r .05 
.25 

----

.50 
.75 

1.00 

24~r-~~~~=t~~j-r=r-~~=f~:j~~~f=~ 

/.61 1 1 1 1 1 4 BAH = 0 

8 1 ~-~--~~-4--+-~~~~-+--r-~-+~ 

o .2 .4 .6 .8 10 12 14 16 1(3 

BAv 

Figure l4. - Variation of Cn~ with BAV for various values of BAH ' 

Moment about vertical axis through apex of tail. 
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/ / 
Figure 20. - Plan- form modifications of basic tail surfaces for which the 

pressure expressions of the basic tail plan forms are also valid . 
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Figure 21 .- Wing--vertical- tail arrangements for which the pressure 

expressions of the basic tail plan forms are also valid. 
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boundary-value problem for the upper half plane. 
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