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SUMMARY

Theoretical expressions have been derived by means of linearized
supersonic-flow theory for the lateral force due to sideslip CYB, the

yawing moment due to sideslip CnB, and the rolling moment due to side-

siliip ClB for tail arrangements consisting of a vertical triangular

surface attached to a symmetrical triangular horizontal surface. The
results are valid, in general, for a range of Mach number for which the
leading edges of the tail surfaces are swept behind the Mach cone from
the apex of the arrangement and the trailing edges of the tail surfaces
are ahead of the Mach lines from the tips.

A series of design charts are presented which permit rapid estimates
to be made of the force and moment derivatives. A discussion is also
included on the application of the expressions for the pressure distri-
butions determined herein to other plan-form shapes of the tail surfaces
and possible wing—vertical-tail arrangements. A solution to a two-
dimensional "mixed type" boundary-value problem which is needed in the
present analysis but which may also be of interest in other "conical
flow" analyses is presented in an appendix.

INTRODUCTION

The prediction of the stability of complete airplane and missile
configurations requires a knowledge of the aerodynamic forces and moments
acting on all the component surfaces of the airframe and the rates of
change of these forces and moments with the attitude, velocity, and
acceleration of the associated surfaces. The rates of change of the
aerodynamic forces and moments when linearly related to the attitudes,
velocities, and accelerations are commonly called stability derivatives.
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Theoretical estimates of stability derivatives for a variety of
wing plan forms with flat-plate cross sections are now available. Infor-
mation, however, relating to the stability derivatives contributed by
various nonplanar tail systems is still meager. Most of the available
derivatives are for configurations composed of low-aspect-ratio surfaces
(refs. 1 to 3). In reference 4, however, sideslip derivatives have been
presented for tail arrangements for which all the plan-form edges are
supersonic. In references 1 and 5 approximate estimates of the damping-
in-roll derivatives for cruciform arrangements with high-aspect-ratio
surfaces have also been reported.

The purpose of the present paper is to provide theoretical estimates
of the lateral force, the rolling moment, and the yawing moment produced
by the sideslipping motion of a tail arrangement consisting of a triangu-
1lar vertical surface attached to a symmetrical triangular horizontal sur-
face. The leading edges of the tail surfaces are subsonic; the trailing
edges, supersonic. Consideration has also been given to the application
of the results presented herein to other plan-form shapes of the tail
surfaces and possible wing—vertical-tail combinations.

The analysis is performed within the framework of linearized
supersonic-flow theory. Inasmuch as the linearized perturbated flow
within the Mach cone from the apex of the tail is conical (the arrange-
ment is a conical body), the analysis reduces to the solution of a sine
gular integral equation associated with a two-dimensional "mixed type"
boundary-value problem. The solution is obtained by an application of
the general methods for evaluating these integral equations that have
peen propounded by Muskhelishvili in reference 6.

SYMBOLS

The orientation of the tail arrangement with respect to the X, X,
and 7 body axes and the positive directions of the velocities, forces,
and moments are indicated in figure 1.

)& Ny body-axes coordinates

Yys 2y rectangular coordinates in plane parallel to YZ-plane

v =1+ i€

zZ = x + 1y

#x,¥,2) linearized velocity-potential function

W, Vi, W X-, Y-, and Z-components of perturbation velocity, respec-

tively (v and w are also defined in the v-plane as
being parallel to the n- and {-axes, respectively)
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z' = x' + iy’

W

ol cr e

C"v

u*’ V*, w*

complex velocities, u, = u + iuv¥, v, = v + iv¥,

and W= iw*

harmonic conjugates of the u-, v-, and w-velocities,
respectively

free-stream velocity

free-stream Mach number

free-stream density

free-stream dynamic pressure, -%-QV‘2

pressure difference across surface

pressure coefficient

angle of attack, radians

angle of sideslip, radians

cormon root chord of vertical and horizontal tail

semispan of horizontal tail
transformed semispan of horizontal tail in v-plane
span of vertical tail

transformed span of vertical tail in v-plane

transformed semispan of horizontal tail in z-plane
transformed span of vertical tail in z-plane
arbitrary real constants

area of horizontal tail

area of vertical tail
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t = tan ¥

to = tan 74 =

NACA TN 3071
angle in plane of horizontal tail between a ray through
origin and X-axis ‘

angle between leading edge of horizontal tail and X-axis

Ag

angle in plane of vertical tail between a ray through
origin and X-axis

angle between leading edge of vertical tail and X-axis

Ay
Ty = tan e, = Y ‘
el
H
Ay aspect ratio of horizontal tail, ey 4 tan 7
q -
;
by, 2 . i
AV aspect ratio of vertical tail, =2 2 tan €, 5 |
22 202 2 2 2, 2 2, 2
BAL | BEA B-A. B-A B-A B=A
s A LI (T H>+ L H>1- L
L L 16 16 16 L
k =
2),. 2 2p 2 25 2
B2Ay l_BAH>+BAH _ BAg
L 16 16 L
cn(u/k)
Jacobian elliptic functions of argument u and
dn(u/k) modulus k
sn(u/k)
E, E' complete elliptic integrals of second kind with moduli k i ‘

and dl - k2, respectively g
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Ko, k! complete elliptic integrals of first kind with moduli
and ql - k2, respectively
Gi= EAEK'(}{) 4 E'(k) 2k
L
2n. 2 2, 2 2002
B=Ay e B=Ay i BAy . BAg
i 16 16 n
Y lateral force, see figure 1
1Y rolling moment, see figure 1
N yawing moment, see figure 1
Cy lateral-force coefficient, ~—:£——
1 52
545y
LI
Cy rolling-moment coefficient, ———
1 2
Vv
SR Byby
N
Cn yawing-moment coefficient,
1l 2
EpV bVSV
9Cy
cYB = S__
B B—>0
oC
- l
B/B—o0
ac,,
oB B—0
Subscripts:
H horizontal tail

Vv vertical tail

k
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ANATLYSIS

General Considerations

The object of the ensuing analysis is to determine the aerodynamic
pressures and corresponding forces and moments acting on the surfaces
of the tail arrangement sketched in figure 1 that are produced by the
sideslipping motion of the tail. The leading edges of the horizontal
and vertical surfaces are subsonic (within the Mach cone from the apex
of the system) and the trailing edges are supersonic and at zero angle
of sweep. It is stipulated that the tail surfaces are of zero camber
and vanishingly small thickness. It is apparent that this tail con-
figuration in sideslip attitude is equivalent (by rotation) to a right
triangular wing at an angle of attack with a triangular end plate or
fin at zero geometric angle of attack attached to its streamwise edge.
Such an arrangement is sketched in figure 2, and for convenience this
orientation of the tail arrangement is considered in the following
analysis. With the orientation shown in figure 2, the surface approxi-
mately in the horizontal plane and at a constant geometric angle of attack
is tentatively called the "wing" and the surface in the vertical plane
and at zero geometric angle of attack is tentatively called the "fin."

The analysis is based on linearized three-dimensional supersonic-
flow theory. Specifically, solutions of the linearized three-dimensional
potential equation

oy - bry - faz = 0 1)

are sought that satisfy certain boundary conditions associated with the
wing-~fin arrangement. (These boundary conditions are discussed subse-
quently.) Instead of equation (1) , consider the following group of
equations:

B2uXX - Uyy - Ugy = O (2a)
By Voo = Voo = 0 (2b)
XX 7 Yyy 727 ~
| B, - Wy = W, = O (2c)
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which define the component-disturbance-velocity fields associated with
the velocity potential of equation (1) and are more appropriate for the
ensuing analysis. Once a proper solution to equation (1) or (2) has
been obtained, the expressions for the lifting pressure may be readily
determined from the linearized momentum equation

__APE S AP(X,Y,Z) (3a)
Lov V oX
5

OF
L N (3b)
%pve v

where A¢ is the velocity-potential difference across the surface

and A 1is the corresponding longitudinal velocity difference or
Pressure-velocity difference across the surface. Equations (3) are
consistent with the linearized theory only if the magnitudes of the
perturbation velocities are equal across the lifting surface. When
the magnitudes of the perturbation velocities are not equal across the
lifting surface, equations (3) should contain differences in the squares
of the disturbance velocities v and w. The squared terms lead to
derivatives which are linear functions of a; therefore, these terms
vanish because our primary interest is the evaluation of the rate of
change of the aerodynamic forces and moments as a approaches zero.

Because of the conical geometry of the wing-fin arrangement, the
following analysis to determine the required solution for the pressure
employs the concepts of conical-flow theory. This concept implies that
all disturbance-velocity quantities such as u, Vv, and w remain con-
stant along rays emanating from the origin (apex of arrangement) and
hence become functions of only two independent varisbles that specify
the direction of the ray.

Busemann (ref. ) initially showed that the assumption of conical
flow implies mathematically that the disturbance-velocity field within
the Mach cone of the system is governed by an elliptic differential
equation, and by a transformation of coordinates this equation reduces
to the two-dimensional Laplace equation with respect to either the wu,
Vv, or w perturbation velocity. The problem of obtaining a solution
to equation (1) or (2) therefore reduces to one of obtaining a solution
to Laplace's differential equation in two dimensions subject to certain
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boundary conditions. These considerations lead naturally to a mode of
solution using complex-function methods (refs. 8 to 10) and associated
integral-equation concepts. The following sections present an analysis
and solution of the wing-fin problem based on these procedures.

Prescribed Flow Conditions

A sketch of the wing-fin arrangement showing the body axes used in
the analysis is presented in figure 3. Denoted also in this figure are
the prescribed values of the disturbance velocities u, v, and w and
their spatial derivatives in the plane of the wing and plane of the fin.
These prescribed values of the velocities and their derivatives are
determined from a knowledge of the boundary conditions, the symmetry
conditions, and the equations of irrotationality.

The boundary conditions are as follows:

On the Mach cone surface,

on the wing surface,

w(X,Y,Ot) = aV

and on the fin surface,

|
(@)

v{x,05,2) =

From symmetry considerations (see ref. 10) it can be shown that in
the plane of the wing the antisymmetric u- and v-velocities are zero off
the wing. In the plane of the fin, however, the tangential velocities
are not zero off the fin because the arrangement lacks symmetry with
respect to the XZ-plane; in fact, these velocities must be continuous
across this region.

The use in the equations of irrotationality of the given boundary
values of the velocities, together with values of the velocities deter-
mined from symmetry conditions, produces the additional prescribed
values of the velocity derivatives denoted in figure 3 and needed in
the analysis. It is also stipulated that, as the leading edges are
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approached, the disturbance velocities become locally infinite as the
-1/2 power; that is, the flow around the subsonic leading edges behaves
in the same manner as the flow around the leading edges of thin flat
plates in an incompressible flow (see refs. 9 and 10). This stipula-
tion on the type of edge singularity can be used in order to obtain

a unique solution to the integral equation of the boundary-value problem
that is solved subsequently (see appendix A).

Transformation of Supersonic Conical Flow to
Two-Dimensional Incompressible Flow

The transformation of the supersonic conical-flow equation in wu,
vV, or w to the two-dimensional Laplace equation was initially conceived
by Busemann and expanded in concept and usefulness by many researchers,
in particular, Lagerstrom, Germain, and Multhopp. Excellent discussions
of the entire subject are given in the reports by these investigators
(see refs. 10, 8, and 11, respectively). Only relations pertinent to the
present analysis are therefore considered herein and the reader is referred
to the references for proofs and detailed discussions of the relations to

be presented.

Figure L4 is a sketch of an arbitrary crossflow plane in the XYZ-space.
The fact that the body is conical and wholly contained within the Mach
cone from the apex of the system demands that the u, v, and w dis-
turbance velocities are homogeneous of zero order and are uniquely defined
in any crossflow plane; that is, the u-, v-, and w-velocities have the

functional form

Now if the X-, Y-, and Z-coordinates are transformed in the following
manner:

V= B

o
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then equations (2) defining the u-, v-, and w-velocities are transformed
into elliptic differential equations in the two variables Yy, and 2zq.

Application of the nonconformal transformation (see ref. 11)

5 2
1 _ Zl\ll -7t -V
o ak

2 2
1 - zy 1 - 24

(5)

transforms the u-, v-, and w-velocities from the y,z;-plane to the

v-plane in which each of the disturbance velocities satisfies Laplace's
equation; that is, in the v-plane,

Fu

= 0
Vzv = ()
VW = 0
32 d2
where v? is the Laplacian operator [—— + —— |. The effect of the
a2 dtZ

transformation expressed by equation (5) is to deform the doubly con-

nected annular region between the Mach cone and the body in the ylzl—plane

(see fig. 4) into a doubly connected open-slit region in the v-plane (see
fig. 5). The continuous cut (l,m,—l) in the v-plane corresponds to the
Mach circle in the ylzl-plane. If the v-plane is considered as composed

of two sheets, then the region external to the Mach circle in the
y121-plane transforms into the lower sheet of the v-surface and is con-

nected to the upper sheet through the branch cut (1,0,-1), that is, the
transformed Mach circle. The transformation does not distort the hori-
zontal and vertical axes, and hence the shape of the wing-fin arrange-
ment is preserved (except for scale) in the v-plane.

It should be pointed out that, since the wing-fin contour is trans-
formed to one sheet (the upper sheet) of the double-sheeted v-surface,
the correspondence between the velocities in the crossflow plane of the
original XYZ-system within the Mach circle and the upper sheet of the
v-surface is 1l:1. Furthermore, since the transformation is conformal in
the neighborhood of the 7~ and {-axes, the prescribed values of the
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velocities and their spatial derivatives which are constant along the

wing plane and fin plane in the original space remain constant along
the n- and {-axes in the v-plane.

If the complex velocities u, = u + iu¥, Vo =V + iv¥, and
W, = W + iw* are considered in the v-plane, then from the analysis of
Hayes and Multhopp (refs. 9 and 11) the ensuing compatability relations
(which take the place of the equations of continuity and irrotationality)

provide the necessary relations in the v-plane for attempted solutions:

2= =i du, (éa)
) 1= v2
dw, = -iB = du, (6b)

In terms of the real parts of u,

Ve, and w,, the relations of equa-
tions (6) are as follows (see ref. 11):

For £ =0 and

-lsngd,

B@.:-n_al a

on o

€ 1- 2 On

> (7)

B Su _ N o

I e
ov .. 1. ow
571 l_.qE’ag
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and for =0 and ¢ £ 0,

R T

ot ¢ ot

ov _ plou o (8)
ot ¢t on

ov _pglou

an t ot

By using these relations, general solutions for the u, v, and w dis-
turbance velocities can be determined, provided a solution exists for
any one of the velocities.

Evaluation of the u Perturbation Velocity
(Pressure Velocity) in the v-Plane

The evaluation of the u perturbation velocity in the v-plane
takes on its simplest form when the complex sidewash velocity v, along

the wing-fin contour is initially determined and the u-velocity is then
derived from the sidewash velocity by using equations (6) or (7). The
expression for the sidewash velocity along the contour has been evaluated
in appendix A by obtaining a solution to the integral equation defining
the sidewash in terms of its prescribed boundary values.

In appendix A the expression for v 1is initially derived in a

z-plane which is obtained conformally from the v-plane by the following
transformation:

v2 + h2

1 + h2

+

Z =X + dy

where the plus sign is valid for x > 0 and the minus sign for x < 0.
Figure 6 is a sketch of the z-plane and shows that the wing-fin contour
of the v-plane becomes a slot along the real axis (the x-axis) of the
z-plane. The details of the transformation from the v- to the z-plane
are given in appendix A. In the z-plane the expressions for the u-,
v-, and w-velocities can be expressed much more compactly and simply
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than in the v-plane and for this reason many of the following solutions
for the velocities are given in this plane. The expressions for the
real and imaginary parts of the complex sidewash velocity along the
transformed contour in the z-plane as derived in appendix A are as
follows:

e\ [X - x
v(x,0%) = (el + -—2> e

X X3 = X

e2) X + X

v¥(x,0") = (el + — " (-Xh = xS Xh) (10)

X

where €, and €, are arbitrary real constants.

The u-velocity is immediately determined from the following rela-
tions in the v-plane that can be determined from equations (6):

B@=-qa_v (-l <n<1; ¢=0) (11)
on o -
B_aB:_gE (m=10y it =0) (1)
le ot
In the z-plane these relations become
3 o
p Aund) | TR (BT 52 im0 (s sxsxy) (13)
ax ax
+
BM:-\]l+h2Vxh2-x2m’o—) (-thx§O>
ox ox (llk)

- ou(x,0t) B

8}( X

I
T
+
=
N
=
=
n
>
o
(o]
*
\.><
o
&5
F iy
1A
>
A
Lo
b
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Equation (13) relates the u- and v-velocities along the transformed
wing contour in the z-plane; equation (14) relates the v¥*- and
u-velocities along the transformed fin contour in the z-plane.
Tntegration of equations (13) and (14), with equations (9) and (10)
for v and v¥ taken into account, produces the following solution
for the u-velocity:

B

2 X = X X, + X
41 + h h h
u(xo+)=.—————— e X - +i e ~
; 1(d xh) BT xg - x

X, - X =-2X + 2\|[x,. + X - X
llf_l(xd N e;l log 47 *h VG + ) (x - %) .
= Xq + Xy

E(xd - 1)) + e;‘%} (-xh < x< xd) (5)

The relationship between e and e, 1is easily determined by using

equation (15) in the following manner: In the v-plane u(O',O+) is
known to be zero from the physical boundary conditions. Hence in the
z-plane u(x,0t) is zero at x = -x,. In equation (15) for the

u-velocity, if x is set equal to -x, and u(x,0%) 1is set equal
to zero, the following relation between e; and e, 1is obtained:

262
el S e— (16)
Xpaaiay

The same relation between ey and € is also obtained from the con-

dition that the circulation along a closed path enclosing the wing-fin
contour must be zero (see ref. 11). The substitution of e, in terms

of e,, into equation (15) yields
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2
L4 h X Xp + X
(,O'*'):N.__e l+._h>_.. - <x <x il
L B - X X3~ X ( S d) (an

The constant es has been evaluated in appendix B and may be simply

expressed as

- Vo

82—-
ﬂl + B

.. [%hK'(k) N E'(k?] ’ 2k
k K= Xy

s d(l - x,7) (21 - x47)

Xd —Xh

Q|

where

In the equation for G, K'(kx) is the complete elliptic integral of the
first kind with modulus dl - k2, and E'(k) is the complete elliptic

integral of the second kind with modulus Jl - %2, The parameter k
necessary for the determination of @ may be expressed in terms of the
geometric characteristics of the tail system (see appendix B). These
relationships are illustrated in figure 7.

The u-velocity along the contour in the z-plane is now uniquely
given as

X X, + X
u(x,0") = m(l + —13> o < i (18)
BG X xd - X

The expressions for the u-velocity along the wing and fin contours
in the v-plane (see fig. 5) are easily obtained from equation (18) through
the use of the transformation
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v2 + h2

(19)
1+ he

z=x+ iy =t

where, as previously stated, the plus sign is valid for x > O and the
minus sign for x < O. In the v-plane the expressions for the u-velocity
along the contours become:

Along the wing (0 £ n £4),

\’2 2

h + h

u(n,08) =+ X214 —= ! (20)
BG \]n2+h2 (@@ + 02 - \n? + n2

along the upper half of the fin (0 S ¢ S h),

u(Q,Ot) = e

= (21)

Va4 h > nt\r? - ¢
<'\]h2 2\ (a2

+
(=
no
1
o
no
ue
N

end along the lower half of the fin (-h £ ¢ £ 0),

_Va h > h \Jhe - i)

u(gyo-h) = —(1 ¢
BG (2 - 2/ a2 + 2 + \n2 - (2

The equation for u on the lower half of the fin (eq. (22)) has been
obtained from equation (21) for the upper half of the fin by applying
the known condition of antisymmetry of the u-velocity with respect to
the n-axis.

The expressions for the pressure distributions for the wing and
£in follow immediately from equations (20) to (22) through the use of
the following linearized pressure-velocity relation:

p = -pVu (23)
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where p represents the disturbance pressure. The use of equation (25)
yields the following expressions for the pressure coefficient for the
< wing and the fin:

On the wing (O S1s d),

t»  p(n,07) - p(n,0t)
1

12 L2
5V S

% -»u(n,O‘) + u(n,O"'zl

2 2
_ M 1+ = hj_Tl r (24)
BG q;§*+ 12 Vd2 £ e - dne + 02
gy on the upper half of the fin (0 £ ¢ <n),
2. p(§,07) - p(t,0%)
it 1L 2
i Gl
= 2[u(t,0M - u(t,07)]
=2_a » h h+\‘h2-§2
BG th - t2/\ B2+ n? - th e
(25)
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and on the lower half of the fin (—h = = O),

o _2alf h > n - \he - ¢°
142 B \[hz_gz \Jd2+h2+\lh2_§2

2

2 2
h

_§2 Vdi2+h2—\1h2-§2

Evaluation of Pressure Relations for the Vertical- and
Horizontal-Tail Combination in the Original Space

The results of the preceding analysis (in particular, egs. (24)
to (26)) allow the evaluation of the pressure coefficients for the wing-
fin arrangement in the original XYZ-space. It is convenient, however,
at this point to return to the orientation of the arrangement that is
shown in figure 1 so that the wing now becomes the vertical tail and
the fin the horizontal tail. It should be recalled that for convenience
in the preceding analysis the tail arrangement of figure 1 was rotated
to the position shown in figure 2 and the vertical tail (the lifting
surface) was tentatively called the wing and the horizontal tail (the
end plate) was tentatively called the fin. With this point in mind the
following expressions for the pressure coefficient apply to the vertical-
and horizontal-tail combination orientated as shown in figure 1 and obey
the sign conventions indicated therein. The expressions for the pres-
sure coefficients in the original XYZ-space are obtained from equa-
tions (24), (25), and (26) by the following transformation of the n,¢

variables (fig. 5) to the = ; variables by using equations (4) and (5):

')‘(';

In the plane of the vertical tail (or wing),

n=038 % = B tan € = Br (27)

= B tan ¢g = Bry = — (28)




where r is the slope of a ray from the apex, by is the span, e is the semiapex angle, g
and Ay 1s the aspect ratio of the vertical tail. g
In the plane of the horizontal tail (or fin), W
—J
’_I
e Bt
B tan
¢ = X = 2 - (29)
2 DD
- Bg(g) |1 - BPtan?y \1 - B2t2
X
b A
H H
Bl B tan ¢y Bt B
h = 201. = o = 0 = }4- (50)
' 2
b \2 = B2tan? J L a A
1 . p2(2H Ji B=tan' %2 1 -B to 1 - B2 lH
2cr 6

where t 1is the slope of a ray from the apex, bH/E is the semispan, 7o 1s the semivertex
angle, and Ay 1is the aspect ratio of the horizontal tail. The substitution of equations (27)
to (30) into the pressure-coefficient equations (24) to (26) results in the fcllowing relations
for the pressure coefficient for the original tail arrangement in the XYZ-space of Tigure 1:

For the vertical tail,

2. 2
Bt B2t
\ — o aaEe s
oG 2 2
o 4p Bt,, \1 - B2t 1 - B2,
12 “wmgt (51)
—pV l B2t 2 th 2 B2t 2
0 v L - BRe 2522 4 o)\l [52x2 + o-  _ lg2, 0
(=g 8 Is 2iE e e

6T




for the left half of the horizontal tail,

Bto B2to2 B2t2
+ -
T o 2.2
: j a3l Bt,, e R O AR
1.2 BG [ B2t .2 2. 2 20
12 o 2,2 B2t B2t 2,2
) JH 1 = B2t02 o _ B=t B2r02 + (¢] _ (e} _ Bet
INERES R - S e I I G R R S
-
2, 2
Bt, BTto~ B2t2
- 2 2
) Bto 41 _ 22 (1-Pt 1 B2
. 202 2
- Bt BeG B2t,2 B2t,2 242
e 2 s o I Ber 2 + ot ., o _ Bt
ISR LBt i - W oEE
and for the right half of the horizontal tail,
Bto Beine 5242
sy __ 28], Bty - 8262 Y1 - B 1 - Bt
L2 BG _— ez 8.2
<§°V )H L - BRt,P R 522 BPr 2 + 2 B I
- o) - o
Vl - BPtg2 1 - B2tP 1 - B2t2 |1 - B%tp2 1 - BPt2

Bt, B%t2 B2t2
2; 2 2.2
- Bto J1-B2t,2 V1 -BtS 1 -3t
53| BPtoS B 2 2 B2t B%to° Bet2
1 - B=tg, = Bery© + + = 5
1 - B2tg2 1 - BPt? 1 - 822 |1 -B%t,2 1-B%

(32)

(33)

Oc

TLO¢ NI VOVN
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The parameter G appearing in these expressions may be determined from

2D
. y g B Ay 16 ’ ;
figure 8 wherein the variation of - 1 G with BAV is
L B2 2
H
presented for different values of BAp. 1In order to facilitate esti-
22
, : S By | 16 :
mations of G from figure 8, the variation of - 1 with
L BEAH2

BAy for various values of BAgp 1is presented in figure 9.

An idea of the spanwise variation in pressure and resultant pressure
for a typical vertical- and horizontal-tail combination may be obtained
from figure 10. These results were obtained by use of equations (31)

to (33).

It is of interest to know the expressions for the pressure coeffi-
cients for limiting cases of the tail arrangement obtained, for example,
by setting the horizontal-tail span equal to zero or letting all the
leading edges coincide with the Mach cone traces in the plane of the
tail surfaces (sonic leading edges). Such expressions are obtained from
the general expressions - equations (31) to (33) - for the pressure coef-
ficients, provided the limiting values of the parameter G are avail-
able. The values of G for a number of limiting cases of the tail
arrangement have been evaluated. These values of G, together with the
corresponding expressions for the pressure coefficients, are presented
in table I. It should be noted that results presented in table I for
various limiting arrangements are identical to previously published
results (refs. L4, 12, 13, and 14) that are available for some of these
limiting arrangements.

Evaluation of Forces and Moments

The resultant aerodynamic forces and moments acting on the tail
arrangement in a sideslip attitude are easily obtained by use of the
pressure-coefficient expressions given by equations (31) to (33). The
expressions for the resultant forces and moments to be determined obey
the standard sign convention indicated in figure 1.
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Lateral-force derivative CYB.- For the tail arrangement in a posi-

tive sideslip attitude, the lateral force is defined as

Y= - qffsv<%>v dx dz (34)

where (££> is the pressure coefficient for the vertical tail and Sy
Qa/v

represents the vertical-tail area. The minus sign is prefixed to the

integral so that the lateral force obeys the sign convention indicated

in figure 1. It is clear that the horizontal tail gives a null contri-

bution to the lateral force. The lateral-force derivative is defined as

(L i (B =

B—0

The substitution into equation (35) of the expression for (%?) obtained
)

from equation (51) yields, after integration, the following expression
for CYB:

282 2, 2
3BA B°A BA
_ b H N L H (36)

Cy
5, P
P $Payc\(16 - B2 L 16 - B%ap

As stated previously, estimates of the factor G can be obtained from
figures 8 and 9. The variation of BCYB with BAV for various values

of BAg is presented in figure 11.
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Rolling-moment derivative Clﬁ" The rolling moment produced by

a positive sideslip attitude of the tail is defined as

_ffsv(%>vzdxdz+/fgﬂ<%>}lydxdy

where Spg represents the horizontal-tail area. Note that the horizontal
tail contributes a positive moment to the total rolling moment. The
rolling-moment derivative is defined as

ol T’
Cain=

P SE asSyby
~ g0

e l:svbvffsv o S;ovffs,ﬂ R dy]

C1g = (CZB)V u (CZB)H (37)

B

Substituting into equation (37) the expressions for <££> and (£2>
/v /8

obtained from equations (31), (32), and (33) and then performing the
necessary integrations yields

\
) 8 TBAR A A 2BAg a2
\Clﬁ)v TS\ T—="7 & 5 I 5
3GB2AV= |\ |16 - BRAyR b 16 - B {6 - BPag?

B2AV B2Ag2 3BAg
oD 2, 2 c 5 T e
3 JEAV , e ) BAg X, gl 16 - BeAR® |16 - BeAy2 (38)
2 n 2
16 - B2ax? |16 _ peag? \’[BEAVZ‘ B2A2 BAg

+
oMM —————
L 16 - B2A4 |16 - a2
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and

8 - \l + -—— + 1 - =2 & —=
(CZB)H - 16 L ; 4 >
GBIAY2 3/2
3GB Ay 2|E i JBQAH (1 ) BEAV> . BEAV2:]
16 4 4

\JB%H? (1 B2AV2> . B2A2
- BA BA
16 4 4 (5 n H, 1) H

_3__
BAg

n
= + tan” ﬁ > 5
JBEAHZ BPaf\  BPAR
2 |[o| 126 A" 1 (1 BAH> JBZAHQ BeAv2> B2Ay°
- = + =) 1 = = +
BAg L 16 L L

X
BEAH2< B2A 2) w22 | /2
21+ +
16 Ly Iy
BeAyC)  BPAyP )
N i n BAH > 5 BAH
BAg L L

(39)

Variations of B(C and B(C with BA and BA a sented
. Crp)v Cre)m g S Ry s P

in figures 12 and 13, respectively.
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Yawing-moment derivative CnB.- The yawing moment about an axis

- through the apex of the arrangement is given by

N=qﬂv(%vx&dz (40)

(the horizontal tail offers no contribution to the yawing moment)
N may also be written as

’

No= XY

where X is the x-coordinate of the point at which Y acts (often
referred to as the center of pressure). An examination of the equation
flor (%?) (eq. (31)) shows that it is conical in form; hence, the

Vv
point x will be % -

may be expressed in equation form as

: I e
[ BB

The yawing-moment derivative may now be simply expressed as follows:

for a triangular vertical tail. This statement

= % (3% (41)

2
3 4
ORI B, WL Y. 42)
| o e B (
| or, by utilizing equation (36),
1650 3BAg B2Ay® T
+ (43)

Cng = e
P 382a,% {16 ~ B2 L 16 - BPag?
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For convenience, the variation of CnB with BAy for a range of values

of BApg 1is presented in figure 14k. TIn order to determine CnB for some

other position of its moment axis, the following transfer formula is
needed:

1+ X
G (e 1)
. (bV)YB (

where 1 is the distance parallel to the x-axis between the new position
of the moment axis and the apex of the tail. Considering equation (k41),
equation (44) may also be written as

) L
Cpa' = —[— + ——\cC L
DISCUSSION OF RESULTS

In the foregoing section general expressions for the sideslip deriva-

tives CYB (eq. (36)), Cig (eas. (37) to (39)), and Cng (eq. (43))

were derived. It is of interest to present results for some limiting
cases of these expressions. Table IT contains analytical expressions
for these derivatives for the same limiting cases of the tail arrange-
ment that were considered for the pressure coefficients presented in
table I. For the limiting case BAy = 2, that is, for a vertical

tail with a sonic leading edge (the Mach line coincides with the leading
edge), the variation of BCYB’ BCZB: and CnB with BApg is presented

in figure 15. In a similar manner the variation of these derivatives
with BAy for BAg = 4 (the leading edges of the horizontal tail are sonic)

is presented in figure 16. From figure 14 the result that the yawing-
moment-coefficient derivative of the vertical tail CnB is finite for

BAy = O is at first sight surprising. One would expect all derivatives

to vanish when the disturbance surface (the vertical tail) vanished;
however, it is to be recalled that the derivative CnB is made non-

dimensional with respect to Syby and, although the yawing moment N
vanishes as Sy — 0, the ratio N/SVbV which is in essence the coeffi-

cient remains finite since by —> 0 as Sy —> 0 and SVbV gives an
infinitesimal of the same order as N when Sy ——> 0.
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An indication of the variation of CYB, CZB’ and CnB with Mach

number for fixed aspect ratios of the vertical and horizental tails can
be obtained from figures 17, 18, and 19, respectively. The results pre-
sented in these figures for supersonic leading edges (the Mach lines
behind the leading edges) were obtained from reference L.

Although the results of the analysis presented herein are for a
tail arrangement consisting of triangular horizontal and vertical sur-
faces, the results could be easily extended so as to include tails with
sweptback or sweptforward trailing edges but of zero taper (as sketched
b S i 53 20), provided the angle of sweep of the trailing edges is less
than the sweep angle of the Mach lines from the apex of the trailing
edges (supersonic trailing edges). This limitation follows of course
from the classic results of linearized flow theory that disturbances
propagate only downstream and the pressure coefficients presented
herein for the triangular surfaces would also be valid for sweptback
or sweptforward trailing-edge surfaces with the stated limitation.

It is of interest to note that the expressions for the pressures
presented in table I for the case where the leading edges of the hori-
zontal tail are sonic are also valid for the wing-—vertical-tail
arrangements sketched in figure 21, provided of course it is realized
that the wing must be at zero angle of attack and that the Mach lines
from the apex of the vertical tail that are in the plane of the wing
must intersect the trailing edge of the wing.

CONCLUDING REMARKS

Application of linearized theory has enabled an evaluation of the
lateral force due to sideslip CYB’ the rolling moment due to side-

slip CZB, and the yawing moment due to sideslip CnB for a tail

arrangement consisting of a vertical triangular surface attached to a

symmetrical horizontal triangular surface. A series of design charts

have been prepared which permit rapid estimates to be made of all the

derivatives for a range of Mach number for which the leading edges are
subsonic and the trailing edges are supersonic.

The expressions for the pressure coefficients determined, in addi-
tion to being valid for the plan forms considered herein, are also valid
for tail arrangements with sweptback or sweptforward trailing edges but
of zero taper, provided the angle of sweep of the trailing edges is less
than the sweep angle of the Mach lines from the apex of the trailing
edges.
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The expressions for the pressures also apply without change to cer-
tain wing--vertical-tail arrangements, provided the wing is at zero angle
of attack and the Mach lines from the apex of the vertical tail that are
in the plane of the wing intersect the trailing edge of the wing.

The solution presented for the two-dimensional "mixed type" boundary-
value problem and needed in the present analysis is fundamental for prob-
lems involving vertical- and horizontal-tail combinations and is suitable
for application to more complex systems than those considered herein.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 16, 1953.
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APPENDIX A

EVALUATION OF THE LINEARIZED DISTURBANCE VELOCITY
ALONG THE CONTOUR OF THE WING-FIN

ARRANGEMENT IN THE v-PLANE

The evaluation of the tangential disturbance velocity along the
wing-fin contour in the v-plane can be performed by an application of
techniques discussed by Muskhelishvili in his book on singular integral
equations (ref. 6).

First, the v-plane is conformally transformed into the z-plane
by use of the transformation

V2 + h2

(A1)
1+ he

zZ=x+ iy = ¢

where the plus sign is valid for x > 0 and the minus sign is valid for
X < 0. In the z-plane (see fig. 6) the image of the wing-fin contour is
a slot along the real axis (the x-axis). The branch cut (1,0,=1) in the
v-plane representing the original Mach circle retains itself along the
real axis in the z-plane.

Since the z-plane is a conformal map of the v-plane, the complex

velocities wue = u + iu¥, v, = v + iv¥, and W, = W + iw* which satisfy

the Laplace equation in the v-plane also satisfy the Laplace equation in
the z-plane. The given boundary values of u, v, and w and their
spatial derivatives which are constants along the real and imaginary axes

in the v-plane therefore remain constant in the z-plane along the real axis.

It will be found expedient to determine the variation of v-velocity
(the real part of vc) along the wing-fin image (from x = ~xp to

X = Xd)' Inasmuch as this lateral velocity is antisymmetric with respect

to the n-axis in the v-plane and the wing-fin contour is symmetric with
respect to the neaxis, it is necessary to consider a solution for v in
only the upper half of the v~plane and therefore in only the upper half
of the z-plane. Figure 6(b) is a sketch of the upper half of the z-plane
and shows the appropriate boundary values of v and v¥* along the real
axis. From the boundary condition that w = aV on the wing, it is
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possible to determine that v¥ = O (or constant) along the wing segment
xp, € x £ xg in the following manner. By using equations (6a) and (6Db),

the relation in the v-plane between v, and w, is found to be

e = c (a2)

Along the wing axis v = 1, and by using equation (A2) av* can be
expressed as

avk = — > aw (-Lgng1) (a3)

ql - q2

Now w = Constant along the wing segment 0 < n < d or dw = O; hence,
v¥ = Constant. This constant may be set equal to zero (see ref. 6]
This condition v¥ = 0 remains valid along the image of the wing segment

in the z-plane.

There is one factor in the transformation of the wing-fin contour
from the v-plane to the z-plane that requires particular attention.
Note that the point ih representing the leading edge of the fin in
the v-plane transforms into the origin in the z-plane and that the two
faces of the fin spread out along the real axis of the z-plane, one on
each side of the origin, and form a continuous segment (—xh,O,xh). Now

if the origin is approached from above along the line x = O, the
v-velocity will become infinite in the immediate neighborhood of the
origin even though the origin does not represent a free edge such as
Xg Where singularities in the boundary functions are usually allowed.

This discontinuity in v follows directly from the behavior of the
v-velocity in the neighborhood of the fin leading edge ih 1in the
v-plane. In this plane as the fin edge 1ih 1is approached from above
along it, the v-velocity becomes a singularity of order —1/2; hence,
in the z-plane as the origin (the image of the point ih) is approached
from above along iy, the v-velocity becomes a singularity of order -1.
The fact that the singularity in the v-velocity near the origin in the
z-plane is of -1 order arises from the double-valuedness of the trans-
formation from the v-plane to the z-plane. For the subsequent analysis
the point to remember from the present discussion is that the v-velocity
function does not continuously approach its prescribed values for all
points of the open segment -x, < X < Xy but becomes discontinuous as

the origin is approached along x = O. Along the remaining segments
defining the wing-fin image in the z-plane, the v-velocity can be shown
to approach its boundary values continuously except at free edges where
singularities are of course allowed.
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As indicated previously, the solution for Ve 1is based upon the

analysis of reference 6. In order to associate the present analysis
directly with the general treatise on boundary-value problems in refer-
ence 6, one additional transformation is needed; this transformation is

2! = g (Ak)
7 (xh + xd)

In figure 22 the transformed wing-fin contour in the z'-plane is sketched
and the corresponding boundary values of v along L' and v* along

L" are noted. It should be noted that only the upper half of the
z'-plane is being considered with boundary conditions prescribed along
the axis of reals. The problem at hand of determining v, may be named

the two-dimensional mixed-type boundary-value problem for the half plane.

It is well-known (see refs. 6, 8, and 11) that the solution to this
type of boundary-value problem essentially involves the solution of the
singular integral equation along L

(x")
f L—dx = in1(x") (A5)
L* -¢&

where

j[ indication that the principal part of the integral is to be
taken

L union of smooth nonintersecting arcs or a group of dis-
connected segments L' and L" along axis of reals

1(x") prescribed boundary function along L that must be at least
continuous within the open intervals L' and 1" of L
(2(x') in the present case would correspond to prescription
of v(x') and v*(x') along L' and L", respectively)

w(x') unknown function along L that is to be determined so as

to be holomorphic in the region excluding L and approach
on L the (&) condition wherever prescribed (y(x') corre-
sponds to vc(x') in the present instance)

In reference 6, Muskhelishvili presents a thorough study of the
integral equation (A5), with particular attention given to the existence
and uniqueness of solutions. The case where 1(x') is real and imaginary
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along alternating segments of L (mixed-type boundary values) has
received detailed attention. It is this case that is of primary inter-
est in the present analysis for the solution of v, along the given

boundary and is now considered in detail.

Specifically, the unique function v (x',0%) = v(x',0%) + iv¥(x',0%)

satisfying equation (A5) is needed; this function is to be holomorphic in
the upper half plane y' > 0, to be bounded at infinity, and to satisfy
the given boundary conditions (see figs. 22 and 23)

on L',

v(x',0t) = £(x") (A6a)
on L",
v¥(x',0%) = g(x") (A6b)

where f(x') and g(x') are continuous and finite along the open inter-
vals of L' and L" and are bounded and zero at one end point of each
interval but may have —1/2 power singularities at the other end point of
these intervals. In addition, it is assumed that g(x‘) for large values
of x' 1is subject to the conditions

1im g(x') = 1lim g(x')
x!'—> X'—y =0
and
e ) e S (@>0) (A7)
(xr)®
where
gw) = lim g(x')

X'—>to
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From the subsequent analysis it can be seen that inequality condition (A7)
is satisfied in the present case. The general unique solution for Ve
satisfying conditions (A6) and (A7) is given by Muskhelishvili (ref. 6,

P. 253) as

et - L D [T =L T R - G
" By(x') g [Re(e) & - X {Ro(x1)
where
f(¢) on L'
n(t) =
ig(¢) on L"
P
Ralt) = ;Si (g ) aj)
1Y
Ry(8) = T (& - v,)

and aJ-bj (i =1, 2, « + . p) define the disconnected segments ajb,,

agbp, . . . along the axis of reals (see fig. 23). The application of

the general solution (A8) to the particular case herein requires some
additional considerations. First note that in the present instance,
along L',

v(x',0") = £f(x',0t) = 0 (A9a)
and along L",
v¥(x',0%) = g(x',0t) = 0 (A9Db)

Now consider a modification of the given boundary-value problem in which
the singularity in v(x',0%) in the neighborhood above xo' is temporarily
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neglected. TFor this case Vv approaches zero uniformly as xo' is

approached from above. With this stipulation and conditions (A9) the
general solution (A8) reduces to the complementary solution (or homo-
geneous solution)

[ve(x")] = el\lz:_:_% (10)

where e, is an arbitrary constant. The constant e; has been evaluated

in the body of the paper (see eq. (16)).

Consider now the contribution to the solution of the singularity
in v (of the order -1) as Xo' 1is approached from above along Xx' = X

1
o *
This contribution to the solution is represented by the integral term on
the right-hand side of equation (A8) and can be evaluated by use of the
following expediency. Assume the boundary is cut at x,' and then dis-

placed an infinitesimal distance 2e¢ parallel to itself; this open

region is then filled in by a 2¢ segment of the x5 = xo' line that

is normal to the boundary. Now the modified boundary in the infinitesimal
neighborhood of x.' contains the singularity in v that was originally

0
in the immediate neighborhood above x,'. Along this modified portion of
the boundary between x,' - € and xO' + € the v-function takes on the
form

V(?o' it e) _ Constant (All)

where

and
W = X, + €

Equation (Al1l) mereliy represents the transformations of the original -1

singularity from the x' = x, ' line to the y, = O line, the unit sin-
y O 1 J

gularity redistributing itself as two -1/2 power singularities, one at
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xo' - € and one at xo' + €. Substituting the expression for v from

equation (All) for h(¢) in equation (A8) results in the following
expression for the singularity contribution to the complex v-velocity:

[ = 1im i\'x'_'_"’i =l "5 ~ P1|__Constent ag
i At Lt ay=x," o A d(ﬁ = Gﬂ)(“? € §) A

O—€

(A12)

Application of the mean-value theorem for the prescribed infinitesimal
range of integration allows equation (Al12) to be more simply expressed as

=X, '+€ at

F S o e (€ -2 - m (e - 5)

(A13)

"g - b
where e2' is an arbitrary constant and the term E————l has been made
- a
1

part of the constant. Integrating equation (Al3) and then letting € — O
yields

x'

. _ 1 i
Erc(x ):12 es mpepnyl ey (A1k)

The constant e, has been evaluated in appendix B.

This procedure for obtaining equation (A1l4) for l}c(x‘E]g is by no

means general; however, an evaluation of the integral of equation (A1l2)
together with detailed considerations of the modification of the original

boundary near x' = xo' (discussed previously) leads to the same expres-

sion for |v.(x')|, that is given by equation (Alk).
c 2

The complete solution for the complex v-velocity in the z'-plane is J
given by the sum of equations (A10) and (Al4). Transforming these rela-

tions to the z-plane by use of equation (Ak4) yields the following equation

for the v-velocity in the z-plane along the boundary -xh-g X £ X5t
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X.—Xh

;5—:—§ (A15)

e
vo(x,0t) = (él + 3?)

The real and imaginary parts of equation (Al5) correspond to equations (9)
and (10) that are used in the determination of the expressions for the
pressure velocity.
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APPENDIX B

EVALUATION OF CONSTANT €s

The constant e, may be evaluated by an integration of the w-velocity

(the downwash velocity) along the n-axis in the v-plane (fig. 5) from
point d (the image of the wing leading edge) to unity (the end point of
the Mach cone image). Since the w-velocity is constant (equal to: .aV)
along the wing segment O < = (a e)e—>0 and equal to zero at 1 = ali

then the integration of the downwash between the definite limits
Nn=(d-€ele_s0 and 1 =1 is a known quantity and the constant eo
is readily determined.

The ensuing analysis makes use of the z-plane (fig. 6) which, as
indicated in appendix A and the body of the paper, is obtained from the
v-plane by a conformal transformation. In the z-plane the downwash
velocity w(x,0") in terms of the u-velocity may be expressed as follows

(see egs. (7)):

2
w(x,O+) = lim |[-B _ u(x,O*)dx
e—>0 Af

(Xd+e S Xs l) (B1)

o)
The normal derivative — u(x,0t) may be expressed in terms of the known
A

u-velocity distribution over the wing-fin contour through the classic
relation (from refs. 6 and 11)

X3 uy(x")
ji u(x,0+) = - = ji ‘E———T dx' (—xh < < X35
oy T O Joxy X - ¥ ¥ e

where

Jl he X X, + X'
—._+__ezé_+_h> L__. (B3)

ul(x') =
B S X3 - x*
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oy

3
K?he functional notation — u(x,0f) 1is used to indicate

dy

S u(x,0") = lim E?—'u(x,y;].> Incorporating equation (B3) into

y—> ot

equation (B2) results in the following expression:

dl + he o) *q X, + X'
jl alx,ot) = - —u = 1 h + X .

5 23 '
y B X X - X Xd—X

xd Xh Xh + x!' . ( -
dx -X .
1 1 1 h = Xd_,
Xy, x'(x - x') de =%

xqg <xs1) (BY)

+

WA

Evaluating the integrals in equation (B4) and differentiating the result
with respect to x yields

d ( O+) dl + h2 (5xh + Xd - 2XpX3 X + Xy
— ulx = e
dy ’ B = 2x2 X - xd X - X3

(xg <x $1) (BS)

Insertion of equation (B5) for §L u(x,0t) into equation (Bl) yields the
Al
following integral expression for the downwash:

ql + h Xy + X
X3 2 X3 XgX

(xh + xd)(l = xd

xd(x - X4 P(x

(B6)




NACA TN 3071 )

where
P(x) = (l - xe)(x - xd>(x - xh)

and f on the integral sign indicates that the finite part of the inte-
gral must be taken. The evaluation of the integrals of equation (B6) have
been performed in appendix C. The following expression results for the
downwash:

l 1
E«(x,o’*)]x = e \1+ B2 \’;gﬂ—hEhK'(k) 5 & f{k)] (87)
4 = s

where K'(k) and E'(k) represent the complete elliptic integrals of

the first and second kinds, respectively, each with modulus dl - k2.
The quantity k 1is functionally defined as

L - xq, - \I(l - 5,2)(1 - x32)

s

= (B8)

The downwash expression (B7) can be compactly expressed as

E(X’O+)]id = ez\’l + he G (B9)

Then es is evaluated as

_,.___é (B10)
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where G in the z-plane is defined by

G = {%hK'(k) + E'ik{}\‘ L (B11)
Xd—xh

In the original space, that is, the XYZ-space (see fig. 1), the expressions
for k and G Dbecome

1 - BtoJ£2r02(1 - B2t02) + B2 2 - (l - B2t02) i
e (B12)

N ZoE) e D
\B2r2(1 - B26,2) + B25,2 - Bt,

G = = F%bK'(k) + E'(k{J (B13)
qBErOE(l - B22) + 8%t 2 - Bt, .
or
2, 2 2, 2 2, 2 D, oo
BA_ , |B°A B2A B2A B2A B2A
1 - }{J> i <} e >-+ i (1 B ) s
e L L 16 16 16 L (B1L)
o o2 o5
B[ By B°A,S  BA
N 16 16 L
BA
ok '
G = K (k) + = }ik) (B15)
2, 2 D, 2 D, 2
B
S ) , Bh  BAy
\ 4 16 16 L

The variation of k with BAy (AV is the aspect ratio of the vertical
tail) for different values of BAjf (AH is the aspect ratio of the

horizontal tail) is presented in figure 7. Similarly, the variation
of G with BAy for various values of BAp may be obtained from fig-

ures 8 and 9.
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APPENDIX C

EVALUATION OF INTEGRALS APPEARING IN THE EXPRESSION

FOR THE DOWNWASH

From appendix B the integral expression for the downwash is given
by

il i 2 al
Ew(x,0+):)Xd ) l%hg 2 IEBXh + Xd) o w7

Xg \I(l 2 x2)(x - xg)(x - xh)

1 1
xh”df = -%[ e
Xq X3 x\](l -xg)(x-xd)(x—xh) Jx, X V(l - x )(x- xd)(x—xh)

d

(xh + xd)(l - xdE) fj‘l e i)
Xl xq (¥ - xd)5/2 (1 - x2)(x - xp)

The index f indicates that the finite part of the integral must be
taken. The integrals appearing on the right-hand side of equation (C1)
are essentially elliptic and can be transformed into the standard form
(plus elementary integrals) by use of the linear transformation

k - xg
.
- Sl (c2)
k - x
1 - kxg

X

The transforms for Xq and Xy are

2k+k2xh+xh—\
255l = 5
k +2kxh+l
« (c3)
-2k + k%x3 + x4
Xh=
k2-2kxd+l )
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where

1 -xx5 - JZi - xhg)(l - xde)

X3 - *n

k =

Substitution of equations (C2) and (C3) into the downwash expression,
equation (Cl), yields

[E Y X+ X - T2 1 .
I_Y(T’O+_)_] 1/}{ = \Jl -; h2 ez\l 2k {( h d)(l k ) J a

Xy k(k - xq) 1 Y(72 - (1 - x2:2) ~

i(x, + xd)(l - x2) [l . i(x, + xd)(l - x2) Il v
K FEEEEE— I ‘B/EI—‘_— ’
Xgk L_l/k (r kz) T it Xgk l/k (1'2 - _klé_) T2

21 - x4°) - 1 - k3.2
2 2 &s (ck)
xq(K? - 2xgk + 1) Jy | -1

It is obvious from inspection that equation (Ch) can be written in
a more compact form; however, the presented form of equation (ele) is
appropriate for rapid examination of limiting cases of the wing-fin
arrangement (for example, when xp = O, that is, when the fin disappears,

the corresponding downwash integral is readily ascertained). The inte-
grals appearing in equation (C4) are readily evaluated with the aid of
the following substitutions:

1 = sn(u/k)

1l - 12 = cn(u/k) (C5)

ﬂl - %% = an(u/k)
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where sn(u/k), cn(u/k), and dn(u/k) represent the Jacobian elliptic
functions of argument u and modulus k. The evaluation of the inte-

grals is as follows:

1 e X
1 -k
\’—__T_ d«r:}-f dn®u du = E'(k) - K'(k)
72 ~ i i
1/x K+iK'

+

In order to evaluate the finite parts of the integrals

Nl BE
dt T
and

1/k (rE P kig-flgxlrg =i 1/k <12 - £1§)5/2‘1T2 - 1

the following relation for the finite part was found most convenient:

fPb b
A(dar  _ | A1) -A(a) . _bA(e) (c6)

o (2-232 [ (o232 2P o a2

where A(1) 1is an integrable function in the closed interval ab.
Studies of finite-part concepts are presented in references 15 and 16,
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Application of equation (C6) results in the following evaluations of the
preceding integrals:

£l i 1
dt dt K dt K

1/k QE _ §§>3/2r72 o1 } 1/k QQ _ £§>3/2 o Tk i (12k2 ) 1)3/2 ik'2

£ N
k3 d; + _k - cn; du -
dncu ik Fiiy At ik'2@

K+iK'

)
i%g[@'(k) - k'(x)

[k 1 1
T dt B T dT 1 dt '
3/2 B 2 "kt 2" T2

1/x (12 ] kl_§> a1 1/ (Te _ k%>3/ (-1 ” (Tz _ %>5/ i

k'
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TABLE I.- SUMMARY OF PRESSURE COEFFICIENTS FOR VARIOUS LIMITING CASES
OF THE GENERAL TAIL ARRANGEMENT SHOWN IN FIGURE 1

Limiting
- conditions Pressure coefficient Remarks
b Slender tail
(Ag — 0; Ay — 0)
2
- lim G=w (Q) =k_a<1+ to to + (12 + t
b Ay—0
v AL 2+ 2 ro2 + o2 - (12 + t,2
Ag— 0 q 0 i o 0 1 0

or
B2 3 7 A hpe \_l" to + t2 - 2 R Braluated in
( -2 e - VeZ - tq\i Vo2 + 62 -2 + 152

Bto

v [16 e % 'n] to - fi2 - #2
b Vg2 Vo2 - r?}‘“ro? + 12 + {2 - 2

Vertical tail alone
(Ag = 0; 0 < BAy £ 2)

Bt IR ()
1 - (1 - Br 2

Evaluated in
_ ) ref. 13
Leadi. edge of vertical tail sonic
BAy = 2; 0 SBAR S 4)
(g) Jsfp, o /Bt + (P2 (1 - $2t.2) + B2t 2 |
A “12(1-321;02)+t<,3] 1 B2 - Bt 2) 4 B2y 2 ‘
\
*
l v (%)H = - 2 1+ 2o x ‘
« 2 2
\L - B2t,2 ﬁ’_ 2 ..ﬁ_.
J 1- B2 1 - B2
G-y ZBt g(um:o)
! 0
: 2__=x BAg Bty ©
- = L+ + -
} =i e B
P
‘ 1-2 [1-82¢2 1.2
‘ Bto S e
A Bt, \l \1- 82t 2 Vl - PPt 1 - B2
O EEE T ) R I, (R
1- 82,2 1 - B2 1-8%2 Y1-18%2 1-38%2
I Leading edge of horizontal tail sonic
(ohg = b5 0 Bay 5 2)
m:—m,h e (92) O bl CoFssenints
or q/y G 5] 2 eSO}
B\Jl - F -2 to pressure
52r°2‘r-3-2t—2 o Fto?ro loading o