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Spanwise lift distributions have been calculated for nineteen 
unswept wings with various aspect ratios and taper ratios and with a 
variety of angle-of-attack or twist distributions, including flap and 
aileron deflections, by means of the Weissinger method with eight control 
points on the semispan. Also calculated were aerodynamic influence coef-
ficients which pertain to a certain definite set of stations along the 
span, and several methods are presented for calculating aerodynamic 
influence coefficients for stations other than those stipulated. 

The information presented herein can be used in the analysis of 
untwisted wings or wings with known twist distributions, as well as in 
aeroelastic calculations involving initially unknown twist distributions. 

INTRODUCTION 

In the design and development of an airplane, a knowledge of the 
spanwise lift distribution on the wing is important in predicting the 
structural loads and the stability characteristics. For high-speed air-
planes having flexible wings, the calculation of the spanwise lift dis-
tribution is an aeroelastic rather than a purely aerodynamic problem. 
In aeroelastic calculations means are required for calculating the span-
wise lift distribution for angle-of-attack (or twist) distributions which 
are initially unknown. Aerodynamic influence coefficients constitute the 
most convenient of these means. 

One of the most satisfactory techniques developed in recent years 
for calculating the spanwise lift distribution on a wing in subsonic flow 
has been the Weissinger L-niethod (ref. 1), which can be applied to a 
large variety of plan forms and yields solutions of sufficient accuracy 
for all practical purposes without requiring an unduly long time for the 
calculations. This method may be considered. as a simplified lifting-
surface theory because the calculation of the lift on the wing is treated
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as a boundary-value problem, the boundary condition being that the down-
wash angle induced by the bound and trailing vortices is equal to the 
geometric angle of attack at the three-quarter-chord line. 

In the present paper, symmetrical and antisymmetrical lift distri-
butions and some associated aerodynamic parameters have been calculated 
by means of the Weissinger method with eight control points on the semi-
span for several continuous and discontinuous angle-of-attack conditions 
on nineteen unswept wings having various aspect ratios and taper ratios. 
A convenient matrix formulation of the Weissinger method was used in con-
junction with the Bell Telephone Laboratories x-66714- relay computer at 
the Langley Laboratory to make the calculations. This formulation is 
described in appendix A. 

Aerodynamic influence coefficients have been calculated for these 
nineteen wings for a certain prescribed set of stations along the span 
and are presented herein, and several methods for calculating aero-
dynamic influence coefficients for any arbitrary set of stations from 
the numerical results of this paper are also presented. The influence 
coefficients calculated in this manner can be used in aeroelastic anal-
yses similar to that of reference 2. 

SYMBOLS 

A	 aspect ratio 

b	 wing span 

bail	 aileron span 

bf	 flap span 

• CBM	 root bending-moment coefficient for unit angle of attack, 
2 x Bending moment 

qSb 

CD	 induced-drag coefficient at a unit angle of attack 

CL	 lift coefficient at a unit angle of attack 

lift-curve slope per radian for additional-te loading 

CL1/2	 lift, coefficient for half of antisymmetrically loaded wing at 

I
a unit tip angle of attack,

q
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Rolling moment 
C 1	 rolling-moment coefficient,

qSb 

= _Clp 

C 1 	 coefficient of damping in roll 

C 1 /a5	 rolling-moment coefficient for unit aileron deflection

c wing chord 

average chord,	 S/b 

c 1 section lift coefficient 

L'CBM]
integrating matrix for 	 CBM	 (see appendix A) 

L'CL]
Integrating matrix for 	 CL	 (see appendix A) 

LICLl/
integrating matrix for	 C 12	 (see appendix A) 

L'
Integrating matrix for	 C1	 (see appendix A) 

L112 lift on one semispan 

M free-stream Mach number 

[QI aerodynamic-Influence-coefficient matrix 

q dynamic pressure 

S wing area 

V free-stream velocity 

y, lateral ordinates 

y0 spanwise location of discontinuity 

y spanwise center-of-pressure location 

a angle of attack, radians

3 
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effective angle of attack for unit flap deflection, dc1/d5 

1'	 vortex strength 

dimensionless vortex strength,	 = cc1 

5	 flap or aileron deflection angle, radians 

o cos y* 

00 - cos y* 

-1 * 
iCOS	 Ti 

A	 sweepback angle, deg 

A	 taper ratio 

Subscripts: 

a	 antisymmetrical 

au	 aileron 

C	 continuous 

D	 discontinuous 

f	 flap 

L	 left 

R	 right 

s	 symmetrical 

t	 tip 

Superscript: 

*	 dimensionless with respect to semispan b/2
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Matrix notation: 

	

[ j	 row matrix 

	

}	
column matrix 

	

[ ]	 general matrix (not a row or a column matrix, but need not 
be square) 

Li diagonal matrix 

	

[11	 unit (identity) matrix 

In matrix notation, a prime indicates the transpose of the matrix. 

PRESENTATION OF CALCULATED RESULTS 

Spanwise Lift Distributions 

Geometric characteristics of the nineteen plan forms treated in 
this paper are indicated, in table I. Lift distributions due to the 
following continuous symmetric and antisymmetric angle-of-attack dis-
tributions have been calculated for each of these plan forms: 

Symmetric angle-of-attack distributions: 

Constant (a = 1) 

Linear (a= II) 
uaratic (a	 2) 

Cubic (a = ly*31) 

Straight-line (a = 

Antisymmetric angle-of-attack distributions: 

Linear (a = y-3) 

Quadratic (a =	 for y* ^ 0; a = _y*2 for y* a) 

Cubic (a = *3) 

Quartic (a = y* for y* 0; a = _y* for y* 

Quintic (a = 5)
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The straight-line angle-of-attack condition was included to repre-
sent actual structural twists where the surface of the wing is generated 
by straight lines so that the product c*a , the deflection of the leading 

edge, varies linearly with y*; that is, 

c*a = ct*y*czt 

or, for unit twist at the tip,

* 
Ct * 

a =	 y 

For untapered wings, the straight-line lift distribution is the same as 
the linear lift distribution, and for wings of zero taper ratio, it is 
undefined. 

Lift distributions for flap-ty-pe and aileron-type angle-of-attack 
distributions are also presented. A correction which has been made for 
the spanwise discontinuity in the angle of attack is derived in 
appendix B. The values of b f/b and bail/b (ratios of the flap span 

to the total span and the aileron span to the total span, respectively) 
for which the lift distributions have been calculated are 0.1, 0.2, 0.3, 
O.li., 0. 7, 0.6, 0.7, 0.8, 0.9, and 1.0. As is usual, the flaps have been 
taken to be inboard and the ailerons outboard. The lift distribution 
for any flap or aileron configuration may be obtained, however, by 
linear superposition; thus, the lift distribution for an outboard flap 
extending, for example, from y = 0.5 to y* = 1.0 can be obtained 

/bf 
by subtracting the lift distribution for the inboard flap 	 = 0.7 

from the additional lift distribution 	 = 1.0). A similar procedure 

can be used for inboard ailerons. 

The lift distributions pertaining to each plan form are given in 
one figure, parts (a) and (b) showing the lift distribution due to sym-
metric and antisymmetric continuous angle-of-attack distributions, 
respectively, and parts (c) and (d) showing the lift distribution due 
to flaps and ailerons, respectively. Lift distributions for plan forms 
with an aspect ratio approaching zero have been taken from reference 3 
and are included herein in figure 1 for the sake of completeness. (As. 
indicated in ref. 5, the lift distribution for a wing of very low aspect 
ratio is independent of the plan form, provided the trailing edge is not 
reentrant.) The lift distributions on the nineteen wings considered in 
the present paper are presented in figures 2 to 20. Table I serves as 
a table of contents for this group of figures.
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Aerodynamic Parameters 

The aerodynamic parameters C, CBM, •S*, CD., Cld, and C12 
for the nineteen plan forms considered are compiled in table II. The 
values of CL and CBM for a unit effective flap deflection are pre-

sented in table III, and the values of CL	 and C 1 /a5 for a unit 
1/2	 6/U 

effective aileron deflection are presented in table TV. 

Aerodynamic Influence Coefficients

for Stipulated Stations 

Aerodynamic influence coefficients for symmetric and antisymmetric 
lift distributions were obtained as shown in appendix A and are pre-

sented as the matrices [Qj1 and [] in tables V(a) and v(b), respec-

tively. Each influence-coefficient matrix in the table applies to a 
given plan form. These influence-coefficient matrices are used to cal-
culate the spanwise lift distribution for any continuous angle-of-attack 
condition from the following matrix expressions: 

= C L] fas 1 
and	 (1) 

?a} = Ci [QaJ aa} J 
for the symmetrical and antisymmetrical distributions, respectively, 
where a is the angle of attack at stations y = 0.9808, 0.9259, 
0.8315, 0.7071, 0.5556, 0.3827, 0.1951, and 0 and	 is the desired 
lift at these stations. In this paper the convention is that the angle 
of attack for the station nearest the wing tip (y* = 0.9808) is the 
first element of the angle-of-attack matrix .ja} and the lift at the 

same station is the first element of the lift-distribution matrix 

The matrices [Q5] and [Qa] of table V are arranged accordingly. 

DEVELOPNT OF AERODYNAMIC INFLUENCE COEFFIC IEMS 

FOR ARBITRARY STATIONS 

The influence coefficients described in the preceding section are 
satisfactory for many purposes; for instance, the stipulated stations at
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which the lift is given are convenient for. plotting spanwise lift distri-
butions because the points are concentrated near the wing tip where the 
curvature of the lift distributions is greatest. In some cases, however, 
other considerations may determine the points on the span at which the 
lift is to be calculated. For instance, when the influence coefficients 
are to be used in an aeroelastic analysis, the location of the stations 
may be dictated by the structural characteristics of the wing; also, if 
lift distributions are to be calculated for the sake of comparison with 
experimental results, this comparison can be facilitated by calculating 
the lift at the same stations at which it is measured and thus avoiding 
the necessity of graphical or numerical interpolation. 

The following sections describe several methods for developing 
aerodynamic influence coefficients for arbitrary stations. 

Method Using Interpolating Matrices 

One way of constructing an influence-coefficient matrix for any 
stations from the matrices presented herein is to calculate interpo-
lating matrices which give the angles of attack at 	 = 0.9808, 0.9239, 
0.8315, 0.7071,	 0.3827, 0.1951, and 0 in terms of the angles of 
attack at the given stations and the values of the lift at the given 
stations in terms of those at the stations y* = 0.9808, 0 . 9239, 0.8315, 
0.7071, 0.5556, 0.3827, 0.1951, and 0. The desired influence-coefficient 
matrix would then be obtained by postmultiplying the one given herein by 
the angle-of-attack interpolating matrix and premultiplying it by the 
lift interpolating matrix. 

In order to illustrate 
matrices are calculated for 
linear interpolation. (The 
given and those at which thi 
but here, as in most cases, 
of convenience.)

the natu 
stations 
stations 
lift is 

they are

e of these calculations, a pair of 
at every tenth of the sexnispan by 
at which the angle of attack is 
to be found need not be the same, 
chosen to be the same as a matter 

With linear interpolation, 

a09808 = 0.808ai.o + 

a0 9239 = 0. 239Z1 0 + 0. 6ia0 

a0 8315 = 0. 315a0 + 0. 685a0 8 

a0 =a0
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which can be written in matrix form as 

a09808 0.808 0.192 0 0 0 0 0 0 0 0 0 

Crrj9239 0.2390.761 0 0 0 0 0 0 0 0 0 a09 

0 0.315 0.685 0 0 0 0 0 0 0 0 a08 

a07071 =	 0 0 0.071 0.929 0 0 0 0 0 0 0 a07 

a0.5556 0 0 0 0 0.556' O. 1i114 0 0 0 0 0 aU6 

a0.3827 0 0 0 0 0 0 0.827 0.173 0 0 0 a0, 

0 0 0 0 0 0 0 0 0.951 0.01 9 0 

a0 0 0 0 0 0 0 0 0 0 0 1.000 a03 

a02 

a01 

a0

where the rectangular matrix on the right side of the equation is the 
desired angle-of-attack interpolating matrix. 

Similarly, for the lift distribution, 

(This information is known 'rom physical considerations; to calculate 

P 10 by extrapolation from	 and	 would give a 

spurious value.)

o.o685i 
0.9 = 0.8315 +	 0.9239	 O.83l5)

= O.714.lr*O 9239 + O.259I*0 8315 

*	 *	 °°929(r*08315 - r*07071) 0.8 = 0.7071 +
0. 121414. 

= O.7) 7F*o83i5 - O.253F*0707l 

- 
0 - 0 
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or, in matrix form,

r*10 0 0 0 0 0 0 0 0 

F 0 O.7!l 0.259 0 0 0 0 0 

F*8 0 0 0.71.7 0.253 0 0 0 0 

0 0 0 0.953 0.0117 0 0 0 

F*o . 6 0 0 0 0.293 0. 701 0 0 0 

= 0 0 0 0 0.679 0.321 0 0 

0 0 0 0 0.100 0.900 0 0 

0 0 0 0 0 0.559 0.141 0 

F0.2 0 0 0 0 0 0.026 0.9714 0 

0 0 0 0 0 0 0.513 o.li.87 

0 0 0 0 0 0 0 1.00

* 
£ 0.9808 

* 
r 0.9239 

8315 
* 

r 0.7071 
* 

F 0.5556 

r*o.382? 

* 
F

*
FO 

where the rectangular matrix on the right side of the equation is the 
desired lift interpolating matrix. 

Although linear interpolation is by far the simplest type, the 
results obtained with it are not so accurate as a higher-order interpo-
lation procedure. Parabolic interpolation should be satisfactory for 
the angle-of-attack matrix and for most of the lift-distribution matrix, 
except near the wing tip. The numerical factors required for parabolic 
interpolation can be calculated by means of Lagrange t s interpolation 
formula for an mth degree polynomial

m+ 1 tf*	 * 
m+l	

:i:i 
f (y*) =	 f(y*)i=l 

k=1	 mi	 * 
II 'Y k -	 I 
i=1 
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where f(y*) represents either the lift or the angle-of-attack distri-
bution, y* is the station at which f(y*) is to be determined by 

interpolation, and y*1,	 2' •	 . are the stations at which f(y) 

is presumed to be known. The prime mark on the product signs is the 
conventional designation of the fact that the term for i = k is to be 
omitted. For parabolic interpolation (m = 2) this formula reduces to 

(h 
= f(Y*l)(

-	 2)(h -	 + 
- y*2)(y*1 - y*3) 

(h -	 l)(Y*h -	 3) + 
- y*1)(f2 - y*3) 

(h
- y*)(y*

-	 2) 
-	 1)(y*3

-	 2)

Near the wing tip the lift distribution cannot be approximated 
accurately by an ordinary parabola but can be represented instead by a 

1/2	 3/2 
linear superposition of the two functions (1 - y*)	 and (1 - 
as suggested by V. M. Falkner. With this approximation the desired inter-
polating factors for y* between 0.9239 and 1 are the two elements of the 
row matrix obtained by postmultiplying the row matrix by the square matrix 
in the equation 

= [(l - y*)h/2 r 9.652 

(i -
	 835

-1.223 i r 0.98081 

63 . 7o LF 0.9239J 

For y* = 0.96, for instance, the factors obtained in this manner are 

0. 9151 and 0.2651, so that 

0.96 = o.9157r*O 9808 + 0.2651F*o39 

lagrange 's general interpolation formula can be used for higher-
order interpolation (in > 2), but the effort entailed in calculating the 
interpolating factors is not generally justified by the increase in 
accuracy obtainable compared to parabolic interpolation. 
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Interpolating factors for a and 	 can also be obtained by 
representing these functions by Fourier series in -3. For the lift dis-
tribution the trigonometric interpolation formula 

n	 n 
r*() = 2 ::i r(1) :i sin	 sin Jh 

n+11...1	 j=l 

can be used, where n = 15 for the calculations in this paper, and 
where, as in this paper, the values of i 	 are at equal increments 

=	 . For the angle-of-attack distribution this formula is not 
n+1 

applicable, because the angle-of-attack distribution cannot be repre-
sented accurately by a finite sine series and because the angle-of-
attack values are presumed to be given at nonequal increments in '8. 
(If they were given at eight equal increments no interpolation would be 
required..) Although in principle a matrix-inversion method could be 
based on an expansion of the angle-of-attack distribution in a cosine 
series, the matrices to be inverted are generally ill-behaved so that 
the results are likely to be of doubtful accuracy. 

Methods Using Green's Function 

Basis of methods.- Although the aerodynamic-influence-coefficient 
matrices discussed in the preceding section have the property that when 

postmultiplied by the angle-of-attack matrix [a} and multiplied by the 

lift-curve slope they yield the lift-distribution matrix {r*], their 

individual elements have no direct physical significance. On the other 
hand, a structural influence coefficient has the significance that it 
represents the deformation at one point caused by a unit concentrated 
force at another point. A corresponding type of aerodynamic influence 
coefficient would represent the lift at one point y due to a "unit 
concentrated angle of attack" at another point y0*. This angle of 

attack is actually an angle-of-attack distribution represented by a 
Dirac delta (impulse) function of the distance along the span, that is, 
a function which, in the limiting case as Ly* approaches zero, is 

zero everywhere except in the interval y0* y* y0* + y0* where 

the ordinate is equal to 	 the area under this function would 

always be 1, which justifies the use of the term "unit" in connection 
with this distribution. The desired influence coefficients would then 
be the values (at various values of *) of the lift distributions due 
to these angle-of-attack distributions for various values of y0*.
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The desired lift distributions, which constitute a ty-pe of Green's 
function for Weissinger's integral equation, can be obtained as follows. 
Let p*(y*y*) be the lift distribution for a unit effective deflec-
tion of a flap which is located between y* = y0* and y* = 1. Then 
the lift distribution for an angle-of-attack distribution for which 
the angle of attack is zero everywhere except in the interval 

y* y0* + y0* , where it is	 is given by 

- r*(y*,yo*+ir0*) 

Ar * '-V 

The lift distribution corresponding .to the unit concentrated angle-of-
attack distribution therefore is the limit of this expression as 

F*(r3f , y0*) 

	

approaches zero, which is - 	 by definition. For any given 
^flr * 
*10 

angle-of-attack distribution the lift distribution can be determined by 
linear superposition of lift distributions of the Green's function type 
as follows:

p1 r*(y*) 
= J a(y*)	 dy0*	 (2) 

1 

The desired Green's function can thus be obtained by calculating 
p*(y*y*) and taking its partial derivative with respect to y0*. A 

more convenient approach, however, is to consider synirnetric and anti-
symmetric loadings separately. By a repetition of the preceding argu-
ment the following results are then obtained: 

1	 (y*y*) dy 
*	 (3) 

	

F*(y*) =10 a5(y0*)	 y * 0 

1	 aii(y*,yo*) dy
0*	 (Ii.) 

	

F*a(y*) 
= f	 (y0*) 0 

where, as elsewhere in this paper, F f is the lift distribution (as a 

function of y*) for an inboard flap extending over the interval 
_y0* y* ^ y*, and F*ail is the lift distribution for outboard 

ailerons extending over the intervals y 0 ^ I y*I 1. The argument 

y* in cL(yQ*) can be regarded simply as a variable of integration 

corresponding to y*•
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The desired Green's function can thus be obtained from the flap and. 
aileron distributions given herein by differentiation with respect to 
y0*. The results presented in parts (c) and. (d.) of figures 1 to 20 can, 

I	 bf 
for instance, be cross-plotted as functions of y0* (y0* =	 for sym-

bail 
metrical loadings, and y0* = -
	

for antisyrnmetrical loadings) for 

given values of y* and the differentiation then performed graphically. 
The graphical procedure, however, is tedious and relatively inaccurate. 
Similarly, numerical differentiation of these lift distributions would 
tend. to be inaccurate. Two numerical procedures which avoid. differenti-
ation of the lift distributions are therefore presented. in the following 
sections; one consists in calculating the desired. Green's functions 
directly, and the other consists in using derivatives of the angle-of-
attack distribution. 

Direct calculation of Green's functions. - Inasmuch as the desired. 
Green's functions are lift distributions corresponding to angle-of-
attack distributions defined by delta functions, they can be calculated 
directly provided the singularities in the angle-of-attack and lift dis-
tributions are taken into account. Appendix B of this paper describes 
the method by which the singularities in the flap- and aileron-type 
angle-of-attack and. lift distributions were taken into account. This 
method is extended. to the case of impulse-type angle-of-attack distri-
butions in appendix C. 

The resulting lift distributions rn* 5 1 and r*a ' are identical 

(y* ,y)	 _____________ 

with the Green's functions 	 and -	 . They 

0	 0 

contain logaritbmic singularities at y0* = y* which must be split off 

before the integrals in equations (3) and -) can be evaluated numeri-

cally. For a symmetric distribution the procedure is as follows. For 
a given value of y*,

r1 
F*(y*) =J [a5(yo*) - 5(y* r*5 t( y*,y0*) dy0* + 

0 

a3()f

1 
r*I(,y*)dy*	 (5) 

The first integral does not contain any singularity; the integrand is 

zero at y0* = y* . The second integral can be evaluated explicitly and 

is
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where p*(y*) is the lift distribution for a = 1 over the entire 

span, so that the right side of equation (5) can be evaluated numerically 
without difficulty by using any set of integrating factors appropriate to 
the stations of interest, such as those of Simpson's rule if the points 
are equally spaced and the number of intervals between y* = 0 and 
y* = 1 is even. 

If these integrating factors are written in the form of a diagonal 

matrix and designated by Lii, equation (5) can be written as 

r* (y*) =	 s t ,yo*)J Lhi{ syo	 a5(y*)] + a5(y*)r*51(y*)	 (6) 

Now, if the row matrix L'] is defined as 

L1 -]Lo 000 0 100 ... 0] 

with the element 1 at the position corresponding to y* and zeros 
elsewhere, if the matrix	 is defined as a square matrix all the 

rows of which are equal to ] y*], and if L11 represents the unit 
matrix, then 

= r*st,yo*L11[L1i - 

ç*() L] 
{a5(y0*) 

=	 s(*) L] +	 t(,yo*)j L'l [[11 - 
or

r*s(y*) = c Qja5(yo*)}	
( 7) 

	

where the matrix IQ I	 defined by 
L?J 

r*s (y* )	 I 

	

LJ L c	 LL •c	 [I1[Lli-L *	 ( 8)
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is the row matrix corresponding to y of the desired influence-
p*s (y*) 

coefficient matrix [QS1• The values of	 can be obtained 
U	 CT 

directly from the curves labeled "Constant" of parts (a) or the curves 
bf 

for	 = 1.0 of parts (c) of figures 1 to 20, and the calculation of 

r*st(y*,y0*)
is described in appendix C. This calculation must be 

ttL 
repeated for all other values of y* to obtain Q, so that, finally 

lr*s(y*)1 rr*St(,yO*)Ll 

-L51	 (.9) 
L= L c	 LL C	

] 

where LIS1 Is a diagonal matrix in which the elements are the sums of 
the elements in the rows of the matrix 

r *5 '(,y0*) 

L C	 ILhl 

Similarly, for an antisymmetric distribution the singularity can be 
split off in several ways, one of them being the following. For a given 
value of y* equation ( ii-) can be written as 

1 
F*a (Y*) =	 (y*) -	 (y*F*t(y*,y0*)dy0* - 

where *1(y*) is the lift distribution for a unit effective displace-

ment of a full-span aileron. In matrix notation this relation may be 
written as

F*(y*) = CjdI*a(yo*)	 (10)
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where

L	 = L r*() j + LFat (re,	 [ [i - Li1]	 (11) 
F*ai(y*)	

bail 
The values of	 can be obtained from the curves for 	 = 1.0 

C	 b 

of parts (d) of figures 1 to 20. This procedure must again be repeated 

f or each value of y* to obtain all the rows of [Q with the result 

that

-	

= k*ai (y* l + 

Ldjd	 L	 1LI1La1	 (12) 

where the diagonal matrix 
L>11a1 

consists of the sums of the elements 

of the rows of the matrix

[r*a 
t ( f *)1 L'l 

In order to indicate the extent of the effort involved in calcu-
lating these influence-coefficient matrices, a step-by-step summary of 

these calculations is given for 	 with the obvious modifications 

this procedure also applies to [Q. In the first six steps Green's 

functions are calculated in accordance with the procedure indicated in 

appendix C in the remaining steps [II is calculated in accordance 
with the previous discussion in this section. 

(1) For the values of	 cos1 y0* of interest, the values of 

sin ne0 (for n = 1, 3, 5, . . . 15) are obtained from trigonometric 

tables and assembled. in a matrix 4in nOo}.
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(2) This matrix is premultiplied by the matrix [[cos nI1 1 
(See table VI.) 

(3) The resulting matrix is premultiplied by the matrix [Fal C0fl 

taming the elements F(r*,y*) defined in appendix A. The evaluation 

of this [Fal matrix is probably the most time-consuming part of the 

calculation because it does not lend itself very readily to high-speed 
automatic computation. For any one of the nineteeh plan forms considered 

in this paper, the matrices 2 'aJ and 2 	 are available upon request 

from the National Advisory Committee for Aeronautics. 

( it-) The resulting matrix is premultiplied by the matrix [Q] given 

in the present paper for the plan form of concern, and the matrix obtained 
in this marmer is multiplied by the constant 1/it. 

(5) The values of	 are calculated from equation (C3) for the 

given values of 00 and for 8	 n = 1, 2, . . . 8; they are then 
16

I1' 5D 
divided by C 1 and assembled in a matrix I	 the columns of which 

ty	 LCtr 
pertain to given values of 0. 

(6) The matrices obtained in steps ( It-) and (5) are added to obtain 
11s the matrix ILC1tz

r5(y*) 

(7) Values of	 are obtained by reading the values of 

at y defined by y* cos	 n = 1, 2, . . . 8, from figures 2 
cC	 16 

to 20 for a constant value of a 

values are assembled in a diagonal matrix
LC 

and multiplying them by	 these
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(8) The matrix obtained in step (6) is postmultiplied by the 
diagonal matrix of integrating factors Lii. 

(9) The diagonal matrix L1i	 is assembled from elements calcu-
lated by adding the elements in a given row of the matrix ootained in 
step (3). 

(io) The matrices obtained in steps (7) and (8) are added to each 
other and that obtained in step (9) is subtracted from the sum. The 

resulting matrix is the desired matrix 	 as defined in equation (9). 

The entire calculation thus involves the calculation of 8P values 
sin nO0 

of	 and of	 (P being the number of stations D 

four matrix multiplications, and three matrix additions, as well as the 

calculation of the 6 elements of the matrix [F, if this matrix is 

not available. 

Calculation using spanwise derivative of the angle-of-attack distri-
bution.- Equation (3) can be integrated by parts to yield 

	

nl	 (y0*) * 

	

= a$(1)r*f(y*,1) -J	 * F f (y*,y0*)dy0* 	 ( 13) 
0 

where F*f(y*,1) is the lift distribution for a unit effective deflec-

tion of a full-span flap. Similarly, integrating equation (1) by parts 
yields

l 
I*a(y*) =
	 y *	

ji(y*,y*)dy*	 (]A) 
Jo 

Here again the argument y0* in a(y0*) is merely a variable of inte-

gration, corresponding to y*. In these equations the lift distri-
butions F*f and Fail serve as influence functions, so that no Greents 

functions need be calculated. Furthermore, neither these influence 

functions nor, in most cases of interest, the functions 	 0	 have 
0 

singularities in the range of integration, so that the numerical evalu-
ation of the integrals of equations (13) and (lii. ) can be effected very 
readily.
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With a set of integrating factors Lii for the stations of interest 
pl	 (y *) 

and the identity a5 (1) = a5(0) + J	 ° dy*, equation ( 15) can be 
0	 Yo 

written as

= ;(o)r*f(f,1)} + L[r*f (,l)1 - 

[r*f (f, y* ['1 
f (Yo* )1 

*	
(15)

oJ 

where [p*f(l] is a matrix all the columns of which are equal to the 

column matrix <[ (y* 1)]> and [Ii	 the diagonal matrix consisting 

of the integrating factors. Equation (i) can be rewritten in terms of 

a new influence-coefficient matrix 	 defined by 

['i [L'	
*_(fYO*)1[f]	

(16) c	 Jj 

= as(o)r*f(y*,l)} + CL	 (17) 

Lo j 

Similarly, with a new influence-coefficient matrix La] defined 

as 

by

_*_l(Y*,Yo*)1LI1	
(18) 

LQlalmLraicld	
]
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equation (A) can be written as 

= CldLQ'a]
a(Yo* 

* L°J )1 (19) 

The matrices	 L's1	
and [Q'al	

are based on the assumption that

is nonsingular and continuous. However, this assumption is vio-

0 
lated when a5 is discontinuous. Discontinuities in a result from 

control-surface deflection or from deflection of parts of the wing rela-
tive to the rest of the wing and can be treated in the manner indicated 
in appendix B or, more simply, by superposition of the lift distributions 
given in figures 1 to 20. In the angle-of-attack distributions for which 
influence coefficients are particularly useful, namely those due to 
structural deformations, discontinuities cannot occur. 

Discontinuities in	 can arise if simple beam theory is used 
0 

for wings with discontinuous stiffness distributions. Actually this 
theory is inapplicable for such wings, and the spanwise slope of the 
twist is never discontinuous. If, however, simple-beam theory is to be 
used anyway for the sake of convenience and because the errors involved 

are considered to be acceptable, then the matrices	 and 

can still be used provided one of the stations is located at the point 
of the discontinuity in the stiffness distribution and provided suitable 
integrating factors are used. 

The objection may be raised against the influence-coefficient mat-

rices	 and 
['ai 

that they do not actually express the lift 

distribution in terms of the angle-of-attack distribution but rather 
require its derivative. Inaslnuch as the angle-of-attack distribution 
can always be reduced to a continuous one by splitting off the discon-
tinuous part and treating it as described elsewhere in this report, the 
derivative of the angle-of-attack distribution can be obtained numeri-
cally by using numerical differentiating factors obtained from any text 
on numerical analysis. These differentiating factors can be assembled 
into a differentiating matrix which when postmultiplied by the matrix 
of the angle-of-attack values yields a matrix of values of the spanwise 

derivative of the angle-of-attack distribution. The matrices 

and LQ t al can then be postmultiplied by this differentiating matrix 
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in order to obtain new influence-coefficient matrices which express the 
lift distribution directly in terms of the angle-of-attack distribution. 
However, the main advantage of the method outlined in this section is 
that in aeroelastic calculations, for which aerodynamic influence coef-
ficients are primarily intended, the angle-of-attack distribution usually 
is obtained by integrating its derivative; the use of the derivative then 
actually saves a calculation. 	 - 

In such aeroelastic calculations the lift distributions can be con-
sidered to consist of a known "rigid wing" part (due to airplane attitude 
or motion, built-in twist, or control deflection), which can be calculated 
initially with due regard to all discontinuities, and an initially unlcnown 

part due to structural deformation; the matrices [Q'	 and [Q'a] can 

be used to advantage in calculating the latter part. The calculation of 
a(y*) can then be obviated altogether, because if the structural defor-
inations are referred to the plane of symmetry the structural part of 
a(y*) is zero for y = 0, so that the first term on the right sides of 
equations (15) and (ii) reresents a known rigid-wing lift distribution 
and can be included with the others. Thus, in general, 

rstructurai 
(y0* )i 

{r*} = {F}rigid wing + 
cILQit 	 * 0	 J 

The separate treatment of these two parts in an aeroelastic analysis 
presents no difficulties and can be effected in a manner similar to that 
employed in reference ). for the lift distribution due to aileron deflec-

tion; the use of [Q] rather than [oj requires only the omission of 
one of the integrating matrices in the methods of references 2 and 4-. 

DISCUSSION 

General Limitations of the Results of This. Paper 

The Weissinger L-method, its range, and validity have been dis-
cussed in several previous papers (for example, ref s. 3 and 5) so that 
in this section only a few comments are made about special applications. 

Number o control points.- In references 1 and 5, four control 
points on the semispan were found to give satisfactory accuracy for the 
lift distributions due to constant angle of attack. In the present 
paper, interest is centered primarily on the lift distributions due to
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twist and control deflection, and for these cases the additional effort 
entailed in using eight rather than four control points was believed to 
be warranted by the resulting increase in accuracy. 

Fuselage, nacelle, and tip-tank interference. - The Weissinger 
method and all results presented apply only to wings without fuselages, 
nacelles, or tip tanks. At low angles of attack the lift distribution 
on the wing is not affected to a large extent by the presence of the 
fuselage except when it covers a large part of the wing; the effect is 
largely localized near the wing root and is most pronounced for the 
constant angle-of-attack and flap-deflected cases. For the lift dis-
tributions due to twist and aileron deflection the presence of the 
fuselage can probably be ignored in most cases. 

Nacelles also tend to af'fect the lift distribution primarily in 
their own vicinity, but these effects may be significant even for the 
lift distributions due to twist and aileron deflection. Tip tanks tend 
to increase the lift over much of the outer part of the wing to a large 
extent, particularly in the case of lift distributions due to twist and 
aileron deflection. Except for wings with very high or very low aspect 
ratio, these effects can hardly be underestimated and must be taken 
into account in designing the wing. 

High angles of attack.- Potential flow breaks down at high angles 
of attack, and the higher the Mach number the lower the angle of attack 
at which linearized potential-flow theories such as the one employed in 
this paper fail to predict the lift distributions accurately. However, 
the critical design loads often occur at high angles of attack. The 
only suggestion that can be made is that once the rigid-wing lift dis-
tributions at high angles of attack are estimated on the basis of tests 
or experience, the changes in these distributions due to aeroelastic 
effects can be estimated by means of the results calculated in this 
paper. This procedure cannot be justified theoretically because, 
although the nature of the mutual Induction effects between various 
parts of the wing after the flow has separated is still substantially 
the same as before, the lifts caused by these induction effects are not 
those predicted by potential-flow theory. However, the changes due to 
aeroelastic action are small unless the speed is near the flutter or 
divergence speed, so that certain Inaccuracies can usually be tolerated 
in estimating them. 

Longitudinal location of the center of pressure.- The Weissinger 
theory yields no information regarding the location of the chordwise 
center of pressure; however, the assumption that at each spanwise sta-
tion the section center of pressure of the angle-of-attack loading on 
the two-dimensional airfoil section is unchanged in three-dimensional 
flow has been found by lifting-surface calculations (ref. 6, for example)
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to be largely justified for swept and unswept wings of moderate andY high 
aspect ratio (except near the root and. tip). If this assumption is used, 
the longitudinal location of the wing center of pressure may be estimated. 
For low-aspect-ratio wings, the chordwise location of the center of pres-
sure cannot be determined simply, and lifting-surface methods must be 
used. For flap and aileron deflections, accurate theoretical methods for 
calculating the longitudinal location of the center of pressure are not 
available, but the approximate methods suggested in reference 7 may be 
applied to obtain qualitative information. 

Effective angle of attack for flap deflection. - In order to deter-
mine the loading due to flap deflection for wings of high and medium 
aspect ratio (for example, A > Ii-), the effective angle of attack cE 

for the flap (or aileron) deflection may be approximated satisfactorily 
by the values obtained from two-dimensional thin-airfoil theory. Fig-
ure 21 gives a plot of the effective angle of attack cxc, against f lap-

chord ratio c f/c. For very low aspect ratios (approaching 0 and. cer-

tainly less than 1/2) values of c close to 1 are indicated by line-

arized potential-flow theory, even for relatively small values of Cf/C. 

For aspect ratios from about 1/2 to 1, lifting-surface methods must be 
used to obtain potential-flow solutions for the lift distributions due 
to partial-chord control deflections. 

Calculation of the roll due to sideslip C 1 .- The loading for the 

case of full-span ailerons bail = 1 is the same as the loading on a 

wing with dihedral in yaw or sideslip, because in this case the loading 
on the wing is that due to an angle of attack equal to the product of 
the sideslip angle and dihedral angle on one• wing, and. the negative of 
that angle of attack on the other wing. The value of C 2 /% for the 

case of full-span aileron deflection is therefore equivalent to the 
parameter C. 

Some other stability derivatives can be deduced similarly from the 
results presented in this paper. 

Relative Merits of the Various Types of 

Aerodynamic Influence Coefficients 

In this paper four types of aerodynamic influence coefficients have 
been discussed: 

(1) The influence-coefficient matrices presented in table V which 
are obtained by solving Weissinger's integral equation by numerical 
methods
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(2) Influence-coefficient matrices obtained from those of table V 
by multiplying them by interpolating matrices. 

(3) Influence coefficients based on Green's function 

(1) Influence coefficients based on flap- and aileron-type lift 
distributions which express the lift distribution in terms of the span-
wise derivative of the angle-of-attack distribution rather than the 
distribution itself 

The influence coefficients given in table V apply to the stations 
y* = 0.9808, 0.9239, 0.8315, 0.7071, 0.5556, 0.3827, 0.1951, and 0. If 
these stations can be used in the calculations in which the influence 
coefficients are to be used, the coefficients given in table V are by 
far the simplest to use because they require no further calculations. 
If these stations cannot conveniently be used, one of the other three 
types of influence coefficients has to be calculated. 

The second type of influence coefficients is based on the first 
and requires a premultiplication of their matrix by a lift interpolating 
matrix and the postmultiplication of that matrix by an angle-of-attack 
interpolating matrix. These interpolating matrices serve to relate the 
lift and angle of attack at the stations of interest to those at the 
stations specified in the preceding paragraph. The interpolating mat-
rices can be constructed in several ways; parabolic (or possibly cubic) 
interpolation is probably the most satisfactory choice for the angles 
of attack, and for the lift distributions either this type of interpo-
lation (with a modification at the wing tip) or trigonometric interpo-
lation should be satisfactory. The interpolating factors do not lend 
themselves readily to automatic computation, but the amount of effort 
involved is relatively small. The two matrix multiplications can then 
be performed readily on automatic computation machines. 

The inf1uene coefficients based on Green's functions are similar 
in concept to the commonly used structural influence coefficients. The 
values of the influence functions F*s'(y*,y0*) and 1*t(y*,y0*) are 

the only aerodynamic influence coefficients discussed herein wnich indi-
vidually have physical significance; the first two types of influence 
coefficients have only a collective physical significance in that they 
yield the values of the lift when matrix-multiplied by the angle-of-
attack values. However, this individual significance of the coefficients 
based on Green's functions is lost once these coefficients are manipulated 
in the manner indicated in equations (9) and (12) to obtain aerodynamic 
influence coefficients useful in further computations, and the resulting 
influence coefficients have neither more nor less significance than the 
others. The computation of these coefficients requires a relatively 
large expenditure of effort - four matrix multiplications and three mat-
rix additions, as well as the computation of many values of r8 D or
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(by substitution of given values of 8 and. O	 in eq. (c3)) 

and. a few other minor steps. Despite their conceptual attractiveness, 
these coefficients are therefore practically at a disadvantage compared 
to the other much more simply computed influence coefficients. 

The influence coefficients based on flap- and aileron-ty-pe lift 
distributions and on the spanwise derivatives of the angle-of-attack 
distributions are probably the simplest to compute (with the exception 
of those presented in table V); they require only the reading of the 
values of the lift distributions from the figures of this paper at the 
stations of interest and for the flap and aileron spans corresponding 
to the stations of interest, as. well as the multiplication of the mat-
rix of these.coefficients by a diagonal matrix. (For a symmetric d.is-
tribution, a matrix subtraction is also called. for.) As previously men-
tioned., the fact that these coefficients express the lift distribution 
in terms of the derivative of the angle-of-attack distribution need not 
be a disadvantage and may actually be an advantage. The decision as to 
whether to use the second or the fourth ty-pe of influence coefficients 
(once the decision has been made that the stations implied in the first 
tpe are unsuitable') then.becomes largely a rñatter df individual prefer-
ence, guided by decisions in any given case as to the relative conven-
ience of calculating interpolating factors or reading values from the 
figures in this paper, and of using angle-of-attack distributions or 
their derivatives.

CONCLUDING REMABKS 

Spanwise lift distributions have been calculated for nineteen 
unswept wings with various aspect ratios and taper ratios and with a 
variety of angle-of-attack or twist distributions, including aileron 
and flap deflections, by means of Weissinger's method with eight control 
points on the semispan. Also calculated by this method were aerodynamic 
influence coefficients which pertain to a certain definite set of sta-
tions on the span. Three methods for calculating aerodynamic influence 
coefficients for arbitrary stations have been outlined and their rela-
tive merits discussed. 

The information presented herein can be used in the analysis of 
untwisted wings or wings with known twist distributions, as well as 
in aeroelastic calculations involving initially unknown twist 
distributions. 

langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., May 5, 1953.
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AFPEI\IDIX A 

MATRIX FORMULATION OF THE WEISSINGER METHOD 

Calculation of the Lift Distribution 

and Influence Coefficients 

From two-dimensional thin-airfoil theory it can be shown that, if 
all the vorticity of a plane or parabolically cambered airfoil section 
is concentrated at the quarter-chord line, the downwash angle induced 
at the three-quarter-chord line is equal to the geometric angle of 
attack at the three-quarter-chord line. This circumstance leads to the 
Weiss inger L-method in which the lifting vortex is concentrated at the 
quarter-chord line and the boundary conditions are satisfied at the 
three-quarter-chord line. The Weissinger equation (ref. i) can be 
written as 

a(y*) = L. r1 
dr*(*)	 dTl* + 1	

1	 dr*(*) d
i)*	 (Al) 

J i d	 -	
F(*,) 

where

	

tanA(	 + F(*,)	 i f/c +	 -	 2	 -_*2 - l
	 (* o) 

- *	 c*/2 1]	
c*/2

2 
r/l+tanA(

c/2 )j	 c*/2 )

.11+ y* 
l+2tanA, 

	

_	 2(*\2 
+	 tan	

+ c*/2	
(i* a) 

c*/ 2 2tanA	 -
y-3f c*/2	

1 + 2 tan A c*/2
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and. a is the angle of attack or, more specifically, the streamwise 
slope of the mean-camber surface at the three-quarter-chord line. 

Introduction of the trigonometric variables 0 cos- y* and 

cos- * into equation (Al) yields 

a(0) = :_ r dr*().
	 d	 -	 . r F(,0) dr*() d	 () lJ 0	 d	 cos i3 - cos 0	 8tJ0 

The solution of equation (A2) is effected in reference 1 by the use 
of trigonometric interpolation and integration formulas. An alternate 
solutionbased on matrix techniques is presented herein which leads to 
the identical results somewhat more simply and suggests a fairly simple 
setup for routine calculations. 

The function p* is approximated by a finite sine series, as in 
reference 1, so that for any value 

*	 'ç 
F m s1nfl m	 (A3)

n 

or

[sin m1{n
	

(Alt) 

In the calculations of this paper, the values of n in equation (Au-) 
have been chosen as n = 1, 3, 5, . . . 15 for the symmetrical loadings 
and n = 2, )+, 6, . . . 11 for the antisyminetrical loadings; values of 

were chosen at

m i6 

with m = 1, 2, 3, . . . 8 for the symmetrical loadings and m = 1, 2, 
3, . . . 7 for the antisymmetrical loadings. The use of equal increments 
in -5 is essential in the method of reference 1, 1ut any values of i3 
between 0 and jt/2 could have been chosen in the matrix analysis used 
in the present paper. This possibility of using arbitrary stations in 
this matrix version of Weissinger's method is an important advantage in 
that it allows the direct calculation of influence coefficients for 
arbitrary stations. Such a calculation is complicated, however, by the 
fact that some of the matrices which must be inverted tend to be ill-
behaved when nonequal increments are chosen for .
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The value of 
dr*() 

required in equation (A2) can be obtained 

from equation (A3) as

____ = 2_ na cos
	

(A5) 
n 

so that the first term of equation (A2) becomes 

:ii na cos nm d 
r n	

= :ii na	
nern 

1 Jo	 co	 - cos em	 sin 0m 

or, in matrix notation, 

1 1	 dF	 d	 1	 1 rSlfl ne 

	

t1bo d COS	 COS	 = Lsin emJLfh 

The values of an can be expressed in terms of F*m (see eq. (A14-)) as 

Ian} = [sin n1 l {F*m}	 (A6) 

so that

dr*m	 d	 1 
d COS - COS 

Omt = 

LB [*} 

where

li_sin nOl 
[Bm] = — I	 ILnl[sin nm1'	 (A7) "L!	 mJ 

r5 nOmi 
The matrices	 ILni 

Lsin	
, [sin nOmi, [sin	 and [Bj are 

given in table VII(a) for the symmetrical distributions and table VII(b)
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for the antisyunnetrical distributions. As a result of the orthogonality 

of the sine function, the inverse of the [sin nemi matrix is the same 
as one-fourth its transpose except for the first and last rows. (See, 
for instance, ref. 8.) 

The second term of equation (A2) can be integrated numerically by 

approximating either F or p dl' by a cosine series. Both approxi-

mations will yield identical results, and the latter alternative is 
followed here. Thus let

dr*(a) 
______ = :i bn( e )cos n8 

n 

so that

F(,e) 
dr*() d8 - ____ 

d	 - 8 

Now, in matrix notation, 

çi = [cos n[b(e) 
df 

so that

b0(8) = LLcos	
_lI	 F dr* 

= 

where LLos nJ is the zeroeth row of the inverse of the matrix 

Ecos nj and L1l1 consists of the same elements written in the form 
of a diagonal matrix.

(A8)
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Inasmuch as. the integral of the antisymmetrical component of F 

is zero, F - can be written for symmetrical distributions as 

F pgF1Ls 
a d
	 2	 d8 

and, for antisymmetrical distributions, as 

F dt*aFR+FLdr*a 

____ -	 2 

where

FR(I*I,y*) = F(1*,y*)
	

(* > 0)	 (A9) 

FL(lr*I,y*) = F(r*,y*)
	

(i*	 o)	 (Alo) 

From equations (A5) arid (A6)	 can be expressed in matrix 

notation as

[d r*1 = [cos	 nj?} 

so that equation (A8) can be written for symmetrical distributions as 

s d	 =	 - FLIL1L nLn1in	 lr*s Fa(,em) d
	 8L 2 

= 2 [Fa] [DS] {r*5]	 (All) 

where

[Do]	 - L11 [cos n m] Lnl [sin 'am] 
-1
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Similarly, for antisyminetrical distributions 

1	 dF 
Fs(,Om) a
	 = 2[FsILDaIfF*a}	 (Al2) Io 

where

[DaJ 16 L1	 ] L'1 [sin	
-1 

The matrices [D], Liii, and [cos nOmiLni are given in table VII(a) 

for symmetrical distributions and table VII(b) for antisymmietrical 
distributions. 

Equation (Al) (or its equivalent, eq. (A2)) can now be expressed 
completely in matrix form. For syrmuetrical distributions, the equa-
tion is

2LFal [DS{F*S = 

[Gj1	 =	 (A13) 

and for antisymmetrical distributions, 

LLB - 2[Fsi[Da1J{p*a {aa} 

or

[GaJ {*aI1 = {ta}	 (Ä]À) 

it should be noted that the [B] and [D] matrices are invariant 

with plan form and that only the LF] matrices need be computed sepa-
rately for each plan form; all the matrices are independent of the
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angle-of-attack conditions. A computing form for the elements of the 
F matrices is given in table VIII; this computing form includes pro- - 

vision for calculating the load on swept wings. Sample 2 [Fa] and 2[F5] 

matrices are shown in table IX. 

Equations (A13) and (All1.) can be expressed as 

{r*} = [G]_1fa}	 (A15) 

so that the elements of the matrices [G]	 constitute, in effect, sets 

of aerodynamic influence coefficients. The influence coefficients pre-
sented in table V for the plan forms treated in this paper are defined 
as

[QmL[Gj 

and

Lm[Ga11 

so that

c[Qj4zsJ 

and
	

(A16) 

= Cld[QØ]} 

The division by C	 and by C 1 has been performed both to facilitate 

interpolation of the coefficients for unswept wings with plan forms other 
than those considered in this paper and for convenience in aeroelastic 
calculations. Inasmuch as the lift distribution is much less sensitive 
to Mach number than is the over-all magnitude of the lift, an influence-

coefficient matrix [QII or [Q chosen for the average of the sub-
sonic Mach number range of interest (that is, for the effective aspect 

ratio A'il - M2 corresponding to that average Mach number) will serve
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for the entire range, provided only that for each Mach number the appro-
priate values of C	 and C1 are used in equations (A16). (See 

ref. 9, for instance, for simple methods of' estimating Mach number 
effects on C	 and C

ttz 

Calculation of the Aerodynamic Parameters Associated 

With the Lift Distributions 

The values of the lift, induced-drag, bending-moment, and rolling-
moment coefficients can be obtained conveniently by the use of' the inte-
grating matrices derived in this section. 

An integrating matrix for the lift coefficient associated with 
symmetrical loadings can be obtained as follows: 

The lift coefficient can be written as 

CL =	 r5 d 

If, as before, y* = cos 0 and	 =	 a1 sin nO, with n = 1, 3, 

n 

5, . . . 15, then

	

CL =
	

:iii a sin nO sin 0 dO 

=Aa] 

or

CL = ALICLJ{r*s} 

where

L'CL] = LLs nojJ
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and Lrsmn nol'J is the first row of the matrix [sin flOmJ1 given 

in table vII(a); the matrix LIeU is given in table X. 

Similarly, the integration to obtain the bending-moment coefficient

	

for symmetrical loadings C	 can be performed as follows: 

The bending-moment coefficient can be written as 

CBM = A11 ry* dy* 

	

= Af n/2	
a sin ne sin 0 cos 0 dO 

n 

A(2	 2	 2	 2	 2 
3al+_a3a5+5a777a9+ 

2	 2a	
2 

	

a11-	
13 

or

C = A Ld sJ 

where the matrix 

	

112 2	 2	 2	 2	 2	 2	 __J [sin n] 
[ CBMJ 8[	 5	 21	 5	 - T( 117	 - 167 221] 

is given in table X. 

For antisyinmetrica1 loadings, the half-wing lift coefficient CL,2 

is obtained in the following manner: 

The equation for the half-wing lift coefficient is 

1 

	

CL,	 Fa dy*
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and, if r*a =
	

a sin ne, with n = 2, 1k., 6, . . .	 as before, 

then

A r 2 CL	 = 
1/2	 J	

a sin n8 sin U 
n 

= A'2. a - -a. a +	 a -	 a8 +	 a - -_- a + -i-- a 2 17	 S 6 63	 99 10	 12 197 114j 

or

All 

1/2 = L1/2] 

where the matrix

_I i 	 2	 3	 11.	 5	 6
[CL/] = L 15 35 63 99 1U3 195] 

is given in table X. 

Similarly, the rolling-moment coefficient can be obtained as follows: 

The equation for the rolling-moment coefficient is 

C1 =
	

F*y* dy* 

= Af/2	
an sin ne cos sin o d8 

n 

=-Aa2 

or

C1 = 
A LICJ Ia}
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where the matrix

-1 
LIC LLs in nel j 

is given in table X. 

The induced-drag coefficient CD. can be written as 

CD = 
j0' a . r* dy* 

where

ai(y*) = 
i_f l *() 

th* 

-1 dr*	 y*_y* 

or

J} 
l3J*} 

For symmetrical loadings the LICL] matrix can be used to integrate 
the values of	 so that 

CD = ALIC][.F*l 
L1 J 

An integrating matrix to evaluate CD for antisymmetrical distributions 

can be set up si1arly. However, in this paper, values of C. were 

calculated only for additional lift distributions.
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APPENDIX B 

CALCULATION OF L]TT DISTRIBUTIONS FOR DISCONTINUOUS 

ANGLE-OF -ATTACK CONDITIONS 

The method of solving equation (Al) outlined in appendix A relies 
heavily on numerical integration, as does the method of reference 1. 
Discontinuous angle-of-attack distributions therefore cannot be analyzed 
as accurately as continuous ones can, because discontinuous angle-of-
attack distributions are known (on the basis of knowledge of the lift dis-
tributions of wings with very low and very high aspect ratios presented in 

di' * 
ref. 3) to give rise to logarithmic singularities in the function dr 

which occurs in the integrands of both integrals in equation (Al). Nor 
can a discontinuous angle-of-attack distribution be described adequately 
by a small number of points on the semispan; for instance, with stations 
located as they are for the calculations described in this paper any 
inboard flap terminating at a value of y* greater than 0.3827 but less 
than 0.7776 would, for a unit effective angle-of-attack distribution, be 
characterized by the angle-of-attack distribution 1, 1, 1, 0, 0, 0, 0, 0 
regardless of the exact location of the end of the flap. 

These difficulties can be overcome by using the results obtained by 
solving equation (Al) for the case of wings of vanishingly small aspect 
ratio (see ref. 3), in which case the second integral vanishes. This 
technique is similar to the one used by Multhopp (ref. 10) in connection 
with the Prandtl lifting-line equation to handle discontinuous angle-of-
attack distributions. The lift distribution F 	 is considered to consist 

of a "discontinuous" part rD which is the solution to equation (Al) if 

the second term is neglected and of a correcting "continuous" part rC, 
so that

r* =	 ^ rD	 (Bl) 

where	 is defined implicitly by 

•1 P' dF*D	 d	 (B2) a=— I 
1i icJ 0	 d	 cos	 - cos 0
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*	 * 
and 1' c is the correction that must be added to r D to obtain a 

function F which satisfies equation (Al) for the given discontinuous 

angle-of-attack distribution. The solution of equation (B2) for F*D 

corresponding to the more common discontinuous angle-of-attack distri-
butions is given in reference 3; specifically, for inboard flaps termi-
natingat y* y0* cos-- e

+0o 

r D(, 00) =	 - 20o )sin	 - (cos	 - cos 00)loge sin
	

2 

115 - 001 - 
2 

15 ^ e 
cos	

2 
(cos i5 + cos e0)loge	

15 -	
(B3) 

cos 2 ] 

and for outboard ailerons with inner ends at y* y 0* cos 1 G 

15 + G 

=	 cos 15 - cos e0)log 2 

us -	 - 
FD.1(15,90)	

L	
sin

2 

iS + Go-I 
2	 I 

	

(cos 15 + cos eo)1og	
- 0	

(Bli-) 

2 ] 

If equations (Bi) and (B2) are substituted into equation (A2), the 
result is 

1 r	 r*c(15G) 

Jo
diS	 L r	 r*C(15,eo)

diS = R(e,00) 
15 - cos e	 8Jo 

F(iS,e)

(B7)



Ra(e,eo)	
if 

8g
F5(,O)

11Dl(.,eo)
(B6b) 

14.0
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where the function R(O,0 0) is defined by 

R(O,0 0) a
	 F(3,e) r *D ( e) 

or, specifically, for flaps 

R5(e,00)	

8t

	 Fa ( 
e) rD(e) d	

(B6a) 

and for ailerons 

Comparison of equation (B5) with equation (A2) indicates that equa-
tion (B7) may be considered to be the Weissinger equation (eq. (Al) or 
(A2)) for the lift distribution r*c on the given wing (the plan form 

of which determines the function F(,B)) corresponding to an angle-of-
attack distribution R(e,0 0 ). Inasmuch as R(e,6 0 ) is a continuous 

function, as is demonstrated presently, equation (B5) can be solved in 
the manner used for equation (A2). If R(e,0 0) is being evaluated at 

the stations considered in this paper (o = 	 2 .!,	 IL, •	 . !L', and 
\	 16	 16	 16	 2j 

if the eight values of R are listed in a column in the order of 

increasing 0, then premultiplication of this column by the matrix [Q] 

given in this report and by the appropriate value of 	 C	 yields the 

desired function F *C for the given discontinuous angle-of-attack 

distribution. 

As indicated in equations (B6), the function R(e,00 ) depends on 

the plan form, which determines F(,9), and on the position of the dis-
continuity in the angle-of-attack distribution, which determines r*D 

and, hence,
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For flaps and ailerons, 

r*Df	 r	 - 
___	 2	 2 =	 - 290)cos + sin	 __________ 

- ef + loge
8 -o 

	

sin	 cos 
2	 2

(B7a) 
and 

_____	
2	

sin 2 \ Dail 
= 2 sin O + sin (ioe

	

-	
- loge	 ji - ei)	 (Bm) 

cos	 sin 

	

2	 2/] 

so that the functions	 may be seen to have logarithmic singulari-

ties. The evaluation of R(0,8 0 ) from equations (B6) by numerical 

methods is therefore not a trivial problem. A logarithmic singularity 
is integrable, however, and F(3,O) is always continuous in 	 and 0 
so that R(0,0 0 ) must always be continuous. The integration can thus 
be effected readily by expanding F(i 3 O) in a finite Fourier series as 
follows: 

(n= 1, 3, 5,	 . .	 .	 17) 

(n = 0, 2, .	 16)

Let

Fa('8,0) >IPa(8)cos n 
n 

F3(,O) =	 P (ü)cos n 
n
	 n

(B8) 

Substitution of these expressions for F and those of equations (B7) 

r'D 
for	 into equations (B6) yields 

R5 (0,00) =	 Pa(.0)[( - 2O)I ^ n 
+

(B9) 

Ra(0,Oo)	 s ( ° ) (n	 n)	

J 
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where

pit 
/ cos	 cos n d 

LJO 

pit 
J	 Slfl ' COS	 loge 

0

+ 
sin 

sin 
I0oI	 (Blo) 

2 

+ 
/-'it	 cos 
I	 i cos n loge	 2 

Jo	 8-80 
cos

2 

These integrals can all be evaluated explicitly and are 

	

Io=O	 1 
=	 (Bll) 

	

IflO	 (n=2,3, . 

= it sin 

= sin 28 

	

= L n + 1	 -	 n - 1	
] (n = 2, 3,	 .	

(B12) 

it[sin(n + l)e	 sin(n - l)81 

and 

K0 = -it sin 80 

K1 = sin 2O 

= (_n+l	 in(n + 1)e - sin(n - l)eol 
(n = 2,	

(B13) 

	

Ln+l	 n-1 ]
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With these values for I, J, and K, equations (B9) can he simplified 
to

R5 (e,e0) =	
>1 

Pa (0, Oo)Hn(Oo) 
n 

-1 
Ra(0,Oo) =	

; :i P8(e,e0)H(o0) 
n

(n= 1,3,5,	 .	 15) 

(n = 0, 2, ,	 .	 i6)	

(Bi) 

where

it - 29 + sin 29 
2 

sin(n + i)e	 sin(n - i)e _____- _____ 
n+l	 n-i

(B15) 

(n=2,3, 

The function R(e,00 ) can also be expressed in matrix form by writing 
equations (B8) in matrix form as 

LF (,0)i LPn( 9 , 0o)J[c05 nJ 

so that

LPn(0,0o)] = LF(,e)JLLCOS n_ 1
	

(B16) 

where Lcos nJ is the transpose of the matrix [cos fl]. The following 
expressions are then obtained by combining equation (B16) with the matrix 
equivalent of equations (B]A): 

Rs( 0 , O o)	 a(,0[c08 nY1fin(eo)}
(B17) 

Ra(8,Oo) =	 LF5(,0)]r[COS niI1{n(8o)}
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In essence the procedure used in this appendix for calculating lift 
distributions fOr discontinuous angle-of-attack distributions can thus 
be seen to consist in avoiding the necessity of integrating numerically 
an initially unknown singular function, as required in equation (Al) or 
(A2), by performing, in effect, the integration of the singular part of 
the function analytically (by solving eq. (B2), as in ref. 3) and 
treating only the continuous part of the function numerically (by 
solving eq. (B5)). As part of this procedure, a singular function has 
to be integrated numerically in order to evaluate R(G,0 0); however, 
this function is known initially because iJt is the product of a known 
singular but integrable function and a known continuous function 

and F(i 3 O), resPectivelY) so that, by expanding the continuous 

function in a Fourier series, the numerical integration can be effected 
without difficulty. 

The values of [Ecos nJJ . [iin ( eo )} for flap-span ratios of 0.1, 

0.2, 0.3, 0.14, 0 . 5, 0.6, 0.7, 0.8, and. 0.9 and. for aileron-span ratios 
of 0.1, 0.2, 0.3, 0.14, 0.5, 0.6, 0.7, 0.8, 0.9, and. 1.0 are given in 
table XI.
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V'J3II)ESI 

CALCULATION OF GREEN'S FUNCTIONS 

As pointed out in the body of this paper (see eqs. (3) and. (11.)) 
the desired Green's functions are 

rf(y,Y0)	 - _____________ 

The functions	 d r*ajl can be obtained in the manner indicated 
in appendix B. However, in order to calculate the desired. derivatives 
of these functions, a numerical differentiation would have to be per-
formed with respect to y0*. Such a numerical differentiation is irther-

ently inaccurate inasmuch as	 and r*ail have singularities. The 
desired Green's functions are therefore best calculated without using 
the calculated values of 	 and r*ail and. by using, instead, a 
modification of the method of appendix B. 

Let

F*s'(y*)

0
(Cl) 

r* t (y*,y*)	 rail(*, y0*) 

'0 
*'	 *'	 . 

Then r	 and ' a are lift distributions corresponding to impulse-

type angle-of-attack distributions of the following forms: 
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Hence, they must satisfy equation (Al) or its equivalent, equation (A2), 
for these angle-of-attack distributions. 

Again, as in appendix B, the lift distributions can be considered 
to consist of a discontinuous part, which satisfies equation (Al) for 
the given angle-of-attack distribution if the second integral on the 
right side is disregarded, and of a correction part; that is, 

*t	 *1	 *t 
F	 =1'	 + 

S	 SD	 SC I 

*	 *	 *	 r	

(c2)

a =FaD+'aC __j 

The functions F*SD	 FaD must thus satisfy equation (B2) for 

the given angle-of-attack distributions. By virtue of the linearity of 
equation (B2) and by virtue of the definitions of the functions in tern's 

of F*f and. F*ail , respectively, F*5D and	 aD can be obtained

by differentiating with respect to y0 the solutions of equation (B2) 

given in equations ( B3) and (B)i-) for the flap and aileron angle-of-
attack conditions. Thus

sin - + sin 00 )4. _______ 
= - loge 

D	 t	 sin_sin0ot

} 

sin(i5 + e) 

Fa D = loge	
- 001 

Similarly, the functions r*s t c and F*a C must satisfy equation (B5), 

where now R(0,0 0 ) is defined for the symmetrical and antisymmetrical 

loadings, respectively, by

15D(,00) 
R5(0,00) =
	

F(,0) 

and
	 (c1) 

Ra(6,eo) = a.

	 FaD(,Oo) d
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The evaluation of these integrals can be effected in the manner 
employed for equations (B6) so that 

R ( e , 00 ) =	
: i Pan(e)Htn(Oo)

n 

Ra(0,Oo) =
	 >I P

8 (0 )Htn(0o) 
n 

where

.17)1 

(n= 0, 2, ,	 . . . 16)f

(c) 

H'n(Oo)	 2 sin nO0	 (c6) 

for all values of n, and where P	 and P5 are the same values as an	 n 
those used in appendix B. Thus, in matrix form, for given values of 0 
and

=	 ni	
sin neo}l	

(c7) 

Ra( 0 , Oo) = LFs(,0)J[[c05 nj	 sin nOo}J 

The values of [[cos nJi .c[sin n0o} are given in table VI for 

values of y0* ranging from 0 to 0.9 for symmetrical distributions and 

0.1 to 0.9 for antisymmetrical distributions. 

The desired Green t s functions can thus be calculated in the fol-
lowing way. For a given value of 0, the values of R5 (e,00 ) and 

Ra( O , Oo) are calculated for eight equal increments of 9 between 0 

and ir/2 from equation (C7). These values are then written as 
columns and premultiplied by the matrix of influence coefficients 
tabulated in this paper for the given plan form in order to obtain 

___________	 ratc(o,00)
and 

C	 Cjd



Ii.8
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for the given value of 00. To these values are added the values of 

r Sfl (e,00 )	 ra(e,eo)
and

Cld 

* t	 *t 
obtained by. dividing the values of F	 and r a	 calculated from 

equation ( C3) by C. and Czd respectively, for this value of 00 

and the given values of 0. This procedure yields 

r*s '(s, e)	 F*a (e, e)
and

C1 

(The division by C j and by Cjd is performed to facilitate the 

further calculations required to obtain the desired influence coeff 1-

cients, as explained in the body of this paper.) This calculation is 

repeated for all the values of' 00 for which the Green's functions are 
desired.
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TABLE I

II'DEX TO SPANWISE-LIFT-DISTRIBUTION FIGURES 

[All wings are unswept 

Plan form A Figure 

Very low 1 
311 1.5 0 2 
312 1.5 .25 3 
313 1.5 .50 
3)A 1.5 1.00 5 
315 1.5 1.50 6 

321 3.0 0 7 
322 3.0 .25 8 
323 3.0 .50 9 
32 3.0 1.00 10 
325 3.0 1.50 11 

331 6.0 0 12 
332 6.o .25 13 

6.0 .50 l4. 
5311. 6.o 1.00 15 
335 6.0 1.50 16 

314.1 12.0. 0 17 
5142 12.0 .25 18 
314-3 12.0 .50 19 
314.14. 12.0 1.00 20
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TABLE II

FORCE AND MOMENT COEIFFICIENTS FOR ANGLE-OF-AT]ACK LOADINGS 

Additional loading Damping-in-roll loading 
Plan form

CBM CDi Cjd CIt1/2 

311 1.8976 0.7701 O. li. O58 0.7799 0.1280 0.11ii.11.8 
312 1.9914.0 .8351 . 14.188 .811.11. 8 .114.03 .li.y81 
313 2.0006 .811J1.9 .11. 223 .811.93 .114.23 .14.835 
3114. 1.9782 .811.33 .11.263 .8303 .114.54 .14.865 
315 1.91i.59 .8353 .11293 .8011. 1 .114.38 .11.871 

321 2.9936 1.1765 .3930 1.00014. .2126 .751.t4 
322 3.1711.7 1.3177 .11.151 1.0733 .2501 .8514.8 
323 3.1735 l.314. 1O .14.226 1.0686 .25814. .8772 
3214. 3.0970 1.33614. .14.315 1.0198 .2614.2 .8912 
325 3.0086 1.31714. .11.379 .9679 .2661 .8914.8 

331 14..1171 1.5537 .37714. .9950 .3083 1.1214.8 
332 L3381 1.7830 . 14. 110 1.0071 .3893 1.3333 
333 14..3205 1.8563 .14250 .9918 .14.114.1 1.39614. 
3314. 14..i816 l.811.79 . 1 4l9 .914.09 .14.3314. 1.14.11.17 
335 1i..O252 1.8260 .11.536 .8921 .14i.o5 1.11.514.0 

314.1 5.0125 1.8114.5 .3620 .7850 .3918 1.11.7111. 
31.4.2 5.1989 2.1114.6 .11.067 .7310 .5190 1.7797 
314.3 5.1611.7 2.21614. .14.291 .7126 .5700 1.9003 
314. 4 5.0026 2.2819 . 14.561 .6982 .6156 2.00214.
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TABLE V 

AERODYNAMIC- INFLUENCE-COEFFICIENT MATRICES 

(a) Symmetric loadings [Qs] 

Plan form 311 

0.0730 0.0360 0.025 14. 0.0218 0.0202 0.0182 0.01811. 0.0086 
0.022)4. 0.1350 0.09111. 0.0614.11. 0.0587 0.0517 0.0508 0.0211.3 
0.0121 0.0677 0.2298 0.1535 0.11 14.14. 0.10)4.1 0.0956 0.0)4.75 
0.0093 0.0)4.16 0.1268 0. 3275 0.2221 0.1722 0.16111. 0.0768 
0.0075 0.0311.1 0.0857 0.1951 0. 11.276 0.2979 0.2)4.32 0.U911 
0.0068 0.0289 0.0739 0.1)4 .26 0.2711.6 0.5320 0.3910 0.1720 
0.00611. 0.0273 0.066)4. 0.1297 0.2170 0.3737 0.6582 0.2788 
0.0065 0.0262 0.0678 0.1233 0.21111 . 0.3258 0. 5)4.97 0.11.9711. 

Plan form 312 

0.0590 0.0536 0.0)4.30 0.0)4.01 0.0356 0.0338 0.0318 0.0159 
0.02711. 0.1 57 0.1097 0.0857 0.0782 0.070 )1. 0.0680 0.0330 
0.01511. 0.0763 0.2365 0.1671 0.1296 0.1189 0.1095 0.0511.14. 
0.0116 0.0)4.79 0.1332 0.3269 0.2269 0.1789 0.1676 0.0801 
0.0091 0.0385 0.09014. 0.1960 0.11.170 0.2929 0.2399 0.1178 
0.0080 0.0323 0.0769 0.1)4.29 0.2676 0.5113 0.3759 0.1655 
0.0073 0.0301 0.0686 0.1289 0.2106 0. 3581 0.62711. 0.2656 
0.0072 0.0291 0.0676 0.1223 0.20 )1.7 0 .3118 0.5233 0.11.733 

Plan form 313 

0.0591 O.O71i.li. 0.014.11.6 0.011.214. 0.0382 0.0363 0.03)4.3 0.0171 
0.0277 0.1)4.68 0.1123 0.0893 0.0826 0.0711 .7 0.0721 0.0350 
0.0157 0.0776 0.2388 0.1709 0.1314.2 0.1236 0.11)4.0 0.0566 
0.0119 0.0)4.89 0.1350 0.3292 0.2300 0.1821 0.1706 0.0815 
0.0093 0 .0391 0.09111. 0.1971 0.11.1714. 0 .2933 0.2)4.00 0.1178 
0.0081 0.0325 0.0770 0.1)426 0.2662 0.5083 0. 3725 0.1637 
0.0073 0.0300 0.0680 0.1276 0.2079 0.3536 0.6209 0.2622 
0.0073 0.0288 0.0668 0.1206 0.20111 . 0.3066 0.5161 0.11.688 

Plan form 31)4. 

0.0599 o . o55)4 0.0)4.60 0.011.14.2 0.0)4.01 0.0382 0.0361 0.0179 
0.0283 0.1)4.92 0.1151 0.0925 o.o86o 0.0780 0.0752 0.0365 
0.0162 0.0793 0.2)4 .32 0.1752 0.13814. 0.12714. 0.11714. 0.0582 
0.0122 0.0501 0.1377 0.331.14. 0.2314.1 0.1853 0.1731 0.0826 
0 .00914. 0.0396 0 . 0925 0.1991 0.11.213 0 . 2914.8 0.2)4.00 0.1176 
0.0081 0.0323 0.0767 0.1)419 0.265 11. 0.5083 0. 3695 0.1616 
0.0072 0.02911. 0.0666 0.12)4.8 0.2035 0.3)4.80 0.6160 0.2588 
0.0070 0.0280 0.06)1.8 0.1169 0.1955 0.2986 0. 5077 0.11.6614.
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TABLE V.- Continued

AERODYNAMIC-INFLUENCE-COEFFICIENT MATRICES 

(a) Continued 

Plan form 315 

0.0609 0.0565 0.0470 
0.0288 0 .1519 0.11711. 
0.0165 0.0808 0.211-75 

0.0124 0.0509 0.1399 
0.0095 0.0400 0.0933 
0.0080 0.0322 0.07611. 
0.0070 0.0288 0.0651 
O.006 9.0270 0.0627 

0.0272 0.0128 0.0087 
0.00911- 0.0716 0.01102 
0.0011-2 0.0309 0.1211.5 
0.0031 0.01611- 0.0607 
0.0023 0.0128 0.0365 
0.0020 0.0102 0.0302 
0.0018 0.0096 0.0262 
0.0019 0.0092 0.0261 

0.0363 0.0309 0.0219 
0.0159 0.08611. 0.0591 
0.0080 0.011.111. 0.1353 
0.0056 0.0232 0.0688 
0.0011.0 0.0173 0.011.17 
0.00311. 0.0136 0.0335 
0.0030 0.012 11. 0.0285 
0.0029 0.0118 0.0281 

0.0367 0.0323 0.0211-2 
0.0165 0.0887 0.0631 
0.0086 0.014.37 0.1395 
0.0060 0.0211.8 0.0720 
0.0011-2 0.0182 0.011-311. 
0.0035 0.0111.0 0.0311.0 
0.0030' 0.012 11. 0.02811. 
0.0029 0.0117 0.0277

O.O11. 52 0.011-10 
0 . 0911.5 0.0878 
0.17811. 0.1408 
0.3398 0.2374 
0.2011 0.4261 
O.i4i 0.2653 
0.12211- 0.1999 
0.1132 0.1900 

Plan form 321 

0.0062 0.00611. 
0.0211.1 0.0209 
0.0718 o.o46 
0.1793 0.1077 
0.0961 0.2353 
0.0641 0.1385 
0.0569 0.1029 
0.0534 0.1000 

Plan form 322 

0.0186 0.0150 
0.011-011- 0.0311.0 
0.0855 0.05814. 
0.1820 0.1127 
0.0983 0.2281 
0.0611-8 0.1328 
0.05611- 0.0970 
0.0525 0.0936 

Plan form 323 

0.0210 0.0171 
0.011.11.8 0.0379 
0.0907 0.0630 
0.1861 0.1166 
0.1003 0.2296 
0.0650 0.1317 
0.05511- 0.0911.2 
0.0511 0.0901

0.0390 
0.0795 
0 .1293 
0.1871 
0.29611. 
0.5104 
0.3439 
0.2912 

0.0047 
0.0174 
0.011-05 
0.0746 
0.1483 
0 .2945 
0.1944 
0.1611.7 

0.0135 
0.0283 
0.0501 
0 .0793 
O . 11441 
0.2774 
0.1801 
0.1512 

0.0152 
0.0314 
0.0537 
0.0820 
0.111-44 
0.2746 
0.1747 
0.111-48

0.0367 0.0182 
0.0764 0.0370 
0.1187 0.0588 
O.i11-o 0.0828 
0.2397 0.1171 
0.3677 0.1600 
0.6138 0.2564 
0.5005 0.4657 

0.0057 0.0022 
0.0169 0.0080 
0.0355 0.0177 
0.0675 0.0313 
0.1117 0.0542 
0.2011 0.0850 
0.3696 0.1520 
0.30114 0.2910 

0.0122 0.0061 
0.0266 0.0126 
0.0437 0.0216 
0.0709 0.0330 
0.1080 0.0523 
0.1874 0.0788 
0.3427 0.1400 
0.2772 0.2703 

0.0136 0.0067 
0.0291 0.0138 
0.011-65 0.0228 
0.0727 0.0337 
0.1072 0.0517 
0.1831 O.O764 
0. 3352 0.1357 
0.2682 0.2653
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TABLE V.- Continued

AERODYNAMIC-INFLUENCE-COEFFICIENT MAThICES 

(a) Continued. 

0.0379 0.0339 0.0262 
0.0173 0. 0922 0.0671 
0.0092 0.014-62 0.11458 
o.006li. 0.02611. 0.0758 
0.0014.5 0.0191 0.014.53 
0.0035 0.Oi11i 0.0314.3 
0.0029 0.0121 0.0275 
0.0028 0.0111 0.0263 

0.0390 0.0351 0.02714. 
0.0179 0 . 09511. 0.0698 
0.0096 o.oli-8o 0.1510 
0.0067 0.0276 0.0787 
0.0011-6 0.0197 o.oli.66 
0.0035 0.0111.2 0.0311.5 
0.0028 0.0117 0.0267 
0.0026 0.0105 0.0211-9 

0.0111-i 0.0028 0.0028 
0.0033 0.0397 0.0155 
0.0011 0.0129 0.0709 
0.0008 0.0051 0.0273 
0.0005 0.0038 0.0129 
0.0005 0.0027 0.0101 
0.000li- 0.0026 0.0081 
o.00014- 0.002 11 0.0082 

0.0255 0.0189 0.0108 
0.0098 0.0565 0.0322 
0.0011.0 0.0228 0.0837 
0.00214. 0.0102 0.0351 
0.0015 0.0068 0.0170 
0.0012 0.0014.7 0.01211-
0.0010. 0.0011-i 0.0096 
0.0010 0.0038 0.0095

Plan form 3214-

0.0232 0.0190 
a.a1l.89 0.014-15 
0.0965 0.0678 
0 . 1935 0.1218 
0.1036 0.2351 
0.0651 0.13114-
0.05314. 0.0900 
0.011-81 0.0811.3 

Plan form 325 

0.0214-4. 0.0200 
0 . 0513 0.011-35 
0.1005 0.0706 
0.2000 0.1257 
0.1063 0.21.1.09 
0.0652 0.1318 
0.0517 0.0868 
0.01.4.53 0.0795 

Plan form 331 

0.0010 0.0019 
0.0076 0.0061 
0.03114. 0.0163 
0.1039 0.0500 
0.011-514- 0.13711. 
0.0211.9 0.0678 
0.0212 0.011-36 
0.0191 0.01122 

Plan form 332 

0.0080 0.0055 
0.0175 0.0132 
0.011-32 0.0235 

0.1090 0.O54.8 
0.011-82 0.1314-0 
0.0258 o.o62 
0.0210 0.0395 
0.0186 0.0377

0.0166 
0.0314.1 
0 .0571 
0.0850 
0.l1l.60 
0 .2750 
0.1682 
0.1352 

0.0173 
0.03511. 
0.0588 
0.0868 
0.111-77 
0.2772 
0.1636 
0.1273 

0.0006 
0.0011.9 
0. 0131i-
0 .0285 
0.0718 
0.1727 
0 .0993 
0.07811. 

0. 001l7 
0 .0097 
0.01814. 

0.0312 
0.0693 
0 .1607 
0.08814. 
0. 0677

0.0111-7 0.0072 
0.0310 0.0111.6 
o.oli-86 0.0237 
0.0714.0 0.0314.0 
0.1061 0.0507 
0.1785 0.0732 
0.3283 0.1306 
0.2562 0.2612 

0.0150 0.0073 
0.0316 0.0114.7 
0.011-92 0.0238 
0.O711-3 0.0337 
0.1050 0.014-97 
0.1756 0.0,707 
0.32 11.3 0.1267 
0.2 14.61 0.2586 

0.0017 0.0003 
0.0011.5 0.0022 
0.0110 0.0055 
0.0211.6 0.0109 
0.014-62 0.0222 
0.1016 0.03911-
0.2192 0.0814.6 
0.1693 0.1850 

0.0014-0 0.0020 
0.0089 0.0011-i 
0.0114.7 0.0073 
0.0261 0.0115 
0. 011-311- 0.0206 
0. 0913 0.0311-6 
0.1985 0.0711.8 
0.111.93 . 0.1688



NACA TN 30111-
	 57 

TABLE V. - Continued 

AERODYNAMIC- INFLUENCE-COEFFICIEWP MATRICES 

(a) Continued 

Plan form 333 

[.0263 0.0211 0.0133 0.0100 0.0069 
I 0.0108 0.0602 0.0372 0.0215 0.0159 
I o.001i8 0.0258 0.0895 0.011.87 0.0271 
I 0.0029 0.0120 0.0388 0.11140 0.0585 
10.0017 0.0077 0.0188 0.0505 0.1359 
10.0013 0.0051 0.0131 0.0263 0.0635 
10.0010 0.0014-3 0.0098 0.0206 0.03714. 
L0.00l0 0.0039 0.0096 0.0179 0.0350 

Plan form 3311. 

0.0275 0.0231 0.0156 0.0120 0.0083 
0.0118 o.o611J - 0.011.20 0.0256 0.0188 
0.0055 0.0289 0.0968 0.0550 0.0312 
0.0033 0.0138 0.011-32 0.1220 0.0635 
0.0020 0.0086 0.0209 0.0511.0 0.111.111. 
0.0011i 0 . 00514. 0.0138 0.0268 0.0635 
0.0010 0.0011.3 0.0096 0.0196 0.03145 
0.0010 0.0037 0.0090 0.0163 0.0311 

Plan form 335 

0.0287 0.021l 1I. 0.0169 0.0132 0.0091 
0.01211. 0.0677 0.011-51 0.0281 0.0205 
0.0059 0.0310 0.1023 0.0592 0.0338 
0.0036 0.0150 0.01463 0.1286 0.0672 
0.0021 0.0092 0.0222 0.0567 0.111-68 
o.00i14 0.0055 0.0111-0 0.0271 0.0637 
0.0010 0.0014-1 0.0092 0.0188 0.03214-
0.0009 0.0035 0.0083 0.0111-9 0.0281 

Plan form 311.1 

0.0075 -0.0008 0.0013 -0.0003 0.0008 
0.0008 0.0230 0.0011.0 0.0023 0.0012 

	

0.0002	 0.00144 0.014.22 	 0.01114- 0.0011-7 
0.0002 0.0012 0.0109 0.0631 0.0207 

	

0.0001	 0.0010- 0.0035	 0.0196 0.0814.5 
0.0001 0.0005 0.0028 0.0077 0.0308 
0.0001 0.0006 0.0019 0.00611. 0.0111-9 
0.0001 0.0005 0.0021 0.0052 0.0111.8

0.0057 0.0011.6 0.0023 
0.0115 0.0101 0.0014-6 
0.0206 0.0160 0.0078 
0.0330 0.0269 0.0117 
0.06914- 0.0 14-23 0.0199 
0.1582 0.0870 0.0322 
0.0833 0.1906 0.0702 
0.0618 0.13914- 0.1631 

0.0065 0.0051 0.0025 
0.0131 0.0110 0.0014.8 
0.0229 0.0169 0.0081 
0.0351 0.0272 0.0115 
0.0705 0.01 1.07 0.0187 
0.1582 0.0820 0.0290 
0.0773 0.18211- 0.0614-0 
0.0535 0.12514. 0.1565 

0.0069 0.0052 0.002 11-

0.0139 0.0112 0.0014-8 
0.02 11.1 0.0170 0.0080 
0.0363 0.0271 0.0111 
0.0717 0.03911. 0.0177 
0.1597 0.0786 0.0265 
0.0732 0.1777 0.05914-
0.Oli.75 0.1111-6 0.1520 

-0.0002 0.0007 -0.0001 
0.00111- 0.0009 0.0006 
0.0036 0.0029	 0.00111. 
0.0089 '0.00714 0.0031 
0.0319 0.0159 0.0077 
0.1062 0.01476 0.0157 
o.o14i 0.13145 0.0152 
0.0316 0.0918 0.12147



NACA TN 30111. 

TABLE V. - Continued

AERODYNAMIC- INFLUENCE-COEFFICIENT MATRICES 

(a) Concluded 

0.0197 0.0113 
0.0059 0.0387 
0.0017 0.0115 
0.0009 0.0036 
0.0005 0.0022 
0.00014. 0.0013 
0.0003 0.0012 
0.0005 0.0010 

0.0208 O.011,.l 
0.0072 O.O14.36 
0.002 11. o.oili.6 
0.0012 O.0O149 
0.0006 0.0028 
0.00011. 0.0015 
0.0003 0.0013 
0.0003 0.0011 

0.0222 0.0165 
0.00814. 0.O4.81I. 
0.0031 0.0178 
0.0016 o.006l4. 
0.0007 0.00314. 
0.0005 0.0017 
0.0003 0.0013 
0.0003 0.0010

0.0011.6 
0.0161 
0.05)4.1 
0 .0163 
0.0056 
0.0038 
O .0025 
0.0028 

0.0066 
0.0210 
0.0602 
O . 0195 
0.0067 
0.0011.2 
0.0026 
0.0027 

0.0088 
0.0259 
0.0675 
0.0233 
0.0081 
0.0011.6 
0.0027 
0.0025

Plan form 3142 

0.0029 0.0018 
0.0062 0.0014.3 
0.0198 0.0078 
0.0688 0.0211.6 
0.0219 0.0837 
0.0083 0.0290 
0.00611. 0.0131 
0.0051 0.0126 

Plan form 311.3 

0.00l2 0.0023 
0.0088 0.0057 
0.02141. 0.0097 
0.0736 0.0273 
0.0237 0.0855 
0.0087 0.0286 
0.0063 0.0120 
0.0014.9 0.0113 

Plan form 311.11. 

0.0057 0.0031 
0.0118 0.00711. 
0.0298 0.0121 
0.0805 0.0310 
0.0262 0.0896 
0.0091 0.02811. 
0.0060 0.0107 
0.0011.3 0.0095

0.00114. 0.0012 0.0006 
0.0028 0.0025 0.0011 
0.0056 0.0011.0 0.0020 
0.0101 0.0080 0.0032 
0. 0310 0.0111.5 0.0069 
0.0991 0.0)4.13 0.0129 
0.01l.03 0.1202 0.0382 
0.0253 0.0771 0.11211. 

0.0018 0.00111. 0.0007 
0.0035 0.0030 0.0013 
0.0067 O.O014	 0.0022 
0.0109 0.0083 0.0032 
0.0311 0.0137 0.00614. 
0.0972 0.0381 0.0113 
0.0367 0.1137 0.0311.0 
0.0216 0.0682 0.1063 

0.0022 0.0015 0.0007 
0.0011.1 0.0033 0.0013 
0.0O7	 0.0011.7 0.0023 
0.0119 0.00811. 0.0031 
0.0316 0.0126 0.0057 
0 .0966 0.03141. 0.0091 
0.0323 0.1060 0.02811. 
0.0169 0.0557 0.0983 

w



NACA TN 30114

TABLE V. - Continued 

AERODYNANIC-INYLUENCE-COEFFICIENT MATRICES 

(b) Antisynirnetric loadings [Q] 

Plan form 311

0.7812 0.5201 0.3395 0.2619 0.1930 0.1255 O.061i.2 
0.3225 1.9623 1.2583 0.7818 0.5867 0.3630 0.18691 
0.1615 0.9296 3.2298 1.911.711. 1.1733 0.7708 0.36311.1 
0.1102 0.5007 1.5966 14.3377 2.141478 1.32141 0.6582 I 
0.0703 0.3351 O.861i.0 2.1287 5.1126 2.5737 1.05111 
0.01414.7 0.1977 0.5300 1.0690 2.31425 5.3269 2.06711 
0.0210 0.0969 0.21120 0.5089 0.9126 1.9539 14..592j 

Plan form 312 

0.8318 0.7328 0.51i.70 0.14566 0.3302 0.22148 0.109] 
0.3714.8 2.0118 1.11266 0.9806 0.71129 0.11.736 0.211.061 
0.1956 0.99011. 3.1508 1.9973 1.2558 0.8336 0.39691 
0.13114. 0.511.611. 1.5856 14.1026 2.3617 1.3018 0.611.811.1 
0.08314. 0.3609 0.8660 2.0280 14.7392 2.14.026 0.9868 I 
0.0523 0.2127 0.5278 1.0227 2.1767 4.8872 1.8992 I 
0.0211.6 0.1035 0.21411 0.14856 0.8498 1.7914.0 14.1950] 

Plan form 313 

0.8235 0.7338 0.5596 0.147511. 0.314911. 0.23911. 0.1175 
0.371414 2.0015 1.11.393 1.0087 0.7730 0.11.976 0.25311. 
0. 19714: 0.9935 3.11400 2.0136 1.2827 0.85611. 0.14.096 

0.1328 0.5509 1.5877 14.0796 2.3614.1 1.3117 0.65145 

0.08141 0.3629 0.8678 2.0191 14.69140 2.3853 0.9817 
0.0525 0.2130 0.5268 1.0168 2.15146 14.8256 1.8756 
0.0214.5 0.1032 0.2399 0.148114 0.81100 1.7702 14.1376 

Plan form 3114. 

0.8182 0.7331 0.5650 0.14.811.9 0.36011. 0.21485 0.1221 
0.3737 1.99141 1.1414146 1.0239 0.7912 0.5132 0.2620 I 

0.1983 0.9950 3.1336 2.0214.0 1.3009 0.8727 0.14191 I 
0.1337 0.5541 1.5902 14.0687 2.3691 1.3210 0.6602 I 
o.o84 0.36141 0.8692 2.0111.8 14.6690 2.37614 0.9792 I 
0.05214 0.2125 0.5211.7 1.0110 2.1387 14.7865 L8596 I 
0.02143 0.1022 0.2373 0.11.760 0.8301 1.7517 I1..loo9J 

Plan form 315 

0.8167 0.7328 0.5666 o.li.880 0.36140 0.2516 0.12143 
0.3735 1.9920 1.141465 1.0289 0.79714 0.5186 '0.2651 
0.1987 0.9959 3.13214 2.0281 1.3076 0.8787 0.14.225 

0 . 1314.1 0.5555 1.5918 14.0667 2.3720 1.3214.8 0.66214. 
0.0811.7 0.3611.6 0.8698 2.0136 14.6616 2.37314 0.9781 
0.0522 0.2119 0.5230 1.0073 2.1311 14.7716 1.85214 
0.0211.1 0.1012 0.2351 0.14716 0.8231 1.714114 14.0865

59 



NACA TN 3011,. 

TABLE V. - Continued

AER0DYNAMIC-INFLTJENCE-00EFFIC]ENT MATRICES 

(b) Continued 

Plan form 321 

0.3819 0.1782 0.1111.0 0.0750 0.0612 0.0311.14 0.02011 
0.13011. 0.9993 0.51425 0.2911.6 0.2156 0.1279 0.0662 I 

0.0559 0.141711. 1.7058 0.9162 0.li.963 0.3186 0.111.531 
0.0376 0.2005 0.7720 2.3620 1.2307 0.6165 0.30191 
0.0229 0.13211. 0.3869 1.0925 2.8688 1.3711.6 0.5357 I 

0.0111.7 0.0758 0.2355 0.5227 1.2702 3.0808 1.16921 
0.0068 0.0377 0.1058 0.21488 0.11.821 1.U1.11. 2.727J 

Plan forni 322 

0 .14589 0.3835 0.2601 0.2025 0.1368 0.0907 0.01430 
0.1970 1.0797 0.7115 0.14.14.33 0.3183 0.1930 0.0969 
0.0911.9 0.11.986 1.6552 0.9719 0.5598 0.3579 0.1611.5 
o.o6ol1. 0.25142 0.78011. 2.11421 1.1532 0.5925 0.2888 
0.03611. o.1611i. 0.3982 1.0016 2.11.972 1.2055 0.11.721 

0.02214 0.0919 0.2370 0.11.797 1.1032 2.6290 0.9959 
0.0103 0.011.11.5 0.1061 0.2257 0.11.171 0.91472 2.3152 

Plan form 323 

0.1414.88 0.38714. 0.2771 0.2216 0.1525 0.1008 0.011.791 
0.1978 1.0708 0.7326 0.11.758 0.31453 0.2108 0.1053 I 

0.0983 0.5072 1.61481 0.99511. 0.5873 0.3760 0.1733 I 

0.0628 0.2628 0.7886 2.1165 1.1555 0.59911. 0.2917 I 

0.0376 0.16514. 0.11.033 0.9926 2.11.3711. 1.1795 0.11.622 
I 

0.0228 0.0930 0.2370 0.11.725 1.0718 2.51123 0.96014 I 

0.01014 0.011.11.5 0.1050 0.2200 0.11.019 0.9107 2.2311.1] 

Plan form 3214 

ro. 14.11.l14 0.3873 0.2857 0.2338 0.1639 0.10814 0.0515 
10.19714 1.0620 0.71431 0.11.971 0.3653 0.2211.6 0.1117 

I 0.1003 0.5118 1.61430 1.0130 0.6098 0.3913 0.18011. 
10.06145 0.2690 0.7958 2.1011.14 1.1626 0.6077 0.2911.8 
I 0.03814. 0.1681 0.11.0714 0.9887 2.14008 1.1629 0.14.511.7 

I 0.0228 0.0930 0.2353 0.14651 1.01466 2.14.786 0.9308 
L0.O1O2 0.01435 0.1022 0.2125 0.38514. 0.8768 2.1721 

Plan form 325 

0.14388 0.3872 0.2886 0.23811. 0.16814. 0.11114. 0.0529 
0.1973 1.0590 0.71468 0.5053 0.3735 0.2302 0.1111.1 
0.1011 0.5138 1.61421 1.0205 0.61914. 0.3977 0.1831 
0.0652 0.2717 0.7996 2.1025 1.1672 0.6115 0.2957 
0.0387 0.1693 0.14093 0.9881 2.3888 1.1562 0.11.5011. 

0.0227 0.0925 0.2337 0.14605 1.0311.1 2.11.510 0.9153 
0.0100 0.01426 0.0997 0.2070 0.37145 0.8566 2.11423



NACA TN 30114.

TABLE V. - Continued 

(b) Continued

Plan form 331 

To.1887 0. 0376 0.0311.14. 0.0129 0.0177 .0.0057 0.005] 
l0.0'137 0.5288 0.2026 0.0926 O.0614J1. 0.03714. 0.01911 
10.0137 0.1688 0.9376 0.3981 0.1798 0.1129 0.014.891 
0.0095 0.0628 0.3468 1.3490 0.5916 0.2556 0.12351 

I 0.0051 0.0 11.114. 0.1437 0.5372 1.7069 0.7256 0.2514.51 
10.0035 0.0216 o.0861i. 0.22 14.5 0.6831 1.9214.2 0.6832 I 

•
0.0112 0.0367 0.1065 0.2383 0.6611 1.802^J 

Plan form 332 

flO.2831 0.2092 0.1158 0.0809 0.0486 0.0316 O.Ol1i.] 
I 0.1081 0.6255 0.3496 0.1787 0.1188 0.0661 0.03311 I 0.0431 0.2476 0.9187 0.11.511.14. 0.21811. 0.1327 0.o571J 
10.02 14.6 0.10 14.6 0.3690 1.1751 0.5408 0.2382 0.1129 I 
I 0.0132 0.0615 0.1585 0.14.750 1.38811. 0.5908 0.2060 I 
10.0079 0.0321 0.0899 0.1971 0.514.70 1.5138 0.52961 
L0.0035 0.0155 0.0378 0.0907 0.1867 0.5093 1.11.09j 

Plan form 333 
0.2733 0.2180 0.1338 0.0953 0.0578 0.03614. 0.0163 
0.1115 0.6234 0.3776 0.2063 0.1361 0.0752 0.0368 
0.0479 0.262 14. 0.9183 0.4799 0.2381 0.1423 0.0608 
0.0273 0.1152 0.3821 1.1499 0.5416 0.2399 0.1122 
0.01 14.4 0.0660 0.1655 0.4679 1.3222 0.5615 0.1939 
0.0083 0.0337 0.0908 0.1915 0.5135 1.11.125 0.4873 
0.0036 0.0158 0.0375 0.0860 0.1711 0.14.6514. 1.3087 

Plan form 3314. 

E0.26'47 0.2201 0.1451 0.1065 0.0657 0.0403 0.0171 I 0.1122 0.61614. 0.3911.2 0.2282 0.1509 0.0827 0.03911.1 I 0.0509 0.2715 0.9175 0.5017 0.2568 0.1508 0.06351 
10.0294 0.1235 0.3941 1.1380 0.5480 0.2431 0.11131 
I 0.01511. 0.0694 0.1716 0.4659 1.2783 0.5398 0.18271 
I 0.00811. 0.0342 0.0906 0.1860 0.4856 1.3314 0.144811 
L0.0035 0.0153 0.0359 0.0802 0.1549 0.11.220 1.22l0J 

Plan form 335 

ro.2615 0.2207 0.14911. 0.1114 0.0692 0.0418 o.oi8i] 
I 0.1124 0.6139 0.4006 0.2378 0.1577 0.0858 0.0400 I 
I 0.0521 0.2752 0.9187 0.5122 0.2658 0.1542 0.0639 I 
I 0.0303 0.1273 0.40011. 1.1373 0.5528 0.21141 0.1097J 
10.0158 0.0709 0.1711.5 0.4664 1.2631 0.5291 0.1754 I 
I 0.0084 0.0340 0.0895 0.1818 0.4699 1.2915 0.42461 
L0.003h4 0.0111.7 0.0344 0.0759 0.114.11.4 0.3958 l.1758J

61 



62	 NACA TN 3011i. 

TABLE V. - Concluded 

RODYIC-ThLUENCE-COEFFICIENT MATRICES 

(b) Concluded 

Plan fortn311.1 

0.09514.	 -0.0093 0.0159	 -0.0030 0.0072 -0.0010 0.0023 
I 0.0102 0.2938 0.05114. 0.0266 0.0133 0.0103 0.0014.0 
I 0.0022 0.05611. 0.5381 0.11127 0.0526 0.0317 0.0135 I 
I 0.0020 0.0138 0.1356 0.8003 0.211.88 0.08511. 0.011.111. I 

0.0008 0.0106 0.0395 0.2357 1.0519 0.314.65 0.1005 
0.0007 0.0011.3 0.02514. 0.0714J4 0.33149 1.25011. 0.3759 

L°°°°2 0.0027 0.0092 0.0366 0.0955 0.3716 1.2729J 

Plan form 311.2 

0.1953 0.1132 0.011.14.7 0.0277' o.0i11 1i. 0.0092 0.0011.0 
0.0586 0.3868 0.1593 0.0591 0.0368 0.0182 0.0093 
0.0167 0.1136 0.5389 0.19311. 0.0688 0.011.011. o.o157 
0.0081i. 0.03i4.1. 0.1589 0.6818 0.2311 0.0776 0.0365 
0.0037 0.0190 0.01l.96 0.2059 0.8162 0.2663 0.0714.4 
0.0023 0.00814. 0.0274 0.0642 0.2502 0.9230 0.2655 
0.0009 0.0014.3 0.0100 0.0296 0.0679 0.2594 0.9282 

Plan form 343 

o.1881i. 0.12711. 0.0588 0.0361 0.0180 0.0111 0.0045 
0.0652 0.3937 0.1880 0.0759 0.0450 0.0213 0.0106 
0.0212 0.1308 0.51125 0.2152 0.0787 0.011.11.1 0.0166 
0.0103 0.01125 0. 1716 0.6586 0.2326 0.0771 0.0352 
0.0045 0.0218 0.0511. 7 0.2018 0.7511.8 0.211.11.0 0.0658 
0.0025 0.0094 0.0281 0.0616 0.2211.6 0.82514. 0.2285 
0.0009 0.0011.5 0.0100 0.0270 0.0582 0.2203 0.8192 

Plan form 3411. 

0.1799 0.1332 0.0699 0.0435 0.0217 0.0125 0.0048 
0.0678 0.3917 0.2080 0.0917 0.0528 0.0211.0 0.0112 
0.0245 0.1431 0.511-50 0.2352 0.0893 0.0473 0.0169 
0.0119 0.0497 0.18-4.2 0.6459 0.23711. 0.0773 0.0335 
0.0051 0.0214.1 0.0596 0.2011 0.7106 0.2261 0.0574 
0.0026 0.0099 0.0283 0.0592 0.2027 0.7439 0.1935 
0.0009 0.0043 0.0096 0.0211.0 0.0487 0.1816 0.7195



NACA TN O1A
	

63 

C,)

U) 

Ca

• t - - t(\ H oJ N-o 0 0 CO 0 \ t\ N- 0\ 0) H N- O\ 0 '.0 04 H II L\ '.0 '.0 0 L(\ 0\ H 04 
* o . tr

•
-t • '.0 

•
0 . 0 0 0 o 0 0 0 0 0 0 0 0 

_1 I •I I I 

CO 
• - N- 0 - 04 CO O\ '.0 

o oj rC\ - IC\ N- N- if '.0 
H H 04 04 - Lf\ CO 

II N- CO N\ 04 - O\ 0 

*
H 

S
0 

S •
-4- '.0 • 0 

S
0 • 0 

0 0 0 0 0 0 0 0 0 ____ I I I I 
N-

• 
o

C CO O\ 0\ - O\ N- CO 
rl '.0 CO I\ '.0 - 04 H CO 04 04 0 H '.0 II 0 '.0 0 F4\ CO - 0 N-

*
o 

.
I(\ 

.
0 

.
N- 

.
0 

S
L(\ 

S 0 0 

o 0 0 0 0 0 0 0 0 
I I I 

'.0 

d
H - O cc 

CO N- O\ 0 Lf\ - H II 04 U\ 0 CO IC\ CO O\ 04 
0 * r-1 • 0 • F(\ • 0 • CO • \ 04 0 

0 0 0 0 0 0 .0 I 0 I 0 

• N- '.0 cc 0\ '.0 CX) 
o 0 04 ir' Lf\ 0\ CJ '.0 0 cc CD

II
CO CO H 0\ CJ 0 0\ 0 N- 0 tf\ H 0 j-

*0

H 0 04 H - W\ '.0 0 
U) 

L)

c d c d d
u 

H • N- rC\ N- 0' 04 '.0 04 .t 0 0 O\ CO -* N- 0 iC' 
'.0 0 0 N- if\ CO II 0 N- 0 ir H - tC'\ 

ri * 0 04 0 K\ 0• 0
, 

0 0 0 0 0 0 0 0 0 
Ca 
0

• 
0

0 
O\

N- 
CO

O\ 
CO

H 04 G\ 
- If\ 0

'.0 
H

N\ 
04 0 

04
* 
N- 0 II W\ If\ 04 0\ N- L(\ N- ('j 

*
0 

S
r-I 

•
,-4 

.
H . H • K . '.0 • If\ 

0 0 0 0 0 0 0 0 0 
__ I 

04 

0
CO 
N\

04 
-*

04 
N-

0 N\ 
O\

04 
CO

H 
04

-z-

II
N- 0 0 tf\ 0 G\ 0\ 

*

04 
.

0 
0 • 04 .

0 
0 S

N- 
N\ 

S

0 
0 

•

N 
CO 

•

K 
0 

0 0 0 0 0 0 0 0 0 
__ I 

H 
• 0

(Ci 
CO

W\ 
0

'.0 
LC\

04 
O\

H 
(CJ

N- 
O\ '.0 

O\ H - 0 '.0 U\ t4\ 0\ N-
II '.0 ('4 - - CO 04 It\ F(\ 

*
0 

•
H 

•
H . H • H • 04 • FC\ S CO 

0 0 0 0 0 0 0 0 0 

0 0 '.0 CO '.0 
'.0 0\ 

II - 0 0\ H 
* 0 U\ 0 0 0 - 0 CO 

0
('4 

• •
-* 

•
('4 

0 0 0 H

U) 

0 
-'-4 

'3 
-'-4 

U) 
-'-4 

H 
C) 
r4 

4.) 

1</ 

V 



6I
	

NACA TN O1 

• 
o

-
04

-
CO

"0 
N-

'0 
04

C\ 
0 - 0 04 O\

C\ 
N\

U\ 
04 

U C') l\ -* 
H

If\ O\ 
Lr

.* "0
"0 
tf\

O\ 
oj H 

0
('4 H 

* 0 • • -4- . "0 
.

0 . H 
S

0 • H • 0 
o 0 0 0 0 0 0 0 C 0 

CO 
• 

o
O\ 
O\

"0 C\ CO CO N- 
H C') 

L(\
CO 
-

If \ 
CO

0 tf\ "0 0 
II 'O K\ \0 "0 H O \O 

H
-0 -

0
G\ 
O\

If\ N-
N-

* H . 0 
S

-4- • -4- • N- • 0 . H 0 0 
o 0 0 0 0 0 I 0 I 0 I 0 I 0 I 

N-
• 

o
CO 
N-

C') H
O\ 
H

LC\ N-
IC\ 

CO "0 
N-

('4 N- 
N-

('1 
CO 

II
o 
0

K'\ 
'.0 04 

0
'.0 H a 

N-
- 
CO

OJ 
0

-4- 
N-

0 
0 

*
o 

.
04 . 0 • '.0 S 0 • '.0 S 0 • C') S 0 S 

o 0 0 0 0 0 0 I 0 I 0 I 0 I 
'.0 • 
0

'.0 
0 0 Ir' -* CO CO 

4-
04 
LC\

'.0 
H CO 

CO
'.0 
F(\

0 
0 

0
U

N- 
N-

LC' 
\

O\ 
O

4- 
'.0

4- 
0

'.0 
H H '.0 '.0 '-0 N-- M\ 

* o . 0 . H . 0 S N- 
•

4- 
•

4- 
•

0 
•

H 

o 0 0 0 0 0 0 
I

0 
I

0 
I

0 
I 

CD
• 

o
tC\ 
H H 

0
tC\ 
If

04 
C\

'.0 
N-

CD Lf\ 
0

0 
N-

CD 
K\ 

II
-* 
U\

CO 
rC\

-4- PC\ H '.0 -4- 04
H '.0 .4- Q) N- 

04 ('4 '.0 Cl) 
L) *0

0 0 H 0 re .4- N- H H 

H c d d d d d d I d 0 

0 C') H
H 
N-

N- 
0\

H '.0 '.0 
0

CO '.0 H H 04 
N-
-* '.0 

II 0 H 
H

04 0 CO 
'.0

'.0 
0

C') 
0

C') 
ir C\ 0 

Cl) *
o 

•
H • 0 • H . 0 • '.0 • H • N- 

•
0 

0 

LJ 
L_i

0 0 0 0 0 0 0 0 
I

0 
I

0 
I 

rc' 

O
N- 
-

N- 
'.0

LC\ 
C')

C\ 
H H H

(\ 
H

CO 
0

rC\ FC\ C') 
If\ 

II
'.0 
H N- 

.4-
O\ G\ 

\.0
I(\ 
N-

0 
O\

H FC\ 0 0 '.0 '.0 
* o • 0 • 0 S 0 • 0 S H S U\ S CO 

S
H 

0 0 0 0 0 0 0 0 0 I 0 I 
('4 • 
o

N- 
-*

CO 
0

H H
K\ 
H

C\ 
K\ O\ 04 0 If\ FC\ tf\ CO 

F\ 

II
If\ 
("4

0 
0

0 
'.0

0 
0

'.0 
0

0 
0

O\ 
tf\

0 
-4-

H H 
* o . 0 • 0 S 0 • H S 0 • -4- 0 '.0 

O 0 0 0 0 0 0 0 0 I 0 I 
H • o CO 

-*
'.0 
'.o

04 
04

'.0 
'.0

O\ 
i-4

C') 
1C\

0 
0

CO H 0	 - N-
II '.0 

0 04 H
C'\ 
H

N- 
H

'.0 
04 0 -*

(Y\ 
H -* 0 H -* 

* 0 S 0 • 0 S 0 S 0 • 0 • ('4 • FC\ • '.o 
0 0 0 0 0 0 0 0 0 0

U] 

\

(I 

0 

C') 

C.)
	

.1-I 

0 

0

	 H 
C) 

H 

El

p 

1x4 
0

V 



NACA TN 30114.
	 65 

TABLE VII

MATRICES USED IN LIFT-DISTRIBUTION CPLCULATI0NS 

(a) Symmetrical distributions 

0.19509 
0.38268 
0.55757 
0. 7071]. 
0.83114.7 
0.92388 
0.98079 

00000 

. 014.877 
0. 13889 
0. 20787 
0.214.520 
0.214.520 
0.20787 
0. 13889 

. o1877 

31.00000 
0.98079 
0.92388 
o.83117 
0. 70711 
0. 55557 
0. 38268 
0.19509

0.55557 
0.92388 
0.98079 
0. 70711 
0.19509 

-0. 38268 
-0.83114.7 
-1.00000 

0.09567 
0.23097 
0.23097 
0.09567 

-0.09567 
-0.23097 
-0.23097 
-0.09567 

3.00000 
2.14.914.14.1 
1. ili.8o4 

-0. 58527 
-2 .12133 

2.914.237 
-2.771614. 
-1.66671

0.83114.7 
0.92388 
0.19509 

-0.70711 
-0.98079 
-0.38268 
0.55557 
1.00000 

0.13889 
0.21152O 
0.014.877 

-0. 20787 
-0.20787 
o.o'877 
0.214.520 
0.13889 

5.00000 
2. 77785 
1.91314.0 

90395 
-3. 53555 
0.975)5 
14. . 61914.0 
14. . 15735

[sin n8ml = 

0.98079 0.98079 
0.38268 -0.38268 

-o.8311i.7 -0.83114.7 
-0.70711 0.70711 
0.55557 0.55557 
0. 92388 -0.92388 

-0 .19509 -0.19509 
-1.00000 1.00000 

1- 	 -i-i L51n nOj = 

0.17678 0.20787 

	

0.17678	 0.011.877 

	

-0.17678	 0.214.520 
-0.17678 0.13889 
0.17678 0.13889 

	

0.17678	 O.214.520 

	

-0.17678	 0.014.877 
-0.17678 0.20787 

[cos nerniLni = 

7.00000 9.00000 
1.36563 -1.75581 
6.11.6716 -8.3111.92 

-3.88899 5.00013 

	

1t .911.977	 6.36399 

	

5.82029	 7.14.8323 
-2.67876 _3.11J4i.12 
-6. 86553 8.82711 

Lhll=

0.83114.7	 0.55557	 0.19509 
-0. 92388 -0.92388 -0.38268 
0.19509 0.98079 0.55557 
0.70711 -0.70711 -0.70711 

-0.98079 0.19509 0.83114.7 
0.38268 0.38268 -0.92388 
0.55557 -0.83114.7 0.98079 
-1.00000 1.00000 -1.00000 

0.23097 0.2 14.520	 0.12500 
-0. 09567 -0.20787 -0.12500 
-0.09567 0.13889 0.12500 
0.23097 0.011.877 -0.12500 

-0.23097 O.01 877 0.12500 
0.09567 0.13889 -0.12500 
0.09567 -0.20787 0.12500 

-0.23097	 0.214.520 -0.12500 

11.00000 13.00000 15.00000 
-6.11127 -10.80911 _114..71185 
- 1t .20914.8	 1i. . 971i.8Ji. 13.85820 
10.78869	 2.53617 _12.1l.7205 
-7.77821	 9.192 11.3 10.60665 
2.114.599 12.75027 -8.33355 

10.16268 _12.O1O II.14. 	 5.714.020 
_9.114617	 7.22214.1 -2.92635 

0.06250
0.12500

0.12500
0.12500

0.12500
0.12500

0.12500
0. 12500
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TABLE VII. - Continued 

MATRICES USED IN LIY1-DISTRIBUTI0N CLCULATI0NS 

(a) Concluded 

[sin nemi 
I	 iInl= 
L'' 9m]' 

1.00000 8.511.313 21.30990 35.19159 14.5.211.633 11.6.88178 37.02023 15.00000 

1.00000 7.211.272 12.07120 7.00000 -9.00000 _26.556140 -31.38512 -15.00000 
1.00000 5.29620 1.75580 _l0. 11.7614.l -13.14-6967 3.86276 22 . 95020 15.00000 

1.00000 3.00000 -5.00000 -7.00000 9.00000 11.00000 -13.00000 -15.00000 
1.00000 0.70389 -5.89795 14..67719 6.01353 12.97511.9 3.05019 15.00000 

1.00000 _l.211.263 -2.07105 7.00000 -9.00000 14-.55631 5.3814-73 -15.00000 
1.00000 -2.514.328 2.83220 -1.39237 -1.79019 6.230811. -11.02088 15.00000 

1.00000 -3.00000 5.00000 -7.00000 9.00000 -11.00000 13.00000 -15.00000

[B= 

	

5.1258	 l.81l8l	 0	 _O.15111.	 0	 -O.01i-81	 o	 -0.0163 

	

-0.914.22	 2.6131	 -1.0193	 0	 -0.1017	 0	 _0.01l.l1	 0 

0	 -0.7022	 1.7999	 -0.7191	 0	 -0.0815	 0	 -0.0226 

	

0.011.17	 0	 0.5611.9	 1.14.114-2	 -0.5739	 0	 -0.0773	 0 

0	 _o.o168	 0	 0.11.881	 1.2027	 0.14.9911.	 0	 -0.0506 

	

-0.0102	 0	 0.01490	 0	 _0.1l.1l.911. 	 1.08211.	 -o.1l-8:IA	 0 

0	 -0.0160	 0	 -0.0557	 0	 -0.11535	 1.0196	 -0.11-106 

	

-0.0063	 0	 -0.0251	 0	 _0.0814-2	 0	 -0.8053	 1.0000 

[Dl = 

0.039276 -0.018861 0.011693 -0.007813 0.005220 -0.003236 0.0015511. 
-0.018861 0.050969 -0.0266714. 0.016913 -0.011014-8 0.006775 -0.003236 
-0.0275811. -0.007813	 0.014.14 11-96 -0.022097 0.013211.6 -0.007813	 0.003666 
0.011011.8 -0.0314.057 -0.003236 0.014.0830 -0.018861 0.010138 0.0011.577 
-0.00614.73 0.015625 -0.037723	 0	 0.037723 -0.015625 0.00614.73 
0.001 577 -0.010138 0.018860 -0.011-0830 0.003 236 0.0314.056 -0.011011-8 
-0.003666	 0.007813 _0.013211.6	 0.022097 _0.011.11 14.96	 0.007813	 0.0275811. 

	

0.003236 -0.006775 0.011011.8 -0.016913 0.02667 1.l -0.050969	 0.018861 
-0.0015514- 0.003236 -0.005220 0.007813 -0.011693 0.018861 -0.039276 
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TABLE VII. - Continued 

MATRICES USED IN LIFT-DISTRIBUTION CALCULATIONS 

(b) Antisyrninetrical distributions 

Lsin n8] 

0.38268 0.70711 0.92388 1.00000 0.92388 0.70711 0.38268 
0.70711 1.00000 0.70711 0.00000 -0.70711 -1.00000 -0.70711 
0.92388 0.70711 -0 . 38268 -i.00000 -0.38268 0.70711 0.92388 
1.00000 0.00000 -1.00000 0.00000 1.00000 0.00000 -1.00000 
0.92388 -0.70711 -0.38268 1.00000 -0.38268 -0.70711 0.92388 
0.70711 -1.00000 0.70711 0.00000 -0.70711 1.00000 -0.70711 
0.38268 -0. 70711 0.92388 -1.00000 0.92388 -0.70711 0.38268 

[sin nO1 = 

0.09567 0.17678 0.23097 0.25000 0.23097 0.17678 0.09567 
0.17678 0.25000 0.17678 0.00000 -0.17678 -0.25000 -0.17678 
0.23097 0.17678 -0.09567 -0.25000 -0.09567 0.17678 0.23097 
0.25000 0.00000 -0.25000 0.00000 0.25000 0.00000 -0.25000 
0.23097 -0.17678 -0.09567 02500O -0 .09567 -0.17678 0.23097 
0.17678 -0.25000 0.17678 0.00000 -0.17678 0.25000 -0.17678 
0.09567 -0.17678 0.23097 -0.25000 0.23097 -0.17678 0.09567 

Lcos ne1Ln1 

2.00000 4.00000 6.00000 8.00000 10.00000 12.00000 14.00000 
1.84776 2.8281i.4 2.29608 0.00000 -3.82680 -8.48532 -12.93432 
1.41422 0.00000 -4.24266 -8.00000 -7.07110 0.00000 9.89954 
0.76536 -2.82844 -5.54348 0.00000 9.23880 8.48532 -5.35752 
0.00000 -4.00000 0.00000 8.00000 0.00000 -12.00000 0.00000 

-0.76536 -2.82844 5.54328 0.00000 -9.23880 8.48532 5.35752 
-1.41422 0.00000 4.24266 -8.00000 7.07110 0.00000 -9.89954 
-1.84776 2.82844 -2.29608 0.00000 3.82680 -8.48532 12.93432 
-2.00000 4.00000 -6.00000 8.00000 -10.00000 12.00000 -14.00000

L'il= 
0.06250	 - 

0.12500
0. 12500

0.12500
0.12500

0.12500
0.12500

0. 12500
0.06250 



NACA TN 30Th-

TABLE VII. - Concluded 

MATRICES USED IN LIFT-DISTRIBUTION CALCULATIONS 

(b) Concluded 

r6 no;l 
I	 i[n= 
LSlflemJ 

3.92312 l4. 1i98l2 28. 111396	 11.00672	 11.7.35660	 11.3.11.911.36 
3.69556 10. 14.5260 11.08668	 0.00000 -18. 11.7780 -31.35780 -25.86892 
3.325914. 5.09116 -4.13292 -14.39992 	 -6.88820 15.27311.8 23.28158 I 
2.828112 -o.000oo -8. 1t8526	 0.00000 111.111210	 0.00000 -19.79 894 I 
2.22228 -3.11.0172 -2.76150 	 9.62152	 -4.60250 -10.20516 	 15.55596 I 
1.530711. -4.32956 4.59222 	 0.00000 -7.65370 12.98868 -10.71518 I 
0.78036 -2.88384 5.65188 -8.15672	 9.11-1980 -8.65152 	 5.11.6252] 

LB1= 

5.1259 -1.8448 0.0000 -0.1436 0.0000 -0.0326 0.0000 
-0.9 11.05 2.6131 -1.0138 0.0000 -0.0898 0.0000 -0.0166 
0.0000 -0.6983 1.7999 -0.7097 0.0000 -0.0619 0.0000 
-0.0396 0.0000 -0.5576 1.41142 -0.5576 0.0000 -0.0396 
0.0000 0.0 11.14 0.0000 _0.14.711.2 1.2027 -O.1i-666 0.0000 
-0.0069 0.0000 -0.0372 0.0000 -0.11.199 1.08211. -0.3896 
0.0000 -0.0065 0.0000 -0.0286 0.0000 -0.3670 1.0196

[Dl = 

0.0 14.0014.6 -0.020415 0.01 11.062 _O.0110 14.8 0.009396 _O.00814.56 0.007966 -0.003907 
_0.02014.15 0.054108 -0.031464 0.023459 -0.019505 0.017362 -0.016269 0.007966 
-0.025984 -o.011048 0.049 11.11.2 -0.028872 0.022028 -0.018861 0.017362 -0.008456 

0 . 009366 -0.030649 -0.008456 0.048012 -0.028228 0.022028 -0.019505 0.009396 
-0.004666 0.011959 -0.032081 -0.007813 0.048012 -0.028871 0.023459 -0.011048 
0.002593 -0.006097 0.012603 -0.032081 -0.008456 	 0.04914.14.2 -0.03114.614. 	 0.014062 
-0.001430 0.003 236 -0.006097 0.011959 -0.030649 -0.011048 0.05 11.108 -0.020415 
0.0006 14 11. -0.001430 0.002593 -0.004666 0.009366 -0.025984 -0.020415 0.040046 

NACA 
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TABLE X

INTEGRATING MATRICES FOR LOAD AND MOMENT COEFFICIENTS 

L'CLJ 

[.O1915 0.03757 0.O55 O.O69f2 0.08163 0.09070 0.09629 O.O19O9] 

	

Ii	 1= LJ 
Lo. 01818 O.O372 O.O533 O.O913 O.O528 o.O3 87 0.01833 O.00196J 

	

li	 1= 
LL1/2] 

Lo.01993 0.03596 0.05113 0.06556 0.08736 o.o8i6 0.11365J 

I Ic 1 I = Li 
L9.00939 0.01735 0.02267 O.025 0.02267 0.01736 0.00939]
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Figure 15.-. Spanwise lift distributions for plan form 331 (A = 6.0; 
= 1.00). 
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Figure 18.- Spanwise lift distributions for plan form 311.2 (A = 12.0; 
A = 0.27). 
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Figure 19.- Spanwise lift distributions for plan form 3)4.3 (A = 12.0;
= 0.50). 
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Figure 19.- Concluded.
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Figure 20.- Spanwise lift distributions for plan form 31.k (A = 12.0;
= 1.00). 
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Figure 20. - Concluded.
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