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SUMMARY

In the process of analyzing the longitudinal frequency-response
characteristics of aircraft, information on some of the methods of ansly-
sls has been obtained by the Langley Laboratory of the Natlonal Advisory
Committee for Aeronasutics. In the investigation of these methods, the
practical applications and limitations were stressed.

In general, the methods considered may be classed as: (1) anslysis
of sinusoidal response, (2) aenalysis of transient response as to har-
monic content through determination of the Fourler integral by manual or
ma.chine methods, and (3) analysis of the transient through the use of
least-squares solutions of the coefficients of an assumed equation for
either the transient time response or frequency response (sometimes
referred to as curve-fitting methods).

The investigation has led to the following observations: The curve-
fitting methods (Donegan-Pearson and exponential-approximation methods)
appear to be less critical to inputs having reglons of low harmonic con-
tent than Fourier methods and present the frequency response as analyti-
cal expressions (transfer functions). Fourier methods indicate chasrac-
teristics of frequency response that may be missed in curve-fitting
methods because of the limitations on the assumed form of the equations
used in the curve-fitting methods. TFor manual calculations, the Ddnegan-
Pearson method sppears to be best suited for highly damped systems in
response to arbitrary control inputs, the exponential-approximation
method appears to be best suited for lightly damped systems in response
to step or short-pulse control inputs, and the Fourier method offers
comperable results but requires lengthy calculations. Special macHines
for performing the Fourler anslysis, such as the Coradl harmonic analyzer
and the Fouriler sythesizer, reduce the time required for the solution
but do not offer particular improvement in accuracy over the usual menual
methods. The use of punch-card calculating machines for the evaludtion
of the Fourier integrals appears to offer possibilities of more accurate
results with a large reduction in time over the usual manual methois.

*
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INTRODUCTION “

In recent years, a large number of methods have been advanced for 4
the purpose of obtaining frequency-response date, transfer functions,
and stability coefficients from flight tests by using control inputs of
arbitrary shape. As pointed out 1n reference 1, the data obteined from
the application of these methods are of great value to alrcraft and eauto-
pilot designers as well as to designers of other électronic airborne
equipment for the combination of their 1ndividual products into a stable
working unit.

A résumé of methods and progress to date with reference to dynamic
flight testing is presented by Milliken in reference 2. Although all
these methods appeer to heve advantages and limitations, some methods
have gained popularity with various groups whereas other methods remain
comparatively unused. A number of methods have been examined and used
by the Flight Resesrch Division of the Langley Aeronautical Laboratory
in an effort to determine which methods to adopt—in estgblishing the
transfer functions of the various aircraft umdergoing dynamic flight . —
tests. This program has cffered & certain amount of practical experi- .
ence in the use end limitatlions of the methods, and it 1s believed that
this experience may be of value to others engaged in obtaining the fre- -
quency responses of gircraft. No attempt has been made to examine all
the known methods of enalyzing dynamic responses and omission of any .
method is not intended to imply lack of merit. "

A Pprief review of the methods examined is offered in this paper,
together with references to thelr derivations and examples of thelr
application. Three types of aircraft, a fighter, a transport, and a
free-fall model, were used for these examples. The examples are con-
cerned with the short-period longitudinal mode of the alrplane, which )
is usually a well-damped mode defined by a failrly simple transfer func- B}
tion. Thus, the comparisons of methods presented herein are made solely
on .the basis of results obtained from analysis of this longitudinal mode.
It is recognized that complicated oscillating systems may be analyzed
and . greater accuracles obtained by all the methods reported at the
expense of & more extensive anelysis. The comparison of methods pre-
sented herein, however, may be altered when applied to more complicated
systems.

The methods are discussed with regard toc the time required, the
means for facillitatling their use, and the limitations on their aspplica-
tion. Some opinions presented are not directly substantiated by quanti-
tative results but are based on experlence in the use of-the methods. »
The results obtalined are compared to give some indication of the rela-
tive accuracy of the methods, exclusive of any 1naccuracy in the
meagurements. :
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SYMBOLS

coefficients of longitudinal transfer functions of an
airplane (composed of stebility paremeters)

amplitude

coefficlents of cubic approximation to transient
damping exponent in e&t

damping coefficient, -2a

arbitrary coefficilent

differential operator, d/dt

natural logarithmic base, 2.71828

pressure altitude, ft

coefficients of equation relating airplane longitudinal
response to step-control motion

real and imaginary terms of Fourier integral, respectively

stiffness coefficlent, a2 + o

Mach number

nunerical integer

numerical integer or normael acceleration, g units
periocd, sec

Laplace transform variable

quantity as a function of frequency

quaentity as a function of time

time varieble of integration, sec
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Tl/2 time to demp to one-half amplitude, sec -
Tl/20 time to damp to one-twentieth amplitude, sec )
t time, sec
tp time required for oscilllation to reach initial peak

from time of step-control input, sec
tp time interval over which curve analyzed
b4 abscissa of response curves

ordinate of response curves -

o angle of attack, deg

Vs flight-path angle, deg

& control deflection, deg

¢ damping ratio, Damg;ng coefficiént 3
Critical demping coefficient

8 pitch angle, deg B : . _

T time lag, sec

¢ phase angle, deg _ ’ _

¥y 5¥p displa;ement coefficlents of Coradi harmonic analyzer B

w frequency, radians/sec

Wn undamped natural frequency, radians/sec

Wy forcing frequency, radians/sec

Subscripts:

e elevator -

I input . o : £

0] output _ =
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(o} magnitude at t =0

ss magnitude at steady state
o magnitude at infinity

€ error

0,1,2,35,...n numerical integers

The sbsolute value of any term is denoted by | |.

BASTC CONCEPTS

It is assumed herein that the reader is familiar with the concepts
and application of the Laplace transform to linear systems. A presen-
tation of this method may be found in reference 3.

The frequency response of & dynamic system defines its steady-state
response under the influence of an input applied in the form of a sinu-
soldal oscillation of constant amplitude and period. An analytical
expression which defines the frequency response throughout the frequency
range 1s, when defined in terms of the Laplace transform varisble p,
the transfer function of the system. The transfer function not only
expresses the frequency response but 1t may be said that, for linear
systems, any arbitrary input function operated on by the transfer func-
tion determines the varistion in the output funectlon. Conversely, if
the input and output are known, it should be possible to determine an
enalytical expression which relates the two, that is, the transfer func-
tion. The present paper is concerned with several methods of obtaining
the transfer functions of aircraft from measured inputs and responses.
The methods presented herein, in genersal, may be divided into two classes:
methods that first determine the frequency response of the system and
methods that determine the transfer function without the determination
of the frequency response.

The NACA sign convention, asg shown in figure 1, assumes elevator
tralling edge down as positive. Therefore, a positive elevator deflec-
tion will, in general, produce negative static responses. In order to
conform with the usual practice of plotting frequency-response data,
phase angles have been shifted 180° (that is, zero phase angle at zero
frequency) .
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DESCRIPTION AND DISCUSSION OF METHODS

Sinusoildal-Response Method

Of the several possible ways to obtaln the freguency response of
a system, an obvious way is to oscillate sinusoidally a control surface
at a constant amplitude and frequency until a steady-state response of
the aircraft has been obtained and measure the amplitude and phase rela-
tionship between input and output sine waves. The process may then be
repeated throughout—the frequency range of interest. The theoretical
application of this method to the determination of the coefficients of
the transfer function is given by Greenberg in reference 4, and a greph-
ical method of determining transfer functlions from frequency-response
data is given in reference 5.

The sinusoidal-response method requires the least computation time
and the most flight time of the methods reported herein. 1In an effort
to reduce the large smount of flight testing required, a number of
simplifications from the usual techmnique have been attempted. One pro-
cedure that was investigated involved obtaining sinusoidal-response
date by continuously recording the controlled -input and the response of
the airplsne while slowly changing the frequency of the input to cover
the range of-frequencies desired. Appendix A presents an estimation of
the errors encountered at several values of-rate of change of forcing
frequency when such a frequency-modulated input is applied to a dynamic
system defined by a second-order lag. From this analysis and also from
flight results, it appears that, for systems having near critical damping,
satisfactory results msey be obtained. In addition, 1t appears that a
human pilot mey generate an adequately near sinusoidal input without the
ald of special equipment, particularly 1f he has a fairly precise indi-
cation of the amplitude of his stick motion. A typical record obtained
by using these technigques is presented in figure 2. The deviation from
a pure sinusoidal input is obvious although the filtering supplied by
the airframe results in a nearly sinusoidal response. Jones and
Sternfield in reference 6 outline & method for determining the ampli-
tude of an equivalent sine wave when the actual periodic wave has an
irregular form. In general, however, it has been possible to obtain
results consistent with the accuracy of-the measurements by fairing the
peaks of the oscillations in the input and output and obtalning the
double amplitude of these quantities from the fairing by averaging over
& number of successive half-cycles. The mean value about which the
oscillations occur is established from the fairing of the peak ampli-
tudes, and the time lag of the output behind the input is determined by
aeveragling the lag read along this mean value over & number of . successive
half-cycles. The period of the oscillations is similarly obtained by
averaging. The method of measurement of these quantities is illustrated
in figure 2.
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The importance of averaging over successive half-cycles, when
establishing the time lag, is shown in figure 2 where, in some cases,
the veloeity of the input is considerably different in one direction
than in the other with the result that the time lag read at one point
will differ considerably from that read one-half period later. The
average, however, appears, in most cases, to represent adequately the
actual time lag.

The frequency-response parameters mey be determined from the
averaged values through use of the following relsatlons:

Frequency = _en (1)
Period

Amplitude of output
Amplitude ratio = 2 (2)

Amplitude of input

Phase angle = 360 Leg (3)
Period

Flight records for a fighter airplane were obtained with the pilot
manuelly epplying an approximate sine wave of varying frequency to the
elevator. A sample of the flight date i1s presented in figure 2 and
some pertinent geometric characteristics of the alrplane and the flight
condition under which the data were obtained are listed in table I.
Data points obtained by the foregoing analysls are presented in fig-
ure 3 together with a suggested fairing. The scatter is considered
typical for this technique (pilot-induced input). These data points
represent portions of two flights of the fighter airplane and a recording
time of sbout 250 geconds. A typlcal example of the time required to
reduce the flight data to a frequency-response curve by this method is
shown in table II. Typical times are also presented in the teble for
other methods to be discussed subsequently.

Fourier Analysis of Transient Response
Another well-known method of determining the frequency response is

to determine the coefficients of the Fourier transform of the input and
output functions over a frequency range by analyzing the response (as a
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function of time) of the aircraft to an arbitrary input The process
is indicated by the expression

gi’-(am) _Jo (1)
T 0 .
(4)e”9%%a4
[

which represents the ratio of the Fourier integral of the output to the
Fourier integral of the input. The derivation and several applicetions
of this method are reported in references 4 and 7.

This method, as well as the sinusoidal method previcusly described,
glves data points in amplitude ratio and phase angle at a number of dis-
crete frequencies through which a fairing can be made. Transfer func-
tions may be obtained from the frequency-response curves by the same
methods as were mentioned for the sinusoldal responss.

Integration of the Fourier integral offers a cholce of methods
which may be divided into two general categories: (1) methods which
divide the transient—into finite intervals, approximate the curves
within each interval with an analytical expression, perform the indi-
cated integration analytically, and sum the real and Imaginary parts of

these integrals; and (2) methods which express e-Jmt in trigonometric
form, multiply these sine and cosine functions by the value of aft)

at corresponding times, and integrate the product curves to determine
the real and lmagingry terms of the Fourler integral.

Solution of the Fourier Iintegral by elther approach involves the
Judicious cholce of time Iintervals. For the analytical representation
method, a choice 1n the form of the analytical expression must also be
made. As the chosen expression becomes more complex, the accuracy of
the determination of the frequency response generaslly increases but,
as the work involved likewise Increases, a compromise usuelly is
necessary.

The following are seversl methods which have been studied and
illustrate the various approaches to the Fourier transformation.

Menual Method: Analytical integration within discrete intervals o:
cubic representetions of & transient.- A method of representing a tran-
sient for solution of the Fourier integral, as developed by Ordway B.
Gates, Jr., of the Langley Laboratory, involves the division of the
transient into discrete time intervals chosen to facllitate accurate




<Y NACA TN 2997 - 9

- approximation of each portion of the transient by cubic (or lower-order)
polynomials. The Fourier integral will then be

Qlw) = fo - a(t)e et

1 %
= JF qo(t)e-Jmtdt + JF 2 ql(t)e'jwtdt + . . .+
0 £y

1l

qn(t)e"jwtdt .. .+ fm q_ss(t)e-jwtdt (5)
tn tes

where

2

- an(t) = a t> + bt + c b + dy

The values of the coefficients a&,s by, ¢4, and 4, for any

given n may be determined from the characteristics of the transient
within the interval t, to t,,;. For the general case, the interval

is subdivided into thirds and values of the transient q(%) at these

dividing points afford four cubic egquations having four unknowns
(ap, by, cp, and d,). The adventage of using equal divisions within

the interval t; to t,.; 1is the ease of the solution of the four
equations by means of "successive subtraction." (See illustrated

exsmple in appendix B.) If, however, the slope of the transient is

zZero (%% = O) within the interval, this condition should be used as

well as the value of the transient q(t) at this point. The coeffi-
cients thus determined give an equation that may be used to check the
fit of the transient by the expression before further work is initiated.

This apbroach to the evaluation of the Fourier integral msy be
expressed analyticelly as follows:

n=gg

- alw) =g (@) =K (o) - Ko (6)

I
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where
o+l 3 5 \ =t
Qplw) = . (ant + byt2 + et + d.n)e at
n
and
ol 3 et ay 50 tnel
ay f t7e 9%t = - _<6 + 63tw - 3tws - ,jt5w5)e'3t‘“
th w# tn

tnel

&
I

= %(2 + 25t - tewe)e"jt‘”

tn

bl o st | el
en f te ‘W?dt: % (1 + jJtw)e Jt

tn w t

n

A a1
dn f il e—'jmtd‘b—‘—- - E e-‘jm
tn da ty

The substitution of discrete values of frequency w gives the real
and imaginary terms of the Fourier transform of the time transient q(t),
and the relationships of amplitude and phase are given as.

A ={%2 + K,°
. (7)
¢ = tan-1 :Eg
Xy )

As an illustration of this method, a numerical example 1s presented
in appendix B. A method of this type is not very adaptable to machine
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methods because some discretion is required in the subdivision of the
transient, and the time intervals are not necessarily equal. A small
amount of trigl and error may be required in the choice of these time
intervals, particularly in the vieinity of points of inflection. The
cubic representation has the merit of being the lowest-order polynomiasl
to contalin a point of inflection. This approach to the solution of the
Fourier integral has the adventage of providing an analytical represen-
tation that may be directly compared wlth the transient and of providing
an exact analytical integration. On the basis of compareble accuracy,
thils approach 1s in many instances shorter than the classical numerical
integration method that follows.

Manual Method: Numerical integration of product curves of

a(t)sin wt and q(t)cos wt.- The usual manual method, which also is the

basis of some of the machine methods, requires a large amount of graphical
or numerical integration because no attempt is made to obtain & contin-
uous analytic expression for the transient until it has reached a steady
state. If the input is restricted to a simple analytical expression

(for example, a step input will have a constent value from zero time to
infinity), the graphical or numerical integration of the input is elimi-
nated and the time required for the solution of equation (%) 1is roughly
reduced by one-half. For the purpose of graphical or numerical integra-
tion, equation (4) may be reduced to an expression involving real inte-
grals of the form

<]

[s¢]
JF g(t)cos wt dt - j.]P g(t)sin ot dt
0 o}

JP q(t)e-jwtdt
0]

K (0) - JKplw) (8)

where the frequency-response relationships are given by equation (7).

The numerical and graphical method for the solution of the Fourier
integral snd an example of its use is given in reference 4 by Greenberg
and s more complete discussion is glven by Schetzer in reference 8.

A rule of thumb for choosing the proper time interval in analyzing
flight deta has been suggested by experience gained in the use of this
technique. The rule is restricted to the methods of integration adapt-
able to the manual methods, for example, Simpson's three-point rule.

In general, a chosen time intervel At will give reasonable results

up to & frequency of so that a time interval of 0.10 second msy

5 At
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be expected to produce good results up to & frequency of about 6 radians
per second. The proper choice of time intervals is obviously dependent
on the character of the input and output; however, the foregoing rule
has been found usually conservative except in cases of extremely erratic
variations in the input and output. The highest freguency at which
reasonable results might be expected will also depend upon the choice

of forms of integretion, & superior integrating method affording use of
gregter time intervals for comparable results.

When Simpson's three-point rule for numerical integration or a
planimeter are used for this method, the time required msy be estimated
by another rule gained from experience. For a typical case where the
short-perlod longitudinal response to a step or pulse input 1s analyzed,
the time required to obitain the amplitude and phase angle of the output
(one) function at 8 frequencies by using 24 data points has been found
to be about 6 man-hours for an experienced user. Tabulated values of
sin ot and cos wt were used and the time required to make these tabu-
lations was not included in the estimate. B

Punch-card method {(IBM).- Certain International Business Machines

(described subsequently and referred to as IBM machines) offer a time-
saving solution to the process outlined in the previous section with
usually more accurate results over a grester frequency range since use
of more complicated and accurate methods of numerical Integration are
feasible. Weddle's seven-point rule (ref. 9, p. 125) as derived from
the Newton-Cotes quadrature formuls has been employed and is an exasmple
of such a method. i

By using essentially the same procedure as the manusl method which
integrates the product curves q(t)sin ot and q(t)cos wt, a set of
"master" cards are punched which define the values of the cosine and
sine functions for the values of wt — selected and also define the
numerical integration process used. Since values of wt determine
the values of the trigonometric functions punched on the cards, the
frequency range to be evaluated may be varied by changing the time
interval in inverse proportion. Cards are likewise punched for the
time functions of input and output (and these must obviously be punched
for each separate analyzed record).

The celculations involved in the Fourier anslysis method as per-
formed on the IBM machines that are available &t the Langley Laboratory_
are a8 follows: -

(1) Time response data are perforated onto IBM cards by using a
card punch.

(2) Correct transcription of date onto cards is checked by a
varifier.
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(3) Original deck of cards representing time-response data is repro-
duced, one deck for each frequency to be analyzed, by using a reproducer.

(4) Integrating factors and trigonometric functions are transferred
from the "master" deck to each deck obtained from step (3) by using the
reproducer.

(5) Product functions (q(t)sin wt eand gq(t)cos wt) are obtained by
an electronic calculator.

(6) End corrections and integration corrections are applied by using
a sorter and the electronic calculator.

(7) Fourier summation of terms obtained for each frequency are made
by using a tabulator (alphabetical accounting machine).

(8) Summary cards of amplitude and phase relationships are obtained
on the electronic calculator.

(9) Finel frequency data of input and output funchtions are typed out
by the tabulator.

Some aspects of this process as applied to lateral responses having steady-
state osclllatory responses are described in more detaill in reference 10.

The time required for this IBM equipment to perform the operations
indicated has been found to be 5 machine-hours for the determination of
data at 12 frequencies for one function by using one set of machines and
241 date points (12-second records using 0.05-second intervals). This
time was averaged over several performences and included all checks and
correction of mistakes.

Method using the electromechanical Fourier synthesizer.- The elec-
tromechanical Fourier synthesizer, originally bullt and used by the
Massachusetts Institute of Technology to produce transient-response
curves from frequency-response dsta, was designed to perform the fol-
lowing operstion (see ref. 11):

qne-j(na+¢n) = > cos(np + ) -

n=1,2,3,... n=1,2,3,...

J 9, sin(mg + §;) (9)
n=1,2,3%,...
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where

q, amplitude of nth harmonic

@ phase angle of nth harmonic

B angular displacement of fundamental .

The application of the Fourier synthesizer to the evaluatilon of the
Fourler integral may be seen from the following derivation.

The general form of analysis assumes that any arbitrary curve of
input or output may be represented by & series of step functions with
a constant finite time lag between the steps:

m T3 rag (%)
a(t) l//l AqB(t) \\I ’Aq6(t')
— At —] v } 2, (%) >
1 AR
tg ty 1::2 ' t.3 ' _ l1_-,4 ts tg
Time, ©

The step spproximation is the same as that used in the analytical method
of obtaining the frequency response from a time response to a step input
as presented in reference 12 and also the same as the extension of this
enalytical method to an arbitrary input as presented in reference 13.
Thus, the Fourler integral of sn arbitrary function in time q(t) may
be spproximated in the form )
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Qlw) = Aql(t)e-'jwtdt + Aq_a(t)e-jwtdt + . . +
£, - &6 - O
1772 2™
rag(6)e %at (10)
.o O
n= 3"
Therefore,
Jate
=J (nw At-w —
o) = 2 Z 2q,(t)e ( 2) (11)
n=1,2,5,...
In trigonometric form
Uw) = - % E Aqn(t)sin(m At - © -%t-) -
n=1,2,%,...
J A6
£ Aqn(t)coséwacm -w E?) (11s)
n=1,2,%,...

This relationship, as can be seen By comparison of equation (11a) with
equation (9), may be handled by the Fourier synthesizer.

The number of points that may be used conveniently to represent the
time-response curve is determined by the number of resolvers avallable
in the machine to similate the convolution process. The machine inves-
tigated, employing 24 resolvers, required 4 to 8 hours to obtain the
frequency response of a system from any arbitrary input and output that
mey be represented by 24 equally spaced steps. The frequency data are
presented by the machine as curves of the Fourier transforms of the real
and imaginary coefficients. From these curves, values at any number of
frequencies may be chosen for the determination of phase angle and
amplitude.
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In view of the fact that the Fourier synthesizer utilizes 24 equally
spaced steps, it is limited to transients that may be adequately aspproxi-
mated thereby. Although the frequency range plotted by the synthesizer
is from O to n/A¢ radians per second, the results do not appear to be
accurate to any higher frequency range than is quoted for the msnual

method which uses Simpson's rule Cm = =
5 At

Coradil harmonic analyzer.- The Coradi harmonic analyzer (ref. 1k)
is a semimanually operated tracing machine which by the use of several
rolling spheres may be used to evaluste the Fourier integral of a func-
tion. The model investigated (Dent-Draper Model, Rolling Sphere Type,
Mico Instrument- Company, Cambridge, Mass.) employed five spheres which,
through use of various gears, may measure the harmonic content of a
curve within a range of 1 to 50 harmonics. Details of the operation of
an earlier model of the Coradl harmonic analyzer are presented in
reference 15.

Through the use of the Coradi harmonic analyzer, the time transient
is traced from the point of initilation (initiel conditions zero) to the
roint of steady-state response and the following integrals are evaluated:

¥, = ~C fyss cos wt dl_}(tﬂ (12a)
Yo

Yp = C ]\Vss sin at dfy(t)] (12b)
Yo

These integrals are proportional to the real and imaginary part of the
Fourier integral of the curve being analyzed

w) =‘jgw q(t)e-JthE

The proportionality may be seen by integrating the Fourier integral by
parts to change variables so that

e [ a(w) _
Q) = - %ﬁl e J‘“’“[o . J_Z.fo ¥ [q(4]] (1)
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where for all practical purposes the first term is zero. In the use of
the Coradi hermonilc analyzer, the term gq(t) is plotted along the y-axis;
therefore, equation (13) may be written as follows:

Uw) = i_/;yw e"jwtdEr(tzl

y Vo -
L [T ity o I [V 0 [y (14)
Jo Yo Jw

Yss

where the second term is zero since Yy . = Y- In trigonometric form,
equation (14) becomes

Qo) = - (%_/;yss sin wt dE(tﬂ + Jiwfc;yss cos wt dE‘(tﬂ (15)

so that substitution of equations (12) into equation (15) gives

V2 ¥
w =—=+ 3= 16
Ae) = ==+ J — (16)
where o = 2xn and t, 1s defined as the time interval over which the
r

curve was analyzed. The constent 1/C is the scale factor between the
function being snalyzed and the displacement of the dials of the analyzer.
In general, because only the ratioc of output to input is desired, the
individual scale factors need not be computed provided both quantities
are plotted to the same scale.

This analyzer appears to produce the Fourier coefficients within
an sccuracy dependent upon the kinematic accuracy of the machine (which
is primerily affected by slipping of the rollers but also to some extent
by wear) and the sbility of the operator and machine to follow exactly
the trace being analyzed. The operator is required to follow the curve
in the direction of the ordinate q(t) while the machine, operated by
a microswitch, sutomatically traverses along the abscissa +t. Accurate
tracing becomes difficult when steep slopes (large values of dq[dt) are
experienced, and a certain amount of roller slipping and human error



18 NACA TN 2997

should be expected. This inaccuracy is alleviated somewhat by averaging -
tHe values obtained from three or more repeated tracings. Experience
with the machine has indicated that the accuraclies obtained are about
the same as those obtalined by the manual methods.

The time required to obtaln the Fourier coefficlents of one func-
tion q(t) for 15 harmonics has been found to be sbout 4 hours for an
experienced operator. This estimate includes the time to aline correctly
the axes of the curve with the machine, to comnect the correct set of
gears for each 5 harmonics, and to trace the curve three times for each
set of 5 harmonics. -

A considergtion in the use of this machine is its ability to produce
the Fourler coefficients in a comparatively short time, particularly with
erratic functions that would require very small timé intervals to repre-
sent accurately the function for use by other methods. A point worth
noting 1s that, for erratic functions, the average of several tracings
should produce e more religble resultt. In the use of the Coradi harmonic
analyzer, the limitation that the functlon must reach steady state still
applies.

Curve~Fitting Methods v

In the methods herein called curve-fitting methods, the form of the
transfer function is directly or indirectly assumed and the coefficlents "
of the transfer functlon are determined by least-squares methods or a
combination of least-squares and direct-computation methods. With a
number of these methods, the analytical expression called the transfer
function is obtained without first obtaining frequency-response datse.

. The Donegan-Pearson method requires a direct—assumption as to the
form of the transfer function and solves for the coefficients by sub-
stituting into the transfer function the input and the output time
functions and thelr integrals. On the other hand, the exponential- )
approximation method solves for the coefficients of analytical expres-
gsions which approximate the time histories of the input and output
functions. The transfer function is then established by taking the
Laplace trangsform of these anslytical functions.

In either the Donegen-Pearson or the exponential-spproximation
methods, the order of the expressions used to approximeteeither the-
transfer function or the input~output time histories is unlimited.
Therefore, the requirement that the form of the transfer function be
assumed would appear not to be particularly restrictive other than that °
the system be linear. In practice, however, the computation involved
in the least-squares procedure increases rapidly with increase in the
order of the equations and the equations tend to become progresslvely
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more ill-conditioned. The general practice therefore has been to assume
a form for a given transfer function, as would be predicted from the
stability theory, and this practice, in general, neglects low-freguency
(phugoid) modes and possible high-frequency modes due to structural
elasticity in order to hold the order of the equations to a minimum.

Such procedures do not afford detection of these modes from flight-test
date In cases where these modes are important unless a form of the trans-
fer function is assumed in advence which include such modes. In contrast,
Fourier analysis will detect all details of the frequency response which
are within the accuracy of the measurements and the calculstion procedure.
The forms of the longitudinal transfer functions ususlly assumed in con-
Junction with the curve-fitting methods are:

o Ep + F A

& Ap2 + Bp+ C

D6 Gp + H

— = > (17)
8 apP+Bp+cC -

n_ ILpP+Mp+ N

8 Ap°+ Bp+ C J

where the substitution of Jjw for the Laplace transform operator p
glves the frequency response of the system.

Exponential-approximation methods.- Since the response of a linear
system to a step or ilmpulse is a sum of exponentials, an obvious method
for fitting airplane time responses is the choice of exponential terms.
The number of exponentials is selected so that the Laplace transforme-
tion will give the same polynomial expressions as obtalned from stability
theory. Although this method can be applied to any input that has a
Laplsasce transform, it is most suited for application to responses to an
approximate impulse, a step, and an approximate step input. The practi-
cal "approximate step,” as compared to the theoretical perfect step, may
have a small but finlte lag in reaching steady state and may have a small
undershoot or overshoot. See ref. 16.) The response equation to a step
may be represented for the case of the short-period longitudinal mode of
motion of en airplane by the form

a(t) = q_ + e2¥(Jy sin @t + Jp cos at) (18)
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where a is the damping exponential, w is the frequency, Jp and Jp

are the coefficients of the in-phase and out-of-phase components of the
response, and a(t) is a function of time that expresses the response
of the system.

In the Laplace transformastion of the general form given by equa-
tion (18), the denominator of the transfer function would be given by

o - (a+d)][p-(a-d) =p+Pp+k (19)

LY

For lightly damped systems where the periocd and time to damp to one-half
amplitude may be read directly from the response records, it has been
found that direct —cealculation affords an accurate and rapid means of
obtaining P and k. In the use of this method 1t follows from equa.-
tions (18) and (19) that

_ 1.38
T /e

b = 28 (20>

O'h82 + 39;28 = a® + @2 (21)
(%1/2)

where Tl/2 is the time required for the oscillation to damp to one-
half amplitude and P 1is the measured perlod of—the oscillation.

kK =

This process, where the coefficients of the transfer function are
computed from direct measurements of the flight records, has been used
extensively for the case of rocket and free-fall test models since these
test models, in general, exhibit the low damping and high natural fre-
quency which enable this approach.

Once a and ® are determined, values of J; and J, appearing

in equation (18) may be obtained from the time history. In instances
where the steady state 1s adequately defined, direct computation of Jo

is afforded. In the analysis of the response of an eirplane in angle
of attack and pitching velocity over short periods of time, the coeffi-
clent Jo must be negatively equal to the value of the response at
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steady state. For the response in normsl aecceleration, however, a step
input of the control surface causes an effective instantaneous change
in load on the tail which, in turn, produces an instantaneous jump in
the normsl-scceleration response of the aircraft. An illustration of
this type of response is shown in figure 4. The relationship among
the instantaneous change in acceleration at t = O, the steady-state
acceleration, and J, 1s shown by equation (18) for + = 0 so that

a(0) = q_+ J, (22)

With the coefficlent J, thus established, & possibility for
direct calculation of Jy may be indicated for the case of a step
input and lightly demped systems by writing equation (18) in the form

q(t) = q_ + 8t \’Jl‘? + 3,2 sinwt + @) (23)

and
J t
¢ = tan~l £ = (i - -P—P>2ﬂ (24)
3 \2

where P 1is the perliod of the oscillation and tp is the time required

for the oscilletion to reach a peak after initiation of the step input.
The relationship among ¢, P, and tp may be visuelized by reference

to figure 4.
The method of obtaining the transfer functlon for a system repre-

sented by .equation (18) in response to a step input of the forcing func-
tion is shown in appendix C. The transfer function is of the form

Q, * J2 bq°° + Jiw - J2a kquo
% (p) =

Bq 8o 8, (25)

p2 + bp + k

where a, b, k, and @ are related by equations (20) and (21), end

8, 1s the megnitude of the step.



22 - NACA TN 2997

As s general rule, the exponentigl-approximation method.of simu-
lating transient data seems to offer the best approach of-any of the
methods reported in this paper when the response is a lightly damped
oscillation to an approximate step. It is of-interest to note that—
this method may be used even though the input 1s not approximated by
exponential expressions, provided its analysis is restricted to the
free-oscillation portions of the response. The coefficients k, b,
J1, and Jp of equations (18) and (19) mey be obtained regardless of

the form of input provided that they are obtained from a portion of _the
time-response curve after the input has reached a steady-state value.
This adaptation is pointed out by Shinbrot in reference 16 and the
method of epplication is reported therein.

The foregoing method is useful only when the period and time to
dsmp to one-half amplitude may be read directly from the records. For
highly damped systems where this is not possible and as an alternate to
the foregoing approach, & least-squares method for obtaining the period,
damping, and other coefficlents of equation (18) may be employed.
Greenberg, in reference 4, discusses extensively the application of the
Prony method for fitting a sum of exponentials to a number of equally
spaced ordinates. This method will likewise obtain the transfer func-
tion given by equation (25).

A measure.of how closely the analytical expression represents the
time response of the system during free oscillation may be obtained by
substituting the derived coefficients into equation (18) and allowing
the time t to vary. This substitution amounts to taking the inverse
Laplace transform of the transfer function, once it has been determined,
and returning the function Q(w) to the time domain where it should be
equal to the original function of time q(t).

The time required for this method varies with the number of least-
squares solutions required to obtain the four unknowns b, Xk, Jy,

and Jo. The extreme case 1ls the case where a least-squares solution

is desired for all the coefficients of a response. In this Instance if
the input is considered to be a step and the response is described by
2L data points, the time required to obtain the transfer functlon of the
system may be estimated at 8 to 10 man-hours of work and three separate
least-squares solutions are required. Any reduction in the number of
least-squares solutions will obviously reduce the time required
appreciebly.

Donegan-Pearson method.~ This method is appropriate for obtaining
the transfer function from transient response to an arbitrary input,
and, when only manual computing techniques are available, offers a good
degree of accuracy with a minimum of work. The method is presented in
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reference 17. In brief, a transfer function of one of the forms given
by equation (17), for example,

(Ap® + Bp + C)q = 8(Ep + F) (26)

is integrated twice and rearranged to give

t t T t t
E\/p q dt + E‘jp JF q 4T dt - E\/p § dat - E\/ﬁ
AJg A Jg 0 A A

(26a)

The equation is now in a form where the integrals may be calculated
from q and & which are known from a time history. The integral
quantities in the foregoing equation are evaluated at some fixed time
intervals, starting with the initial control input, to form a series

of simultaneous equations from which the %, %, %, and E- coeffi-

cients may be evalusted by the least-squares method.

The expression of the transfer function in integral form is an
important point with regard to spplication of this technique in that
the integration processes are inherently more accurate than the differ-
entiation process indicated in the normal form of the transfer functions.
The integrals and the coefficients may be obtained by the matrix methods
described in references 17 and 18. The use of higher-order terms in the
numerator and denominator of the transfer function is possible but, in
many cases, is unnecessary because of the insignificance of their coef-
ficients and is impractical because of the large amount of additional
work required.

In the derivation of this method no restriction is made or implied
that the forcing function (input) or transient response reach a steady
state within the time limit considered. There appears to be, however,

a practical limitation on the length of the record since, for any given
short length of a curve, a large number of analytical expressions may
be written that satisfy, with good precision, the conditions of the
curve in the region considered. Obviously, as the length of the record
considered is extended, the expressions that adequately define the curve
become more limited until the correct expression is closely approached.
In the enalysis of arbitrary inputs and responses that reached a steady
state, this method produced excellent resulis over a large range of fre-
quencies in a reasonably short length of time. When proficiency was
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obtained in the use of this method, including the matrix methods of
integration and least squares, a complete frequency response required
gbout 8 man-hours of work from raw date (averaging about 20 dsta points)
to finished frequency-response curves (averaging 16 frequencies).

In the application of this method, a somewhat simpler integrating
matrix was used that reduced the time of integratlon by about one-half
over the method presented in reference 17. The derivation of this
integrating matrix by use of the relationships reported by Diederich in
reference 18 1s presented in appendix D.

A check on the accuracy with which the time response is represented
is afforded by the Ilnverse Laplace transformation process described in
reference 3. A second method, which is suggested in reference 17,
utilizes the evaluated integrals of the output, the recorded input, and
the transfer function. If the transfer function 1s to represent the
system accurately, the response obtained by this check must-be equal to
the original time response. _

For both the Donegan-Pearson and exponential-approximstion methods,
a second approximation to the determined transfer-function coefficients
may be made by a procedure suggested by Shinbrot in reference 16. In
cagses where this refining procedure was attempted, the process was
lengthy and frequently did not afford better approximetions because of
failure of the method to converge.

RESULTS AND COMPARISONS CF METHODS

The frequency responses &s obtained from three aircraft of differ-
ent types are used herein for illustrative purposes.__A summary of the
mass and geometric parameters of these aircraft—together with a sketch
of their plan forms is presented in table I, as are the flight conditions
for which the data were obtained. These alrcraft will be referred to as
a flghter, a transport, and a free-fall model.

All methods of anslysis were not applied to all three of these air-
craft, but a comparison of the methods is made herein for the fighter at
one flight condition. The comparison is made with the response in
pitching velocity to an elevator step input: Time histories of the con-
trol input and the response are shown in figure 5. The Donegan-Pearson,
Prony, Fourler synthesizer, IBM, and manusal Fourler methods were used to
obtain the frequency response of the fighter from these time histories.

A time interval of 0.10 second was used for the manual methods, 0.05 sec-
ond was used for the IBM method, and 0.06 second was used for the Fourier
synthesizer. The frequency-response curves thus obtained are shown in
figure 6, together with the faired curve of figure 3 which was obtained
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at the same flight conditions by the sinusoidal-response method. The
frequency response of the fighter appears to be established to a gener-
ally acceptable degree by any one of the several methods shown. The
expression "acceptable degree" is expanded subsequently.

Effect of Input Shape

Inssmuch as the compatibility of results obtained by using the var-
ious methods on a step input has been established, it is of interest to
check the effect of this and other input shapes.

A check of the effect of input shape on results obtained through
use of the Donegan-Pearson method has been made. The step input illus-
trated in figure 5 together with the approximately square and trisngular
inputs shown in figures 7 and 8, respectively, were used for the inves-
tigation and these inputs and their responses were analyzed at time
intervals of 0.10 second. On each of these three figures, the accuracy
with which the responses were represented by the transfer functions
determined by the Donegan-Pearson method is shown by the data points on
the response curve. These points represent values of pitching veloecity
obtained by multiplying the integrated functions of equation (26a) by
the derived transfer coefficients at the values of time indicsted in
figure 5. This procedure is described in more detail in reference 17.

The frequency response of the fighter as determined by these trans-
fer functions is shown in figure 9 compared with the faired curves of
amplitude ratioc and phase angle obtained from the sinusoidsl-response
method. The sinusoidal-response method is included because it involves
a different test technique. These four sets of frequency-response curves
appear to be in good agreement. Whether thelr agreement is to an
"acceptable degree" may be illustrated by examining how closely they
agree in the time domein when an identical control input is applied in
each case. This process may be done manuslly through use of the inverse
Laplace transformation; however, the Fourier synthesizer offers s machine
method of obtaining the time response of a system described by the
frequency-response curves to an approximate ramp or step. The Fourier
synthesizer was used in the present analysis and the inverse of the pro-
cess described in the section entitled "Description and Discussion of
Methods" was applied.

The control input and time responses using the three frequency-
response curves corresponding to the three input shapes investigated
are shown in figure 10. The curves show a maximum spread about 13 per-
cent of steady-state value at steady state and a smaller percentage
spread at pesk overshoot. Thus, it appears that the determination of
the transfer function is not particularly sensitive to the shape of the
control input when the Donegan-Pearson method is used.
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Effect of Harmonic Content of Input -

In the application of Fourier methods, the harmonic content of the
input must be considered and has a predominant effect on the results -
obtalned. Harmonic content pertains to the relative magnitudes of the
sine waves of various frequencles which make up the input or response
shape and is essentially the amplitude of the Fourier transform of a
function.

In order to illustrate the harmonic content of several inputs, fig-
ure 11 shows the Fourier transforms of square, triangular, step, and
impulse type of inputs plotted ageinst frequency. It can be seen that
the harmonic content of the squere and triangular inputs go to zero at
equally spaced increments of frequency, the spacing being dependent on
the duration and shape of the input. For either shape, doubling the
duration of the input will halve the spacing between the frequencies of
zero harmonic content. An error frequently encouritered in the frequency
domgin when Fourier methods are used is caused by the harmonic content
of the Fourler transform of the input closely apprdaching or reaching
zero. When this condition occurs, slight errors in the data cause the
frequency-response curves to diverge and even to go to infinity at some
frequency 1f the harmonic content of the input functions becomes zero
at that frequency. -

An example of the distortion of the frequency-response curves due
to low harmonic content was obtained in the analysis by Fourier methods
of .the rectangular-pulse input and pitching-velocity response of the -
fighter as shown in figure 12. Because of the length of the rectanguler- —
pulse input used, the harmonic content of both the input-and response
closely approached zero at freguenciles of sbout 8.5 radians per second.
The discontinuity due to the lack of harmonic content is shown in the
frequency-response plot—of figure 13. An additional test utilizing an
input which affords data having good harmonic content in the region of
uncertainty would be desirable in order to lnsure thatno legitimate
secondary peak or other significant characteristic exist in that range
of frequencies.

When choosing inputs to be used in obtaining flight data for Fouriler
analysis, it is desirable to examine their harmonic amplitudes in light
of expected instrument accuracies In order to select an input or series
of inputs which will afford sufficlently accurate frequency-response
data in the frequency range of interest.

Since it is desirable to maintaln large values of harmonic content
over the entire frequency range, inputs approaching an impulse would o
appeer most usable. In practice, however, control inputs of this type
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of time so that the airplane is disturbed sufficiently to insure accurate
measurement of the response. Thus, the transform of the resulting pulse
will often closely approach or reach zero at some frequency in the range
over which the response is desired.

The transform of the step iInput has the desirsble feature of never
becoming zero. Having infinite amplitude at zero frequency, the trans-
form decreases as the inverse function of frequency and aspproaches zero
amplitude as the frequency approaches infinity. In view of the rapid
decrease in harmonic content with increase in frequency, however, it is
sometimes difficult to maintain the accuracy of the frequency response
to as high a value of frequency as desired. This effect may be seen in
figure 11 by comparing the harmonic content of the triangular and step
pulses from 1 to 8 radians per second.

The transforms of several basic inputs together with the effect on
harmonic content of distortion of these basic inputs are illustrated in
reference 10.

Effect of Record Length

The advantage indicated for the so-called curve-fitting methods with
regard to their ability to mske a logical interpolation cver frequency
regions of low harmonic content would also appear to be applicable to
extrapolation in either the frequency or the time domain. For example,
the fact that the analytical form of the transfer function is assumed
in advance for these curve-fitting methods would appear to afford possi-
bilities for analyzing only a part of an input and response to establish
the coefficients of the transfer function whereas the Fourier analysis,
by the nature of the limits of the Fourier integral, requires that a
steady-state or a constant-amplitude oscillation be obtained. This
apparent adventage of the curve-fitting methods in that the transient is
not required to resch steady state has, in general, proven to have defi-
nite practical limitations. In the application of both Fourier and curve-
fitting methods, it has been found that time transients that do not closely
attain steady state do not produce accurate frequency-response data.

Figure 12, which shows the time history of a rectangular-pulse ele-
vator input and the response in pitching velocity of the fighter, may be
used to illustrate these practical limitations. The data were analyzed
in three stages. The response was first considered in the time interval
from O £ t € 0.70 second to be the response of the fighter to an approxi-
mate step where the pitching velocity appeared to reach a steady state
before the elevator was again disturbed. Time increments of 0.05 second
were used to obtain the frequency response of this portion of the time
histories by the Prony, Donegan-Pearson, and manual Fourier methods.
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(In this anaslysis, the Prony method required 16 man-hours; the Donegan-
Pearson method required 9 men-hours.) In addition, check points were
obtained by the manual Fourier method (by using Simpson's three-point

rule of integration) with time intervals of 0.10, 0.025, and 0.0125 sec-
ond. The frequency-response results of this analysis are shown in fig-
ure 14 and, although all the methods closely agree, the frequency response
appears to be quite different from that—indicated in figure 6 which was
obtained for the same sirplane at the same flight conditions.

The source of this dilscrepancy was determined when the time hilstories
shown in figure 12 were again analyzed by using the Donegan-Pearson method
at 0.05-second intervals to a time of 1.4LO seconds where the response
still had not approached a steady state too closely but the length of the
record used had been doubled and the effective amplitude had been more
than doubled. A third analysis was made by using the Donegan-Pearson
method at 0.10-second intervals to 2.10 seconds at-which time its steady-
state value was closely attained. The frequency response obtained by
using each of the three record lengths 1s shown in figure 15 together
with the frequency response obtained for the fighter (by the Donegan-
Pearson method) from figure 6. It may be seen that, when the first one-
third of its response was analyzed, the record was short, and a steady
state had not been reached; these factors precluded an adequately precise
definition of the time response and an erroneous frequency response was
cbtained. When the length of the record was doubled, a more correct
trend became apparent but, because a steady state had still not been
defined, some fairly large discrepancies persisted, particularly with
regard to the static value of the frequency response (the frequency-
response curves of figure 6 being used as a basis for comparison). When
the analysis included the entire response, even though the time interval
used in the analysis was doubled, a close agreement with the frequency
response obtalned from the step input was obtained. Reference 17 rec-
ommends that enough of the response time history should be taken to cover
the natural period of the system. '

Other Causes and Effects of Errors

In the determination of transfer functions from inputs and outputs
having regions of low harmonic content, an advantage has been indicated
to the approach of fitting an analytical expression to experimental data.
In the authors' opinion, this curve-fitting technique, as compared to
the Fouriler analysis, is of particular merit if there 1s reasonable con-
fidence that the assumed analytical expression is of the correct form
for the system being anslyzed. 1In this manner, another condition (the
form of the transfer function) is stipulated which the analysis must
obey. In mathemaetical processes, the more conditions correctly stipu-
lated, the more precise the results. On the other hand, errors in the
transfer function or frequency response as obtained from the curve-fitting
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methods due to either the wrong assumption of the form of the transfer
function or due to the errors in the calculations are not readily appar-
ent since the assumption of a given form will usually give variastions
that appear logical. However, as has been pointed out, certein checks,
such as the use of the inverse Laplace transformation, are available for
comparing the time response predicted from the transfer functions with
the time-response curves from which the transfer functions were derived.

In the Fourier methods, inaccuraciles are, in general, more readily
discernible than in curve-fitting methods. In the use of Fourier methods,
there has been found evidence of discrepancies attributable to three
causes (as pointed out in ref. 10): +the lack of harmonic content of the
Fouriler integral, the use of too large time intervals in the time domain
to afford accuracy in the frequency domain, eand the incorrect synchroni-
zation of input and response data in the time domain.

The first of these errors has already been discussed in the consid-
eration of the effect of input on Fourier methods and, as has been pointed
out, 1s usuaslly discernible by divergence of the curves in some small
range of frequencies.

The second of these errors, that of too large time intervals, is
generally indicated by a scattering of the data points in the frequency
domain where the magnitude of scatter usually diverges repidly with
increasing frequency. Insight into the cause of this scatter may be
seen in the characteristics of the Fourier transform where, at each fre-
quency, the transient q(t) is multiplied by a sine and cosine wave of
unit amplitude and where the resulting aree under the two product curves
determine the coefficients of the real and imaginary parts of the complex
variable in the frequency domain. As frequencies greater than the natural
frequency are investigated, the differences in the posltive and negative
arecas of the product curves grow smeller (compared with the magnitude of
the individual areas) so that the effect of small errors is magnified.
Thus, small inaccuracles in the representation of the transient curve
become more prominent as higher frequencies are investigated and appear
in the frequency domain as scatter. Several estimates of the frequency
at which scatter will become important, for the different Fourier methods,
based on the time Interval chosen, have been given in the section entitled
"Description and Discussion of Methods."

A typical occurrence of scatter due to the choice of too large a
time Interval was obtained when the response of a free-fall model, the
characteristics of which are given in table I, was analyzed at 0.10-second
intervels by the manual Fourier (numerical-integration) method. The ele-
vator input used and the response of the model in angle of attack are
shown in figure 16. The frequency response as determined by the numeri-
cal manual Fourier, the Coredi harmonic analyzer, and the exponential-
approximation methods of analysis are shown in figure 17. The scatter



30 : NACA TN 2997

of points obtained by the manual Fouriler method of numerical integration
occurs at. frequencles greater than about 8 radians per second. Further
analysis with smaller time intervals of, say, 0.05 second should provide
better results in this region.

In the study of milssiles and free-fall models where low damping is
generally encountered, the use of the exponential-spproximatlion method
is particulerly useful and requires & minimum of time. The response in
figure 16 was analyzed by both the least-squares (Prqny) method with
0.10-second intervals and by direct computation. Both gave-identical
coefficients and the frequency response obtained by using these coeffi-
cients is also shown in figure 17. The Donegan-Pearson method was
sttempted with this type of response but—did not produce coefficients
that represented this lightly damped system &s exactly as 1t 4id for
systems with high damping. The representation of the time response by
the derived transfer function is illustrated in figure 16 where the
inverse Laplace transform was applied to the transfer function cobtained
by the Donegan-Pearson and exponential-approximation methods to predict -
the response to a step. The reason for this condition is that the trans-
fer coefficients which primarily determine the period and damping of the
oscillation are determined by the double integration and integration,
respectively, of the output. The smoothing effect of these integration
processes on any exlsting oscillation does not therefore enable accurate
detection of the oscillation characteristics.

Although scatter obteined by using the Fourler approach is indicative
of inaccuracles, the converse does not apply inasmuch as the absence of
scatter in the use of Fourler methods is not -an indication of correctness.
An illustration of this point was obtained in the analysis of the fre-
guency response of the transport, tested under the canditions given in
table I. The response in pitching veloclty to an elevator input is shown
in figure 18. The manuel (numerical-integration) Fourier method, analyzed
at 0.20-second intervals, was used to determine initially the response
at 1, 3, 4, 5, and 8 radians per second and these frequency-response
points are indicated in figure 19. Although the amplitude ratios and
phase angles at the frequencies investigated did not indicste scatter,
when two additional frequencies (6.5 and 7.5 redians per second) were
investigated, the scatter became spparents At a smaller time interval of
0.10 second, the control input and time response were analyzed by using
the Fourier synthesizer, Donegan-Pesrson, and agailn the menual (numerical
integration) Fourier methods. Although small differences in the results
are apparent in figure 19, they do agree sufficiently well for most pur-
poses. A check point at a frequency of 8 radians per second and with a
0.05-gecond time interval was made with the numerical-integration Fourier
method. The result essentially substantiated the value determined with
0.10-second time intervals.
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The third mentioned cause of error often incurred in the Fourier
analysis was referred to as incorrect synchronization of the imput and
response data in the time domain. A shift in the correlation of the
time scales between input and output, in turn, causes a change in the
phase angles obtained in the frequency domain by an amount directly pro-
portional to the frequency. These erroneocus values of lag or lead will
be hard to detect regardless of whether Fouriler or curve-fitting methods
are used since incorrect but epparently logical frequency-response curves
will usually occur.

In order to avoid or reduce errors in the determinstion of transfer
functions from flight data, it is highly desirasble to use as large a
control deflection as possible, but the magnitude of this control deflec-
tion must also be compatible with the requirement that the stability
parameters of the airplene remain within their linear range. It also
appears highly desirable to analyze responses from two or more input
shapes at a given flight condition. A comparison of the frequency
response obtained from the same record by different methods has also
proved a useful check.

As mentioned previously, examples indicating the times required to
reduce flight date to freguency responses by the various methods dis- .
cussed herein sre summarized in table II. The table enables the weighing
of the time factor in choice of a method; however, the choice depends on
other factors as well, such as availsbility of machine computing equip-
ment and limitatlons inherent in the various methods as have been
discussed.

CONCLUDING REMARKS

In the foregoing study a number of considerations are indicated
which pertain to the choice of methods in the determination of transfer
functions and frequency response from transient data. These considera-
tions may be summarized as follows:

In the methods which involve the analysis of tramnslent responses
over short periods of time, a control imput should be used that will
afford (a) & close approach to a steady-state condition and (b) response
amplitudes and harmonic content (covering the frequency range of interest)
large enough to give good instrument and reading accuracy yet small
enough to keep the aircraft from departing from the flight condition for
which the response data are desired. When flight data are analyzed, it
appears highly desirable, as a check on the determined transfer function,
to obtain responses from two or more input shapes at a given flight con-
dition. A comparison of the frequency response obtained from the same
record by different methods has also proved a useful check.
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The method involving the oscillation of an aircraft through use of
sinusoidael control inputs requires a large amount of flight time but a
relatively simple analysis. Satisfactory data masy be obtained with a
human pilot generating an approximate sinusgidal control input. For
modes of gircraft motion which are nearly critically damped, the large
amount of flight time can be reduced somewhat since continuous records
may be taken while the frequency of oscillation is slowly changed to
cover the frequency range desired.

Two manual Fourier methods of analyzing arbitrary Inputs and their
responses were investigated. In the first approach, analytical expres-
sions within discrete intervals are fitted to the time response and
input, and terms of the Fourier integral are obtained analytically. In
the second approach, the time response and input functions at selected
times are first multiplied by the sine and cosine functlons eppearing
in the Fourier integral and the resulting product curves are integrated
numerically. The first approach sppears to be baslcally more accurate
when utilizing menual computing but is not as flexible or as suited to
meschine calculations as the second approach. Special machines for
accomplishing & Fourler analysis, such as the Fourier syntheglzer and
Coradi harmonic analyzer, afford a means for significantly reducing cal-
culation time as compared to a manual approach. The two machines men-
tioned give results comparable to those obtalned by the usual manual
procedure in numericel Fourler analyses. Because of its principle of
operation, the Coradi harmonic analyzer sppears to be basically more
accurate than the Fourier synthesizer and, in general, gave satisfactory
results out to somewhat higher frequencies. The Coradl harmonic analyzer
appears more capable of handling random variations than the Fouriler

synthesizer. The mechanical application of the numerical Fourier analysis-

through use of punch-card calculating machines (for example, IBM equip-
ment) 1s & means for apprecisbly reducing calculation time. This approach
appears to afford the possibility of obtaining greater precision in the
calculations since the rapid computation mekes feaslible the use of smaller
time intervels combined with more complicaeted and precise integrating
formulas. -

The exponential-approximation and Donegen-Pearson methods establish
an analytical expression for the transfer function which, in terms of the
imaginary frequency variable, is continuous in frequency. The Fourier
analysis, in contrast, does not furnish analytical expressions and gives
values of frequency response only at selected freguencies. The Donegan-
Pearson and Prony methods can be used satisfactorily when reasonable con-
fidence exists as to the analytical forms of the transfer function (since
the form must be assumed in advance). This approach will not, however,
detect details of the frequency response that cannot be approximated by
the assumed form even if such characteristlcs exist in the time response.
In contrast, Fourier analysis will detect all details of the frequency
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response which are within the accurscy of the measurements and the calcu-
lation procedure. The exponential-approximation method is best suited for
lightly demped systems where the control input closely approximates &
step or is of a form that possesses a simple Laplace transform. The
longitudinal transfer functions of oscilllatory aircraft can often be
determined by simple, direct computation from the measured period,
damping, steady-state value of the response, and phasing of the time
response. Nonosclllatory transients that do not afford direct approxi-
mation of the response may be approximsted by a least-squares procedure
known as the Prony method. The Donegan-Pearson method appears best
suited to systems that are not highly oscillatory and works well for
inputs that are not necessarily represented by analyticasl expressions.
When least-squares procedures must be applied in the Prony method, the
Donegan-Pearson method generally affords shorter calculation time. When
more than a few discrete frequencies are desired, the Donegan-Pearson
method effords a more rapid spproach than manual Fourier analysis.

Fourier methods are more critical to the forms of the inmput than the
Donegan-Pearson method and inputs should be chosen to avoid regions of
low harmonic content in the frequency range of interest. Although the
Donegan-Pearson method appears to Interpolate satisfactorily over regions
of low harmonic content, it does not appear to be applicable to large
extrapolation in either the frequency or time domain. In the use of
this method, as in the Fourier methods, 1t is necessary to obtain data
which closely approach the steady state in order to predict accurately
the low-frequency-response characteristics.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronasutics,
Langley Field, Va., June L4, 1953.
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APPENDIX A

ESTIMATION OF THE ERRORS ENCOUNTERED USING A CONTROL INPUT

THAT CHANGES IN FREQUENCY AT A CONSTANT RATE

Much of the exténsive flight-test time involved in obtaining
frequency-response data by using a sinusoidal input can be eliminsted
if the sinusoidal input—is continuously changed in frequency at a slow
rate. Since transients are constantly being intrcduced and dying out
because of this constantly changing frequency, the error introduced by
assuming that the response to this wave approximates the steady-state
response to a constant-frequency wave may, at any given frequency, be
& function of the natural frequency and damping of the airplane as well
as the rate at which the frequency 1s changed. Investigation of the
magnitudes of these errors in amplitude and phase angle based on the
response of the airplane to a constant=frequency sinusoildal input was
performed as follows:

If a wave form of constant amplitude and constantly changing fre-
quency is compared with a sinusoidal wave form having the same amplitude
but constant frequency, there will occur, at a time herein assumed to be
zero, a condition where the amplitude and instantaneous frequency of the
two waves will be identical. In the following derivation, the frequency
et this instant is defined as , and the two waves are adjusted so that

at this instant both waves are at their maximum amplitude. A second-
order system is considered. The differential equation relsting the
response of the system to & constant frequency input—is then

2
(1—)—2-+£§-D+ J.)x:cos .t (A1)
Wy Wn

Similarly, for the varying cosine wave, this differential equation is

<.].3_2_.+ 2t g + ])x = cos{wg + Ct)t (a2)
©,°  “n

Comparison of the two inputs show that their difference iS effec-
tively a phase difference which varies as the parabola ¢ = Ct<. Since
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a time-response solution of equation (A2) was too cumbersome to be
feasible, a linear-phase relationship was chosen that would approximste
the parsbolic-phase relationship and would afford a relatively simple
time-response solution. A wave having a linear-phase difference with

a constant-frequency wave is, of course, another constant-fregquency
wave of a different frequency. Although a constant-frequency wave
would not appear to be a good aspproximation to the varisble-freguency
wave under consideration, it will be shown that the difference between
the original constant-frequency wave and the varying-frequency wave may
be closely approximated by the difference between the two constant-
frequency waves within the region of interest provided their frequencies
are properly selected.

The procedure used for establishing the frequency of the wave used
in the approximation, in terms of the rate of change of frequency of
the variable-frequency wave, 1ls as follows: The actual phase-angle
variation and the assumed approximation are 1llustrated in figure 20.
The tlme interval over which the actual phase-angle variation was
approximated was the lnterval which would ensble translents introduced
by the varying-frequency wave to reduce to one-twentieth of their initial

value ('Tl/EO <t < O). The parabola was approximated by a straight
line chosen to pass through the parsbola at the times + =0 and
t = - % Tl/20' The approximation was chosen to balance the areas
between the parabola and the straight line in the region of Interest.

Substitution of the epproximate phase angle into the varying-frequency
input for the right-hand side of equation (A2) gives

2
cos(no -3 CTy /20)1-, (A3)
. 3 d2 2
The relationships T = — and Do = ———GD t + Ct = 2C may be
1/20 © g ate\ o

substituted into equation (A3) to give

cos Gno - %:,—,)t (ak)
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For an example case where Dw = 1 radian per second per second and
w, = 8 radians per second, the original constant-frequency wave (eq. (A1))

and the varying-frequency wave (eg. (A2)) are shown in figure 21 together
with the wave used to approximate the phase-angle relationship between
the original two (eq. (Ak)). 1Im addition, the difference between the
original constant-frequency wave and the varying-frequency wave is com~
pared in figure 21 wlth the difference between the original constant-
frequency wave and the wave used in the approximation of the phase-angle
relationship. —

The errors in phase and amplitude incurred in the response of the
second-order system and caused by the use of a varying-frequency-wave
input instead of a constant-frequency-wave input may be obtained by
determining the difference between the phase angles and amplitude ratios
obtained from these two inputs. These errors are given by

cos (@, - EE&_ t
cos wot

xe = > - > (A5)
2—§-+ 25 D+ 1 D_E + 25 D+1
wy®  Mm @, ®n

The substitution of D = Jw, for the response to cos wot and the

Sy — : Coony

will, at t = 0, glve the error relationship in terms of amplitude and
phese angle : -

-el-kel e =T e
I

l_(w_g)z L% Do\
B ®n Qpne

substitution of D = Jééb - QQ—) for the response to coséqo - EEL)t

|x€<0)| =
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Various values of damping ratio ¢, frequency ratio wo/wn, and the

rate of change of frequency ratio Dm/mn2 were substituted into the

foregoing relations in order to obtain plots of phase error and ampli-
tude error (related to the response to a pure sinusoidal input) at zero
time. Figure 22 presents plots of these errors over a range of values
of parameters pertinent to most alrcraft. This figure indicates that
the errors increase rapidly with a decrease in the value of damping
ratio below 0.707. At low values of damping ratio, excessively large
errors will be obtained unless the frequency is varied at an extremely

low rate in the vicinity of 925 = 0.01l. The greatest errors in all cases

@

appear to occur in the vicinity of the natural frequency, the errors
spproaching zero at high and low values of the frequency ratio.

For the tests presented in the body of this paper, the airplane
tested had a damping ratio of gbout 0.7. The rate of change of fre-
quency for these tests waes not constant but rather was held constant at
one frequency for several oscillstions before progressing to a new fre-
quency. However, averaging over a range of frequencies gave an average

velue of Dm/a)n2 of 0.06. TFigure 22 indicates an error in amplitude

and in phase angle of less than 10 percent for the dirplane tested at
these conditions. This error falls within the scatter shown in figure 3.
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APPENDIX B

METHODS OF FOURIER ANALYSIS WHEREIN THE TRANSIENTS

ARE REPRESENTED BY A SERIES OF POLYNOMIALS

A representation of an approximate step-control input end the time
regsponse of piltching veloclty of the flghter as shown in figure 5 involved
the division of the input—into three intervals of time and the division
of the response into five 1lntervals of time.

The input, which reaches a steady-state value of-0.74° at
t = 0.10 second, was represented within the intervals by the eguations

Bo(t) = 20t2 (0 £t < 0.05)
5,(t) = 13.8t - 0.64 - (0.05 5t £0.10)
8,(t) = 0.7k (0.10 £ t S =)

The Fourier transform of the input is then

0.05 0.10 N
5(w) = 20 f £2e~ 904 4 f (13.8t - 0.64)e ¥ %at +
0 0.05

0.7k f e~ 0t
0.10 |
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or In trigonometric form

1.8 cos 0.05%w ~ i% sin 0.05%wm +

_13.8
8(w) = 5

cos 0.10m -
w w

j[fléB sin 0.05w - l5é8 sin 0.10m + i% (1 - cos 0-05§ﬂ (BL)

w w

where the substitution of selected velues of frequency o will afford

the real and imaginary coefficlents of the Fourier transform at each
frequency chosen.

The time response of pitching velocity, shown in figure 5, was
divided into discrete intervals and the coefficients of the cubic
equation

Do(t) = at? + bt + ct + 4

were found as follows:

For the time intervel O £ t £ 0.10, inspection of the curve indi-

cates that it may be closely approximated by a cubic without lower-order
terms so that b=c¢c =4 =0 and, at t = 0.10 second, the relationship
is written

Do(t) = atd
3
0.0049 = a(0.10)

4.9 ==&
The equation for this time interval becomes

Doy (t) = k.ot
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For the time interval 0.10 < t < 0.30, a quadratic representation,

since the transient in this interval does not indicate the need of a
. cubic representation, will be assumed where the coefficients are found
by the solution of the following equations:

Do(t = 0.10) 0.0049 = (0.10)% + (0.10)e + 4
Dot = 0.20) 0.0489 = (0.20)%b + (0.20)c + d
De(t = 0.30) 0.0733 = (0.30)% + (0.30)c + d

The solution by "successive subtraction" is illustrated here since equal
time intervals were used.

0.0049 - 0.0489 = (0.01 - 0.04)b + (0.10 - 0.20)c + (T =Bd, ,
0.0489 - 0.073% = (0.0 - 0.09)b + (0.20 - 0.30)c +‘(I‘:s£ﬁi*§0
0.04%0 = 0.0%b +-0.10c

0.0244 = 0.05b + 0.10c T

0.0440 - 0.024%k = (0.03 - 0.05)b + (0.10 =-6-+1Q)¢c

*i\o

0.0196 = -0.02b
-0.98 = b
0.734% = ¢
-0.0587 = & _
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- The equation for this time interval becomes
Do, (t) = -0.98t2 + 0.734t - 0.0587

For the time interval 0.30 < t € 0.80, the slope of the transient

is zero at a time of 0.55 second. Use of this condition is desirasble
in evaluating the constants over this interval; therefore,

De(t = 0.30) 0.07%3 = (0.30)%a + (0.30)%b + (0.30)c + 4
D8(t = 0.55) 0.0856 = (0.55)%a + (0.55)% + (0.55)c + &
Do(t = 0.80) 0.079% = (0.80)% + (0.80)%b + (0.80)c + &
D% (t = 0.55) G = 3(0.55)% + 2(0.55)b + ¢

and the equation for this time interval becomes
De(t) = 0.192t7 - 0.4655t2 + 0.3379t + 0.00862

For the time interval 0.80 £+t £ 1.40, the solution of

pe(t = 0.80) _ 0.079% = (0.80)%a + (0.80)%p + (0.80)c + &
De(t = 1.00) 0.0723 = (1.00)%a + (1.00)%b + (1.00)c + 4
De(t = 1.20) 0.0665 = (1.20)%a + (1.20)2b + (1.20)c + 4
De(t = 1.40) 0.06%6 = (1.40)3a + (1.40)% + (1.40)e + &

gives an equation for this time interval ot

. DBx(t) = 0.0354t7 - 0.09125t2 + 0.0425t + 0.08565
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For the time interval 1.0 £t £ », the equation for a constant
value from steady state to infinity becomes .

D8(t = 1.40) 0.0636 = 4

Therefore,

Deu(t) = 0.0636

The Fourler transform of the response is now evaluated by using the
foregoing analyticael expressions by summing the following integrals:

D6 (w)

mee(t)e-'jwtdt
0

I

0.10 . 0.30 T - -
h.gf t3e’°"“’tat - f (0.98t2 - 0.T3kt—+ 0.058"()e-‘1wtdt +
o) 0.10

0.80 o &
f (0.192t7 - 0.4655t2 + 0.3379t + 0.00862)e‘3‘” dt +
0.30 _ _

L.40 .
f 5 (0.0354t2 - 0.09125t2 + 0.0425t—~+ 0.08565)e”at +
0.

0.0636 fw e~ d0Cay
1.%0
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The integration of these terms (given in text after eq. (6)) leads to
the followlng relations:

_KE'_Z92+ 0.0358> + j(l—éﬁy (cos 0.30w - J sin 0.30w) -

w

w

_1_5 (128 . 0‘0031> - j<>-°°_3_5) (cos 0.8 - j sin 0.80w) -

—

LK&E@+ 0.001.1.7) + j(o—']ﬁﬂ(cos 1.40w - j sin 1.40w) (B2)
- m@ w2 W

where the substitution of selected values of ® &affords the real and
imaginary coefficients of the Fourier transform of the pitching-velocity
response of the fighter. The relationship between the output and the
input is given by equations (4), (6), and (7) and a plot of these rela-
tionships et several values of frequency are shown in figure 6.
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APPENDIX C
APPLICATION OF THE_LAPIACE TRANSFORM TO A RESPONSE EQUATION

The response equation for the normal aq¢eleraﬁion, as used in the
Prony method described by Greenberg in reference L, is

n(t) = ngg + e&t<Jl sin wt + J, cos wt) (cL)

where ngg 1s the normal acceleration at steady state. The equation for
a step control input of megnitude &, 1is as follows:

8(t) = &, (t 20) (c2)

The Laplace transform, indicated by the operator p when applied
to equation (Cl), gives

Ngg Ty Jo(p - a)
n(p) = + (c3)
(p -a)2+w2 (p-a)2+a?
and equation (C2) becomes
&
8(p) = = _ (Ck)
P

By definition, the transfer function is the ratio of the'Laplace transform

of the output to the Laplace transform of the input (initial conditions
zero)

n(p) _ 1) SRt Iop(p - )
—== ¥ —llgg
5(p) 8o L_ p2 - 2ap + ac + me

’" 2
_il T (o - 7pe)e] (c5)
- S8 =

8o P + bp + k
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where the substitution of b = -2a and %k = a® + w2 has been made. The
equation may be rearranged to agree with the form of equations (l"{) 80
that

o Dgg *+ Jdo bngg + Jjo - Joa kng
R 5 R
2 (p) = < = 2 (cé)
° p2 + bp+ k

vwhere the substitution of jw for the operator p will produce the
Prequency-response relationships.
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APPENDIX D
AN INTEGRATING MATRIX

The Donegen-Pearson method (ref:. 17} of analysis of transient
responses suggests a matrix solution which, if followed, requires some
knowledge of integrating metrices. An integrating matrix believed to
be somewhat easier to use than the one suggested in reference 17 is
presented here together with its derivation. _

If an arbitrery time-curve is chosen and divided into equal inter-
vals of time, then by Simpson's rule s parabols may be described through
three adjoining points

By the use of equation (A4) of reference 18,

ty 5 2 1
/; yat = (Zablyn g +{5 8 ) yn + |- 55 A (D1)
1l

Ne
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Solution of equation (D1l) for values of the integers

b1

n=0,12, 3,

b, . . . m gives
t
n
L yat=0 (n =0)
[bn-1
,tn
AL
y dt = E(syn-l + 8y, - Yn.|.]_) (n =1)
tn-1 3 vy o=
*n A
. yat = E(5yn_2 + 13yp.1 + Tn - ym.l) (n=2)
tﬁ.";l
' i
b ¢ ! 1
tn At ( )
-2y at = =(5yus + ¥nop + 12¥n.1 + Tn - Yl n=3
dn-i 12
*n At :
.y dat = l—e-(Syn_LL + lByn-} + 12y, o+ 12y + TH - yn-i-l) (n=14)
tn-1
*n At
f y dt = E(syn-m + lByn-(m-l) + l2yn_(m_2) + . . .+
tn-1
12551 + T¥n - Yne1) (n = m)
Written in tebular form (without fixing a value for At) , the coef-
ficients of y appear in the integrating matrix in the form
t o] O 2 At 3 AL kAt 5 A 6 At T A
o 0 0 0 0 0 0 o )
At |0.416667 At [0.666667 At|-0.083333 At 0 0 o] (o} 0
2 Ab{ .L1666T At |1.085333 At 585333 At |-0.083333 At o] 0 0 o
3 At] 416667 AL {1.083533. At J.oooooo At|  .583333 At ]-0.083333 At 0 o] 0
b At| 416667 At |1.083333 At] 1.000000 At| 1.000000 At | .585333 At }-0.083333 At o 0
5 at| 116667 At |1.083533 At| 1.000000 At| 1.000000 At | 1.000000 At | .583333 At |-0.083333 At 0
6 ALl 416667 At {1.08333% At| 1.000000 At]| 1.000000 At ] 1.000000 At | 1.000000 At 583333 At {-0.083333 At
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The use of this integrating matrix simply requires the accumulative
sumeation of - -

which gives the area lying between n - 1 and n added to the area
already found from O %o n - 1. ’
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TABLE T

CHARACTERISTICS AND FLIGHT CONDITIONS OF AIRCRAFT

USED FOR

LONGITUDINAL: TESTS

4

Condition
Free-fall
Fighter Transport model
Weight, 1b . . . 12,840 23,000 1,030
Tail length, ft 16.0 37.0 3.7
Wing area, sq ft . . 250 988.9 9.0
Horizontal tall ares,
sq Tt 66.2 179.2 1.72
Aspect ratio . k.975 9.13 4.0
Wing spen, ft . . 35.25 95.0 6.0
Mean serodymamic chord
ft . . . 7.45 11.5 1.5312
Pressure attltude, ft 10,000 5,000 32,000
Mach number . . 0.60 0.268 0.725
Moment of inertia in
pitch, slug-ft2 17,311 91,690 50
Sweep, deg . . . . 0 15.5 45.0
Aircraft density factor 122.0 30.6 2,730




TAELE II

EXAMPLES OF TIMES REQUIRED TO OBTATN FREQUENCY DATA

FROM TRANSIENT DATA BY VARIOUS METHODS

Number of |Time required |Time required
Number of | Mumber of
Method of analysis functions |data points |TTeduencies | to obtain | to obtain
analyzed |per function s.nalyzed transfer frequency
per function|functions, br|response, hr
Sinuscidal 2 -— A1 Z IR— 2
Fourier:
Analytical imtegration 2 15 11 | eeee—- 12
Numerical integration 2 2k 8 | eeaeee 12
Punch-card computer (IBM) 2 241 12 | e—a--- 10
Fourier synthesizer 2 24 812 | eeeme- 4k to 8
Coradi harmonic enalyzer 2 Continuous 100 | e—=e——- 8
curve
Curve fitting:
Exporentisl epproximation
Direct computation by - 815 0.5 2.5
Prony by, 24 a5 6 to 8 to 10
Donegen-~Pearson 2 20 a16 6 8

8Results were obtained in form continuous with frequency but mmerical evaluation was
made at mmber of frequencies shown.

b}lethod is primerily applicable to Impulse or step inputs; therefore, analysis of the
imput function 1s not required. '

NACA. ~
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Figure 1.~ Slgn convention. Arrows lndieate positive direction.
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Elevator input, 84, deg

Pltching velocity, D6, redians/sec

16

Time, t, aec ' i ' |

Figure 2.- Film recards of sinusoidal elevator input and response of
fighter in pitching velocity at M = 0.6 and hy = 10,000 feet.

Aversge amplitude, -15- (A7 + Ap + A3); average period, 5 (P1 + Po + P3);
average lag, = (1 + Tp + T3).
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Amplitude ratio, IDQ I, radiens/sec/deg
o

Phase angle, #, deg
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when the frequency response of the fighter is determined by the Fourier

analysis.
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