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SUMMARY 

The lowest normal modes of vibration of three aluminum-alloy box 
beams were calculated using a matrix iteration method. For these calcu
lations the actual structures were idealized to a system of mass points 
interconnected by massless springs. The lowest normal modes of these 
beams were measured experimentally and compared with those calculated. 
This comparison indicates that the mode shapes and natural frequencies 
for structures of this type may be adequatfrly calculated using this 
method. The experimental measurements were limited at the higher fre
quencies by local vibrations of small elements of the beams. 

INTRODUCTION 

A knowledge of the dynamic characteristics of modern aircraft struc
tures is becoming increasingly important as the size and speed of air
craft continue to increase. High stresses can result from the dynamic 
response of an aircraft structure to landing impact forces, taxiing 
forces, or gust loads. In analyzing the dynamic response of such a 
structure to transient external forces the properties of the normal 
modes of the structure are widely used. An example of such use, in the 
case of the landing loads problem, is given in reference 1. 

The calculation of the normal modes of a structure requires a knowl
edge of its mass distribution and its elastic characteristics. For geo
metrically simple structures, such as straight beams of uniform section, 
the elastic properties and the mass distribution may be expressed analyti
cally and the normal modes easily calculated. However, practical struc
tures, such as aircraft wings, usually have mass distributions not expres
sible in mathematical terms and elastic characteristics which are diffi
cult to determine. Such a structure must be replaced by a simplified 
idealized structure to render it suitable for mathematical treatment. 
The more the real structure is simplified, the less laborious the analysis 
becomes, but the results of the analysis also become less accurate . 
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The present paper gives the results of calculations and tests made 
to determi ne the vibration characteristics of three reasonably complex 
structures whose design is generally similar to that used in aircraft. 
The results of the calculations of the lower modes of three built-up 
aluminum- alloy box beams , with and without large discontinuities, having 
large concentrated masses at their centers are compared with the results 
of vibration tests made on these beams . 

The investigation was divided into three parts: 

(1) The calculation and measurement of the lower modes of a beam 
with a D- nose and a large concentrated mass at its center 

(2) The calculation and measurement of the lower modes of the same 
beam used in part (1) except that large cutouts were made in one of its 
cover sheets 

( 3) The calculation and measurement of the lower modes of the speci
men used in part (2) except that the D-nose was removed 

This work was done at the National Bureau of Standards and has been 
made available to the National Advisory Committee for Aeronautics for 
publication because of its general iterest. 

The authors wish to express their appreciation to the staff of the 
Engineering Mechanics Section of the National Bureau of Standards for 
their ass i stance on this work. Particular thanks go to Mr. Samuel Levy 
for his help on the theoretical aspects of the problem and to Mr. A. E. 
McPherson, who designed the specimens and advised on the experimental 
methods used . 

The authors also express their appreciation to the sponsors of this 
investigation, the Office of Naval Research, Department of the Navy, for 
releasing this work for publication . 

SPECIMENS 

Three specimens were used in the investigation. Specimen 1, used 
for the first part of the work, is shown in figure 1. Specimen 2, used 
for the second part of the work, was the same spec imen, except that 
large cutouts were made in one of its cover sheets between the second 
and third bulkheads to each side of its spanwise center line . Specimen 3, 
used for the last part of the program, was the same as specimen 2 except 
that the D- nose was removed. 
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The basic specimen consisted of two built-up box beams fastened together with a heavy steel joint . Each beam was fabricated from 75S-T6 
aluminum- alloy sheet and extruded angles. All rivets were g- inch diam
eter and made from Al7S-T3 aluminum alloy. Static tests (references 2, 3, and 4) showed that for moderate loads the steel joint was elastic but that the flexibility of the joint was not negligible. The calculations of the section properties of the specimens were based on measured rather than nomi nal dimensions. As a check on these calculations the weight of specimen 1 was calculated as 350.1 pounds, using nominal densities for the aluminum and steel . The specimen was then weighed and found to weigh 359 . 5 pounds. It was felt that most of the error in calculating the weight of specimen 1 occurred in calculating the weight of the steel joint . 

CAlCULATION OF NORMAL MODES 

General 

The fundamental quantities necessary for the calculation of the normal modes of a structure are its elastic characteristics and its mass distribution . The mass distribution may be calculated from the dimensions of the structure and the densities of the materials from which the structure i s fabricated . The elastic characteristics may be determined either from deflection measurements under static external loads or from theoretical calculations. 

For the specimens used for these tests the mass distributions were calculated from measured dimensions and nominal densities. The elastic character i stics of the specimens were determined from theoretical considerations and from direct measurement (references 2, 3, and 4) . The mode shapes and natural frequencies were calculated from these quantities using the theory given in reference 5. 

In the case of aircraft wings, a usual assumption made in deflection calculations is that the wing is built into an infinitely rigid root. It will be shown later that some flexibility of the root can exist without seriously affecting the shapes of the calculated normal modes. 

Idealized Specimens 

For the purpose of calculating the normal modes, the actual specimens were replaced by idealized structures consisting of discrete mass points interconnected with massless springs as described in appendix II 
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of reference 5. The location and magnitude of these masses replacing 
each specimen were determined in the following manner. 

It was decided to replace one-half of each actual structure with 
14 coplanar masses arranged in pairs along the bulkhead center lines, 
a, b, ... g (fig. 2). Seven of the mass points were assumed to lie 
along the center line of the rear shear web at the bulkheads, points 2, 
4, ... 14 (fig. 2). ·The magnitudes of all the masses and the 
z-coordinates of masses 1, 3,. . . 13, (y = 0 for these masses) were 
determined as follows: The semispecimen was considered divided into six 
free-bodies A, B, ... F (fig. 2) by passing planes through the specimen 
as shown . Each free-body was considered resting on knife edges located 
at the bulkhead center lines, a, b, ... g (fig. 2). The proportion of 
the mass of each free-body considered lying along these center lines was 
calculated from equilibrium considerations. 

The total mass of the structure considered lying along any bulkhead 
center line was then obtained by adding the contributions of mass of the 
free-bodies adjacent to the center line in question to the mass of the 
bulkhead. The first moment and the moment of inertia about the x-axis 
(fig. 2) for each free-body A, B, ... F were calculated and proportioned 
at the bulkhead center lines a, b, ... g in direct proportion to the 
mass contributions of each free-body to the bulkhead center line. The 
magnitudes of all the masses and the z-coordinates, of the masses 1, 
3, ... 13, were calculated from 

(1) 

where 

Zr z - coordinate of rth mass, where r = 1, 3, ... 13 (fig. 2) 

In total moment of inertia contributed by adjacent free-bodies and 
included bulkhead to nth bulkhead line 

Gn total first moment contributed by adjacent free-bodies and 
included bulkhead to the nth bulkhead line 

mr magnitude of rth mass, where r = 1, 3, ... 13 (fig. 2) 



NACA TN 2884 5 

Mn total mass contributed by adjacent free-bodies and included bulk-
head to nth bulkhead line 

ms magnitude of sth mass, where s = 2, 4, ... 14 (fig. 2) 

The use of equation (1) resulted in a substitute discrete mass dis
tribution whose mass, first moment, and moment of inertia about the 
x-axis were the same as those of the original specimen. 

Tables 1, 2, and 3 give the magnitudes and locations of the mass 
pOints replacing the actual specimens. 

The elastic characteristics of the specimens discussed here were 
defined in terms of their influence coefficients. An influence coeffi
cient between two points is defined here as the deflection of one point 
in the y-direction (fig. 2) for a unit load in the y-direction at the 
other point when the center of the specimen is clamped. References 2 
to 4 give measured influence coefficients, as well as those calculated 
from the theory given in reference 5~ at 12 points corresponding to the 
intersections of the front and rear spars with the bulkheads. For use 
in calculating the mode shapes it was necessary to compute the influence 
coefficients at the mass-point locations, 3, 4, ... 14, in figure 2 
(those at points 1 and 2 are ze~o by definition). This was done by 
assuming the bulkheads remained rigid in their planes during small 
deflections and rotations and then interpolating from the known influ
ence coefficients at the intersections of the front and rear spars with 
the bulkheads. The computed and measured influence coefficients thus 
obtained for specimen 1 at the mass-point locations are shown in tables 4 
and 5, respectively. Tables 6 and 7, respectively, give measured values 
for specimens 2 and 3. 

The theoretical influence coefficients for specimen 1 are calculated 
in reference 2 with the assumption that the steel joint at the center of 
the specimen was infinitely rigid, whereas the measured influence coeffi
cients for this and the other specimens contain displacement components 
due to rotation and warping of the root. Comparison of tables 4 and 5 
shows that this effect is not negligible. 

Calculation of Mode Shapes and Natural Frequencies 

of Idealized Structures 

The mode shapes and natural frequencies are calculated from the 
equations given in reference 5· Let Yl' Y2" .. Y14' be the displace-

ments in the y-direction (fig. 2) of the mass points ml' ~, ... m14 
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of a body free from externally applied forces . Then the displacement of 
any point m is given by : 

where 

e 

a 

Yn 

n=14 

Ym ~ Dm}nrrnYn + A. + eXn + aZn 
n=lx 

(m=1} 2) . . . 14) (2) 

deflection of structure at point m for a unit load applied at 
poi nt n} wi th root clamped} (i . e . ) an influence coefficient) 

displacement of root (x = Y = z = 0) in y -direction 

angle of rotation of root about z -axis 

angle of rotati on of r oot about x - axis 

acceleration in y - direction of nth mass 

If it i s assumed that the masses of the idealized structures are 
oscillating in simple harmoni c motion: 

Ym = ~ sin rot 

A. = "-max s i n rot 

wher e 

maximum displacement of mth mass} inches 

"'max maximum displacement of r oot} inches 

ro cir cular frequency of vibration} radians per second 

t time } seconds 

Substituting int o equation ( 2 ) and dividing the resultant equations 

by _ro2 sin rot ther e is obtained : 

-' 
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n=14 

L 
n=l 

(m = 1, 2,. 14) (4 ) 

In order to solve equations (4) a matrix composed of the masses and 
the influence coefficients is iterated as shown: 

51 14m14 
i 

a1 , 

52 14m14 
, 

a2 , 

53, 14m14 
, 

a3 = 

, , 
~' 

, , , , 
al ax emaxx - Clmaxz 

, I ).. , I " 
II 

a2 - emaxx - <Lznaxz max 

" ~' 
, , r r 

1 a3 ax - emaxx - Clwaxz 

(m")2 

a" -).." - e" x - a," Z 
14 max max max 
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are a first approximation of the mode shape 

and are a second approximation. 

I I I I I I 

To determine ~ax' 8max' and ~ax the sums A, B, and Care 
computed from equations (4) as follows : 

14 14 n=14 

L~(~' - ~~x -
I I " ) 1 ~ ~ L °m,nillua~ 8maxx - ~axzm (WI 1)2 = A 

1 1 n=l 

14 14 n=14 

L ~X(~I I I " ) 1 L~Xm~ I 

- Arh~x - emaxx - ~axz (WI7)2 °m,nilluan B 
1 1 n=l 

14 14 n=14 

L~Z(~' ~I e" ") 1 L~zmL I C - ax - maxX - ~axZ (wtt)2 = om nilluan , 
1 1 n=l 

By making use of the condition that the specimen is not accelerated 
as a rigid body: 

~ 
I I 

0 mnan 
body 

L I I 
0 illuxnan 

body 

L I I 
0 illuznan 

body 

( 6) 

( 7) 
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For symmetrical vibratory modes, the displacements a~' are the same on 

the right - and left-hand portions of the specimen with the result that 
equations (6) reduce to 

o 

, , 
ior ar..:tisymmetrical vibratory modes, the displacements an are of 
opposite signs for the two halves of the specimen with the result that 
equations (6) reduce to 

o 

For symmetric modes, taking 8' '/(ill' ')2 as zero and substituting equa
t~ons (7a) into the first and third of equations (6) 

1 ' 'x 14 , , 14 
''1IJB. ~ a.max ~ 

-(",-'-'-)=2 L-~ - ( ")2 L- II1:nzm = A 
~ m=l ill m=l 

:\,' , 14 
max ~ 

( , ')2 L- ~zm ill m=l 
= C 

f-e" 
\(ill" ) 2 

(8a) 
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For antisymmetric modes, taking ~I '/(m " )2 and a,"/(m" )2 as zero 
and substituting equation (7b) into the second of equations (6) 

II 14 
Bmax L IDmXm 

2 
B 

(m l 1) 2 
m=l 

( A" 
I I 

0) a, 
(8b) 

(ml 1)2 (m l 1)2 

The summations in equations (8) are computed from the mass distribution 
and geometry of the specimen. Knowing these and A, B, and C, 

~"/(m")2, B' ,/(m " )2, and a, ',/(m" )2 can be evaluated by solving 
equations (8a) for symmetric modes and (8b) for antisymmetric modes. By 
combining the results of equations (5) with the solution of equations (8) 

amI 1/( '" I I) 2 
u.J is given: 

I I 

~ 

The new approximate mode shape is normalized for the next iteration by 
forming the ratios 

The approximate value of m2 is taken as 

11)( I 1)2 a14 m 

.. 
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The iteration procedure used in solving equations (4) causes the 
solution to converge to the lowest mode . These equations may be solved 
for higher modes if the modes with lower frequencies than the assumed 
mode are "swept" out. This procedure, based on the fact that the solu
tions for equations (4) are orthogonal, is derived in reference 6. Equa
tions (4) were set up for four cases: 

(1) Specimen 1, using the calculated influence coefficients given 
in table 4 

(2) Specimen 1, using the measured influence coefficients given in 
table 5 

(3) Specimen 2, using the measured influence coefficients given in 
table 6 

(4) Specimen 3, using the measured influence coefficients given in 
table 7 

The four sets of equations (4) were solved for the following modes 
by the matrix iteration process given in reference 5: 

(1) Specimen 1 (calculated and measured influence coefficients): 
Three lowest natural frequencies and associated mode shapes 

(2) Specimen 2 (measured influence coefficients): Four lowest 
natural frequencies and associated mode shapes 

(3) Specimen 3 (measured influence coefficients): Three lowest 
natural frequencies and associated mode shapes 

The displacements of the masses obtained from the iteration were 
interpolated to obtain a set of displacements at the intersections of 
the bulkheads with the front and rear spars. These displacements were 
normalized by dividing them by the displacement at the intersection of 
the end bulkhead with the front spar. The resulting mode shapes for 
those cases where experimental results were obtained are shown in fig
ures 3 to 6 and their natural frequencies are given in table 8. 

Figures 3(a), 3(b), and 3(c) show that although there was a serious 
discrepancy between the calculated and measured influence coefficients 
for specimen 1, due, probably, to the elastic rotation and warping of 
the steel joint at the center of the speCimen, the mode shapes of the 
two cases agree fairly well, whereas the natural frequencies calculated 
from the theoretical influence coefficients are 4 to 15 percent higher 
than those calculated from the measured influence coeff icients. 
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EXPERIMENTAL CONFIRMATION OF THEORY 

General 

All of the specimens were tested in the same manner. Figure 7 shows 
a typical test arrangement with specimen 2. The specimen was suspended 
from the cantilevered channel A by four soft helical springs B (fig. 7). 
The specimen was excited in a direction normal to its width by a 
loudspeaker - type shaker motor C (fig. 7). The stationary field coils of 
this motor were excited by about 6 amperes of 110-volt direct current. 
The reciprocating armature, which was connected to the steel joint of 

the specimen by a t- inch-square aluminum-alloy dynamometer, was excited 

by an amplified oscillator signal. The dynamometer had a low flexural 
stiffness, so the restraint to the specimens offered by the springs and 
dynamometer, except in the axial direction of the dynamometer, was low. 
The restraint in the axial direction of the dynamometer was made negli
gible by adjusting the frequency until the ratio of specimen amplitude 
to dynamometer force was a maximum. 

The dynamometer was equipped with four t -inch gage length SR-4 

wire strain gages. These gages were connected to a modified SR-4 indi
cator and a cathode-ray oscilloscope in such a manner that the steady
state dynamic axial strain in the dynamometer could be measured to 
±2 microinches. 

The relative accelerations at selected locations along front and 
rear spars were measured with vacuum-tube accelerometers (reference 7). 
The output of these accelerometers was a single sinusoidal wave the 
amplitude of which could be accurately measured. 

Determination of Natural Frequencies 

An additional vacuum-tube accelerometer was attached to the tip P 
(fig. 7) . The specimen was excited at various frequencies and the 
steady-state dynamic strain in the dynamometer together with the rela
tive acceleration of the tip of the beam was measured. The specimen was 
assumed to be in resonance when the ratio of the relative acceleration 
at the tip of the specimen to the strain in the dynamometer (i.e., 
driving force) was a maximum. A resonance curve for each specimen was 
plotted during the frequency sweep tests and the maximums of the curve 
reexamined at small increments in the frequency, about 2 cycles per 
second, to determine those frequencies best representing the resonant 
frequencies. Figure 8 shows the resonance curves for the three specimens. 
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Determination of Normalized Mode Shapes 

When the resonant frequencies for a specimen had been determined, 
the specimen was excited at resonance and the relative mode shape mea
sured with vacuum-tube accelerometers. One accelerometer was left at Q 
(fig. 7). Other accelerometers were clamped at points every 6 inches 
along the front and rear spars. Measurements of the relative accelera
tions at location Q (fig. 7) and the point in question were made simul
taneously. The acceleration of the point was then calculated relative 
to a unit acceleration at Q. In this manner normalized acceleration 
values were determined. At a fixed frequency of harmonic motion, the 
acceleration amplitude is proportional to the displacement amplitude; 
therefore, these normalized acceleration values represented the normal
ized displacement values of the measured points on the beam, or the shapes 
assumed by the pairs of angles when the specimen was at resonance. This 
may not be true when damping is present. 

The following mode shapes were measured: 

Specimen 1: Lowest three modes. Two sets of measurements. were 
made of each mode shape. 

Specimen 2: First, second, and fourth modes. Two sets of measure
ments were made of each mode shape. The first four modes were calcu
lated, but the third mode, a torsion mode, was not excited experimentally 
with the force applied as was done in the test. By the time the compu
tations were complete, the test arrangement had been dismantled and could 
not be repeated with a better point of force application. 

Specimen 3: First and third modes. The second measured mode, again 
a torsion mode, was not excited to any extent. 

Local deformations of the specimens between bulkheads were observed 
at a frequency of about 230 cycles per second. These deformations are 
not included in the theory, so it was not considered worth while to mea
sure the mode shapes of any modes above about 230 cycles per second. 

COMPARISON OF THEORY AND EXPERIMENT 

Figures 4, 5, and 6 show the results of the tests superposed on the 
calculated mode shapes. Table 8 shows the comparison between calculated 
and measured natural frequencies for the three specimens. 

It can be seen that the theory, which considers the mass concen
trated at the bulkheads, can be used to predict the natural frequencies 
to within about 6 percent, provided flexibility at the root of the 
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specimen is taken into account, that is , that the influence coefficients 
of the structure are known accurately. Figure 3 shows that, using the 
influence coefficients calculated with the assumption of a rigid root, 
the errors in the natural frequencies range from 19 percent for the 
lowest frequency to 10 percent for the second natural frequency, although 
the errors in the mode shapes are reasonably small. 

CONCLUDING REMARKS 

The tests reported here indicate that the mode shapes and natural 
frequencies of the fundamental and several higher modes for a structure 
with and without large discontinuities may be adequately calculated by a 
matrix iteration method, assuming the mass of the structure concentrated 
at the bulkheads, provided that the elastic constants of the structure 
are accurately known. The presence of some flexibility in the root may 
produce large errors in the influence coefficients. Such flexibility 
does not result, however, in serious errors in the mode shapes, but does 
result in appreciable errors in the calculated natural frequencies. 

The experimental measurement of response over a range of frequencies 
showed that at the higher frequencies there were appreciable local vibra
tions of small elements of the beam. No attempt was made to check these 
vibrations by making an analysis of the beam with a finer mass distribu
tion, since it was felt that these local vibrations have no structural 
significance although they may be bothersome in the elements in which 
they occur. 

National Bureau of Standards 
Washington 25, D. C., April 16, 1952 
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TABLE 1 

LOCATION AND MAGNITUDES OF MASS POINTS1 

REPLACING SPECIMEN 1 

Coordinates 
Mass (in. ) 

Point 
(lb'- sec2/ in . ) 

x y z 

1 0 .1328 0 0 -10 .. 55 
2 .0835 0 0 0 
3 . 0920 8·75 0 -10.63 
4 .0584 8 · 75 0 0 
5 .00760 20 · 75 0 -12.23 
6 .00562 20 · 75 0 0 
7 . 00760 32·75 0 -12 . 23 
8 .00562 32·75 0 0 
9 .00760 44 . 75 0 -12 . 23 .' 

10 .00562 44·75 0 0 
11 .00753 56·75 0 -12.23 

- 12 .00558 56 · 75 0 0 
13 .00540 68 · 75 0 -12.10 
14 .00372 68·75 0 0 

. 

~ee fig. 2 for coordinate system . 
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TABLE 2 

LOCATION AND MAGNITUDES OF MASS POINTS1 

REPLACING SffiCIMEN 2 

Coordinates 

Mass (in. ) 
Point 

(lb-sec2jin. ) 
x y z 

1 0.1328 0 0 -10.55 
2 . 0835 0 0 0 
3 .0920 8.75 0 -10.63 
4 .0584 8·75 0 0 
5 .00705 20·75 0 -12.40 
6 .00524 20·75 0 0 
7 .00705 32·75 0 -12.40 
8 .00524 32 ·75 0 0 
9 .00760 44.75 0 -12.23 

10 .00562 44·75 0 0 
11 .00753 56.75 0 -12.23 
12 .00558 56.75 0 0 
13 .00540 68.75 0 -12.10 
14 .00372 68.75 0 0 

lsee fig. 2 for coordinate system. 
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TABlE 3 

LOCATION AND MAGNITUDES OF MASS POINTS1 

REPLACING SPECIMEN 3 

Coordinates 

Mass (in. ) 
Point 

(lb - sec2/in. ) 
x y z 

1 0.1328 0 0 -10·55 
2 .0835 0 0 0 
3 .0913 8.75 0 -10·59 
4 .0583 8.75 0 0 
5 .00611 20·75 0 -11.69 
6 .00530 20·75 0 0 
7 .006n 32·75 0 -11.69 
8 .00530 32·75 0 0 
9 .00643 44.75 0 -11.58 

10 .00548 44·75 0 0 
11 .00637 56·75 0 -11.58 
12 .00543 56·75 0 0 
13 .00456 68·75 0 -11.41 
14 ·.00370 68·75 0 0 

lsee fig . 2 for coordinate system. 

~ -----,~--~---



TABLE 4 

COMRJTED INFLUEN::E COEFFICIENTS, SPECIMEN 1 

Deflection (in./lb) at -

Load (1) 
at -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 o 0 o 0 0 0 0 0 0 0 0 0 0 0 

2 o 0 o 0 0 0 0 0 0 0 0 0 0 0 

3 o 0 o 0 0 0 0 0 0 0 0 0 0 0 

4 o 0 00 0 0 0 0 0 0 0 0 0 0 

5 o 0 o 0 7.65 x 10-6 3.00 x 10-6 9.74 x 10-6 5.65 x 10-6 12.38 x 10-6 8.22 x 10-6 14.91 x 10-6 10 .77 x 10-6 17 .46 x 10-6 13.32 x 10-6 

6 o 0 o 0 3·00 10·53 5.63 13·10 8.19 15.65 10·73 18.20 13.36 20 · 75 

7 o 0 o 0 9·74 5.63 ~ 15.84 35 .44 26.02 45·59 36 .19 55.78 46 ·36 

8 o 0 o 0 5.65 13·10 15·84 31.78 26.01 42.13 36 .17 52.36 . 46.51 62·57 

9 o 0 00 12.38 8.19 35.44 26.01 63.89 48.81 86.59 71.66 109 ·51 94 ·52 

10 o 0 o 0 8.22 15.65 26.02 42.13 48.81 1.l.:.E. 71.65 96.85 94·77 ll9.87 

11 o 0 o 0 14·91 10·73 45.59 36.17 86 .59 71.65 132·92 112.19 173·57 152·71 

12 o 0 o 0 10·77 18.20 36.19 52.36 71.66 96.85 ll2.19 146 .35 153·05 187 ·50 

13 o 0 o 0 17·46 13.36 55·78 46.51 109·51 94·77 173·57 153·05 24}.12 215·95 

14 o 0 o 0 13·32 20·75 46.36 62 .57 94.52 ll9.87· 152·71 187 .50 215·95 260 .63 

_ ._-

lValues represent calculated influence coefficients at mass points of idealized structure shown in fig . 2 . Off-diagonal values have been 
averaged to agree with Maxwell's reciprocity theorem . 

I 

I 

~ 
~ 
f-3 
~ 

~ 
CO 
+=-

f-' 
\0 



TABIE 5 

MEASURED INFUlEK:E COEFFIC IENTS, SPEC IMEN 1 

Deflection (in. jIb) at -

Load (1) 

at -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 000 0 0 0 0 0 0 0 0 0 0 0 

2 000 0 0 0 0 0 0 0 0 0 0 0 

3 000 0 2.2 x 10-6 1.1 x 10-6 2.8 x 10-6 1.5 x 10-6 3.0 x 10-6 2.0 x 10-6 3.2 x 10-6 2.3 x 10-6 4.2 x 10-6 2.9 x 10-6 

4 000 Q 1.0 3·5 1.5 4.3 1.8 5·0 2.1 5.5 3·2 "6.4 . 
5 00 2.2 x 10-6 1.0 x 10-6 12.8 5·9 17·7 11.3 22.8 16.6 27 ·2 21.2 33 ·3 26.2 

6 o 0 1.1 3·5 5·9 16.5 11 .1 22.6 16.1 28.1 21.0 33·1 26 .6 38 .3 

7 00 2.8 1 .5 17 ·7 11.1 38.5 25·7 53.2 41.3 67 .3 55.9 82 .9 71.1 

8 o 0 1.5 4.3 11·3 22.6 25·7 46·7 40.5 63·1 55·1 n8 70.8 92.5 

9 o 0 3.0 1.8 22.8 16.1 53 ·2 40.5 88·9 71.1 117·9 100.6 148.2 130.2 

10 o 0 2.0 5.0 16.6 28 .1 41.3 63.1 71.1 ~ 100.6 132.8 131.6 162.7 

11 o 0 3.2 2.1 27·2 21.0 67 .3 55.1 117·9 100.6 173 ·1 149.6 224.4 199·2 

12 00 2·3 5.5 21.2 33.1 55 ·9 n8 100.6 " 132.8 149.6 192 .1 201.9 242.9 

13 o 0 4.2 3·2 33·3 26.6 82.9 70.8 148.2 131.6 224 .4 201.9 305·2 275·9 

14 o 0 2·9 6.4 26 .2 38.3 71.1 92·5 130.2 162.7 199.2 242 .9 275·9 ~ 

-- - - -- - ---
IValues correspond to influence coefficients at mass points of idealized structure shown in fig. 2. Off-diagonal values have been averaged to agree 

with Maxwell'S rec1proc1ty theorem. 
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TABIE 6 

MEASURED INFllJENCE COEFFICIENTS , SreClMEN 2 

Deflection (in. lIb) at -

Load (1) 

at -

12 3 4 5 6 1 8 9 10 II 12 13 14 

1 000 0 0 0 0 0 0 0 0 0 0 0 

2 000 0 0 0 0 0 0 0 0 0 0 0 

3 OOQ 0 2.85 X 10-6 l.04 X 10-6 3.60 X 10-6 l.29 X 10-6 3.55 X 10-6 l.81 X 10-6 4.35 X 10-6 2 . 31 X 10-6 4.80 X 10-6 3.14 X 10-6 

4 000 Q 1.03 l.18 l.83 l.98 l.82 2.445 2 .84 2.885 3 ·01 3·595 

5 00 2.85 X 10-6 l.03 X 10-6 16 .55 5.65 22.60 ll.03 28·35 16.05 34.15 21.21 38·98 26 ·98 

6 00 1.04 l.18 5·65 ~ ll.ll 11·91 16.16 22 ·525 21.10 21·875 26.16 33·26 

1 00 3 .60 1.83 22.60 ll.ll 22..:JQ 24.04 68.30 39·19 84·13 55· 79 100·13 12 .40 

8 o 0 1.29 l.98 ll.03 11 ·91 24.04 ~ 39 .84 55 · 11 55·88 13.655 11 .62 89 ·595 

9 00 3·55 l.82 28 ·35 16.16 68.30 39 .84 1ll.20 11.15 145.28 104 . 08 118.18 138.81 

10 00 1.87 2. 445 16.05 22·525 39·79 55.11 11.15 ~ 104·31 128·545 136.51 16l.12 

II 00 4.35 2.84 34.15 2l.10 84·13 55.88 145.28 104·31 2ll·90 159.16 265·83 218 .21 

12 00 2·31 2.885 21.21 21.815 55·79 13-655 104.08 128 .545 159.16 190.45 213 ·26 246.44 

13 00 4 .80 3·01 38 .98 26 .16 100·13 11.62 118.18 136.51 265·83 213 · 26 358 · 45 291·95 

14 00 3·14 3·595 26.98 33.26 12 . 40 89.595 138 .81 161.12 218 .21 246.44 291 ·95 ~ 

IValues correspond to 1ni'luence coefficients at mass pOints of idealized structure shown in fig. 2. Off-diagonal values have been averaged to agree with 
Maxwell ' s reciproc i ty ·theorem. 
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TABIE7 

MEASURED INFllJENCE COEFFICIENTS , S&IMEN' 3 

Deflection (in ./lb) at -

Load (1) 

at -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 000 0 0 0 0 0 0 0 0 0 0 0 

2 000 0 0 0 0 0 0 0 0 0 0 0 

3 000 0 2.45 X 10-6 1.16 X 10-6 2.96 X 10-6 1.4,x 10-6 3.46 X 10-6 2.11 X 10-6 3.57 X 10-6 2.55 X 10-6 4.11 X 10- 6 3.30 X 10- 6 

4 o 0 0 0 ·96 3 ·10 1.55 3·50 2.16 3· 70 2.28 4.40 3·16 6 ·30 

5 o 0 2.45 X 10-6. .96 X 10-6 !L21 6 . 20 22.96 11.07 28 ·76 16.4J+ 34 . 32 21.16 39 .63 27.53 

6 o 0 1.16 3·10 6 .20 !l:.lQ. 11. 41 25 ·00 16 ·97 31.30 22 . 08 36.65 28.07 42.05 

7 o 0 2.96 1.55 22.96 11.41 51.68 23 · 71 70.34 39.61 87 ·03 56 · 37 103.64 73.42 

8 o 0 1.47 3·50 11.07 25·00 23 · 71 54 .40 40.47 74.05 56 .94 91.25 74·79 108.35 

9 o 0 3 . 46 2.16 28·76 16 ·97 70.34 40.47 114.16 73.77 149.77 108. 09 184·71 14J+.02 

10 00 2 .11 3 .70 16.44 . 31.30 39·61 74.05 73· 77 121.20 107· 70 157·30 14J+.08 192 ·90 

11 o 0 3.57 2.28 34 · 32 22 .08 87 ·03 56.94 149· 77 107·70 215·85 166. 10 275 ·66 224 · 74 

12 o 0 2·55 4.40 21 .16 36 .65 56 · 37 91.25 108.09 157·30 166.10 225 ·40 226.62 285 . 05 

13 o 0 4.11 3.16 39 .63 28.07 103 ·64 74.(9 184.71 14J+.08 275 . 66 226.62 ~ 314·53 

14 o 0 3 · 30 6·30 27·53 42.05 73.42 108.35 14.4.02 192 .90 224 ·74 285 .05 314· 53 ~ 

lYalues represent influence coefficients at mass pOints of idealized structure shown in fig. 2. Off-diagonal values have been averaged t o agree vith MaX\(e11 , s 
reciprocity theorem. 
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TABLE 8 

COMPARISON OF CAlCULATED AND MEASURED NATURAL 

FREQUENCIES OF SPECIMENS 

Natural frequency 
( cps) 

Specimen First mode Second mode Third mode 

ala 

b lb 

2 

3 

Measured Calculated Measured Calculated Measured Calculated 

66 68.4 181 190.2 221 234.6 

66 78.4 181 198.1 221 252·5 

63 64.8 173 181.3 --- 184·7 

64 66.3 --- ·164.3 173 179·5 

ala, calculated using measured influence coefficients. 
b lb, calculated using theoretical influence coefficients. 
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Fourth mode 
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Figure 1 . - Design of specimen . All dimensions in inches. All rivets 
A17S -T3 brazier head. 
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Figure 2.- Typical locations of masses replacing masses of actual structures. 
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Figure 3 . - Comparison of mode shapes of semibeam (specimen 1) calculated 
from both measured and theoretical influence coefficients. 
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(c) Third resonance mode. 

Figure 3.- Concluded. 
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(a) Fundamental mode. Measured frequency, 66 cycles per second; calculated 
frequency, 68 .4 cycles per second . 

Figure 4.- Calculated and measured mode shapes of specimen 1 . Calculated 
modes obtained from measured influence coefficients. 
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(a) Fundamental mode . Measured frequency, 63 cycles per second; 
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Figure 5 .- Calculated and measured mode shapes of specimen 2 . Calculated 
modes obtained from measured influence coefficients. 
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(b) Second resonance mode . Measured frequency, 173 cycles per second; 
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Figure 5.- Continued. 
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(c) Fourth resonance mode. Measured frequency, 198 cycles per second; 
calculated frequency, 204.7 cycles per second . 
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(a) Fundamental mode. Measured frequency, 64 cycles per second; 
calculated frequency, 66 .3 cycles per second. 

Figure 6.- Calculated and measured mode shapes of specimen 3. Calculated 
modes obtai ned from measured influence coefficients. 
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Figure 6.- Concluded. 
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Figure 7 .- Apparatus and specimen 2 . Cantilevered channel, A; springs, B; 
pulsator, C; accelerometer stations, P and Q. 
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