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SUMMARY

The expression for eddy diffusivity from a previous analysis was
modified in order to account for the effect of kinematic viscosity in
reducing the turbulence in the region close to a wall. By using the
modified expression, good agreement was obtained between predicted and
experimental results for heat and mass transfer at Prandtl and Schmidt
numbers between 0.5 and 3000. The effects of length-to-diameter ratio
and of variable viscosity were also investigated for a wide range of
Prandtl numbers. :

INTRODUCTION

Most of the existing analyses for turbulent heat and mass transfer
are adequate only for Prandtl and Schmidt numbers on the order of 1 or
less. For instance, the analysis given in reference 1, although adequate
for gases, gives heat- and mass-transfer coefficients for liquids at high
Prandtl or Schmidt numbers that are higher than those obtained experimen-
tally. The difference between the experimental values and the values ob-
tained by the method in reference 1 increases as the Prandtl or Schmidt
number increases. Coefficients obtained from the von Kérman analysis
(ref. 2) at high Prandtl or Schmidt numbers are lower than the experi-
mental values. Rannie's analysis (ref. 3) gives coefficients which are
in somewhat better agreement with the data than either of these analyses,
but the coefficients are again inaccurate at very high Prandtl or Schmidt
numbers. The analysis of reference 4 agrees with data at Prandtl or
Schmidt numbers of 1 and at very high Prandtl or Schmidt numbers, but the
coefficients are somewhat low at intermediate values of these numbers.

In reference 5, which was published since the present investigation was
initiated, good agreement was obtained with mass-transfer data for
Prandtl and Schmidt numbers between 0.5 and 3000 by introducing an
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appropriate amount of turbulence into the laminar sublayer. In all
these analyses, except those in references 1 and 3, the properties were
constant and the flow fully developed. The relations among heat trans-
fer, mass transfer, and fluid friction are discussed in reference B.

The inadequacy of most of the previous analyses at high Prandtl and
Schmidt numbers is principally caused by the expressions used for the
eddy diffusivity in the region very close to the wall. This region is
important because of the extremely large temperature or concentration
gradients in that region at high Prandtl or Schmidt numbers (ref. 7).
In the analysis given herein, which was made at the NACA Lewis labora-
tory, the expression for eddy diffusivity given in reference 1 is
modified in order to account for the effect of kinematic viscosity in
reducing the turbulence in the region close to the wall. The effects
of variable viscosity and of length-to-diameter ratio are also
investigated.

BASIC EQUATIONS
‘For obtaining the velocity, temperature, and concentration distri-
butions in a tube with turbulent flow, the differential equations for

shear stress, heat transfer, and mass transfer can be written as fol-
lows (symbols are defined in the appendix):

du du

T=Hgteeg (1)
dt dt ’
q= -k I - PE%th 3 (2)
dacC dac
= =\ a—y- - Ch d—y (3)

where the values for ¢ and .g), are dependent on the amount and kind

of turbulent mixing at a point. The eddy diffusivities for heat and

mass transfer are equal inasmuch as both processes are governed by the
same differential equation if aerodynamic heating is neglected (diffusion
equation). On the other hand, the ratio eh/e = a must be determined

experimentally or theoretically inasmuch as the equation of motion for
a fluid contains terms which are not present in the diffusion equation.
Equations (1) to (3) can be written in dimensionless form as

du*

T (XL _& & 4
% <Po+po uo7po> ay+ )
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qa (k2 e %  _& \at* ‘
qo_<1‘o Pro+Pocp,oc'“o/ﬂo>dy+ (5)
m_ [ 1 e \dct
EE‘(TG S°o+a“o/°o) &yt ©

The variation of properties in these equations might be caused by
either radial variation of temperature or of concentration of the °
diffusing substance.

EXPRESSIONS FOR EDDY DIFFUSIVITY

In order to make practical use of equations (4), (5), and (6), the
eddy diffusivity e must be evaluated for each portion of the flow.
After consideration of the various factors on which € might depend,
the following functional relation is assumed:

€ .uy EE é ._.d3u (7)
= £ );p;dy,dyz,dys,... '

(The quantities u and p must occur together inasmuch as they are
the only quantities in eq. (7) containing mass as a dimension.) It is
assumed in reference 8 that in the region at a distance from the wall

e = e(du/dy, dzu/dyz) (Karman's assumption), and in the region close to
the wall € = e(u,y) = n2uy. In both of these expressions the possible
effect of kinematic viscosity u/p is neglected. It appears from heat-
and mass-transfer data at high Prandtl and Schmidt numbers, however,
that the effect of u/p cannot be neglected in the region very close to
the wall (y© < 5). When the previous expressions are used to compute
heat and mass transfer at high Prandtl and Schmidt numbers, the coeffi-
cients are considerably too high compared with the experimental values.
It might be expected that, in the region very close to the wall where
the turbulence level is low, the effect of kinematic viscosity would be
important inasmuch as the viscous effects would be of the same order of
magnitude as the inertia effects. Therefore, for the region close to
the wall, € 1is written as

e= e(u,y,u/p) . (8)



4 NACA -TN 3145

As in reference 8, the effect of the derivatives is neglected close to
the wall because the flow is very nearly laminar in that region. The
first derivative approaches the value u/y and hence may be omitted
since u and y already appear in the functional relation. The second
derivative becomes very nearly zero as the wall is approached.

From dimensional analysis, equation (8) becomes

¢=n%w(5%§=ewﬁﬁg (9)

The function F[e'/(u/p)] should approach 1 as € or e increases,
because the effect of kinematic viscosity becomes negligible at high
turbulence levels. Inasmuch as dimensional analysis cannot determine
the form of the function F, additional assumptions must be made.

The simplest assumption that might be made for F[;'/(u/p)] is
that it equals cf/(u/p). This assumption could be written in differen-
tial form as

dF = d(ﬁ'e]'S) (10)

However, equation (10) could not be expected to hold as F  approaches
1, because the change in F. for a given change in ¢'/(n/p) should
approach O as F approaches 1 (F could never be greater than 1).
The simplest multiplicative factor which gives equation (10) this char-
acteristic is (1 - F). The assumption made for the variation of F,
the adequacy of which will be checked by experiment, therefore

becomes

aF = ale'/(w/0)) (1 - F) (11)

Separating variables and integrating from the wall to a point in the

fluid give
F e"/(ufo)
aF _ _ &'
b[:\ 1-F \j{ﬁ dqu) (12)
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where the lower limits are taken as zero, because the turbulence goes

to zero at the wall and the effect of kinematic viscosity consequently
becomes extremely large at the wall (F-+ O). Integration of equation

(12) results in

o)
F=1=e (13)

This expression approaches 1 for large values of e'/(u/p). From
equations (9) and (13) there results
_ ol
w/p

€ =nluy \l - e (14)

Equation (14) gives ¢ as a function of u and y for the region
close to the wall. " The constant n 1is to be determined experimentally.

For the region at a distance from the wall, F is usuallg c}ose to
1, because the effect of kinematic viscosity is small. The Karman ,
expression for e, which neglects the variation of F, can usually be
used in that region, or

(du{dy)6

e = *2 5
(d2u/ay?)?

(15)

If it is desired to take the variation of F into account in the region
at a distance from the wall, equation (15) becomes

_ xB(au/dy Y/ (aPu/ay?)?
2 (au/dy)® el

€= X (aBa/ay2)2 1-e (16)

No attempt is made in the present analysis to specify the mechanism
by which the kinematic viscosity reduces the eddy diffusivity in the
region close to the wall, because the exact mechanism is unknown. Pos-
sible mechanisms are these: First, the kinematic viscosity might act as
a damping factor to reduce the turbulence level close to the wall.
Second, it might help to orient the eddies close to the wall by damp-
ing out those moving perpendicular to the wall and thus reduce the
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effective turbulent transfer. Third, it might act to produce a partial
turbulence; that is, it might cause the flow at a point to be laminar a
fraction of the time. The actual effect of kinematic viscosity might
be due to any, or all, of these mechanisms.

ANALYSIS FOR CONSTANT FILUID PROPERTIES

In order to solve equations (4), (5), and (8), the following
assumptions are made in addition to the assumptions concerning the
expressions for eddy diffusivity (egs. (14), (15), and (16)):

(1) The eddy diffusivities for momentum € and heat or mass trans-
fer €&p are equal, or a = 1. Previous analyses for flow of gases in

tubes based on this assumption yielded heat-transfer coefficients that
agree with experiment (ref. 1). At low Peclet numbers (Pe = RePr), o
appears to be a function of Peclet number (ref. 9) but is approximately

1 at high Peclet numbers. In general, the Peclet numbers are high at high
Prandtl numbers for turbulent flow.

(2) The variations across the tube or boundary layers of shear
stress T, the heat transfer per unit area q, and the mass transfer per
unit area m have a negligible effect on the velocity, temperature, and
concentration distributions. It is shown in figure 12 of reference 1
that the assumption of a linear variation of shear stress and heat trans-
fer across the boundary layers gives very nearly the same velocity and
temperature profiles for gases as those obtained by assuming uniform
shear stress and heat transfer across the boundary layers for values
of 5h+ between 500 and 5000. (The boundary layers fill the tube for
fully developed flow or fully developed heat or mass transfer.) For
small values of 8h+, such as occur very near the entrance, the effect

of variable heat transfer (or mass transfer) is checked in figure 9 of
reference 10 and found to be negligible. Although these checks were
made for gases (Prandtl or Schmidt numbers close to 1), the effect of
variation of heat or mass transfer per unit area at high Prandtl or
Schmidt numbers would be even less because the temperature or concen-
tration profile becomes flatter as the Prandtl or Schmidt number is
increased. ‘

(3) The molecular shear-stress, heat-transfer, and mass-transfer
terms in the equations can be neglected in the region at a distance from
the wall (ref. 1, fig. 14).

(4) In the case of mass transfer, the concentration of the dif-
fusing substance is small enough that the mass transfer does not appreci-
ably change the velocity. This condition is generally obtained in the
case of evaporation from a wetted wall or in the solution of the wall
material in a liquid.
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Velocity, temperature, and concentration distributions. - The ex-
pression for € close to the wall (eq. (14)) can be written in dimen-
sionless form for constant properties as

- n%uty
e = n2uty*|1-e (17)

Equations (4), (5), and (8) c¢an be written in integral form for the
region close to the wall with the preceding assumptions and constant
fluid properties as

y+
+
2+ 4+ -nuy
l1+n"uy \1 e
y+
+
dy
tt = 1
N -n&ﬁf\ (19)
—-+n%ff'l-e
0 Pr
+
+
+ dy
¢ = - nlutyt (20)
L + n2u+y+ l-e
0 Sc

For the region at a distance from the wall, equation (15) is substituted
in equations (4), (5), and (6). By use of assumptions (2) and (3),
equation (4) becomes, for constant fluid properties,

. ‘
- ugt 1 108, (Y_ ) (21).
X +

hAT

which is the well-known logarithmic equation. Division of equation (4)
by equation (5) or (6) gives, with assumptions (1), (2), and (3),



8 NACA TN 3145

- ¢y (22)

where the equations are integrated from yl+, the lowest value of y+
for which the equations for flow at a distance from the wall apply, to
+
y .

The variation of ut with y* for fully developed adiabatic tur-
bulent flow from references 8 and 11 is shown on semilogarithmic co-
ordinates in figure 1. The curves corresponding to equations (18) and
(21) are also shown in the figure. Equation (18) was solved by numer-
ical iteration inasmuch as u' occurs on both sides of the equation.

The values of the constants in the equations are n = 0.124, x = 0.36,
and yl+ = 26, as determined from the experimental data. These values

will apply also to the temperature distributions. The value of n 1in
equation (18) differs from that given in reference 8 because equation
(18) includes the effect of kinematic viscosity on ¢. Figure 1 indi-
cates good agreement of equation (18) with the data for y*+< 26 and of
equation (21) with the data for y* > 26. From the velocity-distribution

data it is difficult to tell whether ¢ = nzuy from reference 8 or
equation (14) for ¢ should be used in the region close to the wall,
inasmuch as both expressions give results which agree closely with the
data. The temperature or concentration profiles at high Prandtl or
Schmidt numbers are, however, much more sensitive to the values of ¢
very close to the wall because of the very large temperature or concen-
tration gradients in that region, as can be seen in figure 2.

Generalized temperature or concentration distributions calculated
from equations (19), (20), and (22) are presented in figure 2 on log-
log coordinates. Each curve represents either t* or C* at a given
Prandtl or Schmidt number, as can be seen by comparison of equations
(19) and (20). The curves indicate that the temperature or concentration
distributions become flatter over most of the tube radius as the Prandtl
or Schmidt number increases. From equations (19) and (20), dt*/dy* = pr
and dC+/dy+ = Sc at or very near the wall so that the slopes of the
curves at the wall increase with Prandtl or Schmidt number. The slopes
of the curves in figure 2 near the wall appear equal because the curves
are plotted on log-log coordinates (d(log t*)/d(log y*) = 1 at the wall).
Included for comparison is the temperature distribution for a Prandtl
number of 300 calculated by the method in reference 1, which neglects
the effect of kinematic viscosity (e = n2uy).

- The sensitivity of the temperature or concentration distribution at
high Prandtl or Schmidt numbers to various assumptions for the turbulent
transfer in the region close to the wall compared with that of the
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velocity distribution indicates that the region very close to the wall
could be studied advantageously by measuring temperatures or concen-
trations at high Prandtl or Schmidt numbers rather than by measuring
velocities in that region. Some work along these lines has been reported
in reference 5, in which concentration profiles at high Schmidt numbers
were measured with an interferometer. No evidence of a purely laminar
layer (linear concentration profile) was found for values of y* as

low as 1. This result is in agreement with the assumption in the pre-

sent analysis, where the turbulence is assumed to be zero only at the
wall.

Relations among Nusselt, Reynolds, and Prandtl or Schmidt numbers
for constant properties. - It can be shown from the definitions of the
quantities involved that the Nusselt numbers for heat and mass transfer
and the Reynolds number are given by

+
2rg Pr
Mo = —2—— - (23)
%
. ergtsc
Nu = -C—+ (24)
b
Re = 2ub+ro+ (25)
where
ro+
f ttut (ryt - y*)ay*
+ 0
ty = " (26)
)
f u+(ro+ - yHay*
0
+
0
C+u+ (ro+ y+ ) dy+
+
Cp = — (27)
0
f u+(r + _ +)dy+
0
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and

+
0

et = s ut(rgt - y*)ayt (28)

(v0")*

The Nusselt numbers in these equations are based on the difference
between wall and bulk temperatures or concentrations. The relation
among Nusselt, Reynolds, and Prandtl numbers can be obtained from these
equations and the generalized distrlbutlons given in figures 1 and 2
for various values of the parameter ro .

Predicted Nusselt numbers for fully developed heat or mass transfer
are plotted against Reynolds number for various values of Prandtl or
Schmidt number in figure 3. The curve for a Prandtl number of 0.73
agrees very closely with that given in reference 1, which was obtained

by using € = 2uy in the region close to the wall. The curves for
supercritical water at higher Prandtl numbers (Pr = 6) given in refer-
ences 12 (fig. 7) and 13 (fig. 18), however, are higher than those in
figure 3; therefore the curves in these references should be replaced
by figure 3, although the values of the reference temperatures for
evaluating the fluid properties should not be affected.

Examination of the curves in figure 3 indicates that the slopes of
the various curves are approximately equal on a log-log plot. (The
slopes would, be more nearly equal if the Peclet number effect from
ref. 9 were included.) This result justifies the usual practice in
heat-transfer investigations of writing Nu = f(Re,Pr) as f(Re)x f(Pr)
(usually as Re®PrP). The same result does not hold for very low
Prandtl numbers where the slopes change considerably.

Comparison of analysis and experiment for fully developed heat and
mass transfer. - A comparison between predicted and experimental results
for fully developed heat and mass transfer is presented in figure 4, in
which Stanton number is plotted against Prandtl or Schmidt number for
various Reynolds numbers. The predicted Stanton numbers were obtained
from figure 3 and the relation St = Nu/RePr. The symbols represent
mean lines through data for heat transfer in gases (ref. 1) and in
liquids (refs. 14 to 19) and mass transfer by evaporation from wetted
walls (refs. 20 to 22), by solution of the wall material in a liquid (refs.
23 and 24), and by diffusion-controlled electrodes (ref. 25). The pre-
dicted and measured values are in good agreement over the entire range
of Prandtl and Schmidt numbers shown (0.5 to 3000). The agreement for a
Reynolds number of 10,000 in the low Prandtl or Schmidt number range
would be improved by applying the Peclet number correction from
reference 9.




NACA TN 3145 11

Simplified equation for fully developed case for very high Prandtl
or Schmidt numbers. - At very high Prandtl numbers the essential tem-
perature changes take place in the region very close to the wall where

ut is very nearly equal to y+. Setting ut = y+ in equation (19),

expanding the exponential function in a series, and retaining only the
first two terms of the series result in

+
y
: dy+
+
t = (29)
1 L, +\4
Pr + n%(y")

0

Integration of equation (29) and evaluation of the result for yr ==
give

ot = ?’LZ pro/4 (30)

The value of t¥ at y* = e is essentially tb+, because t¥ 1is very

nearly constant except in the region very close to the wall at high
Prandtl numbers. From equations (23) and (30),

Nu = Jﬁ#LE nrg* prl/4 (31)

or the Stanton number, in terms of the Prandtl number 'and friction
factor, is

2n \[f (32)

=5 Bt
where
2
f= —-
(2,")?
b
Similarly, for mass transfer,
st' = 28 Nf (33)

® Sc574

where n has the value 0.124 as determined in figure 1. The relation
between Re and f is given in figure 8 of reference 1 or the curve
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in figure 10 in the present report for adiabatic flow (B = O). This
relation is, of course, independent of Prandtl number for constant
properties. Egquation (32) or (33) is indicated by the dotted line in
figure 4 and is seen to be in good agreement with the predicted line
obtained previously for Pr >200.

Comparison of various analyses. - A comparison of various analyses
is given in figure 5. It can be seen that all the analyses more or less
converge at the lower Prandtl or Schmidt numbers. At the high Prandtl
or Schmidt numbers, the present analysis and the analyses from refer-
ences 4 and S are in fair agreement, whereas those from references 2
and 3 diverge considerably. The present analysis and the analysis from
reference 5 represent the experimental data about equally well.

Heat or mass transfer in entrance region for uniform wall heat or
mass flux, uniform initial temperature or concentration distribution,
fully developed velocity distribution, and constant properties. - For
calculating heat or mass .transfer in the entrance region, it is assumed,
as in reference 10, that the effects of heat or mass transfer are con-
fined to fluid layers close to the surface (boundary layers for heat or
mass transfer). The temperature or concentration distributions outside
the boundary layers are assumed uniform, and the temperature or concen-
tration is constant along the length of the tube for the region outside
the boundary layer. Inside the boundary layer the temperature or con-
centration distribution is obtained from figure 2. Integral heat- or
mass-transfer equations are used for calculating the thickness of the
boundary layers for various distances from the entrance. It is shown in
reference 10 that for heat transfer the relation between &,* and X/D

for constant properties is given by

+
h

1
= — (tst - tH)ut (ryt - yH)ayt 34

(wl kg

A similar equation can be written for mass transfer if the concentration
of the diffusing material is small (assumption 4):

+
®h

X 1 : +y
5= —=3 (et - Yt (gt - v )ay (35)
2(ry )



NACA TN 3145 13

In equations (34) and (35), X represents the axial distance from the
point at which heat or mass transfer begins. The dimensionless boundary-
layer thickness 5h+ is the same in both equations when the Prandtl
number equals the Schmidt number inasmuch as ct = t¥ for a given value
of y' and Prandtl or Schmidt number.

Values of local Nusselt and Reynolds numbers can be obtained from
equations (23), (24), and (25), as for fully developed flow, with the
exception that the expression for tpt in equation (26) is replaced by

+
8h r0+
+ +
A thut (ot - yH)ayt + tg u[ ut(rgt - yHay*

+
tb+ = T h (36)

I
‘[0 u+(r0+ - yH)dy*
N

/\ \ ('
A similar exﬁréssibn can be obtained for Cb+a The integral in the

Lo . j B
numerator is broken into two parts, because t¥ 1is constant and equal

> .
to t5+ outside ﬁhe thermal boundary layer. Inside the thermal bound-
ary layer the relation between t*¥ and y*' is obtained from figure 2.
Values of ut are obtained from figure 1 for yt from 0 to ryt
inasmuch as a fully developed velocity distribution is assumed. The
relation between Nusselt number and X/D for various values of Reynolds
number is obtained by assuming values of the parameters r0+ and 6h+

and by calculating the various quantities from equatioms (23), (25),
(35), and (38).

The variation of local Nusselt number for heat or mass transfer
divided by the fully developed Nusselt number with X/D and Reynolds
number at Prandtl or Schmidt numbers between 1 and 3000 is given in
figure 6. At the higher Reynolds numbers the values of Nu/Nud for a

given X/D decrease with increasing Prandtl number; that is, the effect
of X/D becomes small at large values of Prandtl number. At low Rey-
nolds numbers the variation is more complex: Values of Nu/Nud . first

decrease and then increase slightly as Prandtl number increases. In
either case it 1s evident that in the entrance region the fully developed
Nusselt numbers should be multiplied by a factor which is a function

of X/D, Reynolds number, and Prandtl number rather than of X/D alone.
That is, a simple factor such as (X/D)-C, which is often used for Prandtl
numbers of approximately 1, is inadequate for high Prandtl numbers.

The effect of Reynolds number on Nusselt number in the entrance region
increases; that is, the separation of the curves for various Reynolds
numbers increases with Prandtl number. The same conclusions apply to
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the average Nusselt numbers plotted in figure 7 except that the changes
with X/D near the entrance are more gradual and the separation of the
curves with Reynolds number is greater than for the local values.

The average Nusselt numbers were calculated from

X/D
Nu,y = ;D
ng!D!
Nu

0]

This equation is consistent with the definition

f(to - ty)aX
0 )

(ty - tp)ay = X

which is the usual way of defining the average difference between wall
and bulk temperatures for uniform heat flux.

It is of interest to note that the Nusselt numbers for turbulent
flow in figures 6 and 7, in general, display trends opposite to those
for Nusselt numbers for laminar flow with increasing values of Prandtl
number. In the case of laminar flow, the value of Nu/Nuy at a given

X/D and Reynolds number increases considerably with Prandtl number
(ref. 26, fig. 3), because the heat diffuses through the fluid more
slowly at the higher Prandtl numbers (the thermal diffusivity is lower)
50 that the thermal boundary layer is thinner and Nu/Nud for a given

X/D near the entrance and a given Reynolds number is consequently
higher than for the lower Prandtl numbers. The same phenomenon also
tends to increase the effect of X/D for turbulent heat transfer. 1In
the case of turbulent heat transfer, however, the shape of the tem-
perature profile in the thermal boundary layer changes considerably with
Prandtl number and becomes very flat at high Prandtl numbers (fig. 2).
This means that the temperature profiles for fully developed flow do

not differ greatly from those near the entrance (both are flat) although
the boundary-layer thickness for the two cases differs considerably.

The Nusselt numbers in the entrance region for turbulent heat transfer
at high Prandtl numbers therefore tend to quickly approach the fully
developed values.
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FULLY DEVELOPED HEAT TRANSFER AND FRICTION WITH VARIABLE PROPERTIES

Turbulent heat transfer to liquids with variable viscosity. - In
the case of heat transfer to liquids, the variation of the viscosity
with temperature is considerably greater than the variation of the
other properties. A good approximation to the actual heat transfer in
liquids can therefore be obtained by considering only the viscosity to
vary with temperature. Under that assumption and assumptions 1 and 2
from the section Analysis for Constant Fluid Properties, equations (4)
and (5) become

- (_“-+ : )i‘i (37)
Ho ko/Po dyt
and
[ 1 £ at*
L= (Pro " Holeg ) day*+ (38)

For variable viscosity, the expression for ¢ close to the wall (eq.
(14)) can be written in dimensionless form as

n2ytyt

u?u
€ _ 2.+ + 0
o/ %G =nuy 1-e (39)

For liquids, including water, oil, ethylene glycol, and sodium hydroxide,
u/po_ can usually be represented by (t/to) ; if the liquid is nov too near
the freezing point. The exponent d varies from -1 to -4, and the temper-
atures are measured in °F. This differs from the case for gases where the
temperatures were measured in R (ref. 1). All the results up to this
point are independent of whether the temperatures are in OR or °F. From
the definitions of t* and B,

wlug = (1 - pt*)? (40)
Substituting equations (39) and (40) into equations (37) and (38) and
writing the result in integral form yield
y*

ut = (41)




16 NACA TN 3145

and

y dy+
' nlutyt

(l _ Bt+)d (42)
= + nfuty* \1 - e
Pro

0

Equations (41) and (42) can be solved simultaneously by iteration, that

is, assumed values for ut, y+, and t' are substituted into the right

side of the equations and new values of u’ and t¥ are calculated by

numerical integration. These new values are then substituted into the
right side of the equations and the process is repeated until the values

of ut and t* corresponding to each value of y* do not change
appreciably. Equations (41) and (42) give the relations between u',
t+, and ‘y+ for various values of the heat-transfer parameter B and
of Prg for the region close to the wall.

In the region at a distance from the wall, the terms in the equa-~
tions containing variable viscosity are neglected so that ut and tt
are given by equations (21) and (22).

Generalized temperature and velocity distributions for a Prandtl
number at the wall of 10 and a d of -4 are shown for various values
of the heat-transfer parameter B in figure 8. The value yt at the
intersection of the curves for flow close to and at a distance from the

wall is taken at yl+ = 26, as in the case of constant viscosity. The

effect of various assumptions for the variation of yl+ is investigated
in reference 13 (fig. 13), in which it is concluded that this assumption
should give accurate results. Positive values of B correspond to heat
addition to the liquid, negative values to heat extraction. The values

of t*¥ at a given value of yt increase with increasing B, whereas
the values of ut decrease. These opposite trends can be explained

by examining the terms in the denominators of equations (41) and (42).
The first term in the denominator of equation (41) (molecular) causes

ut  to decrease with increasing values of B (d< O), whereas the
second term (turbulent) causes u' to increase. The effect of the
second term is somewhat smaller so that the net effect is a decrease, as
shown in figure 8(b). 1In equation (42), however, the first term is
independent of B and therefore the second term causes an increase in
t* with increasing values of P. The opposite trends for heat transfer
and friction in most of the succeeding curves can be attributed to the

- Same cause.
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The effect of the factor in parenthesis in equation (42), which is
equal to F in equation (13), increases with increase in Prandtl number
because of the steep temperature gradients at high Prandtl numbers in
the region very close to the wall where F differs considerably from 1.
The separation of the t* curves for various values of B (not shown)
therefore increases as Prandtl number increases, the separation for a
Prandtl number of 1 being very small.

For obtaining the relation between Nusselt number, Reynolds number,
Prandtl number, and friction factor for variable viscosity, equations
(23), (25), and (26) apply for variable properties as well as for con-
stant properties if the viscosities in the Reynolds and Prandtl numbers
are evaluated at the wall temperature. The friction factor f can be
calculated from

£ = 2/(uyt)? (43)

Nusselt numbers and friction factors are plotted against Reynolds
numbers. in figures 9 and 10, respectively, with the viscosity in the
Reynolds and Prandtl numbers evaluated at the wall temperature. The
curves for cooling and heating are for values of “b/“o on the order of

0.5 and 2, respectively. As in the case of temperature and velocity
distributions, the trends with increasing values of B for the Nusselt
numbers and friction factors are opposite. Also, as in the case of the
temperature distributions, the separation of the Nusselt number curves
with B increases as the Prandtl number increases, the separation being
very small for a Prandtl number of 1. Thus, for a Prandtl number of 1
the reference temperature for evaluating the viscosity in order to
eliminate the effects of variable viscosity is close to the wall tem-
perature; the departure of the reference temperature from the wall tem-
perature increases with Prandtl number. This is to be expected because,
as mentioned previously in this section, the separation of the t+
against y*¥ curves with B increases with Prandtl number. In those
curves all the properties are evaluated at the wall temperature.

' The reference temperature for heat tramsfer in liquid with variable
viscosity for a. Prandtl number of 1 differs from that obtained for
gases in reference 1, in which all the properties except the specific
heat were considered variable. In reference 1, the reference temperature
for gases was found to be close to the average of the wall and bulk
temperatures rather than close to the wall temperature. 1In assigning a
reference temperature, it is therefore important to consider what
properties are variable.

Values of x for calculating the reference temperature ty, where
tx = x(to - tb) + ty,, are given, for heat transfer and friction, in
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figure 11. The curves for B = 0 in figures 3 and 10 can be used for
variable viscosity if the viscosities in the Reynolds and Prandtl num-
bers are evaluated at the reference temperatures given in figure 11
(ReX and Prx). The values of x were computed for values of 4

(n/ug = (t/to)d) of -1 and -4 and for values of ”b/“o of about 0.5

and 2. The value of d had little effect on the curves, but different
curves are obtained for heating and cooling of the liquid. In the case
of heat transfer, the reference temperature does not depart greatly from
that in the widely used Colburn equation (ref. 27), wherein the viscosity

is evaluated at to 5 except at the lower Prandtl numbers. The values

of x for friction are lower than those for heat transfer. Deviations
from the curves in figure 11 might occur for very high viscosity ratios
or for cases in which the viscosity variation with temperature could
not be represented by a simple power function.

Turbulent heat transfer to gases with variable properties using
present method of analysis. - If the present method of analysis is to
be considered more general than the analysis in reference 1, it must
be applicable to gases with variable properties as well as to liquids.
When assumptions (1) and (2) in the section Analysis for Constant Fluid
Properties are used, equations (4) and (5) become, for gases,

M p £ dut

L= (55 * 0o Ho/Po ) ay* | (a4)

and
Kk +
1= [+ 2 5] & (45)
ko Pro = Py Ho/Po | ay
where ¢ is assumed constant because its variation with temperature is

D
slight compared with the variations of viscosity, thermal conductivity,

and density. As in reference 1, it is assumed that k/ko = “/“O = (t/to)d
and p/po =’t0/t, where d = 0.68 and the temperatures are measured in

degrees Rankine. By substituting the expression for € close to the
wall (eq. (14)) and t/ty = 1 - Bt*, equations (44) and (45) can be
written in integral form for the region close to the wall as

dy+
ut = 46)
_ n2u+y* (
+,d+1
- Bt
(l_Bt+)d+EZU+—y+ 1 -e (l P )
1 - ptt

0.
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+
+ dy (47)

t' =
) n2u+y+

d+1
t*)

(- pth)d, wlutyt |\, (P
PI‘O 1 - Bt‘l’

0]

Equations (46) and (47) can be solved simultaneously by iteration as
were equations (41) and (42).

In the region at a distance from the wall, the molecular shear-
stress and heat-transfer terms in equations (44) and (45) are neglected
and the expression for ¢ given in equation (15) is used. The inte-
gration is carried out in reference 1, in which it is found that

2 + + + )
- 1 - B(u™ - um + t,7)
Lo Y P [T T e
B AT
2
e (F"-/\/l - ptyt 41 ) (48)
and

R (49)

where yl+ = 26.

Generalized temperature and velocity distributions as calculated by
the present analysis for a Prandtl number of 0.73 are plotted in figure
12. The distributions calculated in reference 1 are also included for
comparison. The agreement between the two methods of analysis is
satisfactory, so that the Nusselt numbers and the reference temperatures
obtained from the present analysis should also agree with those given
in reference 1.

Laminar heat transfer to liquids with variable viscosity and
uniform heat flux. - Laminar heat transfer to liquid metals with variable
viscosity is investigated in reference 28. The results of that inves-
tigation should be applicable also to liquids with high Prandtl numbers
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if the value of d 1is on ‘the order of -1.6. The temperatures in the
report are to be measured in °F (n/uy = (t/tg)d). It is found (ref.
28) that the results for fully developed laminar flow with constant
heat flux can be represented closely by

- (1) (%)

SUMMARY OF RESULTS

The following results were obtained from the analytical investi-
gation of heat and mass transfer in smooth tubes at high Prandtl and
Schmidt numbers:

l. By modifying the expression for eddy diffusivity from a previous
analysis to account for the effect of kinematic viscosity in the region
close to the wall, good agreement was obtained between predicted and
experimental results for heat and mass transfer at Prandtl and Schmidt
numbers between 0.5 and 3000. A simplified equation was obtained for
very high Prandtl or Schmidt numbers.

2. The analysis indicated that, except at low Reynolds numbers,
the entrance effect (local Nusgelt number divided by fully developed
Nusselt number) for heat or mass transfer decreases as Prandtl or
Schmidt number increases.

3. The analysis indicated that the effects of variable viscosity
on turbulent heat transfer and friction in liquids can be nearly
eliminated in ordinary cases by evaluating the viscosities in the Rey-
nolds and Prandtl numbers at reference temperatures which are functions
of the Prandtl number. For the laminar case the results for liquid
metals with variable viscosity given in a previous analysis should be
applicable to liquids at high Prandtl numbers.

4. When the present method of analysis was applied to gases with
variable properties, essentially the same results were obtained as are
reported from analysis and experiments in a previous report.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, February 17, 1954
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APPENDIX - SYMBOLS

The following symbols are used in this report:

concentration of diffusing substance, (1b)(sec?)/ft%
bulk concentration of diffusing substance, (1b)(secZ)/rt%

concentration of diffusing substance at y = 9,
(1b) (sec?) /et

concentration of diffusing substance at wall,
(1b) (sec?)/rt4

exponent
specific heat of fluid at constant pressure, Btu/(1b)(°F)

specific heat of fluid at constant pressure at wall,A

Btu/(1b) (°F)
inside diameter of tube, ft

exponent, value of which depends on variation of viscosity
of fluid with temperature

function of ¢'/(n/p)
acceleration due to gravity, 32.2 ft/sec2

local heat-transfer coefficient, qo/(t0 - tp),
Btu/(sec)(sq ft)(°F)

local mass-transfer coefficient, nb/(Co - Cb), ft/sec
average heat-transfer coefficient, qo/(ty - typ)ay
average mass-transfer coefficient, my/(ty - tb)av
thermal conductivity of fluid, Btu/(sec)(sq ft)(°F/ft)

thermal conductivity of fluid evaluated at to»
Btu/(sec)(sq ft)(CF/ft)

rate of mass transfer toward tube center per unit area,
(1b) (sec)/cu £t
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rate of mass transfer toward tube center per unit area
at wall, (1b)(sec)/cu ft
constant

rate of heat transfer toward tube center per unit area,
Btu/(sec)(sq ft)

rate of heat transfer at inside wall toward tube center
per unit area, Btu/(sec)(sq ft)

inside tube radius, ft
temperature, OF for liquids or °R for gases

bulg static temperature of fluid at cross section of tube,
P ;

reference temperature for local Reynolds and Prandtl
numbers, x(ty - tp) + tys OF

temperature of fluid outside thermal boundary layer, °f

wall temperature, OF for liquids or °R for gases

average difference between wall and bulk temperature, °OF

time-average velocity parallel to axis of tube, ft/sec
bulk velocity at cross section of tube, ft/sec

distance from point at which heat or mass transfer
begins, ft

number used in evaluating arbitrary temperature in tube
t

x .
distance from wall, ft
thermal or diffusion boundary-layer thickness, ft
coefficient of eddy diffusivity for momentum, sq ft/sec

expression for eddy diffusivity which neglects effect of
u/p, sq ft/sec

coefficient of eddy diffusivity for heat or mass, sq ft/sec
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x Karmén constant

A molecular diffusivity, sq ft/sec

Ao molecular diffusivity at wall, sq ft/sec

W absolute viscosity of fluid, (1b)(sec)/sq ft

Hp absolute viscosity of fluid evaluated at t_,
(1b)(sec)/sq ft b

i : absolute viscosity of fluid evaluated at ¢t_,

* (1b)(sec)/sq ft X

Ko absolute viscosity of fluid evaluated at to,
(1b)(sec)/sq ft

o mass density of fluid, (1b)(séc2)/ft4

Py mass density of fluid evaluated at t, (lb)(secz)/ft4

T shear stress in fluid, 1b/sq ft

To shear stress in fluid at wall, 1b/sq ft

Dimensionless groups:

(Cy - C)’\/'c /e
ct concentration parameter, 0 0’0

m,
Cpt bulk concentration parameter, (Co - Cb)!/ T0/Po
mo .
Cgt value of C* at 8", (Cy - Cg) \/ To/Po
o
ci* value of C¥ at yl+
f friction factor, 2‘Co/pub2
Nu Nusselt number for heat transfer, hD/k
Nu' Nusselt number for mass transfer, h'D/x
NuaV average Nusselt number for heat transfer, havD/k
Nu__' average Nusselt number for mass transfer, haV'D/X

av
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Nu fully developed Nusselt number for heat transfer
d P
Nu,' fully developed Nusselt number for mass transfer

d D
Pe Peclet number, puchpg/k
Pr Prandtl numnber, cpgp/k
Pr Prandtl number with properties evaluated at t

0 prop 0
Re ' Reynolds number, puyD/u
Rey Reynolds number with viscosity evaluated at tx, pubD/px
Reg Reynolds number with viscosity evaluated at tgq, pubD/uO

T
ro* tube radius parameter, o/ ro
Ho/ Pg
Sc Schmidt number, u/(p))
Scq Schmidt number at wall, ug/egk,
St Stanton number for heat transfer, h/pgubcp
St' Stanton number for mass transfer, h'/u,
(tg - tlegvy 1 - t/t
t* temperature parameter, 0 p- 0 = B / 0
9%\ To/Po '

. 1 (. W

tb bulk-temperature parameter, B 1l - EoN
. 0

R 1 5
%3 B\l "%

+ + +
tl value of t at ¥y

ut velocity parameter, LV/‘V'to/po
u5+ bulk-velocity parameter,lﬁy/qlro/po

uy value of u* at vt
’\J o/ Po
v+

wall distance parameter, __E—75—_- y
0/ "o
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yl+ value of y+ at intersection of curves for flow close to
" wall and at a distance from wall
a ratio of eddy diffusivities, € /e
B heat-transfer parameter, qol\’To/po (cpgtoto)
8h+ dimensionless thermal or diffusion boundary-layer thick-
ness Y7o/ fo 3]
© Twoleg B
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Figure 3. - Fully developed Nusselt numbers for heat or mass transfer against Reynolds

number for various Prandtl or Schmidt numbers.
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Figure 9. - Nusselt numbers against Reynolds numbers for various values of Prandtl number

and heat-transfer parameter for liquids with variable viscosity. TFully developed flow;
wlug = (t/tg) ™.
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