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SUMMARY

An smalysis of the temperature distributions h a fluid over sn
oscillating surface with heat transfer is made and associated heat-
transfer parameters are compared with those for the case of conduction
at a stationaqy surface with the ssme initial temperature potentiaJ.
It is found that the heat transfer for the osciJlating surface can be
considerably clifferent from that for conduction alone. The effect of
the surface oscillations on the thermal.state of the fluid is studied
by means of average static- or total-temperature defectsj and it is
demonstrated that the cMciJlations could alter the fluid temperature

s appreciably.

0

INTRODUCTION

The increased improvement of present-day propulsion systems and
the development of new propulsion systems have posed numerous new prob-
lens in the field of heat transfer. Elucidation of unusually high heat-
transfer coefficients which are apparently encountered in unsteady flows
sud means of incre=ing heat-transfer coefficients under given condi-
tions are greatly desired. As a prel~ary attempt to gati insight
into such problems, it seems worth wldle to consider the heat-transfer
aspects of the classical problem wherein the fluid motion is induced by
oscillating a conducting surface sxiaJJy h viscous fluid. ml particu-
lar, the effect of disturbing the equilibrium (steady state) conditions
sfter the periodic motion of the fMid has been established wiJl be
studied. The temperature distributions in the fluid me determined as
exact closed-form solutions of the energy eqmtion pertinent to the
problem and, hencej related heat-trsmfer parameters cm be cmparqd
with those for a stationsz’ysurface to demonstrate the effect of the
surface oscillations. Other exact solutions of the ener~ equation for
somewhat analogous problems are presented in references 1 to 3.
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AN.Am%E
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The lsminar motion of an ticompressibleviscous fluid induced by
the axial (longitudinal)oscillations of a boundimg plane surface doubly

--

infinite in extent is well.known and is reported in numerous sources
(see Sclil.ichttig,ref. 4, for exam@e}. The equations of motion for
this case, assuming constant physical properties, reduce to the classi-
cal heat-conduction equation

where u is the velocity component parallel to the surface, t denotes
the time, v is the kinematic viscosity, and y is the coordtiate nor-
mal to the surface. (Mls@ols are defined in the appendix.) The
associated boundary conditions are

u(O,t) = U cos nt (2)
w

and

U(-,t] = o (3) -

where U denotes the amplitude and n the frequency of the oscilla-
tions. The velocity distribution, after sufficient time has elapsed for
the periodic motion to be established, is given by

u(y)t) = U exp (4@ Y)+-@i’=3j

The appropriate energy equation is

(4)

(5)

where T denotes static temperature, a is the themnal diffusivity, and
~ is the specific heat at constant pre~sure. Note that the last term

on the right of equation (5) is due to aer-odynamicheating and describes —

the increase in fluid temperature caused by the oscillations. In order
for the problem to be physically reasonable, however, after a long er-

fiod of time the system should be in a state of thermal equilibrium that
is, in essentidly a steady state) and it ‘isthus necessary to cool the
surface. The thermal equilibria state can be described by first solv-
ing equation (5) subject to the boundary conditions

T(O,t} = ~w (6}
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(7]

is, the oscillating surface is maintained at mm uniform tempera-
%. It is unnecessary here to specify any initial conditions, for
will not influence the results after a sufficiently long the.

(N
g

a

After the explicit fonn of the nonhomogeneous or aerodynamic heat-
ing term in eqpation (5) is determined by means of equation {4), a par-
ticular solution of eqwtion (5} was found to be

where Pr = v~a is the E&ndtl nuniber. The complementary function to
be added to eqy.ation(8) in order that the ccmplete solution satisfies

s the boundary conditions given by equations (6) and {7) is

u%.
[

Tc.~w+r l+m$--~
P

‘) cos(2nt - may) - erf y

( )]2+

where erf( ) is

so that

and

The
the

complementary

the error function ad is defimed as

erf(O] = O

erf(m) = 1

function is ssmthesized from well-lmown solutions of
heat equation; for example, the term containing

exponentid. and trigonometric functions corresponds
the heat-conduction equation for the case where the.

the product of the
to the solution of
temperature on a

.
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stationary surface is specified to be a harmonic function of the (see
ref. 5, p. 47}, and the two error-function terms ccanbinedcorrespond to
the solution of the problem of unsteady heat conduction to or from a
stationary surface due to a temperature difference or potential of

U2Pr - ~
T.-—

4% ‘“
l?otethat the error-function terms describe the tran-

sient heat transfer which will vanish for large t=. The temperature
distribution in the equilibrium state (that is, after a long ttiel should
be independent of time except for _peri&iictez%s
of equations (8) and (9) with the error-function

The relation for thermal equilibrium between the
emd the smhient temperature T- can be fetid by
(1OJ as y+- and is given by

and is giv~n by
terms vanishing

(10)

?
surface temperature @w
evaluating equation

.

(u-)

Thus, as was anticipated, it can be seen from equation (Xi) that for
thermal equilibrium the surface must be cooled to compensate for the
aerodynamic heating, and the temperature distribution above a surface
oscillating for a iong time h a

Te =TJ~{eX+~y)

- ~(~y)cos(tit -

fluid at temperature T. is given by

‘+&[=(-fiY)cos(2nt -~y)

(12)

Now that the fully developed state of-the fluid is completely de-
scribed (by eqs. (4) and (12}), consideration can be given to the prob-
lem at hand: namely, the effect of the oscillations on the heat trans-
fer if, at some time (say t = O) after the periodic motion (steady
state) is established, the surface temperature is fixed at some temper-
ate TV different from that givenby equation (I-1). The problem tobe
solved to answer this question is mathematically id~ntical to the one .L

for thermal equilibrium except that Tw replaces Tw in the boundary
.

conditions and that the solution of the present problem must match that
.
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given by equation (12) for t = O
.

; that is, the proper hit id. condi-
tion must be satisfied by the temperature distribution in order to dem-
onstrate the transient effects roperly.

5
It was previously shown that

the sum of equations (8) and (9

1 [(‘zF%=-

([ 2n
--- T

(13)

(5)) sad the boundary condi-

-F (T- - Tw)erf ()Y
2+X

t satisfied the clifferential.equati~n (eq.
tions (eqs. (6) and (7)), where ~ is now replacedhy ~. Evalua-
tion of equations (12) and (13) at t = O shows that they are identi-.
cal so that the proper initial condition is satisfied and thus equation
(13) represents the temperature distribution over sn oscillating sur-
face which is maintained at a constszrbtemperature Tw. Bec~e Tw
is a surface temperature different from that for thermal equilibrium,
the solution given by equation (13) is of geatest physical significance
only as long as the transient terms are important. This of course, is
the problem of primary titerest herein.

Although the solution given by equation (13) was developed for an
incompressibleviscous fluid with constant property values, it is equally
valid in the case of a compressible viscous fluid M the boundsry-layer
assumptions are made, M the Prandtl number and the product of p and
p are taken to be constants, and if y is replaced by q where

This follows because the von Mises transformation (see ref. 6, for
exsmple) under these assumptions reduces the compressible boundsmy-
layer equtions to the forms of equations (1) and (5).

@y pertinent heat-transfer quantities can be obtained from eqw-
tion (13). However, since the t- dependence itself is usually not of
primary practicsl hportsmce, the temperature gradient at the wall
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(which is a measure of the heat transfer) will be averaged over a period.
This average gradient is given by

(14)

where to tidicates the beginning of any cycle. For the equilibrium

state, em analogous equation is obtained from equation (12):

(15]

This average temperature gradient is due entirely to the aerodynamic
heating and is also essentially (that is, except for the multiplicative
constant k, the thermal conductivity coefficient) equal.to the work
done per cycle in oscillating the surface. The latter result can be
independentlyverified by computing the work done per cycle from the
shear stress on the plate.

RESULTSAND DISCUSSION

Now that the temperature distribution and its gradient at the sur-
face are known, the effect of thesuxface oscillations on the heat
transfer can be obtained by comparing any apprqmiate parmneters with
the corresponding ones for the case of pure conduction to or fran a
stationary surface subject to the same initial temperature difference
(Te - Tw). The specific formulation of the parameters depends on the

particular configuration considered. With this in mind, the parameters
considered herein will fell into two categories: total parameters, that
is, those pertaintig to configurations in which the oscflati.ons are
inherent; smd net parameters for configurations in which the work done
in oscillating the surface is assessed to the system. For example, the
average total heat-transfer coefficient as given essentially by equation
(14) can be compared with that for conduction to or from a stationary
surface at an initisd.temperature difference (T. - ~). The temperature
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distribution for the latter
a last terms of equation (13)

age temperature gradient is
(14). Therefore, the ratio
ficients Rl is given by

7

case is given by the sum of the first and
(see ref. 5,p. 34)andthe associated aver-
given by merely the last term of equation
of these average total heat-transfer coef-

04
P

%

R1=~-

[

U%Pr u%
4cp(T_ - Tw) - 2cp(T_ - Twj i=~-- J ““

It can thus be seen that the oscillations could lead to higher average
total heat-transfer coefficients depending on the sign of (T- - Tw) and

on the relative magnitude of the two terms in the bracketed part of equa-
tion (16); for example, in the limiting case just after the temperature
Tw is imposed on the surface, that is, tO + 0, eqmt ion (16) reduces to

(17)

so that for the case where the W ient t mperatuxe is greater ths.nthe
5surface temperature (T.>Tw), and Pr < x , then Rlo > 1; that is, the

oscillations increase the average total heat-transfer coefficient. con-
versely if Tw > T=, Rlo would be larger than unity if Pr > sf2.

It should be reiterated that the parameters for comparison depend
upon the configurateion considered. Therefore, if in the specific appli-
cation the net energy obtained from this system (rather than the total
as before~ is of interest then the total heat transfer must be properly
assessed to take account of the work done in osci31ating the surface.
Hence, the net heat transfer for this case (as represented by the dif-
ference between eqs. (14) and (15)) will be ccmpared with that for con-
duction to or from a stationary surface. The ratio R2 of the average

net heat transfer for the oscillating surface to that for a stationary
surface can therefore be written as -

R2=@w,osc ‘f%.-_

0% w,sta

It can be seen from equation (18) that

=1-
U%r

4% (T-- Tw)

the average net heat-transfer
coefficient for the oscillating surface would be larger than that for
the stationm surface (that is} R2 > 1) O- when Tw >T-~ and it WO~d
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be lower when ~< T-. For a given teqerature clifference, therefore,
the ratio of the average net heat-transfer coefficients, as given by
equation (18), can be altered by changing the smplitude of the
oscillations.

If the rimary interest is not in the net heat transferred across

1the surface as it would be, for exsmple, for regenerators) but is in
the thermal state of the fluid itself, the effect of the oscillations
qan be studied
fined as

by cmparing the average static temperature defect de-

T)dy dt (19}

for the oscillating surface to that for the stationary surface. The
ratio of these defects is given by

23Osc U?l?r
*3=&&”l- 4c-#&Tw) 3’”% $FIL.+$J1-+8n~(~-Tw)
For the limiting case, tO + 0, equation (19) reduces to

.2~T,(,-@
‘30=1 -4c(T

p--w

(20)

(21)

It can thus be seen that unless Pr>64/9 the osciUa.tions will not be
advantageous for lowering the fluid temperature for the case when
T=>%.

A more mesmingful parsmeter to exsmine would perhaps be the ratio
of the average total-temperature defect with the oscillations to that
for conduction to
defect is defined
total temperature

the stationary surface. The average total-temperature
as in equation (19) except that T is replaced by the
Tt, which is given by

U2
Tt=T+E

P
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.
~ this way the thermal condition of the fluid independent of its motion
is tidicated. This ratio i6 given by

.

u%R4=l-&T

P~-- Tw)

.

(22)

Thus, the ratio R4 could be greater than unity dependent on the relat-
ive orders of magnitude of the terms b the braces in equation (22)
and.in the Mmit@ case as to + o.

’40 =1- ‘% E+’*I4C. JT. - TJ
(23)

*
Thus, in this case if T->TW the fluid would be at a lower relative
temperature with the oscillations (R40> 1) only if n >9.

.
An analogous discussion, of course, follows

fluid temperature.

Commm REMARKS

The results of this preliminary analysis of
bution over conducting oscillating surfaces have
transfer associated with the oscillating surface

for increasing the

the temperature distri-
shown that the heat
can be significantly

different fmm that for conduction betw&n the same hit ~ tearperat&e
clifference and a stationary surface. b addition to the heat transfer,
the thermal state of the fluid was studied by means of average static-
or total-temperature defects and it was found that the surface oscil-
lations can alter the thermal state of the fkid. In each case, the
range of parametric values for which the surface oscillations are bene-
ficial were indicated.

Lewis Flight Propu3.sionLaboratory
National Advisory Canmittee for Aeronautics

Cleveland, Ohio, February 19, 1954
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APPEND3X - SYMBOIS

The following Gynibolsare used in this report:

%

erf(f.!)

k

n

Pr

‘1

‘lo

‘2

‘3

’30

‘4

’40

T

Te

‘t

TV

3W

T-

All

specific heat at constat pressure

J
P

‘+ o
exp(-r2)dr

thermal conductivity coefficient

frequency of oscillations

Prandtl number

ratio of average

ratio of average
to+o

ratio of average

ratio of’average

ratio of average
to+o

ratio of average

ratio of average
to+o

total.heat-transfer coefficients

total heat-transfer coefficients evaluated as

net heat-tmnsfer coefficients

static-temperaturedefects

static-temperaturedefects

total-temperature defects

evaluated as

total-temperature defects evaluated as

&

.

static temperature

equilibrium (or steady-state) static temperature

total temperature

suxface t~erature

surface temperature for steady state

~tatic temperature in ambient fluid

temperature defect .

.
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t the

‘o the at the stsrt of an srbitrsry cycle

u smplitude of oscillations

IL

u velocity parsUel to

W Y coordinate normal to
g
w a thermal diffusivity

7 von Mises coordinate

P absolute viscosity

v kinematic viscosity

P density
3

Subscripts:
.

surface

surface

normal to surface

c cmqlementary solution

Osc oscillattag surface

P particular Solution

sta stationary surface
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