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SUMMARY

An englysis of the tempersture distributions in s fluid over an
oscillating surface with heat transfer is made and associated heat-
transfer parameters are compared with those for the case of conduction
at a stationary surface with the same initlal temperature potential.
It is found that the heat transfer for the oscillating surface can be
considerably different from that for conduction alone. The effect of
the surface oscillations on the thermal state of the fluid is studied
by means of average static- or total-temperature defects, and it 1s
demonstrated thet the oscillations could alter the fluid temperature
apprecisbly.

INTRODUCTION

The increased improvement of present-day propulsion systems and
the development of new propulsion systems have posed numerous new prob-
lems in the field of heat transfer. Elugidation of unusually high heat-
transfer coefficients which are apparently encountered in unsteady flows
and means of increasing hest-transfer coefficlents under given condi-
tions are greatly desired. As a preliminary attempt to gain insight
into such problems, it seems worth while to consider the heat-transfer
aspects of the classical problem wherein the fluid motion 1s induced by
oscillating a conducting surface axially in viscous fluid. In particu-
ler, the effect of disturbing the eguilibrium (steady state) conditions
after the periodic motion of the fluid has been established will be
studied. The temperature distributions in the fluid are determined as
exact closed~-form solutions of the energy equation pertinent to the
problem and, hence, related heat~transfer parameters can be compared
with those for a stationary surface to demonstrate the effect of the
surface oscillastions. Other exact solutions of the energy equation for
somewhat analogous problems are presented in references 1l to 3.
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ANAT,YSTIS

The laminer motion of an incompressible viscous fluid induced by
the axial (longitudinal) oscillations of a bounding plane surface doubly
infinite in extent is well known and is reported in numerous sources
(see Schlichting, ref. 4, for example). The equations of motion for
this cese, assuming constent physical properties, reduce to the class-
ical heat-conduction equation

du D2y,
= Y ——— 1
ot ayz ( )

where u 1is the velocity component parasllel to the surface, t denotes
the time, v is the kinemstlc viscosity, and ¥y is the coordinate nor-
msl to the surface. (A1l symbols are defined in the appendix ) The
associated boundary conditions are -

u(0,t) = U cos nt (2)
and.
u(=,t) = 0 (3)

where U denotes the amplitude and n the freguency of the oscillia-
tions. The velocity distribution, after sufficient time has elapsed for
the perlodic motion to be established, is given by

u(y,t) = U exp (: ~/n/2v &) cos (Pt - +/n/2v &) (4)

The appropriate energy equation is

where T denotes static temperature, a is the thermal Aiffusivity, and
is the specific heat at constant pressure. Note thet the last term

on the right of equation (5) is due to aerodynamic heating and describes

the increase in fluid temperature caused by the oscillations. In order
for the problem to be physically reasonable, however, after a long per-

iod of time the system should be in a state of thermal equilibrium (that
is, in essentially a steady state) and it is thus necessary to cool the

surface. The thermal equilibrium state can be described by first solv-

ing equation (5) subject to the boundary conditions

T(0,t) = T, (6)
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and
T(“:t) =T, (7)

thet 1g, the oscillating surface 1s maintsined at some uniform tempera-
ture T,. It is unnecessary here to specify any initial conditions, for
they will not influence the results after a sufficlently long time.

After the explicit form of the nonhomogeneous or aerodynsmic heat-
ing term in equation (5) is determined by means of equation (4), a par-
ticular solution of equetion (5) was found to be

e 2 g () ot ]

4c - Pr
D 2

where Pr = vfo is the Prandtl number. The complementary function to
be added to eguation (8) in order that the complete solution satisfies
the boundary conditions gilven by equations (6) and (7) is

b

4 (T - ) ext (Eﬁ/%) (9)

where erf( ) is the error function end is defined as

o B
erf(B) = —-_‘/—:—Ef exp(..rz) dr
0

I e exp(- ~/n/a y)
TG=TW+E— 1+ Z-Prcc cos(mt—q/n?ay)-erf(ﬁ)

so that
exrf(0) = 0
and
erf(") =1
The complementary function is synthesized from well-known solutions of
the heat equation; for example, the term containing the product of the

exponential and trigonometric functions corresponds to the solution of
the heat-conduction equetion for the case where the temperature on a
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stetionary surface is specified to be a harmonic function of time (see

ref. 5, p. 47), and the two error-function terms combined correspond to

the solution of the problem of unsteady heat conduction to or from a

stationary surface due to a temperature difference or potential of
USPr =

T - Z - Tw. Note that the error-function terms describe the tran-

sient heat transfer which will vanish for large time. The temperature

distribution in the equilibrium state (that is, after a long time) should
be independent of time except for periodic terms and is given by the sum

of equations (8) and (9) with the error-function terms venishing as
T =T + EEEE 1 2n o 2 ont z
e v ey - "NV Y 2-pr |FP\ N Y)e08 "NV
- e}q_)(—l\‘%g y)cos(Znt - ‘\’gfl' Y)] (lO)

The relation for thermal equilibrium between the surface temperature Tw

end the ambient temperature T, can be found by evaluating equation
(10) as y -+ » and is given by

(12)

T m UzPr
w S e T e
P
Thus, as was anticipated, it can be seen from equation (11} that for
thermal equilibrium the surface must be cooled to compensate for the
aerodynamic heating, and the tempersture distribution above a surface
oscillating for a long time in a fluid at temperature T _ is given by

T_=T, - 2:;1' exp (- '\[@ y) - 2—_%; [exp(—l\l-% y)cos(Znt - I\FO% y)
- exp(— '\[_% y)cos(Znt - /\[_2—35 y] (12)

Now that the fully developed state of the £luid 1s completely de-
scribed (by egs. (4) and (12)), consideration can be given to the prob-
lem at hand: namely, the effect of the os¢illations on the heat trans-
fer if, at some time (say + = 0) after the periodic motion (steady
state) is established, the surface tempersture is fixed at some temper-

eture T different from that given by equation (11). The problem to be

golved to answer this question is mathematically identical to the one
for thermal equilibrium except that T, replaces T, in the boundary

conditiong and that the solution of the present problem must match that
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given by equation (12) for % = 0; that is, the proper initial condi-
tion must be satisfied by the temperature distribution in order to dem-
onstrate the transient effects properly. It was previously shown that
the sum of equations (8) and (9

T=Tw+i’i§r - e@(\]g”’) rf(z?/%)
+ ﬁ I}@<. '\!gy)cos(zm - @Y)
m(@y)(ZHt N z—y)]

+ (T - Tw)erf( b4 ) (13)

2+/at

satisfied the differential equation (eq. (5)}) and the boundary condi-
tions (egs. (6) and (7)), where T, is now replaced by T,. Bvalua-
tlon of equatione (12) and (13) at t = O shows that they are identi-
cal so that the proper initisl condition is satisfied and thus equation
(13) represents the tempersture distribution over an oscillating sur-
face which is maintained at a constant tempersbure TW. Becatise TW

is a surface temperature different from that for thermsl equilibrium,
the solution given by equation (13) is of grestest physical significance
only as long as the transient terms sre important. This of course, is
the problem of primary interest herein.

Although the solution given by equation (13) was developed for an
incompressible viscous fluid with constant property values, it is equally
valid in the case of a compressible viscous fluid if the boundary-layer
assumptions are made, if the Prandtl number and the product of p and
B are taken to be constants, and if y is replaced by 1 where

v 2
n= \j[\ b dy
0

This follows because the von Mises transformation (see ref. 6, for
exsmple) under these assumptions reduces the compressible boundary-
layer equations to the forms of equetions (1) and (5).

Any pertinent heat-transfer quantities can be obtained from equa-
tion (15). However, since the time dependence itsgelf is usually not of
primary practical importance, the temperature gredient at the wall
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(which is a measure of the heat transfer) will be averaged over a period.

This average gradient is given by

25
U, to+'; UZ
oL} - n oT JPr g (o nPr 2
(35;) T 2 (&) a4t = 2nc 2v| * " N Vto-i_n -/t
W W Y
%o
n(T.-T,) =
+ ————— Aty + = - 4% (14
/7 0" n 0 )

where to indicates the beginning of any cycle. ZFor the equilibrium
state, an anaslogous equation is obtained from equation (12):

w

This average tempersture gradlent is due entirely to the aerodynamic
heating and is also essentially (that is, except for the multiplicative
constant k, the thermal conductivity coeffiCient) equal to the work
done per cycle in oscillating the surface. The latter result can be
independently verified by computing the work done per c¢ycle from the
shear stress on the plate.

RESULTS AND DISCUSSION

Now that the temperature distribution and its gradient at the sur-
face are known, the effect of the surface oscillations on the heat
transfer can be obtained by comparing any eppropriate parasmeters with
the corresponding ones for the case of pure conduction to or from a
stationary surface subject to the same iInitial temperature difference
(T. - TW). The specific formulation of the parameters depends on the

particular configuration considered. With thie in mind, the parameters
considered herein will fell into two cabegories: +total parameters, that
is, those pertaining to confilgurations in which the oscillations are
inherent; and net parameters for configurations in which the work done
in oscillating the surface is assessed to the system. For example, the
average total heat-transfer coefficient as given essentially by equation
(14) can be compared with that for conduction to or from a stationary
surface at an initisl temperature difference (T_,- Tw). The temperature

3169
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distribution for the latter case 1s given by the sum of the first and
last terms of equation (13) (see ref. 5, p. 34) and the associated aver-
age temperature gradient is given by merely the last term of equation
(14). Therefore, the ratio of these average total heat-transfer coef-
ficients R, 1is given by

UzPr Uaﬁ

_ %Pr 1
4c_ (T -T.) 2¢c (T, -T ) {2n o
P W D W I\‘to+?-ﬁ

It can thus be seen that the oscillations could lead to higher average
total heat-transfer coefficients depending on the sign of (T. - Tw) and
on the relstive magnitude of the two terms in the bracketed part of equa-
tion (16); for example, in the limiting case Jjust after the temperature

T, 1is imposed on the surface, that is, to + 0, equation (16) reduces to

R (18)

l=ll-

R, =1 utyEr (+/Fr - =) (17)

10 - -
4—cp(‘I‘°° T

so0 that for the case where the anmbient tgmperature is greater than the
surface temperature (T, >TW) ;, and Pr<=n®, then R,5>1; that is, the
oscillations increasse the average total heat-transfer coefficient. Con-
versely if T, >T,, R;y would be larger than unity if Pr>x2,

It should be reitersted that the parameters for comparison depend
upon the configuration considered. Therefore, if in the specific appli-
cation the net energy obtained from this system (rather than the total
as before) is of interest then the total heat transfer must be properly
assessed to take account of the work done in oscilleting the surface.
Hence, the net heat transfer for thie case (as represented by the dif-
ference between egs. (14) and (15)) will be compared with that for con-
duction to or from a stationary surface. The ratio Ry of the average
net heat transfer for the oscillating surface to that for a stationary
surface can therefore be written as

C—%I‘;)W,osc —(%)w o1 UPr

2 @ Tt (T.- )
w,sta

It can be seen from equation (18) that the average net heat-transfer
coefficient for the oscillating surfece would be larger than that for
the stationary surface (that is, Rg>1) only when T _>T,, and it would

R (18)
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be lower when T <T,. For & given temperature difference, therefore,

the ratio of the average net heat-transfer coefficients, as given by
equation (18), can be altered by changing the amplitude of the
oscillations.

If the primary interest is not in the net heat tranaferred across
the surface %as it would be, for example, for regenerstors) but is in
the thermal state of the fluid iteelf, the effect of the osecillatlons
can be studied by comparing the average static temperature defect de-

fined as
to+zn—" -
AT = = f f (T - T)day at (19)
% %

for the oscillating surface to that for the stationary surface. The
retbio of these defects is glven by

5 37t
_ Alose U%Pr BrUZPr Prx A a
Ryz oo =1 - + tg + ) - (%)
sta tcp(Ta-Ty)  Bney(T,-T,) | 2n a
. (20)
For the limiting case, ty + O, equation (19) reduces to
z ( )
U Pr 3
R, =1 - - 2 yer (21)
30 4cp(T_ - T,) 8

It can thus be seen that unless I&->64/9 the oscillations will not be
advantageous for lowering the fluld temperature for the case when

T o >T,

A more meaningful parameter to examine would perhaps be the ratio
of the average total-temperature defect with the oscillations to that
for conduction to the stationary surface. The average total-temperature
defect is defined as in equsbion (19) except that T is replaced by the
total tempersture T, which 1s given by

2

u
Ty =T + e
ke

3169
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In this way the thermal condition of the f£fluid independent of its mobtion
is indicated. This ratio is given by

U2pr zZn(l - Pr) [ = 1
R - 1
g =1 2o (T - T,) ) T ‘q 2nPr

(o %) - (9
(22)

Thus, the ratio R, could be greaster than unity dependent on the rela-

tive orders of magnitude of the terms in the braces in equation (22)
and in the limiting case as to -+ 0.

UZPr 3 (1L -~ Pr
Bw=1-4cP(T.—Tw) 1+-§-(—_\/—};r—)-] (23)

Thus, in this case if T,>T, the fluid would be at a lower relabtive
temperature with the oscillations (Réo>l) only if Pr>9.

rojoif
nojen)

An snalogous discussion, of course, follows for increasing the
fiuid temperature.

CONCLUDING REMARKS

The resulbs of this preliminery analysis of the tempersture distri-
bution over conducting oscillating surfaces have shown that the heat
transfer associlated wlth the oscillating surface can be significantly
different from that for conduction between the seme initial temperature
difference and a stationary surface. In addition to the heat transfer,
the thermal state of the fluild was studied by means of average static-
or total-temperature defects and 1t was found that the gurface oscil-
lations can alter the thermal state of the fluid. In each case, the
range of paremetric values for which the surface oscillstions are bene-
ficial were indlcated.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, February 19, 1954
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APPENDIX - SYMBOLS

The following symbols are used in this report:

°p

erf ()

k
n
Pr
Ry

Rio

gpecific

heat at constant pressure

P
=—3—;£ exp(-r2)ar

thermel conductivity coefficient

frequency of oscillations

Prandtl number

ratio of

ratio of
to -0

ratio of
retio of

ratio of
to =+ 0
ratio of

ratio of

to +0

average total heat-transfer coefficients

average total heat-transfer coefficlents evalusted as

average net heat-transfer coefficlents
average static-temperature defects

averege stsbic-temperature defects evaluated as

averaege total~temperature defects

average total—temperature defects evalusted as

statlc temperature

equilibrium (or steady-state) static temperature

total tempersture

gurface temperature

surface tempersture for steady state

static temperature in ambient fluild

tempersture defect

3169
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t time

to time at the start of an arbitrary cycle
[0) amplitude of oscillations

u velocity parallel to surface

y coordinate normal to surface

o thermal diffusivity

m von Mises coordinate normael to surface
B absolute viscosity

v kinemstic viscosity

p density

Subscripts:

c camplementary sclution

ose ogcillating surface

P particular solution

sta stationary surfeace
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