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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3030

A METHOD FOR CAICULATING THE SUBSONIC STEADY-STATE
LOADING ON AN ATRPLANE WITH A WING OF ARBITRARY
PLAN FORM AND STIFFNESSL

By W. L. Gray and K. M. Schenk
SUMMARY

A method for computing the steady-state span load distribution on
an elastic airplane wing for specified airplane weights and load factors
is given. The method is based on a modification of the Weissinger
IL-method and applies at subcritical Mach numbers. It includes the
effects of external stores and fuselage on the spanwise loading. Modi-
fications are outlined for treating tail-boom and tailless airplane con-
figurations and for calculating the divergence dynamic pressure of a
swept wing with a large external store. A method is also outlined for
reducing wind-tunnel data to obtain effective aerodynamic coefficients
which are free of model flexibility effects. The effects of Mach num-
ber can readily be evaluated from the aerodynamic coefficients thus
obtained.

INTRODUCTION

The inclusion of the effects of flexibility in the solution of the
spanwise airload distribution applied to a wing of arbitrary plan form
and stiffness distribution has increased the complexity of analysis over
that for a rigid wing. The methods that are available at the present
time are generally concerned with the calculation of loading on an iso-
lated flexible wing rather than the more practical case not only where
the effects of fuselage and nacelles on the spanwise loading must be
taken into account but also where the total 1ift on each of the major
components must be considered simultaneously in order to determine the
wing loading at a specified load factor. A method for including such
effects without recourse to iterative procedures for steady-state flight
conditions and subcritical Mach numbers is presented in this paper. The

1Based on Boeing Airplane Company Document No. D-10624, "A Matrix
Solution for the Subsonic Steady State Aeroelastic Loading on Airplanes"
by W. L. Gray and K. M. Schenk, June 1, 1951. Acknowledgement is made
to Messrs. Paul W. Harper and John B. Garvin of the NACA for extensive
work in editing and revising this document.
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equations are derived so that the spanwise airload distribution can be

expressed in matrix form in terms of influence coefficients for aero- '
dynamic induction and structural deflection in a manner similar to that

employed in reference 1.

The basic method is outlined in the body of the paper. Included
in appendixes are details of the various derivations, the expansion of
the basic equations to include fuselage interference and store load
effects, the modifications for tail-boom and tailless configurations,

a method for determining divergence dynamic pressures for swept wings
with large external stores, a method for reducing wind-tunnel data to
obtain effective aerodynamic coefficients which are free of model flexi-
bility effects, and a method for obtaining compressibility corrections.

SYMBOLS

The following symbols appear in the body of this report. Addi-

tional symbols which appear only in the appendixes are defined as they
are introduced.

b wing span, in.
CLFO fuselage 1ift coefficient in presence of wing at o, = O,
Ly/asS ‘
CmF fuselage pitching-moment coefficient about ¢/4 point in 3
Y presence of wing at ap = O, MF/qSE

(CLF) rate of change of fuselage 1ift coefficient with o,

5 per radian
C%%) rate of change of fuselage pitching-moment coefficient

= with ap, per radian
(o local chord parallel to plane of symmetry, in.
[ wing mean geometric chord, in.
cmo wing section pitching-moment coefficient
EI effective value of product of modulus of elasticity and

wing section beam bending moment of inertia, 1b-in.2

GJ effective value of product of shear modulus of elasticity
and wing section polar moment of inertia, 1b-in.2
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semispan of horseshoe vortex, in.
airplane rolling moment of inertia, 1b-in.2

airplane pitching moment of inertia, 1b-in.2

fuselage 1ift in presence of wing, EgLF + (CLF> ungS, 1b
0 a
wing running 1ift per inch of span perpendicular to plane
of symmetry, lb/in.

fuselage pitching moment about E/h point in presence of
i - c, in-1b
wing, E%QFO (CmF>ag£]ch, in

airplane rolling moment, in-1b

elastic-airplane rolling moment caused by unit aileron
deflection, in-1b

elastic-airplane damping moment in roll caused by unit
wing-tip helix angle (pb/EV)l, in-1b

elastic-airplane rolling moment caused by unit rolling
angular acceleration acting on the wing distributed
inertia, in-1b

elastic-airplane rolling moment caused by unit spoiler
deflection, in-1b

two-dimensional lift-curve slope per radian, including com-
pressibility effects, for sections parallel to plane of
symmetry

airplane load factor, positive when inertia loads are downward

balancing tail load, positive upward, 1b

airplane rolling velocity, radians/sec

airplane rolling angular acceleration, radians/sec2
dynamic pressure, 1b/sq in., pV2/2

radial distance from vortex core, in.

wing area, sq in.
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true free-stream velocity, in./sec
airplane gross weight, 1b

wash velocity induced by line vortex at perpendicular dis-
tance r from vortex line, positive for downwash, in‘/sec

downwash angle at three-quarter-chord point induced by
vortex system representing wing and its spanwise 1lift
distribution

streamwise distance from pitch reference axis to bound
portion of horseshoe vortex, positive when vortex is
to rear of pitch reference axis, in.

streamwise distance from pitch reference axis to E/h line,
positive when E/h line is to rear of pitch reference
axigpadn,

streamwise distance from pitch reference axis to airplane
center of gravity, positive when center of gravity is to
rear of pitch reference axis, in.

streamwise distance from pitch reference axis to center of
pressure of balancing tail load, positive when center of -
pressure is to rear of pitch reference axis, in.

lateral distance from wing center line, in.

final angle of attack of section zero-1ift line with respect
to local free-stream direction, ap + Qg + Qg radians

(see fig. 1)

change in section angle of attack due to aerodynamic twists
and due to all structural twists associated with a flexi-
ble wing which are not accounted for by the «, term,

s
radians (see fig. 1)

angle of attack of root-section zero-1ift line, radians
(see fig. 1)

change in section angle of attack due to wing 1ift distri-
bution acting on a flexible wing Qms = {0)0 iferdd 2 aehisalel wing),

radians (see fig. 1)
strength of line vortex, in.z/sec

aileron deflection, radians
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dg spoiler deflection

| dimensionless spanwise station, y/%

) airplane pitching angular acceleration, positive for nose up,
radians/sec

A local sweep angle of elastic axis, radians

Iy equivalent local sweep angle including compressibility

effects, radians

o) mass density of ambient atmosphere, slugs/cu 1l

(p = 0.114679 x 10-6 1b-sec?/in.* at standard sea-
level conditions

Matrix notation:

[j ] square matrix, elements of which are designated by use of

subscripts; for example, element 8j3 1is in ith row and
Jth column

L__J row matrix
{: }, column matrix

& diagonal matrix, which is a square matrix in which all
[ :] elements are zeros except those on the principal

diagonal 811, 8oo, azz; - . Bpp

[%i] aerodynamic-induction or downwash matrix in which ele-
ments 84 3 relate downwash angle at station i +to

unit running lift at station j on wing

[?é] elasticity matrix in which elements ajj relate changes
in streamwise angle of attack at station 13 tefunit
running 1ift at station J on wing

[?{] fuselage image-vortex matrix relating image downwash
effects at station control points to unit running lifts
(see appendix E)

[?é] fuselage "overvelocity" matrix (see appendix E)
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[}{] identity matrix; that is, diagonal matrix in which
diagonal elements are equal to unity

PRESENTATION OF METHOD

Tn this section of the report the basic equations necessary to the
method are outlined and discussed in a general way. Details of the
derivations are contained in the various appendixes.

Assumptions

In the development of the method certain assumptions that are
common to airfoil theory apply, namely:

(1) The flow is potential; that is, boundary-layer effects, separa-
tion, and compressibility shocks are absent or negligible.

(2) The wing thickness is small.
(3) A stagnation point exists at the wing trailing edge.

(4) The angles of attack a are small so that tan a = gin o ® a
(where a 1s measured in radians) and cos a = 1.

(5) A1l drag-load effects except those due to nacelles and stores
are neglected entirely in determining the deformations of the wing used
in obtaining the equilibrium spanwise airload distribution.

With regard to the structure the following assumptions are made:

(1) Camber changes arising from twisting and bending of the wing
are neglected entirely.

(2) The elastic twist of the control surface is the same as that of
the adjoining wing structure.

(3) The angles of structural deflection 6 are small so that
tan 8 ~ sin 8 ~ 6 (where 6 1is measured in radians) and cos 6 = 1.

(1) Although the angle-of-attack changes, including those due to
bending and torsional deformations of the wing, are accounted for in
the determination of the equilibrium spanwise airload distribution on
the wing, this final airload distribution is applied to the geometry of
the undeflected wing in computing the bending and torsional moments.
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Basic Equations

Symmetrical flight conditions.- The fundamental problem involved is
the development of a series of equations which relate the spanwise 1lift
distribution for an arbitrary wing plan form in a given flight condition
to the properties and attitudes of the individual sections that form the

wing.

If the two-dimensional wing is considered first, the following
relationships for 1ift and downwash behind an airfoil are available
from most standard textbooks on aerodynamics:

1= pVI N (1)
1 = mopa,f Yé?- (] (2)
1P
W. = e— 5)
s i (

The circulation TI' 1s taken to be such that, at a specified dis-
tance r behind the lifting line, the resultant of the downwash veloc-

ity w,. and the flight velocity V is parallel to the section zero-1lift

line; that is, no flow exists normal to the zero-1ift line at this point.
Then,

Wy
— = )+
et (&)
and from equations (1) and (2),

F = moat, 2—I & (5)

oo Ba B (6)
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or

W 2
_r=m,_0_S[_af (7)
Vv hg a8
. : : My c/2 b
In order to satisfy equation (4), the expression e equa-
7

tion (7) must be equal to 1.0. Since the theoretical section two-
dimensional lift-curve slope is equal to 2n, r must equal 0/2, which
is the distance between the 1lifting line and the three-quarter-chord
point.

In the development of the method presented in this report, equa-
tion (7) is always used in the form

(vvf)sc/u ; 2’% 5 .

This simplification requires that the section lift-curve slope m, be
the two-dimensional value (i.e., the value of the lift-curve slope for
an unswept two-dimensional wing) and that the location of the downwash
control point D (see fig. 2) be one-half of the local streamwise chord
to the rear of the quarter-chord point, or at 5c/h.

The essential difference between a two-dimensional wing and a wing
of finite aspect ratio arises from the nonuniform spanwise loading which
produces the trailing vortices of the finite-aspect-ratio wing. The
equations presented thus far are considered to apply to the finite-
aspect-ratio wing when the effects of all the vortices, both bound and
trailing, have been taken into account.

Equation (8) in matrix form is

{%}5c/u i E%]{“f} 7

This matrix relation represents a series of equations, each applicable
to a particular station on the semispan of the wing. The values of

(%) , every one of which is affected by the bound and trailing
e
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vortices at all of the wing stations, can be evaluated from
s
2 A il
{V}3C/ll- bxv {}

which, in combination with equation (1), results in

{%}k/u £ 8—@ W =2

[éi] matrix in these equations 1s the aerodynamic-induction or
downwash matrix which is derived in appendix A.

Combining equations (9) and (10) gives

{%}k i 8,tq[él] {} [2;‘{%} (11)
or B,

R

e B

The series of equations represented by the matrix equation (12) expresses,
for any given dynamic pressure, the relationship between the spanwise

variation of running 1ift {Z}, the final section angles of attack {a,f} y
and the spanwise variation of the two-dimensional section lift-curve

(@]
glope Eyi]. The effects of wing plan-form geometry are accounted for

__through the elements of the [?i] matrix. The section lift-curve slope

is expressed in the general form m, rather than 2x to permit substi-

tution of actual values when available from scaled-model tests or to
permit correction for compressibility effects as described in appendix A.
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The final angle-of-attack variation across the span {@f} can be
considered to be composed of three essential parts (see fig. 1)

{“’f} i {"1}““ {“g}f {“s} i (13)
oy It ot

; A
For a wing free of external stores, the angle of attack {éﬁ} caused

by structural deflection of a flexible wing due to the section lifts
acting at the section aerodynamic centers is linearly related to the

matrix {}) by an expression derived in appendix B as

(3 - P33 (e

The wing geaometry and stiffness are accounted for in the structural-

deflection matrix ISéJ: This matrix is based on loadings associated

with stations which are parallel to the airplane plane of symmetry. In
a swept wing, however, the structure is usually arranged such that the
wing boxes are formed between stations approximately perpendicular to
the elastic axis. In order to obtain a closer representation of the

loadings and deflections on this actual wing, an [?2i] matrix was also

derived (see appendix B) and may be substituted for the [?é] matrix in

equation (14) when desirable.

The {?é} matrix of equation (13), as described in detail in

appendix C, is composed of built-in twist, apparent or aerodynamic twists
such as those due to interference, control deflection, and angular veloc-
ities, and all structural twists of an elastic wing which are not accounted

for in the {a,s} matrix.

Although equation (12) is perfectly general, it is not useful in
the form given for determining the 1lift distribution on a flexible wing

since a component of the {éé} matrix is itself a function of the lift.

If {@s is therefore expressed as in equation (14), equations (12)
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and (13) may be combined so as to express the load distribution on a
flexible wing in terms of wing root angle of attack and any combination

of the {%%} twists as

Eg—mﬂ@ﬂ {z} £ {a,r} % {ag} % [82] {z} Mo%E > (i5)

B - - s+ e s

Design conditions, however, are usually specified in terms of gross
weight and load factor rather than root angle of attack. The inclusion
of these two additional independent variables requires two additional
equations. By considering that the airplane must be in equilibrium as
regards vertical forces and pitching moments, the two addltlonal equa-
tions may be written as h= s

n

Bz balancing ad
2|2n|{2} + Pp - oW = 0 (17)

for equilibrium of vertical forces and ¢ pevs
X L 5= e Axg 7o A

-2l?h§J{?} - 2ql?hc%J{%mé} - ;iXT + nWx, = 0 (18)

for equilibrium of pitching moments about the pitch axis.

_Equations (16), (17), and (18) are the basic equations for a

_flexible-wing airplane. They may be solved simultaneously for {1},
., and Pp as functions of any design values of speed, gross weight,

and load factor. Equation (16) as written applies to symmetrical flight
conditions, but by substitution of an antisymmetrical [?i] matrix

(see appendix A) it is then applicable to unsymmetrical flight condi-
tions which are considered in greater detail under the following sec-
tion heading.
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Equations (16), (17), and (18) can be altered as shown in the fol-
lowing paragraphs to include (a) the effects of forces on the fuselage,
(b) the effects of external stores by the method derived in appendix D,
and (c) the interference effects on the exposed-wing loading due to the
presence of the fuselage by the method derived in appendix E.

In connection with forces on the fuselage (item (a)), the 1ift and
moment characteristics of the fuselage in the presence of the wing are
assumed to be known. The 1lift and pitching moment of the fuselage may
then be written with small error as

Iy = aS ELFO + (CLF>QGE} | (19)
Mp = qSEEmFO + (cmF>aaE] (20)

in which fuselage up loads and nose-up moments are considered positive.
This 1ift and moment may be appropriately included in equations (16),
(17), and (18) to get the following more complete set of equations
(see fig. 2): n e
,;)/"’7 L o
For the wing load distribution, o T
1t

[[7,] SN RSN S T

for the summation of vertical forces,

2|2n) {i} + s (CLF>ac.r + Bp = oW - oSCrp (22)
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and for the summation of pitching moments,

2[%{1} + %E(CLF)G . E(cmF)er i Ve

Xp 2he? Z (0fS) /= =
nW EE + 2ql_XT_J{%mO} - EE(ECmFo - XCLFo) (23)

The twist term RT{?} appearing in equation (21) has been included

at this point to provide for the possibility that tail loads may enter
the wing at some point along the span, as for a tail-boom type of con-

figuration, for instance. This PT{§} contribution is otherwise con-

sidered to be zero. A method for handling the tail-boom type of airplane
as well as the case of the tailless airplane is described in appendix F.

In considering the effects of the external stores (alteration (b)),
as in the case of the fuselage, the 1ift and moment characteristics of
the stores in the presence of the wing are assumed to be known so that
the 1ift and moment can be given by expressions similar to equations (19)
and (20) for the fuselage.

The lift-distribution equation for the store case derived in appen-
dix D, with the Pp term included as before for generality, is

63 - bl [l - | {2+ 2o - o -
{ag} + a8 {p} (24)

in which the matrices [A] and {?} relate an a_, type of twist of

s
the elastic wing to the store lift and moment. This twist is handled in
two parts so that the part that varies with the span loading {}} may

be introduced on the left-hand side of the equation in a manner parallel

to that for the [32] matrix.
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The vertical-force and pitching-moment equations (22) and (23) are
modified to include store 1ift and moment in a manner similar to that
in which the fuselage 1lift and moment were previously included. In the
notation introduced in appendix D these equations for one or more stores
become

2 o] + 208 LZGLEQ@MJ ]| 3 +
as (CLF>0L0T + Pp = W - aSCpp - 208 ZCLEOn (25)

for summation of vertical forces and

2|2hx | + 295 Lz Xn<CLEn>c1, [Ba| - Z ¢(Cmgy), 'Pn{l EE%] E‘sl:]J [} +

qS§<01F>aar - qSE(?mF>agr + Ppxp = QQlEhC%J{%ma} -

2qS< E xnCLEOn - E ECmEOn> + gS ECmFO - icLFo) + nWx, - Iy6 (26)

for summation of pitching moments. In these equations the subscript n
is the store index which, for any particular configuration, has as many

values as there are stores on the semispan. The matrix notation LEQJ

which gives the angle of attack of the store is defined in appendix D.

The third and final alteration (item (c)) to be considered in con-
nection with equations (16), (17), and (18) is the change in span load
distribution of the exposed wing due to the presence of the fuselage.

This interference effect is derived in appendix E. The over-all fuselage-
interference effect is considered to be composed of two parts. The first
is that due to the image vortex system within the fuselage which is
required to satisfy the condition of zero velocity normal to and at the
fuselage surface. This condition is satisfied by adding a correcting
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[?i] matrix (see appendix E) to the [?i] downwash matrix. The second

part of the effect is the increment in vertical velocities over the
exposed wing due to the presence of the fuselage at an angle of attack.

This effect is calculated as an interference twist of the {éé} type

and is expressed as a function of fuselage angle of attack times the

o
"overvelocity" matrix [?6]. (See appendix E.) The 1ift distribution

(eq. (21)) when altered to include these fuselage-interference effects
becomes

‘g——mﬂ[[sl] + [sl]jl - [82] {1} - GT[[I] + [siﬂ{l} + Pp{0} =
%‘g} i [Szj{l} (27)

o
where the elements of the [?é] matrix give the increments in vertical

velocities along the span.

The calculation of these fuselage effects would not be required if
appropriate data were available from wind-tunnel tests of a scaled model
of the subject airplane. A method of determining these and other aero-
dynamic twists as well as the applicable values of section 1ift-curve
slope from appropriate wind-tunnel data is given in appendix G. The
method utilizes equation (12) to obtain aerodynamic coefficients which
are free of model wing flexibility effects and which are therefore appli-
cable to the full-scale airplane having a wing flexibility different from
that of the model.

Unsymmetrical flight conditions.- In addition to the symmetrical
flight conditions already outlined, a number of unsymmetrical flight
conditions are usually investigated in structural design. Among the
conditions which may readily be investigated by the methods of this
report are those which arise through the use of roll-producing devices
such as ailerons or spoilers. The load distributions on an elastic wing
associated with roll-control deflections may be thought of as the summa-
tion of distributions from the following specific loadings:
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(1) The symmetrical or pre-roll loading which existed prior to the
deflection of the roll-producing device.

(2) The incremental loading resulting from the deflection of the
roll-producing device.

(3) The incremental loading associated with a constant rolling
velocity with no roll-control deflection, which is usually described
as the damping-in-roll loading.

(4) The incremental loading caused by the rolling angular accelera-
tion. This loading results from the structural twists {dg} of the

elastic wing when the rolling acceleration P acts on the wing mass
distribution (see appendix C). Note that the resulting aerodynamic
rolling moment will generally be in the same direction as the applied
rolling acceleration.

Three flight rolling conditions will be used to outline the pro-
cedure for determining unsymmetrical loadings on the wing. These
rolling conditions are:

(a) Steady roll at some specified value of wing-tip helix angle pb/2V
with no rolling acceleration

(b) Roll initiation resulting from the instantaneous deflection of
the roll-control device to the angle required to obtain the specified
value of pb/2V but with no rolling velocity

(c¢) Roll termination, that is, control surfaces deflected in
opposition to the steady rolling velocity pb/2V

Steady roll: 1In a steady-roll condition the span load distribution
for the elastic wing is given by the summation of the first three loadings
enumerated.

The distribution obtained for the first, or pre-roll, loading is
described in detail in the section "Symmetrical flight conditions.'
Equations (16), (17), and (18) or their appropriate equivalents are
used together with the symmetrical [?i] matrix of appendix A.

The distribution of loading and its associated rolling moment anl
or st resulting from a unit antisymmetrical deflection &g, or dg;
of the roll-control device are obtained from equation (16), the antisym-
metrical matrix [?i] of appendix A, and the appropriate {dé} matrices
which give the aerodynamic and structural twists resulting frdm a unit

deflection of the roll-control device. These {?é} matrices can be

written in terms of control-surface deflection by the method described
in appendix F or by means of data from wind-tunnel tests, if available.




NACA TN 3030 LY

Similarly, the distribution of loading and the damping moment MXpl
associated with a unit value of the wing-tip helix angle (pb/2V)l are

obtained from equation (16) and the antisymmetrical [?i] matrix. The

{ag} values in this case vary linearly and antisymmetrically across the

span from (pb/2V), at one tip to -(pb/2V); at the other.

These unit load distributions associated with 8, oOr Bdg, and

(pb/2V), must then be scaled up or down according to the amount of con-

trol deflection B or By required to give the desired value of pb/2V.

The deflection required is obtained from the equation of equilibrium of
the airplane in roll as

M
8y ! - _jfﬁﬂL__ (28a)
a1 2V (pb/2v);
or
My
S 1Y
iy S WY LG (28b)

®°sy 2V (pBjev),

where the rolling moment produced by the control deflection balances
the rolling moment due to damping in roll in the steady specified rolling
condition.

After the unit load distributions have been scaled in the manner
just described, they may be added to the pre-roll loading to obtain the
load distribution for the specified steady-roll condition.

In this outline the assumption of equal and opposite roll-control
deflections is made. If, as is more generally the case, unequal deflec-
tions of the ailerons or spoilers are involved, the span loading must be
determined in a slightly different way. To illustrate the procedure, a
spoiler deflection on only one wing may be considered to be equivalent
to a symmetrical and an antisymmetrical deflection with an amplitude
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equal to half of the spoiler deflection 83/2. The antisymmetrical
deflection results in a gain in 1ift on one wing which is exactly bal-
anced by a loss in 1ift on the other wing so that a rolling moment is
produced without a change in the over-all wing 1ift. The symmetrical
deflection, however, results in a change in total wing 1ift, and hence
load factor, with no rolling moment. In order to compensate for this
change, both the vertical-force and the pitching-moment balance equa-
tions must be introduced so that the wing load distribution associated
with the change in . required to compensate for the change in tail

load can be determined. Adding the symmetrical and unsymmetrical loading
distributions will give the proper 1lift distribution for the wing with
a single spoiler deflection Bdg.

Differentially operated ailerons might be considered in a manner
similar to that outlined for the spoiler. A further extension to include
the combined deflection of both ailerons and spoilers can also be made
in the same way by making use of the proper spoiler-to-aileron gearing
ratio.

Roll initiation: In the roll-initiation condition where no rolling
velocity is assumed to exist, all the listed loadings occur except that
due to damping in roll.

Since the control deflection (35 or SS) will already be known

from the steady-roll condition, the problem is to determine the initial
rolling angular acceleration p for instantaneous control deflection.
The procedure involved is first to find the wing spanwise airload dis-
tribution and its rolling moment Mxpl due to a unit rolling angular

acceleration él' The values of Mxﬁ depend on the wing mass and
il

stiffness distributions as well as wing aerodynamics. The values are
obtained from equation (16), or its equivalent, for antisymmetric flight.
With the value of Mxél known, the desired angular acceleration p is

then found by solving the following equation of motion for the airplane
intrefus

B Hay
oF
b = = (29.)
; 9 Mxlal
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(0 &
stl
dg 53
b= lMX (29b)
Dpgr
386.4 Py

where the moments are given in inch-pounds. The value of p obtained
from equation (29) is then used to scale the loadings previously found
for the unit rolling acceleration to the correct wvalue.

Roll termination: 1In the roll-termination condition, the airplane
is assumed to be rolling with a wing-tip helix angle pb/2V and the
roll=control device is moved abruptly in a direction such as to reduce
the rolling velocity to zero. As in the roll-initiation condition, the
desired airplane rolling acceleration is obtained from the equation
expressing the equilibrium of the airload and inertia-load rolling
moments, which for aileron control is ;

anl Sty g

By g—— + —
*%a;  2v (pb/av);

Ix Mxﬁ

586.h By

D =

The airloads on the wing are those caused by the pre-roll condition
plus the airloads from aileron deflection, damping in roll, and rolling
acceleration. The inertia loads are those arising from the pre-roll
condition plus the effects of the rolling acceleration D.

DISCUSSION

The method outlined in this report not only includes several previ-
ously omitted items which are of practical interest in the design of a
wing for aeroelastic effects but also is sufficiently extensive in scope
that almost any type of airplane configuration may be considered. Because
of its length, however, the method is better adapted to the determination
of loads on a specific airplane rather than to preliminary design studies
of several configurations.
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Matrix formulation of the problem has particular merit for such a
general treatment since discontinuities in angles -or masses due to either
special aerodynamic or structural features can readily be included. "
also permits future improvements to be made to the details of the separate
appendixes without essentially modifying the method which has been outlined.
In fact, throughout the paper it is possible that the engineer would modify
the method to suit his own needs and draw from the appendixes whatever mate-
rial would be required to investigate the problem at hand. 1In such a modi-
fication he would of necessity consider the relative merits of ease in com-
putation against the accuracy both of the method and of the data available.

For these reasons, only a few general guides which might be considered
for successful application of the method are given.

For mg equal to 2x, equation (12) will give essentially the
same results as those given by the Weissinger IL-method of reference 2
which is valid for wings of arbitrary plan form and having flat-plate,
circular-arc, or parabolically cambered airfoil sections (refe. 3, 4,
and 5). The method would be expected to give the most accurate results
when applicable values of m, are known, such as those obtainable by
the method of appendix G for instance, since in general the fuselage,
flaps, and external stores will affect the applicable values of mg.
In fact, equivalent values of any of the aerodynamic parameters as
obtained from experimental data by the method of appendix G are pre-
ferable to purely theoretical values and may easily be incorporated.

The treatment of compressibility effects used in this report,
wherein each wing section is permitted to have its own compressibility
correction, differs from the Prandtl-Glauert method in that the wing
plan form is not distorted; instead, the angles of attack are altered
as indicated by equation (11). The treatment adopted has the merit of
considerable saving in time for equal or better accuracy since only
one Si] matrix is required for all Mach numbers. The methods of
obtaining compressible values of my are described in appendixes A
and G.

With regard to the number and selection of the horseshoe vortices
to be used to represent span loading, it is suggested that the horse-
shoes be chosen narrower over that portion of the span where large gradi-
ents in loading are expected, that is, near the ends of control surfaces,
near large changes in sweep, and at the wing tips. At least two vortices
should be used with each control surface and a minimum of seven per semi-
span is suggested for a "clean" wing.

With regard to the structural parameters EI and GJ required, it
may be stated that equivalent values which include the stiffnesses con-
tributed by the leading- and trailing-edge structure should be used in
preference to the usually conservative values employed in the structural
analysis of the wing for shear and bending stresses.
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In the design of a simple wing-fuselage combination without external
stores or nacelles, it is necessary to study and apply the results of
only appendixes A, B, C, and E which describe the [éi], [%2]’ and {és}
matrices as well as the fuselage-interference effects. Effects of store
and nacelle loads and moments on the wing load distribution are covered
in appendix D. Appendix F outlines the modifications required to adapt
the method to the determination of wing loads on flexible tailless and
tail-boom airplane configurations. Appendix G indicates a procedure for
obtaining equivalent values of section lift-curve slopes, effective com-
pressible section sweep angles, and interference twists from wind-tunnel
tests of models which may not be scaled correctly for flexibility. Appen-
dix H deals with the determination of the divergence dynamic pressure of a
swept-wing airplane with a large external store. The problem of divergence
normelly does not occur with a swept wing except that the attachment of
a large external store may cause it to diverge. The determination of
the divergence dynamic pressure is the only case in this paper which
requires iterative procedures.

Boeing Airplane Company,
Seattle, Wash., July 8, 1953.
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APPENDIX A

AFRODYNAMIC FUNDAMENTALS

The [si] Matrix

The purpose of this appendix is to explain, in simplified form, the
aerodynamics involved in and the steps necessary for the computation of
the downwash matrix [éi] and to develop the correction for compressi-
bility used in this report.

The 1ift or circulation distribution which varies along the span
of a wing can be visualized as resulting from a system of horseshoe
vortices, each of which is of constant strength. Such a system of
horseshoes is illustrated in the following sketches, in which double
arrows are used to indicate that the sense of circulation around each
line-vortex segment is given by the right-hand rule:

LR R
F p‘r'ﬂ%mmp '

¥

]

Actual airload

l iy curve
i
ST Approximation to the
y S0 actual loading as
. given by horseshoe
X vortices

—]

Fop e
S~
o>
61'*
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It is obvious from the sketches that the shape of the actual load

& distribution may be approximated to any practical degree of accuracy by
a suitable change in the number of horseshoes, each of constant strength.
The point of importance is that the net strength of the trailing vortex

| at any point on the span of the wing is numerically equal to the rate

of change of strength of the bound vortex in the spanwise direction.

The strength of the trailing vortices would therefore be greater for

those portions of the wing span over which the more rapid changes in

the spanwise airload distribution occur.

Results of theoretical investigations have shown that little loss
in accuracy with respect to the spanwise airload distribution will be

entailed if:

‘ (l) The total strength of the chordwise system of bound vortices
is concentrated in one bound vortex located at the local streamwise

quarter-chord point.

| (2) The downwash angle at each vortex station across the span of
the wing, at a point one-half of the local streamwise chord downstream
of the bound vortex, is equal to the geometric angle of attack. Herein-
\ after, this point is referred to asDtheégoanash4control point D.
— & aéA = c wd \)Ortey

The downwash angle at any such control point D is therefore the
total induced downwash velocity at that point, normal to the plane of
the wing and caused by the complete system of bound and trailing vortices,
divided by the flight velocity of the wing.

Tt should be mentioned that the condition described in paragraph (2)
is true as written only for airfoils having a two-dimensional lift-curve
slope equal to 2x. As is discussed in a subsequent section of this
appendix, the condition described in paragraph (2) is modified to the
following form when the section two-dimensional lift-curve slope is

different from 2x:

ap (A1)

¥l

) 5.

The downwash velocity at a point due to a single horseshoe which
is composed of a bound vortex and its associated pair of trailing vortices
is known to be proportional to the strength of the circulation of that

‘ horseshoe and, therefore, proportional to the running 1lift on that por-

2 tion of wing span represented by the bound vortex of that horseshoe. The
downwash angle at any one downwash control point thus is the sum of the
incremental downwash angles due to each of the horseshoes in the system

z of horseshoes which represent the wing and its lift distribution.
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Within the limitations which accrue from the use of a limited number
of horseshoe vortices to represent a wing, the elements with which to
solve the following problem are now avallable:

__Given the _geometry of a wing plan form, the angle-of-attack varia-
tion, and the section two-dimensional-lift-curve-slope-variation across
the span, determine the spanwise airload distribution. The unknowns
are, of course, the values of the running lift at each of several points
on the span. A necessary condition to the determination of these unknowns
is that as many independent equations be available as there are unknowns.
This condition can be fulfilled if the angle of attack is known at each
of the wing stations for which the loading is to be determined.

It is obvious that, if the strength of each bound vortex represents
the average airload over its own portion of the wing span, good accuracy
will be obtained if the values of the running load, as determined from
the solution of the simultaneous equations, are considered to be valid
at the midspan point of each bound vortex. The shape and distribution
of the continuously varying airload curve is then obtained by fairing
a curve through all of the points thus obtained, with the restriction
that the loading must drop to zero at the wing tip.

The method for determining the [Si] matrix is now illustrated for

a typical wing shown in the following sketch, which includes a system
of horseshoe vortices and associated downwash control points:

T’
.,,é Typical Y

r _-Leading edge

_—-Locus of c/4 points

T % 8 i

" Trailing
edge

\
{ 4 ‘ f ] 1 {
aan . \
Trailing vortices “Locus of downwash control
extend to infinity points at 3c/4
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In actual practice it will usually be necessary to use a larger number
Four per semispan are used in

of horseshoes to represent the wing.
the following presentation for convenience only.

information is available at each spanwise station:

The following typical

The section lift-curve slopes (in two-dimensional flow) at sta-

tions 1 = M2 Nos

R St

Since a linear relationship exists between the strength Tj

are m, = m, m,

of the section zero-lift line at stations

= it 4 o

The angles of attack

are

of a

particular horseshoe vortex J and the downwash velocity wij at a

particular point 1

the following general equation can be written:

where K 1s a constant

W- WASH UE Loc Y r.

on the wing plan form due to that horseshoe vortex,

A particular horseshoe vortex, such as Fl,

then causes the following values of downwash velocity at control points 1

to 8:

L1

Similar relationships exist between

points 1 to 8, that is,

]

Kz T

G I
411

Wip =Kl Wy = KT,
s W g B
Wig = K1gTg  ¥ag = Kngly

oy = K530
Wer 2R By
wrp = Kl
a = %ay

I'o, Pf’ olts F8 and

» Weu=Kg 0,

Vs Titosts

vag = Xggls

¥
\ (A3)
—

the control

3
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If the horseshoes are symmetrical with respect to the center line

of the wing plan form, the following values

typical wing sketched:

K11 = Kgg Ko = Kgy

Ko) = Ko Koo =

K31 = Kgg Ksp =
Ky = Ksg Kjp =
K51 = Kug Ksp =
Kg1 = Kag Kgp =
K71 = Kog Ko =
Mga ™ g e

Further, for symmetrical

K13 = Kgg
Koz = Kog
S B
Kyz = K56
Besis o
Kgz = Kzg
el
K83 =6

of K are equal for the

Ky = Kgs ¥
ol = K5
K3i = Ke5
Ky = K55
g (5)
Ko = s
Xeu = K35
Sy
K8h = Kls‘J

wing plan forms at zero yaw it is always

possible to obtain a spanwise airload distribution which is unsymmetrical
with respect to the plan-form center line as the sum of two airload dis-
tributions, one of which is symmetrical and the other of which is antisym-
metrical with respect to the plan-form center line; for example,
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At each spanwise station the S component is that due to the symmetrical
distribution of load, the A component is that due to the antisymmetrical
distribution, and the U component represents the algebraic sum of the

S and A components, that is, the unsymmetrical distribution of load
across the span. This division offers a considerable reduction in the
amount of work required in that, for either symmetrical or unsymmetrical
flight conditions, airload distributions need be determined on only one-
half of the wing, provided, of course, that praper account is taken of the
sign of the circulations existing over the other half of the wing.

For a symmetrical distribution of airload over the span

Bed= 1g F5 el
> (A6)
Io = P7 Iy = F5
J
and for an antisymmetrical distribution of airload
by 7 g 1 gl
¢ (A7)
F2 = -F7 Ph = -P5
.

The total downwash velocity at any control point is the sum of the
downwash-velocity contributions at that point that are induced by each
of the horseshoe vortices in the system that represents the wing; that
is,

Wy =W o+ W, le + Wy + wl5 W+ wl7 + Vg

Wy = W)+ Wpp ok Wps kW o+ Wpg + Wpg + Voo + Vg F (A8)
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If the equation for the downwash velocity at control point 1 is
expanded as an example, the result is 7

Wy o= Kllrl + K12P2 + KDP3 + thrh + Kl51“5 + K16P6 +
G ptagts (A9)

Alternatively, by use of the relations in equation (A5), equation (A9)
can be written as

W, o= Kllpl + K12F2 + K15P5 + thrh + K8hr5 + K85F6 +

K82F7 + KgiT'g (A10)

In case a symmetrical airload condition is being investigated, sub-
stituting equations (A6) into equation (A9) results in

wg = P&y + K19 + To(Kip + K1q) + T3(Kyz + Kpg) +

Py + ¥y5) (A11)

For an antisymmetrical airload distribution, substituting equations (A?)
into equation (A9) results in

wiy = I (K - Kig) + Pa(Kio - Kiq) + I3(Kys - Kyg) + \

Fll—(KllL - Kl5> (AlE) ‘
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For the typical horseshoe system assumed, the complete series of
equations relating downwash velocities to the circulations are:

For a symmetrical airload distribution,

-

L e 1Ky + Kpg) + T 2(Kyp + Kr() + T 3(K13 + Kyg) +
ry,(ky), + K;5)
Woq = Iy (o) + Kpg) + Tp(Kpp + Ko) + I3(Koz + Kpg) +
r, (Ko, + Kos)
7 (A13)
wsg = T1(Ks) + Ksg) + To(Ksp + Ksp) + Ts(Ksz + Ksg) +
1“&(1(54 . K35)
Wi = T (By1 + Kug) + To(Kyp + Ky) + Tx(Kys + Kyg) +
ry, (K + Kys)
2
and for an antisymmetrical airload distribution,
vy, = (K - Kg) + Tk, - K)o) + I5(K5 - Kig) +
Iy (Kyy - Ky5)
Wo, = T1(Ka1 - Kpg) + To(Kao - Kop) + I3(Kox - Kpg) +
I, (Kpy - Kps) > (ALL)

wsy = I1(Ks1 - Ksg) + Ip(Ksp - Kgo) + I'5(Kss - Ksg) +
Iy (Ksy - Ks5)
Wiy = T1(Ky1 - Kyg) + Ta(kyo - Kyo) + r5(Kys - Kyg) +

fy (K - Kus) ’
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From equation (Al), which expresses the relationship that must exist
between the downwash angle w/V at each control point, the wing angle
of attack ap, and the section lift-curve slope m, for the wing station

at the control point, the following series of equations result, where,
typically, Wy represents either wlS or wy @

A
W m. W. T
o S B
v 2% v 2%
s (A15)
Yo LIT P
Ny g ¥ s ox
-
If
kg = lm(Kll + Kl8)
kip = bn(Kyp £ Xpo)
Ky, = 4 (KmL + Ku5>
or
k = b (K, + Kg) (A16)

where the upper sign is used for symmetrical airloads, the lower sign

is used for antisymmetrical airloads, and the subscripts L and R in
equation (Al6) mean left and right wing, respectively, then substitution
of equation (A16) into equations (Alk) gives

uﬂwl = kllPl + klZFE + k15P3 + klufh i
@ (ALT)
J-H\fwh_ = kll»lpl + k}+21—‘2 + ku;l-'j + kLIJ-l-F)-# :
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Sils

The relation between the running load 1 and the circulation is

12 = pVFé
>
Zu = pVIL

and the equation relating dynamic pressure to mass density and true

airspeed is

q = pV2/2

(A18) .

(A19)

Equations (A15), (A1l7), (A18), and (A19) may be combined to give the

following final system of linear equations:
kllzl + k1212 + kl315 + klhlh = uqmlal

hamya

+ Eply + ksl + Kyl

Kol

kElll -+ k5212 + k5513 + thlu = hqmsas

khlzl + ku212 h kuBZB o kuhlh = hthdh

-

(A20)
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Equations (A20) can now be written in matrix form. The equation
for each station can be written as

" %
EZ: kljzj = hqmlal

J=1

L
D kol = bams

J=1

> (A21)

N

> syl = bamsas

J=1

L

:i; khjlg = hthah

2 o

Equations (A21) and therefore equations (A20) can be expressed in the
general form

n
:gj kijlj = ham; o, (A= 102, tay 4 Sl
= (A22)

In matrix notation equation (A22) becomes

({1} - [lang{ed) e

where
W il
k1) kip k)3 LS
kop koo Koz Koy
g (A2k)
i
Lkhl Ky kyz Ky
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{l} =i - (A25)

and

o —
4qm1a1
hqm2u2

[F;;é]{ﬁ%} T 4qm3u5 [ (£26)

)-Lq_mu_cx,h_ _J

-

The development of the steps necessary to compute the kij elements
in the [?i] or "downwash" matrix follow. As a first step the relation

which exists between the strength of a segment of a straight-line vortex
and the induced velocity at a nearby point should be found. If the
strength of the vortex (whose sense is given by the right-hand rule for
moments) is I, the velocity induced at the point P can be written as

I['(cos a - cos B)
Wp = A2 )
> LR ter

where o and B are the angles between the direction of the vortex seg-
ment and lines joining the ends of the segment to the point as shown in
the sketch

T, in%sec It (-

S

= B

End
R.in. view

Plan view {

—6— Wp, in./sec

Equation (A27) is used in the subsequent derivation of the [?i] matrix.
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A plan view of the geometry of a typical horseshoe vortex on the
left-hand wing is given in the following sketch, in which distances and
angles are considered positive as indicated and the sense of the circu-
lation of the elements of the horseshoe vortex is given by the right-
hand moment rule:

XD “9{\/?7»‘ |

g

. )

These dimensions are
those of the actual

Vortices of strength »| wing plan form
I" extend to infinity

The points V and D are a typical horseshoe reference point and a
typical control point, respectively.

The incremental downwash velocities induced by a single horseshoe
vortex, if downwash velocities are considered as positive, are:

¢

o — yD I
% Dimension
reference point
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(1) For the left-hand trailing vortex the relations

R = -(sy - hD

Il
'_J

I — Oo cos a

B = 2700 -6 cos B -sin ©

are substituted into the general relation

I'(cos o - cos B)
WL=
LxR

to obtain the incremental downwash velocity

P I'(1 + sin 9)
hn@y -}g

(2) From the right-hand trailing vortex where

WL =

R = Sy + h
a=90° - ¢ cos o = sin @
B = 180° cos B = -1

the incremental downwash velocity is

_I(sin @ + 1)

hn(sy + h)

YR

92

(A28)

(A29)

(A30)
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(3) From the bound vortex where

RE=HS

x
a = 180° -6 cos a
B =18° - ¢ cos B

the incremental downwash velocity is

¥B

2 I'(cos @ - cos 8)

Mnsx

-cos 6

-cos @

NACA TN 3030

(A31)

The total downwash velocity at a typical control point due to a
complete single horseshoe is then

=
Il

WS W W

1+ sin @ ;208 @ - cos ©

y

r 1+ sin 6
L SIBNESH

Substitution of the identities

into equation (A32) yields

I

+
sy + h
sx cos 06
- h B ————
J sin 0
Sy COS
| e e g
sin ¢

R

hxs

4

1+sin@ 14+ sin e)

cos ¢

cos ©

)

(A32)

(A33)

(A3L)
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Equations (A34) and (A2) are identical; therefore,

2% /l + sin ¢iJ 1+ sin 0,

Sy J (A35)

1d

hnsxij\\ cos ¢ij cos 8 4

If, as indicated in the sketch

Typical horseshoe
reference point\\

\Typical \

control point
I * ¢ IR ;

the control points are assumed to be located on the left semispan of
the wing so that 67 and @ represent the pertinent angles for a

horseshoe located on the left semispan and Oy and @y represent the

pertinent angles for the corresponding horseshoe on the right semispan,
then for a typical control point

1 L+ sin@g 1+ sin 6y
goi et

)

hnsx cos ¢L cos 8
- (436)

KR =

18 <1+ sin @ l+sin6R>
X

bxs cos ¢R cos Op

-
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From equation (A16),
k = br(Kp, t Kg)

so that in the [?i] or downwash matrix each element k 1is computed

from the equation

1 fl+sing 1+sin6; L+sin@y 1+ sinéy
+ -

T Tt
Byl .« COS ¢L cos 6p, cos ¢R cos 6g

As in equation (Al6), the upper sign is to be used for symmetrical span-
wise airload distributions, and the lower sign is to be used for anti-
symmetrical spanwise airload distributions. Note that in equation (A34)

sin @ = 2

[0 - )+ (o - v+ o)
cos @ = Ewas

\l("n - xg)? + (p - vy + 0)°

_ W R

SHNEORE=

() - oy - B
COSHOE = B e 3
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The [Si] matrix therefore is computed from the matrix equation

1fl+sin@y l+sin®, 1l+sin@p 1+ sin®

S = |— - " A38
[l:l Sx \ cos ¢L cos 6 " cos Br = leds Og gk ‘

where the upper sign is used for symmetric flight conditions and the
lower sign is used for antisymmetrical conditions.

Since the [?i] matrix is used in equation (A23), which is

B0 - frengle}

fhe elements of the [?i] matrix are seen to be influence coefficients

relating the incremental downwash angle at each control point to the
intensity of the running 1ift over each increment of the semispan of the
wing. In general, all the elements in the principal diagonal of the

[?é] matrix will always be positive and those elements not in the

principal diagonal will always be negative because the velocities were
considered as positive downward and wash velocities from a horseshoe
vortex are downward only in the region behind the bound vortex and
between the trailing vortices of that horseshoe.

Compressibility Corrections

The method by which compressibility effects are handled in this
report is based on simple sweep theory. This theory is presented in
references 6 to 8 and substantiated in references 9 to 12. Summarized
briefly, infinite-aspect-ratio sweep theory indicates that compressi-
bility effects are functions of the effective Mach number Me, which
in this case is the Mach number of the stream velocity component that
is normal to the leading edge, so that the lift-curve slope in com-
pressible flow is given by

m

(A39)

mo=
/i - M2cos2Ay
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where

m section lift-curve slope at M = 0

M stream Mach number

Aym effective sweep angle for compressibility effects or yaw

angle of infinite wing, radians

The same relationship exists for the effects of Mach number on
section pitching-moment coefficient

Cm
Ji - M?cosaAM

Compressibility effects on a finite-aspect-ratio swept wing can be
handled in a similar fashion. For the finite-aspect-ratio swept wing,
however, recognition should be given to the fact that compressibility
effects will vary across the span of the wing. In general, smaller
values of the effective sweep angle are indicated for the wing root and
tip sections than for the midsemispan region. Even in the midsemispan
region the effective sweep angles for compressibility effects are not
functions of the wing plan-form geometry alone; the spanwise variations
of camber, thickness ratio, chordwise thickness distribution, and angle
of attack are likewise involved in the determination of the value for
the local effective sweep angles.

Consider equation (7) for the downwash angle induced at a distance
rearward of the lifting line which was derived from two-dimensional
considerations

Wr

\'

%p

R|F

L
=3

This equation expresses the relation between the downwash angle at the
three-quarter-chord point (i.e., at r = c/2) and the geometric angle

of attack af when the section lift-curve slope is equal to its theo-
retical value 2x.

Several approaches can now be made to the compressibility problem
regarding the values of lift-curve slope, the angles of attack, and the
location of control points to be utilized for equating downwash angle
to geometric angle of attack. In the method used in this paper the
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distance r 1is always equal to one-half of the local streamwise chord,
so that in matrix notation equation (7) reduces to (see eq. (9))

{%} 3e/h [%} {af}

The applicable values of my to be used in this equation are those

at the effective Mach number Mg = M cos Ay, and thus each wing station
is permitted to have its own compressibility corrections. In the absence
of test data reduced according to the method of appendix G, a value of

m, can be calculated from equation (A39) for a value of AM equal to
the geometric sweep angle of the plan~-form streamwise quarter-chord line.
Although, in general, this procedure will yield only an approximation

to the correct theoretical value, this value will usually be sufficiently
accurate for preliminary design purposes when A/cos A 1is large (where

A is the aspect ratio) or M cos A 1is small, or both.

This "modified angle of attack” method is characteristically dif-
ferent from the "plan form distortion methods of handling compressi-
bility effects (refs. 13 and 14); the former distorts the angle at the
original three-quarter-chord point, whereas the latter stretches the
half-chord distance.

An important advantage in the compressibility-correction method
presented in this paper is that only one [?i] matrix need be computed,
whereas a different [?l] matrix for each Mach number is required in
the plan-form-distortion method.

The following developments show the equivalence of these two methods
of accounting for compressibility effects. The first comparison is for
the case of an infinite wing in yaw.

If AM 1is the sweep or yaw angle for this infinite wing, then
according to the plan-form-distortion procedure (indicated by the sub-
script pd) the equivalent wing in incompressible flow (M = 0) is to
be at a yaw angle such that

- tan Ay

tanAM=—~————
1 - M

Further, the lift-curve slope of this equivalent wing in incompressible

flow, multiplied by the factor l/Vl - M?, is equal to the lift-curve
slope of the original wing in compressible flow.
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The 1lift equation for the equivalent Mach number method of this

paper (indicated by the subscript M) is

2n cos ApM

Vi - MecosaAM

LMe = qca

and that according to the plan-form-distortion theory is

In order for the two lifts to be equal, the following equality must be

true for any value of M:

cos Ay _ cos AM

Vi - M? vgi- MQCOSQAM

It can be shown that such is the case by the use of elementary trigo-

nometric identities.

The next comparison is for the case with zero sweepback.
form-distortion method stretches the half-chord distance as a function

of Mach number to

i

e Sudl
2 -

which when substituted for r in equation (3) gives

1
RN
2

w=F\/l-M2

nc

The plan-
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Equating the downwash angle at the stretched control point to the
section angle of attack gives

q rf1 - M@ ,

ncV

o (k1)

<=

The compressible lift-curve slope (ref. 14) is

my = —2& (Ah2)

V1 - M2

Equations (A41l) and (A42) may be substituted into equation (2) to give

2n ry1 - M2 pV2c
|/l = M2 ncV o

1=

or
1 =pVI'
For the compressibility-effects method of this paper the downwash

angle at the three-quarter-chord point equated to the angle of attack
corrected for effects of section lift-curve slope is (see eq. (8))

(z) TRte %y
Vv BC/LI- ncV
from which

op = miv (A43)

When equation (A43) is substituted into equation (2) the same final
answer is obtained:

1 = pVI

The identities of compressibility corrections in the case of either
the unyawed (Ay = O) infinite wing or the yawed (Ay # O) infinite wing
substantiates, at least qualitatively, the use of the compressibility
correction methods as presented in this paper.
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APPENDIX B

THE ELASTICITY MATRICES [Sp] AND [S,7]

The purpose of this appendix is to explain, in brief form, the
structural theory involved in and the steps necessary for the computa-

tion of the elasticity matrices [82] and [sgj.

Development of the [32] Matrix

In the development of the downwash matrix [Si] in appendix A, a

continuously varying spanwise airload distribution was replaced by a
series of constant-intensity running loads, each of which covers an
increment of the wing semispan. This concept of an equivalent system
of loads is also used in this appendix.

Th i Ty oo

l’

l,

l)

l’

Consider the geometry of the structural skeleton of the wing to be
as represented in figure 3, in which double arrows indicate that the
right-hand rule of moments applies. The notation in figure 3 is defined
as follows:

2’

2)

27

.o Ly

total 1ift of increment of wing having span of Ehl,
2hy, . . . 2h,, respectively, numbered inboard
from the left wing tip, 1b (see eq. (Bl))

streamwise distance from horseshoe reference point
at a wing station to elastic axis at the same
station, positive when elastic-axis point is to
rear of horseshoe reference point, in.

streamwise distance from elastic-axis reference
point at a station to elastic-axis reference
point at the next inboard station, positive when
inboard elastic-axis point is forward of outboard
elastic-axis point

lateral distance between elastic-axis point at a
station and elastic-axis point at the next station
inboard

local sweepback angle of elastic axis
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My, My, - . My

e .

v IR
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rolling moment at elastic-axis point around longi-
tudinal axis through local elastic-axis reference
point due to total 1ift of all the vortices out-
board of this point, positive when it raises left
wing tip, in-1b

pitching moment at elastic-axis point around lateral
axis through local elastic-axis reference point
due to total lift of all the vortices outboard of
this point, positive when nose up, in-lb

beam bending moment at elastic-axis point about an
axis perpendicular to local elastic axis, positive
when it puts compression in wing upper surface,
in-1b (see eq. (B2))

torsional moment around elastic axis at local
elastic-axis point, positive when it is in direc-
tion of leading edge up, in-1b (see eq. (B3))

The general form for the wing 1ift is

Ly = 2h.4,, (B1)

where 1, is the intensity of the running lift at station 7 measured
in pounds per inch and 2h, is the span of the horseshoe vortex at
station N, the general form for the bending moment is

= Mxn cos A, - MYn sin A, (B2)

and the general form for the torsional moment is

/I MYn cos A, + Mxn sin A, (B3)
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At station 1, on the center line of the horseshoe vortex nearest the

left wing tip (see figs. 3 and 4), the following equations apply:

NACA TN 3030

o N R e Bl

My - L (B
Ll hl tan Ay

] =—2-<el i~ > (85)

which, when substituted into equations (B2) and (BB), yield

h e, sin A
My =Ly AVCT = (B6)
I cos N 2
e, cos A
1L £l
T, =Ly T (BT7)

At station 2, on the center line of the second horseshoe vortex
inboard of the left wing tip,

Loby
My, = Tydy + i

s hy tan Ay

R

(B8)

(B9)
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and equations (B2) and (B3) become

b7

Mé = lel coSs Ag - Ll(el - fl)Sln Ae + L2
4 cos Ay

T2 =lel sinA2+Ll(el - l)cosAg-;-L?( S
At station 3,

Lzh
& 29
My, = Iy (@, + a,) + Lya, +

e cos A2>

h, f e, sin A2> s
2

(B11)

(B12)

hs tan A
PR R S ) Lle 52<3 e 3) \RiZ)

and, similarly,

My = [Ll(dl + d2) + Lgd;] cos A - El(el - ) - f2) +

e5 sin A5

h.
12(82 - fQH sin A3 + LBQ 3 -
cos Az 2

> (B1Y)

T3 = E‘l(dl + de) + degsin Az + E‘l(el - £ - f2) +

ey Ccos A5
L2 (e2 - fzﬂcos A3 + L3 2

(B15)
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Equations similar to these can be developed for M and T for
the remaining stations on the left semispan of the wing.

In algebraic form, the equations for M, and T, are

n-1 n-1 n-1 n-1
M, = cos A, <I:kZd7>-sinAnZ L lex - f7>+
k=1 1=k K=F 1=k
hy ep sin Ay
Ln(h cos A, g 2 > (el
n-1 n-1 n-1 n-1
T, = ain A Ly d7> + cos Ay Lkek - fl) &
1 SP_CZS__A_’}. (B17)

Notice that the first two terms in each of these equations are equal
to zero when n = 1, that is, for the tip station.

In matrix notation, equations (B16) and (B1l7) become

i - [[ a6 . Tin ,g[u]]{L} (28

{r} = [[31?1 £)[ra] + E:oz A][uil{L} (B19)
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0 0] 0 0 0 .
el - fl - f2 62 - f2 O O 0 * L
el - fl - f2 - f§ - f)"’ 82 (o) f2 - f5 - fll' 83 - f5 - fh e)+ - f,+ 0 L] .
Y £
hy % ey tan Ay 0 o 0 0
4 cos®A; 2
dl h2 g ep tan Ap o o o
4 cosAp 2
h5 ez tan A5 0 .
d + dp iz . 2 (B26)
EJ] — h), eh_ tan Ah
d) + dy + dg dp + dz a5 Ay - 2 o
h2 ) es tan A5 =
d; + d2 + d5 + d1+ d2 + d3 + dh dz + d) d), " cosa[hj = %
=
=
W
— = (@]
W
(@)
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— 0 0 0 0 3 .
e
a; 2 0 0 0 .
2 tan Ay
a a o 0 0
+
- e B2
[*2] d; + dp + d dp + d d it 0 R
3 5 5 2 tan A,
e
— =

Equations (B18) and (B19) provide the means for computing the bending and torsional moments
along the span of the wing due to the loads L as given by equation (B1).

Each of the loads 1 or L, however, is affected by the variation in angle of attack from
root to tip. This problem is handled by computing the streamwise angle-of-attack change Qg

due to the structural deformations caused by the series of loads {L}. Since a streamwise angle-
of-attack change is required, assume that a unit positive pitching moment my (nose-up moment)

is applied in turn at each of the points 1, 2, . . . n on the elastic axis. The unit pitching
moment is in the plane in which ag is to be measured and its direction agrees with the posi-
tive sense of ag.

0¢0¢ NI VOVN

16
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The streamwise angle-of-attack change can then be obtained by
applying the general relation (see ref. 15)

o o]
ot f mM ds f T ds o
0 ET 0 GJ

where

Og desired streamwise angle-of-attack change due to values of
bending moments M and torsional moments T along elastic
axis of wing resulting from the series of loads -{ﬁ}

m beam bending moment per unit pitching moment applied at sta-
tion at which ag,; 1is to be determined

t torsional moment around elastic axis per unit pitching
moment

ds increment along elastic axis

EI effective beam bending stiffness around the axis of the bending
moments M and m

GJ effective torsional stiffness around the axis of the torsional

moments T and t

The stations on the wing for which the angle-of-attack changes agq

are to be computed are those on the center line of each horseshoe vortex.

It is assumed that sufficient accuracy in the results will be
obtained by using the values of bending moment M and torsional
moment T obtained by means of equations (B18) and (Bl9) and that these
values of M and T may be considered to be constant over the incre-
ments of the wing span corresponding to the span (2h) of each horseshoe
vortex.

Values of EI and GJ are also assumed to be constant over each
such increment in wing span, and the values to be used are the effective
values which correspond to the wing station 17 at the midpoint of each
horseshoe vortex.

The general relation (eq. (B28)) can be used to express ag in
matrix form by letting
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Ay sweepback angle of elastic axis at station 7, radians
M, beam bending moment at station 1, due to loads {L} on wing
Tn torsional moment around elastic axis at station T due to

loads {I} on wing

mij beam bending moment at station i per unit pitching moment
applied at station
ty - torsional moment around elastic axis at station 1 per unit
J ; ; : : :
pitching moment applied at station j
2hy,
(ds), =
cos Ap
2hy, horseshoe span at station n
Qg angle-of ~attack change at station T due to all the
n

loads {}i} on wing

Then, for station 1,

P - R | o fey e L
S = o e
L (EI)l cos Ay (EI)2 cos A (EI), cos [%U
e o
t11Ty 2t Toho 2ty Thby
=+ e SR (329)
LEGJ)l cos Ay (GJ), cos Ay (GJ),, cos Ay

for station 2,

2m, My by mooMohy P 2y oMy

ag, = + b G
l_(EI)l cos Ay (EI)p cos A (EI), cos Ay
2t1pT Iy topTohy 2tnoThhy
+ 4l o i (B30)
(GJ)l cos Ay (GJ), cos Ay (6J), cos A,

—

and so forth.
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From the geometry of the problem, when point i is at or inboard
of point J, the bending moment due to a unit pitching moment applied at

POLnEE S E

myy = -sin Ay (B31a)

when point 1 1is outboard of point Jj, the bending moment is

when point i 1is at or inboard of point j, the torsional moment due to
a unit pitching moment applied at point j is

tij = cos My (B32a)

and when point i is outboard of point j, the torsional moment is

tij =0 (B32b)

and the complete series of equations for ag, of which equations (B29)

and (B30) are representative examples, can be written in matrix form as

B e e -
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Typical elements in [m] and [ﬁ] are

—sin A/f2  -sin A -sin Ay -sin Ay o
0 -sin A2/2 -sin A5 -sin Ny,
0 0 -sin A./2 -sin Ah . A
= 1 (B3k4)
0 0 0 -sin Ah/e . .
;;s Al/E cos Ap cos Az cos Ay E
0 cos A2/2 cos A5 cos Ay
0 0 cos A /2 cos . s
[¥] - i i (855)
0 o) 0 cos Ah/2 . .
5. o

Substituting equations (Bl), (B18), and (B19) into equation (B33)
gives

fo} [@ = elle o - e a6

(t] = A GJ [Eﬂn A:”: 2] E:os A] [u]]il E'eh]{z} (B36)
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it

2l - | []H[E A - G A0+

[t] gh][% [[Sl?l A] [1'2] + E:oz A) E{ﬂ [2?{] (B37)

cos A

then

() - 26) a5

Equation (B37) represents the most general form for the [?é] matrix,

and each element aij of this matrix represents the angle-of-attack change

in radians at station i due to the structural deflection of the wing
caused by a unit loading at station j. In effect, the [52:] matrix is

an array of influence coefficients, and the elements of this matrix may
be computed according to equation (B37), or, when an actual wing is avail-
able, they may be obtained by load-deflection tests of that wing.

Development of the Auxiliary Elasticity Matrix ['_'32]

The [?é] matrix as defined in the previous section considers air-

loads outboard of each specified station, as defined by a streamwise cut
through the wing box. Inasmuch as ribs are conventionally installed in
a plane essentially normal to the elastic axis, the spar-box loads are
more correctly determined by considering the airloads outboard of a plane
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normal to the elastic axis. These loadings are represented in the fol-
lowing sketch:

Elastic
axis

Trailing-”
edge

Tn n n

The corrective loading is then the loading obtained by subtracting

the loading of @ from that of . The triangular areas @ and @
represent the corrective loading. It will be noticed that the loading
over the area C) is the negative of the loading of the corresponding
area in (E) and the loading over (:) is the positive of the corresponding
area in ‘ . In order to obtain these corrective loadings, it will be

necessary to assume a distribution of pressure over the corrective areas.

The equations are now developed that represent the shear, wing
moment, and wing torsion due to the corrective loadings, and the

[82] matrix is modified to include these effects. A plan view of the

left wing is shown in figure 5, where

E local angle between elastic axis and lateral axis equal
to A, the sweep angle of the elastic axis

L local angle between leading edge and lateral axis
it local angle between trailing edge and lateral axis

The correction terms for moment, shear, and torsion due to wing

airload in the [sél matrix are



ATl’ ATQ’
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correction to rolling moment at elastic-axis point
around longitudinal axis through local elastic-axis
reference point, positive when it raises left wing
tip, in-lb

correction to pitching moment at elastic-axis point
around lateral axis through local elastic-axis
reference point, positive when nose up, in-1b

correction to wing bending moment at elastic-axis point
about an axis perpendicular to local elastic axis,
positive when it puts compression in wing upper
surface, in-1b (see eq. (B39))

correction to torsional moment around elastic axis at
local elastic-axis point, positive when it is in direc-

tion of leading edge up, in-1b (see eq. (B4O))

correction to local shear, positive up, 1b

The wing bending moment M, is

M, = Mxn cos E, - MYn sin E, (B39)

and the wing torsional moment T, 1is

T MYn cos E, + Mxn sin E, (B40)

Assumed pressure distribution.- The distribution of pressure p

over the corrective areas is assumed to be given by the two-dimensional
equation for a thin flat plate

(B41)

and modified to account for the actual value of local running lift. In
the modified form, the distribution of pressure (measured in pounds per
square inch) along a streamwise chord becomes

(B42)
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where x/c is the fraction of the streamwise chord to the rear of the
leading edge. The ratio 1/c is assumed to be constant so that the lines
of constant pressure radiate from the origin 0O in figure 5. 1In accord-
ance with the assumptions previously given concerning the corrective
loadings, the pressures are negative (downward) over area FDG and posi-
tive (upward) over area ABG.

A polar coordinate system (p,0) is selected, and the shear, moment,
and torsion due to the pressures on area OFB will be subtracted from
the shear, moment, and torsion due to the pressures on ares ODA. Lines
of © = Constant are lines of constant pressure and p will be a func-
tion of 6 only.

From the geometry of figure 5, p may be expressed as a function
of » 0" by writing

cC+OMtan T - x = OM tan(L - 8)

Hence
X =cC+ aﬁlgan T -~ tan(L - 8{] (B43)
and
c+ OMtan T = OM tan L
or
oM = - (Blk)

tan L = tan

Combining equations (B43) and (BLL) yields

tan T ~ tan(L - 6)
x =cl|l+ ( (B45)
tan L - tan T

If equation (B4S) is substituted into equation (BL2),

5 ok tan(L ~ 6) - tan T (B46)
tan L - tan(L - 6)

where

x -2 (B47)
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Rolling-moment correction at station n, AMy .- The rolling-moment

correction at station n, AMXn: is obtained by adding the rolling
moment AMg, due to area OFB to the rolling moment AMXB due to
area ODA (fig. 5).

The rolling moment AMXA due to area OFB may be found by writing

the equation for the elementary moment about FM for any value of o
between O and that at the line FM as:

dAMxA = p[?ﬁ - p cos(L - Bi]p dp de

The equation of the line FM is

p cos(L -98) =0

or the value of p at the line Fﬁ is

oM

cos(L - 8)

Over area OFB the moment is negative; hence,

: oM
_ | T cos(L-0)
MMy = -KOM tan(L - 6) - tan T 4o ( i
A ten L - tan(L - 6) ”
0
oM
b cos(L-9)
X tan(L - 6) - tan T cos(L - 8)d8 Pdn
o tan L - tan(L - 8) o

Since 6 varies between O and L - T, the integrals can be evaluated
by letting

=
tan L - tan(L - 0) e
tan L - tan T
- (B48)
ten(L - 6) - tan T _ cot2U
tan L - tan(L - 0)
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It follows that

d(L - 8) = -2(tan L - tan T)cos3(L - 8)sin U cos U dU

Consequently,

o n/2
AMg, -KOM(tan L - tan T) cos2U dU +
0

i /2
%? OM(tan L - tan T) cos2U au
0

o . %0 (tan L - tan T)
12

1 2
a4 : (B49)
6(tan L - tan T)2

The rolling moment AMXB due to area ODA may be derived in a
similar manner to get

R
L-T
Nty = KO tan(L - 8) - tan T cos(L-6-E) Shi
B o tan L - tan(L - 8)
T PR R,
cos(L-6-E
K tan(L - 8) - tan T oq(r, - g)dg ( ) p2dp
o tan L - tan(L - 8)
0
(B50)
where
oM E-T
fe OB o ) g ¢(1l - €)sin E (B51)

cos T
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After integration this equation simplified to

*KOMR?(tan L - tan T)
My, = -
(ten L + cot E)Zsin’E\L - @2

nKRO(tan L - tan T)(4 - 3Q2)

oh(tan L + cot E)5sin5Ed(1 = g2)°
where
Qg _tan L - tan T (0 < Q2 29

tan L + cot E

(B52)

Equations (B49) and (B52) may now be combined to give the rolling-

moment correction AMg ~ at station n:

Mg = Mg+ Ol

7K [6cRZ(1 - Q@) (tan L + cot E)sin E - R2(4 - 3Q°)(tan L - tan T)

2k J(l - @®)3(tan L + cot E)Jsin’E

2c5

(ten L - tan T)°

If U defined in equations (B48) is written as

cos(E - T)cos L
sin E sin(L - T)

U=1+

(B54)
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and if
V=tanL + cot E (B55)
then R (see eq. (B51)) becomes

R =c(U - €)sin E (B56)

and

1621600 - J3(1 - 88) - (U .- e’ - 36B)Q2 . 2

MMy = =
n~ 5 Pl -2y vaq*

(B57)

For the special case of the untapered wing where the leading edge is
parallel to the trailing edge or T =1L,

NS r =) 2
1cc s8in“E cos<L (8¢2 - e + 1) (B58)

AM}(:-
= 16 cos2(E - L)

Pitching-moment correction at station n, AMYn" The incremental

pitching-moment corrections due to the areas OFB and ODA may be
derived and combined in a manner similar to that for the rolling-moment

corrections and the equation for AMy, becomes

L2 | Rw-e3 [k -3a®) tan L -Q2v]+6(1- Q@) (U - €)2(eQ2V - tan L)

AMYn % 3152 V2(l B Q2)3/2 g

2
(6¢ - 1)X2Qh- 2 tan L (B59)

For the special case of the untapered wing where the leading edge is
parallel to the trailing edge or T =1L,

2 : -
E L E L tan L
e lc (862 ) sin E cos L sin E cos an (B60)
n 16 cos(E - L) cos(E - L)
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Shear correction at station n, ASp.- The elementary shear is

dAS, = pp dp 48 (B61)

From this equation the incremental shears over the areas OFB and
ODA may also be derived and combined in a manner similar to that for
the rolling moment to give

Age 8
pegall - el 8 (862)

2 V"l _ Q2 Q2V

For the special case of the untapered wing where the leading edge is
parallel to the trailing edge or T = L,

LS, =

A8 ke 13 sin E cos L (he &4 (B63)
4 cos(E - L)

Modification of [?él matrix.- The [gé] matrix is modified by

using the corrective rolling and pitching equations. Using the equations

l

AMy = My cos By - AMy sin By (B64)

AT, = MMy sin By + MMy cos By (B65)
and letting (from eqs. (B57) and (B59))

-, 1 (B66)

==
]

e
1l

-AMy, /7 (B67)
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results in

MM, = (-u cos E, + J sin E )1

AT, = —(u sin E, + J cos En)l

or, in matrix form (with A, = E),
{AM} = E[co: /9[3] + [sifl A:“:;ﬂ{l} (B68)
{AT} = - [[sn? A][Op] + E:og A] [gﬂ {1} (B69)

Equation (B18) thus becomes

{M} & [[co(s) A] [[rl] [20@ 2 [S]] ’ [sii @[[u] E;h] i [:;]]‘J {1} (B70)

and equation (Bl9) becomes

{1} - ([sii,_q[ﬁg] ] - 0] + Goe | -[31]]{1} 7

The corrected form of the [?é] matrix thus becomes

[t] [cil j;‘[% ;[s in A] [[rg:] [221] - [ﬁﬂ + E:o: Al \t[u] [20h] - ESJIU

(B72)
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where, as in equation (B38),

fas} = [527{2} (873)

Tt should be noted that, because of the assumed pressure distribu-
tion given by equation (B41), this correction does not correctly handle
conditions involving deflected flaps and roll-control devices.



NACA TN 3030 67

APPENDIX C

COMPUTATION OF {ag} MATRICES

This appendix outlines the method by which the component parts of
the {?E} matrices may be determined. The {aé} matrices comprise two

classes of twist: (I) those which would be present even if the wing were
rigid and (II) those due to inertia effects, thrust or drag, and section
pitching moments on the flexible wing. A given airplane design condition
may obviously require any combination of the twists listed under classes I

and II, that is,
{a,} = {a,} - {a} (c1)
g g T g 11

For simplicity, the sources of {aé} may be summarized as follows:

Class I - aerodynamic twists (i.e., zero-lift-line shifts due to
effects other than wing structural deflections)

(a) Built-in twist due to camber or construction, or both.

(b) Interference twist due to fuselage, external stores, and
so forth.

(c) Twist due to flap deflection.

(d) Twist due to aileron deflection.

(e) Twist due to spoiler deflection.

(f) Apparent twist due to airplane rolling velocity.

(g) Apparent twist due to airplane pitching velocity. Angles of
attack due to airplane pitching velocity should be measured at §c/h.

Class II - structural twists due to wing deflections caused by the
following inertia and serodynamic loadings which are independent of the
wing 1ift distribution:

(a) Vertical acceleration acting upon dry-wing dead weight,
wing internal-fuel dead weight, and external-stores dead weight.

(b) Effect of airplane rolling acceleration upon dry-wing dead
weight, wing internal-fuel dead weight, and external-stores dead
weight.
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(¢) Effect of airplane pitching acceleration upon dry-wing
dead weight, wing internal-fuel dead weight, and external-stores
dead weight.

(d) External-stores thrust or drag.

(e) Section pitching-moment coefficient with flaps, ailerons,
spoilers, and so forth in neutral position.

(f) Incremental section pitching-moment coefficient due to flap
deflection, aileron deflection, or spoiler deflection, or in various

combinations.

Of the class I twists, the aerodynamic built-in twist is known from
the wing geometry and the characteristics of the profiles used, and the
interference twist may be obtained from actual tests of the complete air-
plane configuration, either model or full-scale, by using the procedure
of appendix G or from other calculation methods. Twists due to control
deflection are determinable from the same type of tests as were used to
evaluate the interference twist. Apparent twists due to airplane rolling
and pitching velocities are completely determined when the airplane flight
condition to be investigated is specified.

The type of twists due to the effects of wing deflections arising
from loads which are independent of wing angle of attack, such as those
listed under class II, may be computed with the aid of equation (B33)

since, in this case, {?é} = {%é}

- Rz B8 - B (c2)

where ﬁ@} and {i} are the wing bending moments and the torsions along
the wing elastic axis due to the loadings of class II or to any combina-
tion of them.

Although the .raé- twists do not all explicitly require the cal-

culation of loadings, they do influence the equilibrium airload and must
be accounted for in determining the net wing loads from equations (21),

(22), and (23).
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APPENDIX D

DERIVATION OF EXTERNAL-STORE MATRICES

The term external stores as used in this report is intended to apply
to such items as nacelles, external fuel tanks, bombs, rockets, and
similar items commonly attached to the wings of airplanes. .

In this appendix the 1ift coefficients and pitching-moment coeffi-
cients for each external store in the presence of the rest of the air-
plane configuration are assumed to be known and to vary linearly with
angle of attack. On this basis a set of linear equations is developed
in which the airloads on each external store are accounted for in com-
puting the deflections of and airloads on the elastic wing or airplane.
The coefficients used are based on the airplane wing area and the wing
mean aerodynamic chord. There is a specific lateral reference axis for
each external-store pitching-moment coefficient, and the angle of attack
of the external store is taken to be the angle of attack of that wing
station within the span of whose horseshoe vortex the station of the
external store lies. Special symbols used in this appendix are as
follows:

CLE, CmE 1ift and pitching-moment coefficients, respectively, of an
external store measured at its aerodynamic center (see
eqs. (D1))

CLE B CmE lift and pitching-moment coefficients, respectively, of an
0 0 external store at zero angle of attack measured at its
aerodynamic center

LEO’ MEO 1ift and pitching moment, respectively, of an external store
measured at its aerodynamic center (see eqs. (D2))

My , My » rolling moment at elastic-axis point around longitudinal
€ €+l axis through local elastic-axis point due to loads on a
2 MXn particular store outboard of this point, positive when

it tends to raise left wing tip, in-1b

> pitching moment at elastic-axls reference point around

lateral axis through this reference point and due to
5 MYn loads on a particular store outboard of this point,
positive when it tends to raise nose, in-1b

Additional symbols required are shown in the following sketch:
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Forward

Inboard

f]‘—‘ yE < de
L LEO
M

\ EO

Me +2

Te42

Aet2
fe+1
2

+ My

|
F*‘he‘—*r——he——J

Consider one external store whose characteristics are

“Lg

Crnp

so that

Lro

Mro

CLEo i (CLE>G,G'fE

(D1)
= CHEO + <CmE>d,a'fE
aS ELEO + (CLE>CLG'fF_] T
’ (D2)
asSc EHEO + (CmE>aa,fE]
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The 1ift and moment on the external store LEO and MEO

with respect to point € @by the dimensions y. and x¢
the sketch.

At the first station inboard of the external store

MXE = LgoYe
My, = Mgy + Lgoxe
Me = Mxe cos A¢ - MY€ sin A¢
= Lrg(ye cos A¢ - x¢ sin Ag) - Mo sin A¢
Te = MX€ sin A¢ + MYe cos A¢

Lpo(ye sin Ac + x¢ cos A¢) + Mgg cos A¢

I

At the next inboard station € + 1,

MX€+l = LEO(Ye i de)

My ., = Mgo + Lyo(xe = fe)

7L

are located
as shown in

€,

(D3)

(Dh)

Mey1 = LEO!z?e + d¢)cos Mgyl - (% - fe)sin Ae+i] - Mgo sin Aey1  (D5)
Teyy = Lyo E?t + dc)sin Ay + (x¢ - £o)cos Agyq | + Mgg cos Agyy (D6)



G NACA TN 3050

At ataticn € + 2,

Mg .o = Imo(¥Ve + dc + deya)

MY€+2 = Mgo + Lgo(xe - fe - fey)

Me+2 = Lgo E?e Fde i+ d€+l)cos Neyp - (x¢ - f¢ - f<~:+1)Sin Ae+éj S

MEO sin A€+2 (D7)

Teso = Lgo E}e + de + deq1)sin Agyp + (x¢ = £ - fey1)cos Ae+é] *

Mgg cos Agyp (p8)

At station n, the most inboard station considered,

n-1
MXn = LEO<%€ i zz: d%)

m=c

Since

M, = Mxn cos Ay, - MYn sin Ay

Ty = Mxn sin Ap + MYn cos Ap
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then,
n-1 n-1
M, = Lgg [cos An(%e 4 E dm> - sin An<%e - fm> - Mgo sin Ap
=€ m=€
(D9)
and
n-1 n-1
Tp = Lgg [sin An<%€ it E dy) + cos An<%€ - fm> + Mpo cos Aj
=€ m=€

(D10)

In matrix notation, the following equations, typical for each
external store on the semispan, are equivalent to the algebraic equa-
tions (D9) and (D10):

fio} - {5241 @) - BT 0] o - G591 fi} o om0

{t=)

where, 1f the value at the top of the column is for the tip and the
other values are for the successive stations inboard to the root and
€ 1is the station within whose horseshoe span the external store is

located,
( 0
0
0
€

CRE R =

€
Ye + de + desl
Fe + d¢ + degq + duo

8 : J

Il

{Ei?x ~] R} - [cos 4] {U}} Lgo + [cos A] {IE} Mgo (D12)

-~
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From equation (B33)

e - B2 B} - a2 ] B
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(D1k)

(D15)

(D16)

(D17)

(D18)
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where the external-store bending moment and torsion are given by equa-
tions (D11) and (D12), respectively.

Substitution of equations (D2) into equations (Dll) and (Dle) leads
158}

{1\@} = {Eo(s) rJR} - Eig A_—J{Q}}qSCLEO + {[cog A:]{R} .
[sin Aj{U}}qS (Crg)acty - [sin A:]{IE}qSECmEO g
[en 2] {te} a5 (Cug) 2t (p19)

and

fr} - {esk A1) + o5 D fHuscry, + 62 fe)
[cos A]{U}}qs,(%)aafE + [cos A] {izfaSTCng  +
[eos 1] {t }a57 (Cug) yae, (p20)
L S
{¥an} - {@o‘é AR} - [sin A]{u}} (1)
Bk {B206) 2 63} (vz2)
then equations (D19) and (D20) become
{4} - as {{XaM}CLEo * {Fan)(Cug),ty - [in A)fin} Fong, -

[sin A] {IE} E(cmE>aafE (D23)
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{TE} = gd {{XET}CLEO + {XQT} (CLE>ame + EOCS) A] {IE}ECHIEO +

E:og Al {IE} E<CmE> cx,a'fE}

{?1M} = {?EM}CLEO - [5in 4]{?¢}Emeo
frad} = frauf(Cea), - Fon D i) Cre).
{?lf} = {?ei}CLEO ke [éog 4]{?Q}ECmEO
{for} = fror}(crg) + [eos Al fim}e (Cng)

i} - oo {feur) + franore )
{TE} = as {{KlT} i {E(ET}G'fE}

(D2k )

(D25)

—~~

D26)

(p27)

(D28)

(D29)

(D30)

Equation (D18) relating {G’S}E with {ME} and {TE} can now be

written as

faclg = o8 {{Kl} . {Kg}afE}

(D31)
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where
) w cosIC FE::LI— fkng + 1] l;?;‘,; LG%: fiae}
Lo 89 > (D32)
{ } [] cos A L_E—lId{ } [] cos A LG_]:]‘J{KZI‘}J

The equations Jjust derived are typical for a single external store
on the semispan. Each additional external store on the semispan requires
a similar set of equations.

The total angle-of-attack change due to the wing airloads shear and
the airload on the external store is

{os} = {oe}  tlenly (D33)

where the subscript W denotes wing and E denotes external store.

Here there 1s an {aS}E term on the right-hand side for each exter-
nal store; that is,

{as} {ccs {as} + {as}Eg e, % (D3k)

Ey

Equations (12), (13), and (B38) for {Z}, {q,f}, and {as}w, respectively,

repeated for convenience are

[zé;] )} - {e}

¥t Tt {eeien g
[6:]{7} = {es},
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Including the effects of external stores on {%é} according to
equations (D34) yields

m

B0 - b o+ et By 7 By, O

From equation (D31)

{“S}El ¥, {Kl}lqs 2 {Ke}lqso'fEl 1
- (D36)
{“S}EQ = {ky} o8 + {15} e
However, Cfn can be found from
arp_ = |Bnf{oe} (D37)
where a typical value for anJ is given by
LEnJ=|_0001000000J (D38)

The row matrix L@nj has as many columns as there are horseshoe

vortices on the semispan and has a value of unity entered in the column
which corresponds to that horseshoe within whose span the external store
ig located. (In the example implied in eq. (D38) there are ten stations
and the external store n 1s within the span of the fourth horseshoe

from the left wing tip.)

Combining equations (12) and (D37) results in

AP



|
P
|
\
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Combining equations (D35), (D36), (D39), and (B38) yields

B0 - 6+ o el

(@)

as {{K:L}l + EKQ}l LEle ;;m; g {Z}} i

@)

qs'{{xl}e a2 {z}} LA e

[%a] = {Kg}ntﬂnj {Bn} p {Kl}n (Db1)

[£]=2F 1% -2 &4 (Db2)

If equations (D41) and (D42) are substituted into equation (D4O),
the following matrix equation is obtained for an elastic wing having s
number of external stores on the semispan:

[[[IJ ! qs[pil [Ell@@:oz] [sl] L [sgﬂ {1} = {ar} + {ag} + os{B} (D43

This equation is similar in importance and usefulness to equa-
tion (16) except that the aercelastic effects of the airloads upon the
external stores are now included. It reduces to equation (16) if all

the [A] and {B} matrices are set equal to zero, since [I} = [}?@].
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APPENDIX E
WING-FUSELAGE INTERFERENCE

In this appendix an approximate method of calculating the effect
of a fuselage on the spanwise airload distribution on the wing is devel-
oped. The primary sources of this interference are considered (ref. 16)
to be as follows:

(1) The effects of the image vortex system inside the fuselage on
the downwash angles at the various control points over the wing semispan.
This image vortex system induces a flow which is a first approximation
to that necessary to satisfy the condition that there be zero velocity
normal to the fuselage.

(2) The effects of the vertical "overvelocities" resulting from the
fuselage angle of attack. These velocity increments affect the local
angle of attack at the various control points on the wing.

This method of analysis can be used when applicable data of the type
described in appendix G are not available.

Item (1) may be considered as the effects of wing airloads upon
themselves due to the presence of the fuselage; whereas item (2) accounts
for the effects resulting from the fuselage having an angle of attack.

In the development that follows the fuselage is assumed to be of
circular cross section, of constant diameter, and infinitely long.

For the image vortex system mentioned in item (1), the individual
images of the wing trailing vortices can be shown to be located on a
straight line joining the axis of the fuselage with the axis of the par-
ticular wing trailing vortex at a distance from the fuselage center line
such that

R, = 85 (E1)

where a 1is the fuselage radius and Rl is the distance from the fuse-

lage axis to the trailing vortex (see fig. 6).

In similar fashion the bound vortex is assumed to have an image
within the fuselage cross section. The image of the bound vortex is
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assumed to lie on a straight line Jjoining the forward ends of the image
trailing vortices. The forward ends of these image trailing vortices

are assumed to lie in the same transverse plane (perpendicular to the
airplane center line) that contains the particular bound vortex being
represented. Figure 6(a) shows a transverse section for the high-midwing
configuration and figure 6(b) shows a plan view for the midwing
configuration.

This system of real and image vortices is only an approximation.
It satisfies the condition of no flow across the fuselage boundary only
at the transverse plane containing a bound vortex and its image and the
transverse plane infinitely far behind the wing. In general, some flow
will occur across the fuselage boundaries, and hence, to some degree at
least, the corrective downwash velocities induced at the wing control
points by the image vortices will be in error.

Within these limitations it is therefore considered that wing-
fuselage interference effects upon the wing spanwise airload distribu-
tion can be obtained by:

(1) Adding to the elements of the [%i] matrix for the exposed wing

a corrective matrix [%é] whose elements represent the vertical downwash

velocities induced at the various wing horseshoe control points by the
image vortex system within the fuselage boundaries.

Each image vortex within the fuselage is of the same strength and
sense of circulation as its real counterpart and there are as many image
horseshoe vortices within the fuselage as are used to represent the wing.

(2) Adding to the twist of the wing <i.e., {1%}) a correction due

to the vertical overvelocity field arising from the effects of fuselage
angle of attack. The correction applied to {éé} is proportional to

the quantity (aT - ai) where a, 1s the angle of attack of the wing

root-section zero-1lift line and @y is the incidence angle between the

wing root-section zero-lift line and the fuselage center line.

The above corrections are developed as follows.
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The elements of the corrective matrix [Sl] may be derived by con-

sidering the geometry of the following sketch:

X (rearward)

(00)

Ogie is a horizontal plane

The horseshoe vortex shown in this sketch is considered to be one
of the image vortices, the location of which is given by equation (E1).
The strength of circulation ' of this image vortex is equal to that
of its real counterpart. The plane of the horseshoe wabe 1s at an
angle 7y to the horizontal plane Ogie and the bound vortex ab lies
in the plane Omhg. The point k may be considered to be one of the
downwash control points as described in appendix A.

The total vertical downwash wy at the point k due to this image
horseshoe vortex is the sum of the contributions due to each segment. By
means of equation (A27) the contribution of the trailing vortex ax is

o P +cosﬁ/syl‘HCOS7
AR =2
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that due to the trailing vortex be is

(L + cos L\/sy' + H cos 7>
4 A

W =

beo U A

and that due to the bound vortex ab is

1 1
W_=£cos¢ - cos 0'"\fy
ab  lLx D D

where
A =Cck
B = dk
D = Tk

83

(E3)

(EL)

(E5)

From the geometry of the sketch the distances A, B, and D are found

from
2
A2= (s ' + H cos 7)2+(s ' + H sin 7)2
y A
B2 = (sy' - H cos 7)2 + (sz' + H sin 7>2 P
. sx'2 - (sy' sin y - s5' cos 7>2 y
and the angles are obtained from
o' = tan™L IE _ tan~! D -
Fa sy'cos7'+sZ sin y - H
q' = 'ta,n-lzl_{.z tan-l D
o sy' ¢l ¥ el 1B ¥ E.H
= = g
A = tan %= tan™+ —B—'
ad S
p=t l———f}{_= ta.nml ——A'
be SX
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Summing the individual downwash’ contributions (eqs. (E2), (E3), and
(E4)) gives the total downwash at k due to one image horseshoe

(sy' + H cos 7)(1 + cos p) +.<cos ¢' - cos 8'>sx'
2

A° D

g.' = H ocos ¥ {1 + cos N
A J
2

(E8)
B

The downwash angles at the control points on the wing due to the
fuselage images may then be written in matrix notation as

), - a B i B {1 (E9)

YV

in which the desired correction matrix for image vortex effects is [%;],

the elements of which are the locally applicable values of the function
inside the brackets of equation (E8). The development for antisymmetrical
conditions would be analogous to that for symmetrical conditions, the only
change being that the sense of the vortices (and their images) on the
left-hand side of the plane of symmetry in figure 6 would be reversed.

The second interference effect, that due to vertical overvelocity,
may be taken into account as shown in the following analysis: With respect
to the fuselage center line there is a transverse component of the free-

stream velocity V,, given by (see sketch)

VZ = V(ar - ai>

Fuselage

2

“~Root-section
_______ zero-lift line

Since the fuselage displaces the air in this transverse flow field, there
are local changes in this vertical flow velocity.

If V,' is equal to the total local vertical velocity in the pres-

ence of the fuselage, then the overvelocity AV, 1is

N, = V' = Vg (E10)
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This vertical overvelocity can be expressed as

ya\'f
N, = —2 V(ar - a{) (E11)
Vz

Contour maps from which the value of AVZ/VZ can be obtained as a
function of vertical and lateral distances from the body center line are
shown in figure 7.

These contours were developed from the equations for uniform flow
past an infinitely long circular cylinder from reference 17 as follows:

Vy' = Vz(l - é‘iz-) (E12)
Vg
1
E_ S @.399_8_2& (E13)
¥ R2

where a 1is the cylinder radius, R 1is the radial distance from the
axis, and 6 is measured from a line normal to the axis and V,.
Thus

Avs 8 a2cos 26 (E1L)

From equation (Ell) the angle-of-attack increment Aag at a control

point due to the local overvelocity becomes

rary - %(% - o) (E15)

Equation (E15) in matrix notation is

{Aag} = [s%] {a.r 2 cx,i} (E16)

o
where [?o] is a diagonal matrix whose elements are the locally appli-
cable values of AV,/V,; that is,

o, [,
[5o] = [—V; (E1T7)
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By use of the matrices

[?i] dovnwash matrix given by equation (A38) for the wing alone
(the portion of the wing outboard of the fuselage)
[?é] wing elasticity matrix given by equation (B3T7)
[si] image-vortex matrix given by equation (E9)
o)
[?é] overvelocity matrix given by equation (E1T7)

and the equation

{oa} - (eal{¥)

the equation for wing equilibrium including fuselage-interference effects
can be written as

[[Sl] + [Sd] {Z} = E*qc;no]{{ar + ag + as} + [S(;]{u,r - a.i}} (E18)

i+ 6] - Bl - = [e + 03+ o) - =00
(E19)

Equation (E19) may be substituted without change for equation (21) for
the wing load distribution.
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APPENDIX F
EQUATIONS FOR TATLLESS AND TATL-BOOM AIRPLANE CONFIGURATIONS

This appendix develops equations which, when properly inserted into
the basic equations, allow solution for (1) a tailless airplane and
(2) an airplane with the tail load entering the wing structure through
tail booms. The equations are left in general form. Constant sweep
angles and equal vortex spacing simplify the equations considerably.

Tailless Airplane

For the case of a tallless airplane longitudinal balance is usually
accomplished by the deflection of controls on the wing. These control
deflections alter the span load distribution over the wing while con-
tributing to the balance of the airplane, and therefore terms expressed
as functions of the control deflection & will appear in the 1ift-
distribution equation (eq. (21)) and the pitching-moment balance equa-
tion (eq. (23)) in place of the Pp terms. Since the 1lift produced by

the control deflection is part of the wing 1ift, Pp in the 1lift balance
equation (eq. (22)) will be zero.

The development of expressions in terms of the control deflection
follows.

The required expression for ® to be substituted into equation (21)
consists of two oyg components ; agI, which is the apparent twist due to

control deflection, and agII’ which is the twist due to section pitching

moment with control deflected. From equation (C2)

- R0 O E e

For class II twists due to section pitching-moment coefficient
(type (f) in appendix C), the following equations may be written for

{M}cm and {T}cm in equation (F1):
(M, = -a [in A] [15] (ék?c{] {Cmo} (F2)
{T}cm = qu: A] [?3] l:zhcg:l {Cmo} (F3)

Il
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where
[1/2 0 0 0 i
1 1/2 0 0
i i 1/2 0
I; =
i i) 1 /6
- h 2 : . .

For [m] and [t] in equation (F1), equations (B34) and (B35) may be
written as

[] = - [io] [stn A] (F2)

[ = [£6] [cos 4] (¥5)
where
1—/2 1 3 1 T
0 1/2 i 3
0 0 1/2 X
IO =
0 0 0 1/2

Substituting equations (F2), (F3), (F4), and (F5) into equation (F1l) yields

{agn}cm = [o] [:h] [[taz A]é—l]q[siz Al E[ﬂ [2}12] :

[G%] q LE°Z 4] |5] [2;‘32]}{%0}
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or

{agn}cm - q[to] ] [ten2] Ef] % Eﬂ [co: 4] [5) [2;’{] {eng} (¥6)

Equation (F6) gives the structural twist due to control deflection. If
wind-tunnel data are not available, theoretical expressions for {%mé}

in terms of the deflection ® may be used. From reference 18},

(0]
1 3
{c%}a - L é-l:sin e sin 292\{5}

Bl e sin'lléiffi_:_;ﬂ

8o = cos~1(2¢ - 1)

where

St

£€==

3 and cg is the flap chord. Substituting these values for @, results in

femo}g = - %\E\la(l - 5) - 2fe(1 - ¢) (2t - 1‘1\{8}

-2\:5(1 £} {3} (F7)

The dgr term required can be obtained from the following expres-

sion for the 1ift produced by control deflection (ref. 18):

o
{b%}s = 2|nr - 8, + sin OEJ{E}

for a two-dimensional lift-curve glope of 2x. For a two-dimensional
lift-curve slope of my,, this equation can be written as

(o}

‘ 3o - [ [ T Sm,tﬂ{a}
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Substituting the values for 6, results in

{cl}s = [n?o] 1-Zcos™H(2¢ - 1) + % 2&?‘@5\{5} (F8)

(o]
Dividing both sides by [moj yields

{mgﬂcm = E- % cos~1(2¢ - 1) + % 2\e(1 - gil{a} (F9)

The total Qg term to be substituted for the PT term in the 1lift-

distribution equation is obtained by combining equations (F6), (F7), and
(F9), to give

[ {“gﬁ}cm = {flgl A

O

3| 8 A o ol

+

o [an;a g

E - % cos™l(28 - 1) + -]; 2\e(1 - gE‘ {3} (F10)

For the pitching-moment balance equation (23) the expression required
to replace Pp may be obtained from the theoretical expression for flap

pitching-moment coefficient (eq. (F7)) as

g 2hc? O_ 3
Pp = 2quTJ[\lg(1 e.)] {5} (F11)

‘Since in the system of equations given in matrix form (egs. (21),
(22), and (23)) there are two unknowns other than Pp, it would not be
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possible to have more than one unknown in the expression to be substituted

for Pp; in other words, the {6} matrix in equations (F10) and (F11) must.

have a known distribution shape. Let &, be the unknown reference

deflection; the {8} matrix may then be written as {S} = Sr{gL} where
r

{SL} is any chosen distribution shape. For the reference deflection at
i

the second station from the tip this equation becomes

—~

6l/5r W
11,(0)

WP

Ve

Sroot/arj
e

For a constant deflection across the span, the distribution matrix

becomes {i}.

Balancing Tail Load Entering Wing Through Tail Boom

For the case where the tail load enters the wing structure through
a tail boom, the distribution of load over the wing will be affected
when the tail load changes and will vary in a different way depending on

where the tail boom enters the wing. An expression to be substituted into
the lift-distribution equation (21) for PT{O} is developed in this sec-

tion of the appendix.

From figure 8, the beamwise moment produced at the point P by the
tail load entering the wing through the tail boom can be written as

Py Pp Pp g Ay
= - ik = - e
> ep sin Ap + 5 Yp cos Ap + 5 ng;i o

where Ap 1is the sweep angle of the elastic axis at the entry section
of the tail boom.
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In matrix form

(}py = 22[53) 1]

il
cos

O
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/]{IT} + %T-(eT sin Ap + Yp cos A‘I‘)‘[IT} (F12)

where Eie:l, {IT}, and [gj for six reference stations are defined as

[z2]-

[0

ik

0 0 0 0 0|
0 0 0 0 0
i 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
Tip

{IT} = 4, ¢ < Tail-boom entry point

Root

0 0 0 0 o |
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 deyl 0
0 0 0 0 ags
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The equation for torque is
{T} S 2 (e cos Ap - yp sin AT) IT} (F13)
Prp o\ I

Substitution of equations (F4), (¥5), (F12), and (F13) into equa~
tion (C2) gives an expression for the class II twist due to tail-boom
entry:

Perde - (EE] -2 A [p S -

(e}

(eT sin Ap + yp cos AT) [Iﬂ - EJ-:' (eT cos Ap - yp sin AT> [1) {IT}

The column to be substituted into equation (21) is therefore

- 369 B A P B ]

o 0

ET sin Am +oyP cos AT:H + [% E‘I‘ cos Ap - yp sin A‘I:‘l {[T} (F14)

This column will be multiplied by Pp in equation (21). Equations (22)
and (23) remain unchanged for this configuration.
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APPENDIX G
METHOD OF REDUCING WIND-TUNNEL DATA

Difficulty is usually experienced in applying data obtained from
wind-tunnel tests to the design of a full-scale airplane, especially in
those cases where of necessity the stiffness of the model differs from
that of the full-scale airplane. The purpose of this appendix is to pre-
sent a method of analysis by which model flexibility effects may be
removed from the aerodynamic coefficients.

Description of method.- The method utilizes equation (12), which is

[s]€ - o] {oo

where

(- (= e+ o)

When equation (12) is used for computing the 1ift distribution {Z}
for a given full-scale airplane of any given flexibility, the [$1] and

QLp matrices used depend only on the particular configuration and the
given flight conditions, except for certain aerodynamic-twist components

of the {a,g}

o
applicable values for these Gy components and for the Ehé] matrix.
These values may be determined with suitable data from wind-tunnel tests
of a scaled model in conjunction with equation (12) as it applies to the

model.

matrix (see appendix C). There remain to be selected, then,

The approach taken is usually applicable and is based on the assump-
tion that the following data are available from wind-tunnel tests of the
model: (a) the spanwise variation of the section normal-force coefficient
obtained from integration of pressure data and (b) spanwise variation of
section chord-line angle of attack with free-stream direction obtained from
model deflection data. These data should be available for each of several
root-section angles of attack and at each of several Mach numbers over the
essentially linear range of section 1lift coefficient.
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A downwash matrix [ﬁi] for the model should be computed according

to procedures of appendix A. In general the horseshoe system should be
identical with that which will be used in determination of the airload
distribution on the full-scale airplane. The matrix for the model [Si]M

will then be equal to the reciprocal of the model scale factor times the
[?i] matrix for the full-scale airplane, where the model scale factor is
equal to the model span divided by the full-scale span.

The final angle-of-attack matrix for the model may be written as

G- ) - fd s ) - B

{?}meas +'{ég}1b (AL

where
{%?} angle of attack of root section with undisturbed stream
(measured)
{a] built-in twist (known)
g1
a
{%?} twist due to model flexibility (measured)
M
{aé} interference twist due to aerodynamic interference effects of
Tv neighboring bodies (fuselage, nacelles, external stores, etc.)
.upon the wing (unknown)
{@ sum of measured or known values
meas

Equation (12) for the model then becomes

2, 6 B e+ o) &

Since measured values of {}} are used, equation (G2) represents a
system of independent equations (one for each reference spanwise station
of the model) which do not require a simultaneous solution.



96 NACA TN 3030

10 {&%}I is assumed to be invariant with change in wing angle of
b

attack, the following matrices may be computed from data taken at two
different root-section angles of attack:

o} = {00} cae - {0} nces (e3)
-4

The matrices {;ﬂi} and {Ai} may be substituted for {?
meas
and {i} in equation (G2), since the term.'{ﬁg} has been eliminated,
Ib

and the applicable values of {%é} can be computed from
o
g il
o} - || B, (%)
hq Ao M

The interference twist {%%}I may now be computed from equation (G2)
b

by using the values of {mé} computed from equation (G5) and the values of

{1} and {é}meas measured at any root-section angle of attack, for exam-

le 1 and 5
. { 2 {?2 meas

The foregoing procedure indicates the simplest solution for the con-
stants in the straight-line equations given by equations (G2). If desired,
equations (G2) may each be solved somewhat more accurately for %qﬂ
and {&%}I by a least-squares procedure which utilizes values of {?}

b

and {@}me&s taken at several values of root-section angles of attack.

If the interference twist GgI at any section is assumed to include
b

a component that varies with change in some section chord-line angle of
attack, the method is still applicable to a close approximation. In this

case the variable interference effects will appear implicitly in ~{mo}'

The approximation arises from the assumption (implied in the above
solution) that for a body at some spanwise station J there exists an
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interference twist at some other station i which is proportional to the

change in geometric angle at 1i; whereas in actuality the interference
twist at station i 1is proportional to change in geometric angle at the
body station j.

Justification for the assumption can be shown as follows. Denote
interference twist by oy and the measured section chord-line angles at

stations i1 and J by a3 and o,. Interference twist at station i

J
due to the body at station j is written as the sum of a constant plus
a variable twist

where kij is the proportionality constant. The final angle of attack

at station 1 then is

and equation (G2) for the spanwise station 1 1is

EE L?lJi {l} m; ay + kijaj 4 (an)i)

However,

o= ot <%, - a“)
J 1 J 1

iChieretore,

s, :mi<(1 + kg Jay + Ky (a5 - o) +(%O>i> (c6)

The middle term is small compared to the first term and may be neglected
since, for station i close to station Jj, the difference @y = %y is
negligible, and for station 1 far from station Jj the interference
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effect and therefore k is negligible. If the middle term is neglected,
equation (G6) becomes equivalent to equation (G2) and the factor

1+ kij is apparent in the values of m, computed by equation (G5)

even though it does not appear explicitly; that is, m, computed by

equation (G5) is equal to the term mi(l + kij) in equation (G6).

Although only interference twist was considered in the foregoing
description, the method is obviously applicable for determining other
aerodynamic twists (see appendix C), for example, that due to flap
deflection.

The foregoing method of analyzing data is relatively simple and
straightforward and has the following advantages over other currently
available methods:

(1) It provides a means by which data obtained from wind-tunnel tests
of a properly instrumented elastic model wing can be evaluated for appli-
cation to a full-scale wing of different elasticity distribution.

(2) It evaluates the variation of effective section lift-curve slope
and of aerodynamic twist across the span as influenced by the presence of
the fuselage, the nacelles, and other bodies on or near the wing (these
obviously include spoilers, ailerons, and flaps).

(3) It determines the manner in which section lift-curve slope varies
with Mach number.

Although the variation of lift-curve slope with Mach number can be
obtained by the foregoing method by using wind-tunnel data at various
Mach numbers, it is sometimes desired to determine the change (or changes)
in 1ift distribution for section configurations for which suitable wind-
tunnel data are not available, for example, variation of section 1lift
with flap deflection 016'

If the incompressible value of cj5 can be obtained or estimated

by some means (e.g., from tests for the flap deflected at some other sta-
tion) and if the effective sweep angle at the new flap station is known,
then compressible values of Clg can be obtained by substituting the

016 values for the section lift-curve slopes in equation (A39)

m

m =
o]

N1 - MPeos2hy

where my; and m are the compressible and incompressible section 1lift-
curve slopes, respectively.
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It is therefore advantageous to evaluate the spanwise variation of
Ny The effective sweep angle for each section can be obtained from

equation (A39) by using the previously measured variation of my, with

Mach number. For example, equation (A39) can be rewritten as the linear
equation (linear in squared terms)

(7)) + (cos®ag)(€) - 2

This equation can be solved for m and AM by a least-squares procedure
if a series of equations are formed by substituting the values of m.
and M obtained for each of several Mach numbers.

Alternatively, a solution for m and AM can be obtained by a
graphical procedure (ref. 19). Plot the variation of my, with M in
a fashion such that the abscissa (M-scale) is proportional to the fac-

Lor l/Vl - MgcosaAM. The plotted points will fall on a straight line

which passes through the pole <mo = 0, l/@& - MQCOSQAM = O), provided
AM 1is correctly chosen and the law (eq. (A39)) applies. Note that

l/!ﬁ. - Mgcos2AM = 1.0 when M= 0. A form is presented in figure 9 by
which the my values can be conveniently plotted on such an abscissa
scale for each of a number of values of Ay- For example, if a value

of AM is tentatively chosen as Ay = 30°, draw a horizontal line inter-
secting the right-hand ordinate at 30°. The intersections of this hori-
zontal line with the Mach number lines are the abscissa locations for

the indicated discrete values of M. Values of m, are then appro-
priately plotted vertically above or below these intersections. The
intersection of this horizontal line with the pole-distance curve gives
the pole location in scale units to the left of the abscissa point "M.= 0.
The desired value of Ay 1is then the one which gives the most nearly
linear variation of the plotted data with consideration given to the

pole point. The desired m is the value of the intercept at M equal
to zero.

Illustrative example.- This section presents an analysis of wind-
tunnel data obtained on a flexible model to determine the compressible
section lift-curve slopes {mo}.

The model was a wing-fuselage configuration with nacelles mounted
below and forward of the wing on sweptforward struts attached to the wing
semispan stations 1 = 0.37 and 0.65. The wing had the following addi-
tional pertinent physical characteristics:

I . e L g L e R s O ol
g S R e I R e S L AR e o i
Sweep at quarter-chord line, deg . . . . . . . . . . . . g oo Teiier Bl LD

and the locus of aerodynamic centers was assumed to coincide with the
quarter-chord line.
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The model wing was instrumented with strain gages cemented to the
surface of the wing steel spar along one semispan and with pressure
orifices located along streamwise chord sections on the opposite semi-
span at stations 17 = 0.155, 0.3%5, 0.56, Q- H5 and 10592,

Tests were made at root-section angles of attack of 0° and 6O for
Mach numbers 0.30, 0.50, 0.70, 0.75, and 0.80.

The spanwise variation in section angle of attack for each test con-
dition was obtained from the root-section angles of attack in conjunction
with strain-gage readings. The spanwise variation in section normal-force
coefficient for each test condition was obtained by a spanwise fairing of
the various local integrated chordwise pressure distributions.

Elements of the [Sl] matrix were computed for
0= 0105 0.50,:0.50, 070, 0.85, 0:905, and 075,

is

0.14869 -0.04630 -0.01249
-0.0408% 0.14811 -0.05547
-0.00287 -0.01260 0.07827
[?i] = | -0.00042 -0.00068 -0.00426
-0.00013 -0.00017 ‘-0.00053
-0.00008 -0.00009 -0.00023

-0.00006 -0.00006 -0.00015
o

.00482
- 00793
502715
. 04382
. 00522
.00093%

. 00050

-0. 00149
-0.00188
-0.00285
-0.01109
0.04153
-0. 00617

-0.00124

wing semispan stations
The resulting matrix

-0.00082
-0. 00094
-0.00121
-0. 00229
-0.01143

0.03969
-0.00794

. 00063
.00070
. 00084
.00130
. 00287
. 01307

02917

=

where the columns read down from the tip to the root and the rows read

across from the tip to the root.

and tabulated in table I.

Substitution of ﬂﬁi} = {Acnqc for {i} and {;a} for {éﬁ} in

equation (12) gives

(o, 025} - b o)

For these same stations Acpc/4 and
increments of section geometric angle of attack Aa due to the 6° change
in root angle of attack were computed from data at each test Mach number
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o
from which the values [@o] were computed and tebulated in table I.
Values of my for n = 0.975 are not shown since m, is very sensitive

to the manner in which the spanwise variation of Ac, is faired in the

region of the wing tip. These values for each wing station are plotted
against Mach number in figure 10(a).

Since the |S matrix is based upon the "wing alone" configuration,
15

the body interference effects which vary with body angle of attack will
be apparent in the wvalues of lift-curve slope particularly for those
stations near the wing root.

It was assumed that the Prandtl-Glauert relationship was applicable
for these data. Accordingly the {mo} values were plotted (by using a
form similar to that shown in fig. 9) for various selected values of Ny

The plots which yielded the most nearly linear variation of the data
are reproduced in figure (10(b) for each span station. In selecting the
plot which gave the most linear variation of m,, consideration was given

to the fact that at very low Mach numbers (approx. 0.30) the value of m,
could be affected by Reynolds number; whereas those obtained for high
Mach numbers would reflect the effects of shocks, and so forth. These
points were therefore given less weight in determining the best fit.

Plots showing the spanwise variation of effective section sweep
angle Ny and lift-curve slope m are given in figure 11.
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APPENDIX H
CALCULATION OF THE DIVERGENCE DYNAMIC PRESSURE

Although the sweptback wing is usually considered to be divergence-
free, it is conceivable that, with a large external diverging torque
such as may be contributed by a tip tank, the wing could diverge. This
appendix is concerned with the calculation of the dynamic pressure at
which divergence will occur.

An expression for the static lift on a flexible swept wing with an

external tank has been derived in appendix D and, for a divergence inves-
tigation, may be written as follows:

[[I] =l @ﬂ@;—;‘j[ﬁ] 4 [52] {1} - (o} (71)

This is a matrix equation in which the elements in the column represent
the 1ifts on the various spanwise segments of the wing. The total 1lift
can be found from equaticn (H1) by multiplying the 1lift per unit span

by the row matrix [?QJ where 2h defines the segment width in the

spanwise direction. Then

-2t ) - ot | [0 - o) [ 2D - 9| 9

(@76

© = 2fen | |4f7] - D]Lm][] : U] —l{%} o

Equation (H2) represents the lift on a wing in static equilibrium.
Under the condition of wing divergence the equilibrium wing 1lift would
be infinite.
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The divergence speed is then represented by the lowest value of ¢
for which the 1lift in equation (H2) becomes infinite. For the right-
hand side to be infinite, the determinant of the matrix whose inverse
is given in equation (H2) must be zero, or

i - B o] - ] -

which can be written in the form

| - Bl - [

The procedure is to solve for the lowest value of q which satisfies
equation (H3). From the Cayley-Hamilton theorem, the dominant or highest
modulus root A in the equation

Il
(@]

(H3)

Ml - o] = [o] (1)

may be found by iterating the matrix [ﬁ]. In this case equation (H3)
may be put in the form of equation (H4) by multiplying through by

ok

The result is

- |[Je)| R E e
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Now A = %; therefore, iteration of the matrix product

63 el -

will yleld the lowest value of gq, which in this case is the desired
divergence dynamic pressure.

The theory of matrix iteration may be found in reference 20; however,
a simple outline of the steps required to iterate the matrix product (H6)
to obtain the divergence dynamic pressure is given here. First a trial
column is chosen and this column is premultiplied by matrix (H6) to
obtain a result column. The elements of this result column are divided
by the last element of the result column and then become the elements of
a second trial column (the last element will be unity, having been
divided by itself). The second trial column is then premultiplied by
matrix (H6) to yield a second result column. This procedure is repeated
until the same value is obtained for the last element in two successive
result matrices. The reciprocal of this value is the desired divergence
dynamic pressure q.
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TABLE I.- MEASURED DATA AND RESULTING SECTION LIFT-CURVE SLOPES FOR
WIND-TUNNEL MODEL OF APPENDIX G
M = 0.30 M = 0.50 M =0.70
3 Acpe/4 o, radians| my [Acpc/k|Aa, radians my |[Acpe /4 |Aa, radians| mg
0.975(13.897| 0.10135 |----|13.628] 0.09665 |----|14.358 DBEgEET Pass
.925116.966 .1014%0 |4.75(17.460 .09672 |5.08[18.819 .09132 |6.20
.85 [20.775 10148 [5.41(21.682 .09710 [5.54 |22.998 .09192 |6.08
.70 |24.390 .10217 |4.83|27.023 .09849 [5.98128.903 .09e5 16,71
.50 130.490 .10317 |5.84|31.658 .10097 |[6.25]33.669 .09832 |6.79
.30 |36.112 .10401 |6.97]|36.112 .10294%  [6.69 |38.241 JA0LT7E  16.93
.10 |37.485 10455  17.19139.490 Jdokak 17,74 143,587 10392 18,72
M=0.75 M = 0.80
1 Acpe/M|ta, radians| my |Acpe/M|Ax, radians| mg
0.975115.510f 0.08972 (----{15.433| 0.08762 T
.925119.684 .08997 16.59|20.631 .08792 6.97
85 |23.814 .09066 |6.46(25.492 .08867 7.0
.70 [29.548 .09316 |6.86(31.80k4 .09152 745
.50 |34.837 09772 |7.15|37.886 .09662 7.8%
.30 139.077 .10137 |7.00|42.650 .10082 T-59
30 [45.157 .10382 [9.09(50.126 .10382 |10.16

0¢0¢ NI VOVN

10T
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Figure 1.- Angle-of-attack definitions and sign conventions. Positive
angles shown.
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| Figure 2.- Typical vortex locations and location of pertinent points on
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Figure 3.- Structural skeleton of outboard sections of left wing shown
in plan view.
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Figure 4.- Plan view of left wing tip section.
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Figure 5.- Polar representation of left wing used in development of the
‘:82'] matrix.
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(Note that a straight-line image bound
vortex is used instead of its true shape,
i.e., chord of the arc instead of the

circular arc itself.)

(a) Front view of typical vortex-image system (high-midwing configuration) .

Figure 6.- Diagram of vortex-image system for a wing-fuselage combination.
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(b) Plan view of typical vortex-image system (midwing configuration).

Figure 6.- Concluded.
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Figure T7.- Plot of overvelocity contours.
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Figure 8.- Diagram of a representative wing—tail-boom combination showing
entry of tail load on to wing structure (d is distance between stations
measured perpendicular to streamline).
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Figure 10.- Variation at several semispan stations of section lift-curve
slope with Mach number for linear scale and expanded M-scale. Wind-

tunnel model of appendix G.
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Figure 11.- Spanwise variation of effective sweep angle Ay and section
lift-curve slope m for wind-tunnel model of appendix G.
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