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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 3030 

A METHOD FOR CALCULATING THE SUBSONIC STEADY -STATE 

LOADING ON AN AIRPLANE WITH A WING OF ARBITRARY 

PLAN FORM AND STIFFNESSl 

By W. L. Gray and K. M. Schenk 

SUMMARY 

A method for computing the steady-state span load distribution on 
an elastic airplane wing for specified airplane weights and load factors 
is given. The method is based on a modification of the Weissinger 
L-method and applies at subcritical Mach numbers. It includes the 
effects of external stores and fuselage on the spanwise loading. Modi­
fications are outlined for treating tail-boom and tailless airplane con­
figurations and for calculating the divergence dynamic pressure of a 
swept wing with a large external store. A method is also outlined for 
reducing wind-tunnel data to obtain effective aerodynamic coefficients 
which are free of model flexibility effects. The effect s of Mach num­
ber can readily be evaluated from the aerodynamic coefficients thus 
obtained. 

INTRODUCTION 

The inclusion of the effects of flexibility in the solution of the 
spanwise airload distribution applied to a wing of arbitrary plan form 
and stiffness dist ribution has increased the complexity of analysis over 
that for a rigid wing. The methods that are available at the present 
time are generally concerned wit h the calculation of loading on an iso­
lated flexible wing rat her than the more practical case not only where 
the effects of fuselage and nacelles on the spanwise loading must be 
taken into account but also where the total lift on each of the major 
components must be considered simultaneously in order to determine the 
wing loading at a specified load factor. A method for including such 
effects without recourse to iterative procedures for steady-state flight 
conditions and subcritical Mach numbers is presented in this paper. The 

lBased on Boeing Airplane Company Document No. D-10624, "A Matrix 
Solution for the Subsonic Steady State Aeroelastic Loading on Airplanes II 
by W. L. Gray and K. M. Schenk, June 1, 1951. Acknowledgement is made 
to Messrs. Paul W. Harper and John B. Garvin of the NACA for ext ensive 
work in editing and revising this document. 
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2 NACA TN 3030 

equations are derived so that the spanwise airload distribution can be 
expressed in matrix form in terms of influence coefficients for aero­
dynamic induction and structural deflection in a manner similar to that 
employed in reference 1. 

The basic method is outlined in the body of the paper. Included 
in appendixes are details of the various derivations, the expansion of 
the basic equations to include fuselage interference and store load 
effects, the modifications for tail-boom and tailless configurations, 
a method for determining divergence dynamic pressures for swept wings 
with lar ge external stores, a method for reducing wind-tunnel data to 
obtain effective aerodynamic coefficients which are free of model flexi­
bility effects, and a method f or obtaining compressibility corrections. 

SYMBOIS 

The following symbols appear in the body of this report. Addi­
tional symbol s which appear only in the appendixes are defined as they 
ar e introduced. 

b 

c 

c 

EI 

GJ 

wing span, in . 

fuselage lift coeffic i ent in presence of wing at ~ = 0, 
LF/qS 

fuselage pitching-moment coefficient about c/4 point in 
presence of wing at ax = 0, Mp/qSC 

r a te of change of fuselage lift coefficient with ~, 
per radian 

r a te of change of fuselage pitching-moment coefficient 
wi th ~,per radian 

local chord parallel to plane of symmetry, in. 

wing mean geometric chord, in. 

wing section pitChing-moment coefficient 

ef fective value of product of modulus of elasticity and 
wing section beam bending moment of inertia, lb-in.2 

effective value of product of shear modulus of elasticity 
and wing section polar moment of inertia, lb-in. 2 

-- --- -- --'- - - .. - - - -- ----

,. 
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h 

IX 

Iy 

Mxp 
1 

n 

p 

Q 

r 

S 

semispan of horseshoe vortex, in. 

airplane rolling moment of inertia, lb-in. 2 

airplane pitching moment of inertia, lb-in. 2 

wing running lift per inch of span perpendicular to plane 
of symmetry, lb / in . 

fuselage pitching moment about c/4 point in presence of 

wing, rillp'O + (CIllp' )aa~QSC, in-lb 

airplane rolling moment, in-lb 

elast ic-airplane rolling moment caused by unit aileron 
deflection, in- lb 

elastic-airplane damping moment in roll caused by unit 
wing-tip helix angle (pb/2V)1' in-lb 

elastic- airplane rolling moment caused by unit rolling 
angular acceleration acting on the wing distributed 
inertia, in-lb 

elastic-airplane rolling moment caused by unit spoiler 
deflection, in- lb 

two-dimensional lift-curve slope per radian, including com­
pressibility effects, for sections parallel to plane of 
symmetry 

airplane load factor , positive when inertia loads are downward 

balancing tail load, positive upward, lb 

airplane rolling velocity, radians/sec 

airplane rolling angular acceleration, radians/sec2 

dynamic pressure, lb/sQ in., PV2/2 

radial distance from vortex core, in. 

wing area, sQ in. 
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true free-stream velocity, in./sec 

airplane gross weight, lb 

wash velocity induced by line vortex at perpendicular dis­
tance r from vortex line, positive for downwash, in./sec 

downwash angle at three-~uarter-chord point induced by 
vortex system representing wing and its spanwise lift 
distribution 

s treamwise distance from pitch reference axis to bound 
portion of horseshoe vortex, positive when vortex is 
to rear of pitch reference axis, in. 

streamwise distance from pitch reference axis to c/4 line, 
positive when c/4 line is to rear of pitch reference 
axis, in. 

streamwise distance from pitch reference axis to airplane 
center of gravity, positive when center of gravity is to 
rear of pitch reference axis, in. 

streamwise distance from pitch reference axis to center of 
pressure of balancing tail load, positive when center of 
pressure is to rear of pitch reference axis, in. 

lateral distance from wing center line, in. 

final angle of attack of section zero-lift line with respect 
to local free-stream direction, Or + a g + as' radians 

(see fig. 1) 

change in section angle of attack due to aerodynamic twists 
and due to all structural twists associated with a flexi­
ble wing which are not a ccounted for by the as term, 
radians (see fig. 1) 

angle of attack of root-section zero-lift line, radians 
(see fig. 1) 

change in section angle of attack due to wing lift distri­
bution acting on a flexible wing (as = 0 for a rigid wing), 

radians (see fig. 1) 

strength of line vortex, in. 2/sec 

aileron deflection, radians 

-- --- -------

, 
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e 

A 

p 

5 

spoiler deflection 

dimensionless spanwise station, Y/~ 
airplane pitching angular acceleration, positive for nose up, 

radians/sec2 

local sweep angle of elastic axis, radians 

equivalent local sweep angle including compressibility 
effects, radians 

mass density of ambient atmosphere, slugs/cu in. 
(p = 0.114679 X 10-6 Ib -sec2 /in.4 at standard sea­
level conditions) 

Matrix notation: 

[ ] square matrix, elements of which are designated by use of 
subscripts; for example, element ai j is in ith row and j th column 

row matrix 

column matrix 

diagonal matrix, which is a square matrix in which 
elements are zeros except those on the principal 
diagonal all ' a22' a33' . . . ann 

all 

aerodynamic-induction or downwash matrix in which 
ments ai j relate downwash angle at station i 

ele­
to 

unit running lift at station j on wing 

elasticity matrix in which elements a1j relate changes in streamwise angle of attack at station i to unit 
running lift at station j on wing 

fuselage image-vortex matrix relating image downwash 
effects at station control points to unit running lifts 
(see appendix E) 

fuselage Jlovervelocity" matrix (see appendix E) 
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identity matrix; that is, diagonal matrix in which 
diagonal elements are equal to unity 

PRESENTATION OF METHOD 

In this section of the report the basic equations necessary to the 
method are outlined and discussed in a general way. Details of the 
derivations are contained in the various appendixes. 

Assumptions 

In the development of the method certain assumptions that are 
common to airfoil theory apply, nrunely: 

(1) The flow is potential; that is, boundary-layer effects, separa­
tion, and compressibility shocks are absent or negligible. 

(2) The wing thickness is small. 

(3) A stagnation point exists at the wing trailing edge. 

(4) The angles of attack a are small so that 
(where a is measured in radians) and cos a ~ 1. 

tan a ~ sin a ~ a 

(5) All drag-load effects except those due to nacelles and stores 
are neglected entirely in determini ng the deformations of the wing used 
in obtaining the equilibrium spanwise airload distribution. 

With regard to the structure the following assumptions are made: 

(1) Camber changes arising from twisting and bending of the wing 
are neglected entirely. 

(2) The elastic twist of the control surface is the same as that of 
the adjoining wing structure. 

(3) The angles of structural deflection e are small so that 
tan e ~ sin e ~ e (where e is measured in radians) and cos e ~ 1. 

(4) Although the angle -of-attack changes, including those due to 
bending and torsional deformations of the wing, are accounted for in 
the determination of the equilibrium spanwise air load distribution on 
the wing, thi s final airload distribution is applied to the geometry of 
the undeflected wing in computing the bending and torsional moments. 

- - - ~ - - --~~.-~--
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Basic Equations 

Symmetrical flight conditions.- The fundamental problem involved is 
the development of a series of equations which relate the spanwise lift 
distribution for an arbitrary wing plan f orm in a given flight condition 
to the properties and attitudes of the individual sections that form the 
wing. 

If the two-dimensional wing is considered first, the following 
relationships for lift and downwash behind an airfoil are available 
from most standard textbooks on aerodynamics: 

> 
7, pVf p , Hf I- '" .. ,,; ~ 

7, = 
V2 

IDapa.f "2 c 

wr 
r 

21Q' 

(1) 

(2 ) 

(3) 

The circulation r is taken to be such that, at a specified dis­
tance r behind the lifting line, the resultant of the downwash veloc­
ity wr and the flight velocity V is parallel to the secti on zero-lift 

line; that is, no flow exists normal to the zero-lift line at this point. 
Then, 

and from equations (1) and (2), 

f=mCL.nY c 
O-:I 2 

Substituting equation (5) into equation (3) results in 

IDa c/2 a.fV 
2:rr r 

(4 ) 

(6 ) 
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or 

In order to satisfy e~uation (4), the expression IDa c/2 in e~ua-
2n: r 

tion (7) must be e~ual to 1.0. Since the theoretical section two­
dimensional lift-curve slope is e~ual to 2n:, r must e~ual c/2, which 
is the distance between the lifting line and the three-~uarter-chord 
point. 

In the development of the method presented in this report, e~ua­
tion (7) is always used in the form 

This simplification re~uires that the section lift-curve slope IDa be 
the two -dimensional value (i.e., the value of the lift-curve slope for 
an unswept two -dimensional wing) and that the location of the downwash 
control point D (see fig. 2) b e one-half of the local streamwise chord 
to the rear of the ~uarter-chord point, or at 3c/4. 

The essential difference between a two-dimensional wing and a wing 
of finite aspect ratio arises from the nonuniform spanwise loading which 
produces the trailing vortices of the finite-aspect-ratio wing. The 
e~uations presented thus far are considered to apply to the finite ­
aspect-ratio wing when the effects of all the vortices, both bound and 
trailing, have been taken into account. 

Equation (8) in matrix form is 

o 

{vtA = ~ {"r} 

This matrix relation represents a series of e~uations, each applicable 
to a particular station on the semis pan of the wing. The values of 

(~) ,everyone of which is affected by the bound and trailing 
V 3c/4 

-------

, 
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vortices at all of the wing stations, can be evaluated from 

~1s11 {r} 
4rcv L:J 

which, in combination with e~uation (1), results in 

~@iJ [z} 
8rc~ 

(10 ) 

The ~lJ matrix in these e~uations is the aerodynamic-induction or 

downwash matrix which is derived in appendix A. 

Combining e~uations (9) and (10) gives 

o 

{V}3C/4 " 8~'l~~ (z} " ~{~ (11) 

or 

o 

~~~~{z} " (12) 

-
The series of e~uations represented by the matrix e~uation (12) expresses, 
for any given dynamic pressure, the relationship between the spanwise 

variation of running lift {l}, the final section angles of attack {ar}, 
and the spanwise variation of the two-dimensional section lift-curve 

o 
slope ~J. The effects of wing plan-form geometry are accounted for 

thro~h the elements of the Q3~ matrix. The section lift-curve slope 

is expressed in the general form IDa rather than 2rc to permit substi­

tution of actual values when available from scaled-model tests or to 
permit correction for compressibility effects as described in appendix A. 
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The final angle-of-attack variation across the span {~} can be 

considered to be composed of three essential parts (see fig. 1) 

For a wing free of external stores, the angle of attack caused 

by structural deflection of a flexible wing due to the section lifts 
acting at the section aerodynamic centers is linearly related to the 

matrix (I} by an expression derived in appendix B as 

(14 ) 

The wing geometry and stiffness are accounted for in the structural-

deflection matrix This matrix is based on loadings associated 

with stations which are parallel to the airplane plane of symmetry. In 
a swept wing, however, the structure is usually arranged such that the 
wing boxes are formed between stations approximately perpendicular to 
the elastic axis. In order to obtain a closer representation of the 

loadings and deflections ·on this actual wing, an ~2~ matrix was also 

derived (see appendix B) and may be substituted for the ~~ matrix in 

equation (14) when desirable. 

The {ag} matrix of equation (13), as described in detail in 

appendix C, is composed of built-in twist, apparent or aerodynamic twists 
such as those due to interference, control deflection, and angular veloc­
ities, and all structural twists of an elastic wing which are not accounted 

for in the {as} matrix. 

Although equation (12) is perfectly general, it is not useful in 
the form given for determining the lift distribution on a flexible wing 

since a component of the {ar} matrix is itself a function of the lift. 

If {as} is therefore expressed as in equation (14), equations (12) 

-- ---~ _ _ ___ ~_--.J 
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and (13) may be combined so as to express the load distribution on a 
flexible wing in terms of wing root angle of attack and any combination 

of the {~g} twists as 

o 

~:~ ~~ {z} = ["'r} + {<Lg} + CS~ {z} ;>I 

or 

(16) 

Design conditions, however, are usually specified in terms of gross 
weight and load factor rather than root angle of attack. The inclusion 
of these two additional independent variables requires two additional 
equations. By considering that the airplane must be in equilibrium as 
regards vertical forces and pitching moments, the two additional equa-
tions may be written as h " 5 

f,.~ 

2L21.:J{r} + PT - nW = 0 

• r • , [,. < • 

for equilibrium of vertical forces and c ,0.>(,. 

>(, p e,:h .. -f- h J 

-( 

-2l?P~ {r} + 2ql?hc:j ~mJ -PM + nWxA = 0 (18) 

for equilibrium of pitching moments about the pitch axis_ 

Equations (16), (17), and (18) are the basic eguations for a 

flexible-wing airplane. They may be solved simultaneously for {r}, 
Ur, and PT as functions of .any design values of speed, gross weight, 

and load factor. Equation (16) as written applies to symmetrical flight 

conditions, but by substitution of an antisymmetrical ~iJ matrix 

(see appendix A) it is then applicable to unsymmetrical flight condi­
tions which are considered in greater detail under the following sec­
tion heading. 
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E~uations (16), (17 ), and (18 ) can be altered as shown in the fol­
lowing paragraphs to include (a) the effects of forces on the fuselage, 
(b) the effects of external stores by the method derived in appendix D, 
and (c) the interference effects on the exposed-wing loading due to the 
presence of the fuselage by the method derived in appendix E. 

In connection with forces on t he fuselage (item (a)), the lift and 
moment characteristics of the fuselage in the presence of the wing are 
as sumed t o be known . The lift and pitching moment of the fuse lage may 
then be written with small error as 

(20) 

in which fuse la e up l oads and no~e -u moments are considered positive. 
This lift and moment may be appropriately included in e~uations (16 ), 
(17 ), and (18) to get the following more complete set of e~uations 
(see fig . 2): p ,t-CL<>r 

or4-Y f ~ 
o~ C 

t'1f:r' ,f.eT ,." 
~ iF /3"" - -rtf" ..,nIl. 

~~@~ [S~{l} {crr}+ Q = h} 

For the wing load distribution, 

(21 ) 

for the summation of vertical forces, 

(22) 

t 
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and for the summation of pitching moments, 

The twist term PT{o} appearing in equation (21) has been included 

at this point to provide for the possibility that tail loads may enter 
the wing at some point along the span, as for a tail-boom type of con-

figuration, for instance. This PT{o} contribution is otherwise con-

sidered to be zero. A method for handling the tail-boom type of airplane 
as well as the case of the tailless airplane is described in appendix F. 

In considering the effects of the external s tores (alteration (b)), 
as in the case of the fuselage, the lift and moment characteristics of 
the stores in the presence of the wing are assumed to be known so that 
the lift and moment can be given by expressions similar to equations (19) 
and (20) for the fuselage. 

The lift-distribution equation for the store case derived in appen­
dix D, with the PT term included as before for generality, is 

(24 ) 

in which the matrices ~ ] and {B } relate an (Ls type of twis t of 

the elastic wing to the store lift and moment. This twist i s handled in 

two parts so that the part that varies with the span loading {I} may 

be intr oduced on the l eft-hand side of the equation in a manner parallel 

to that for the ~2J matrix . 
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The vertical-force and pitching- moment eQuations (22) and (23) are 
modified to include store lift and moment in a manner similar to that 
in which the fuselage lift and moment were previously included. In the 
notation introduced in appendix D these eQuations for one or more stores 
become 

for summation of vertical forces and 

for summation of pitching moments. In these eQuations the subscript n 
is the store index which, for any particular configuration, has as many 

values as there are stores on the semispan. The matrix notation LEnJ 
which gives the angle of attack of the store is defined in appendix D. 

The third and final alteration (item (c)) to be considered in con­
nection with eQuations (16), (17 ), and (18) is the change in span load 
distribution of the exposed wing due to the presence of the fuselage. 
This interference effect is derived in appendix E. The over -all fuselage­
interference effect is considered to be composed of two parts. The first 
is that due to the image vortex system within the fuselage which is 
reQuired to satisfy the condition of zero velocity normal to and at the 
fuselage surface. This condition is satisfied by adding a correcting 
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I!J matrix (see appendix E) to the [SlJ downwash matrix. The second 

part of the effect is the increment in vertical velocities over the 
exposed wing due to the presence of the fuselage at an angle of attack. 

This effect is calculated as an interference twist of the {~g} type 

and is expressed as a function of fuselage angle of attack times the 
o 

"overvelo.ci ty" matrix @oJ. (See appendix E.) The lift distribution 

(eq. (21)) when altered to include these fuselage-interference effects 
becomes 

o 

where the elements of the ~oJ matrix give the increments in vertical 

velocities along the span. 

The calculation of these fuselage effects would not be required if 
appropriate data were available from wind-tunnel tests of a scaled model 
of the subject airplane. A method of determining these and other aero­
dynamic twists as well as the applicable values of section lift-curve 
slope from appropriate wind-tunnel data is given in appendix G. The 
method utilizes equation (12) to obtain aerodynamic coefficients which 
are free of model wing flexibility effects and which are therefore appli­
cable to the full-scale airplane having a wing flexibility different from 
that of the model. 

Unsymmetrical flight conditions.- In addition to the symmetrical 
flight conditions already outlined) a number of unsymmetrical flight 
conditions are usually investigated in structural design. Among the 
conditions which may readily be investigated by the methods of this 
report are those which arise through the use of roll-producing devices 
such as ailerons or spoilers. The load distributions on an elastic wing 
associated with roll-control deflections may be thought of as the summa­
tion of distributions from the following specific loadings: 
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(1) The symmetrical or pre-roll loading which exis t ed prior to the 
deflect ion of the roll-producing device. 

(2) The incremental loading resulting from the deflection of the 
roll-producing device. 

(3) The incremental loading associated with a const ant rolling 
velocity with no roll-control deflection) which is usually described 
as t he damping-in-roll loading . 

(4) The incremental loading caused by the rolling angular accelera­
tion. This loading results from t he structural twists {~g} of t he 
elastic wing when the rolling accelerat ion p acts on t he wing mass 
distribution (see appendix C). Note that t he resulting aerodynamic 
rolling moment will generally be in the same direction as the applied 
rolling acceleration. 

Three fli ght rolling condit ions will be used to outline the pro­
cedure for determining unsymmetrical loadings on the wing . These 
rolling condit ions are : 

(a) Steady roll at some specified value of wing-tip helix angle pb /2V 
wit h no rolling acceleration 

(b) Roll initiation resulting from the inst antaneous deflection of 
the roll-cont rol device to the angle required to obtain the specified 
value of pb/2V but wit h no rolling velocity 

(c) Roll termination) that is) control surfaces deflected in 
opposition to t he steady rolling velocity pb/2V 

Steady roll: In a steady-roll condit ion t he span load distribution 
for the elast ic wing is given by the summation of the f irst three loadings 
enumerated . 

The dist ribution obtained for the first) or pre-roll) loading is 
described in detail in the section "Symmetrical flight conditions. II 
Equations (16)) (17)) and (18) or their appropriate equivalents are 
used together with the symmetrical @lJ matrix of appendix A. 

Pte distribution of loading and its associated rolling moment Mxa
l 

or MX resulting from a unit antisymmetrical deflection oal or oSl 
sl 

of the roll- control device are obtained from equation (16)) the antisym-

metrical matrix of appendix A) and the appropriate {~~1 matrices 

which give the aerodynamic and structural twists resulting from a unit 

deflection of the roll-control device. These {~g} matrices can be 

written in terms of control-surface deflection by the method described 
in appendix F or by means of data from wind-tunnel tests) if available. 

• 
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Similarly, the distribution of loading and the damping moment MX 
Pl 

associated with a unit value of the wing-tip helix angle (pbj2V)1 are 

obtained from equation (16) and the antisynnnetrical @J matrix. The 

{ag} values in this case vary linearly and antisymmetrically across the 

span from (pbj2V)1 at one tip to -(pbj2V)1 at the other. 

These unit load distributions associated with oal or oSl and 

(pbj2V)1 must then be scaled up or down according to the amount of con-

trol deflection oa or 
The deflection required 
the airplane in roll as 

Os required to give the desired value of pbj2V. 
is obtained from the equation of equilibrium of 

°a 
MXal 

1?E. MXPl 
(28a) 

Oal - 2V (pbj2V)1 

or 

MX 
pb 

MxPl 
Os 

sl 
(28b) --- -

OSl 2V (pbj2V)1 

where the rolling moment produced by the control deflection balances 
the rolling moment due to damping in roll in the steady specified rolling 
condition. 

After the unit load distributions have been scaled in the manner 
just described, they may be added to the pre-roll loading to obtain the 
load distribution for the specified steady-roll condition. 

In this outline the assumption of equal and opposite roll-control 
deflections is made. If, as is more generally the case) unequal deflec­
tions of the ailerons or spoilers are involved, the span loading must be 
determined in a slightly different way. To illustrate the procedure, a 
spoiler deflection on only one wing may be considered to be equivalent 
to a synnnetrical and an antisymmetrical deflection with an amplitude 
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e~ual to half of the spoiler deflection os/2. The antisymmetrical 
deflection results in a gain in lift on one wing which is exactly bal­
anced by a loss in lift on the other wing so that a rolling moment is 
produced without a change in the over-all wing lift. The symmetrical 
deflection, however, results in a change in total wing lift, and hence 
load factor, with no rolling moment . In order to compensate for this 
change, both the vertical-force and the pitching-moment balance e~ua­
tions must be introduced so that the wing load distribution associated 
with the change in Ur re~uired to compensate for the change in tail 
load can be determined. Adding the symmetrical and unsymmetrical loading 
distributions will give the proper lift distribution for the wing with 
a single spoiler deflection os' 

Differentially operated ailerons might be considered in a manner 
similar to that outlined for the spoiler. A further extension to include 
the combined deflection of both ailerons and spoilers can also be made 
in the same way by making use of the proper spoiler-to-aileron gearing 
ratio. 

Roll initiation: In the roll-initiation condition where no rolling 
velocity is assumed to exist, all the listed loadings occur except that 
due to damping in roll. 

Since the control deflection (oa or os) will already be known 
from the steady-roll condition, the problem is to determine the initial 
rolling angular acceleration p for instantaneous control deflection. 
The procedure involved is first to find the wing spanwise airload dis­
tribution and its rolling moment Mx. due to a unit rolling angular 

PI 
acceleration The values of MoT. depend on the wing mass and 

··~Pl 

stiffness dist ributions as well as wing aerodynamics. The values are 
obtained from e~uation (16 ), or its e~uivalent, for antisymmetric ~light. 
With the value of MXPI known, the desired angular acceleration p is 

then found by solving the following e~uation of motion for the airplane 
in roll: 

Mxal 
oa --

oa 
P 1 

(298.) = 
IX 1%:Pl - --

386.4 PI 
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or 

Os 
MJeSl 
oSl 

P = 
IX Mx· Pl 

(29b ) 

- --
386.4 :Pl 

where the moments are given in inch-pounds. The value of p obtained 
from equation (29) is then used to scale the loadings previously found 
for the unit rolling acceleration to the correct value. 

Roll termination : In the roll-termination condition, the airplane 
is assumed to be rolling with a wing-tip helix angle pb/2V and the 
roll-control device is moved abruptly in a direction such as to reduce 
the rolling velocity to zero. As in the roll-initiation condition, the 
desired airplane rolling acceleration is obtained from the equation 
expressing the equilibrium of the air load and inertia-load rolling 
moments, which for aileron control is 

Mxal pb MxPl 
oa -- + - ~--:--

p = __ 0_a=1 __ 2_V_(P_b_/_2V_)-=1 

IX 
386.4 

Mx· 
-~ 

The airloads on the wing are those caused by the pre-roll condit ion 
plus the air loads from aileron deflection, damping in roll, and rolling 
acceleration. The inertia loads are those arising from the pre-roll 
condition plus the effects of the rolling acceleration :p. 

DISCUSSION 

The method outlined in this report not only includes several previ­
ously omitted items which are of practical interest in the design of a 
wing for aeroelastic effects but also is sufficiently extensive in scope 
that almost any type of airplane configuration may be considered. Because 
of its length, however, the method is better adapted to the determination 
of loads on a specific airplane rather than to preliminary design studies 
of several configurations. 



20 NACA TN 3030 

Matrix formulation of the problem has particular merit for such a 
general treatment since discontinuities in angles -or masses due to either 
special aerodynamic or structural features can readily be included. -It 
also permits future improvements to be made to the details of the separate 
appendixes without essentially modifying the method which has been outlined. 
In fact) throughout the paper it is possible that the engineer would modify 
the method to suit his own needs and draw from the appendixes whatever mate­
rial would be required to investigate the problem at hand. In such a modi­
fication he would of necessity consider the relative merits of ease in com­
putation against the accuracy both of the method and of the data available. 

For these reasons, only a few general guides which might be considered 
for successful application of the method are given. 

For mo equal to 2rr, equation (12) will give essentially the 
same results as those given by the Weissinger L-method of reference 2 
which is valid for wings of arbitrary plan form and having flat-plate) 
circular-arc) or parabolically cambered airfoil sections (refs. 3) 4) 
and 5). The method would be expected to give the most accurate results 
when applicable values of IDa are known) such as those obtainable by 
the method of appendix G for instance) since in general the fuselage, 
flaps, and external stores will affect the applicable values of mo. 
In fac t ) equivalent values of any of the aerodynamic parameters as 
obtained from experimental data by the method of appendix G are pre­
ferable to purely theoretical values and m~ easily be incorporated. 

The treatment of compressibility effects used in this report) 
wherein each wing section is permitted to have its own compressibility 
correct ion) differs from the Prandtl-Glauert method in that the wing 
plan form is not distorted; instead) the angles of attack are altered 
as indicated by equation (11). The t r eatment adopted has the merit of 
considerable saving in time for equal or better accuracy since only 
one ~:iJ matrix is required for all Mach numbers. The methods of 
obtainlng compressible values of IDa are described in appendixes A 
and G. 

With regard to the number and selection of the horseshoe vortices 
to be used to represent span loading) it is suggested that the horse­
shoes be chosen narrower over that portion of the span where large gradi­
ents in loading are expected) that is, near the ends of control surfaces ) 
near large changes in sweep) and at the wing tips. At least two vortices 
should be used with each control surface and a minimum of seven per semi­
span is suggested for a "Clean" wing. 

With regard to the structural parameters EI and GJ required, it 
may be stated that equivalent values which include the stiffnesses con­
tributed by the leading- and trailing-edge structure should be used in 
preference to the usually conservative values employed in the structural 
analysis of the wing for shear and bending stresses. 
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In the design of a simple wing-fuselage combination without external 
stores or nacelles) it is necessary to study and apply the results of 

only appendixes A, B, C, and E which describe the fsiJ, ~2J, and {cx.g} 

mat rices as well as the fuselage-interference effects. Effects of store 
and nacelle loads and moments on the wing load distribution are covered 
in appendix D. Appendix F outlines the modifications required to adapt 
the method to the determination of wing loads on flexible tailless and 
tail-boom airplane configurations. Appendix G indicates a procedure for 
obtaining equivalent values of section lift-curve slopes , effective com­
pressible section sweep angles, and interference twists from wind-tunnel 
tests of models which may not be scaled correctly for flexibility. Appen­
dix H deals with the determination of the divergence dynamic pressure of a 
swept-wing airplane with a large external store. The problem of divergence 
normally does not occur with a swept wing except that the attachment of 
a large external store may cause it to diverge. The determination of 
the divergence dynamic pressure is the only case in this paper which 
requires iterative procedures. 

Boeing Airplane Company, 
Seattle, Wash., July 8, 1953. 

J 
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APPENDIX A 

AERODYNAMIC FUNDAMENTALS 

The purpose of this appendix is to explain, in simplified form, the 
aerodynamics involved in and the steps necessary for the computation of 

the downwash matrix [S~ and to develop the correction for compressi­

bility used in this report . 

The lift or circulation distribution which varies along the span 
of a wing can be visualized as resulting from a system of horseshoe 
vortices, each of which is of constant strength. Such a system of 
horseshoes is illustrated in the following sketches, in which double 
arrows are used to indicate that the sense of circulation around each 
line-vortex segment is given by the right-hand rule: 

t t t t t + 
ff fe Id fcfb fa 

Actual air load 
curve 

Approximation to the 
actual loading as 
given by horseshoe 
vortices 
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It is obvious from the sketches that the shape of the actual load 
distribution may be approximated to any practical degree of accuracy by 
a suitable change in the number of horseshoes, each of constant strength. 
The point of importance is that the net strength of the trailing vortex 
at any point on the span of the wing is numerically equal to the rate 
of change of strength of the bound vortex in the spanwise direction. 
The strength of the trailing vortices would therefore be greater for 
those portions of the wing span over which the more rapid changes in 
the spanwise airload distribution occur. 

Results of theoretical investigations have shown that little loss 
in accuracy with respect to the spanwise air load distribution will be 
entailed if: 

(1) The total strength of the chordwise system of bound vortices 
is concentrated in one bound vortex located at the local streamwise 
quarter-chord point. 

(2) The downwash angle at each vortex station across the span of 
the Wing, at a point one-half of the local streamwise chord downstream 
of the bound vortex, is equal to the geometric angle of attack. Herein­
after, this point is referred to as the downwash control point D. 

D - b a.r~... tJ 
- :>-

The downwash angle at any such control point D is therefore the 
total induced downwash velocity at that point, normal to the plane of 
the wing and caused by the complete system of bound and trailing vortices, 
divided by the flight velocity of the wing. 

It should be mentioned that the condition described in paragraph (2) 
is true as wri'tten only for airfoils having a two-dimensional lift-curve 
slope equal to 2rr. As is discussed in a subsequent section of this 
appendix, the condition described in paragraph (2) is modified to the 
following form when the section two-dimensional lift-curve slope is 
different from 2rr: 

(Ai) 

The downwash velocity at a point due to a single horseshoe which 
is composed of a bound vortex and its associated pair of trailing vortices 
is known to be proportional to the strength of the circulation of that 
horseshoe and, therefore, proportional to the running lift on that por­
tion of wing span represented by the bound vortex of that horseshoe. The 
downwash angle at anyone downwash control point thus is the s um of the 
incremental downwash angles due to each of the horseshoes in the system 
of horseshoes which represent t he wing and its lift distribution. 
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Within the limitations which accrue from the use of a limited number 
of horseshoe vortices to represent a wing, the elements with which to 
solve the following probl~m are now available: 

Giyen t he£eometry of a wing plan form, the BugJe-of-attack varia­
~, and the section two-aimensional l ift GUF¥~&p~riatiou across 
the span, determine the spanwise airload distribution. The unknowns 
are, of course, the values of the running lift at each of several points 
on the span. A necessary condition to the determination of these unknowns 
is that as many independent equations be available as there are unknowns. 
This condition can be fulfilled if the angle of attack is known at each 
of the wing stations for which the loading is to be determined. 

It is obvious that, if the strength of each bound vortex represents 
the average airload over its own portion of the wing span, good accuracy 
will be obtained if the values of the running load, as determined from 
the solution of the simultaneous equations, are considered to be valid 
at the midspan point of each bound vortex. The shape and distribution 
of the continuously varying airload curve is then obtained by fairing 
a curve through all of the points thus obtained, with the restriction 
that the loading must drop to zero at the wing tip. 

The method for determining the [sJ matrix is now illustrated for 

a typical wing shown in the following sketch, which includes a system 
of horseshoe vortices and associated downwash control points: 

, 
.... 

r ~~} Typical 

I 

Trailing 
edge 

"' Trailing vortices 
extend to infinity 

v 

./ Leading edge 

I 
I 
I 
I 
I 
\ 
\ 

I 
I 

\ 

\ 
\. 

c/4 points 

6 
8 

' Locus of downwash control 
points at 3c/4 

---------
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In actual practice it will usually be necessary to use a larger number 
of horseshoes to represent the wing. Four per semispan are used in 
the following presentation for convenience only. The following typical 
information is available at each spanwise station: 

The section lift-curve slopes (in two-dimensional flow) at sta­
tions ~ = ~l' ~2' • . . are IDa ~ ml' ~, . . . . The angles of attack 
of the section zero-lift line at stations ~ = ~l' ~2' . • . are 

a f = a l , a2 , 

Since a linear relationship exists between the strength fj of a 

particular horseshoe vortex j and the downwash velocity wij at a 

particular point i on the wing plan form due to that horseshoe vortex, 
the following general e~uation can be written: 

yJ :::;.. W 1/ S. -/1 V I: L.()<- I 7 

where K is a constant. A particular horseshoe vortex, such as f l , 

then causes the following values of downwash velocity at control points 1 
to S: 

wll = Kllfl w51 = K51f l 

w21 = K21fl w61 = K61f l 

(A3) 
w31 = K31f l w71 = K71f l 

w41 = K41fl wSl == KSlfl 

Similar relationships exist between f2' f3,... fS and the control 

points 1 to S, that is, 

w12 == K12f2 w22 
- K f - 22 2 . . . . . wS2 == KS2f2 

w13 = K13 r3 w23 = K23 f 3 . . . . wS3 = KS3 f 3 (A4) 

. . . . . . . . . 
wlS = K1SfS w28 = K28 f 8 wS8 == K8Sf8 
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If the horseshoes are symmetrical with respect to the center line 
of the wing plan form, the following values of K are equal for the 
typical wing sketched: 

Further, for symmetrical wing plan forms at zero yaw it is always 
possible to obtain a spanwise air load distribution which is unsymmetrical 
with respect to the plan- f orm center line as the sum of two air load dis­
tributions, one of which is symmetrical and the other of which is antisym­
metrical with respect to the plan- form center line; for example, 

U ---A 

---5 

ct 
I 

I 5--

~----- - ----------- -------"-
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At each spanwise station the S component is that due to the symmetrical 
distribution of load) the A component is that due to the antisymmetrical 
distribution, and the U component represents the algebraic sum of the 
S and A components) that is, the unsymmetrical distribution of load 
across the span. This division offers a considerable reduction in the 
amount of work required in that, fo~ either symmetrical or unsymmetrical 
flight conditions, airload distributions need be determined on only one­
half of the wing, provided, of course, that proper account is taken of the 
sign of the circulations existing over the other half of the wing. 

For a symmetrical distribution of airload over the span 

r l = f8 f3 = f6 

r 2 = f7 f4 = f5 

and for an antisymmetrical distribution of airload 

r --r 2 - 7 

(A6) 

The total downwash velocity at any control point is the sum of the 
downwash-velocity contributions at that point that are induced by each 
of the horseshoe vortices in the system that represents the wing; that 
is, 

(A8) 
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If the equation for the downwash velocity at control point 1 is 
expanded as an example, the result is 

Alternat i vely, by use of the relations in equation (A5), equation (A9) 
can be written as 

In case a symmetrical airload condition is being investigated, sub­
stituting equations (A6) int o equation (A9) results in 

(A10) 

(All) 

For an antispnmetrical airload distribution, substituting equations (A7) 
into equation (A9) r esults in 

(A12) 

l ___ _ 
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For the typical horseshoe system assumed, the complete series of 
equations relating downwash velocities to the circulations are: 

For a symmetrical airload distribution, 

wls = fl(Kll + Klt0 + f 2(K12 + K17) + f3(K13 + K16) + 

f4(K14 + K15) 

w2s = f l (~l + K2aJ + f2(~2 + K27) + f3(K23 + K26) + 

f 4(K24 + K25) 

W3s = f l(K3l + K3S) + f 2(K32 + K37) + f3(K33 + K36) + 

f4(K34 + K35} 

w4g = f l (K4l + K4S) + f2(K42 + K47) + f3(K43 + K46) + 

f 4(K44 + K45) 

and for an antisymmetrical airload distribution, 

29 

W2A = fl(~l - K2S) + f 2(K22 - K27) + f3(~3 - K26) + 

f 4(K24 - K25) (A14) 

W3A = f l (K3l - K3S) + f 2 (K32 - K37) + f 3(K33 - K36) + 

f4 (K34 - K35) 

w4A = f l (K41 - K4S) + f 2(K42 - K47) + f 3(K43 - K46) + 

f4(K44 - K45) 



l 
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From equation (Al) , which expresses the relationship that must exist 
between the downwash angle w/V at each control point, the wing angle 
of attack Uf, and the section lift-curve slope ~ for the wing station 

at the control point, the following series of equations result, where, 
typically, wl represents either wlS or w

lA
: 

wl mlcx,l w3 ~~ =-- -=--
V 2n V 2n 

(A15) 

w2 ~cx,2 w4 m4cx,4 
-=-- -=--
V 2n V 2n 

If 

kll 4n (Kll i: K1S) 

k12 = 4n(K12 ± K17) 

or 

(A16) 

where the upper sign is used for symmetrical airloads, the lower sign 
is used for antisymmetrical airloads, and the subscripts Land R in 
equation (A16) mean left and right wing, respectively, then substitution 
of equation (A16) into equations (Al4) gives 

-- - --- -- - - - -- ---~ 
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The relation between the running load 1 and the circulation is 

11 = pVfl 

12 pVf2 

(AlB) , 

l3 = pVf3 

14 = pVf4 

and the equation relating dynamic pressure to mass denSity and true 
airspeed is 

(A19) 

Equations (A15), (A17), (AlB), and (A19) may be combined to give the 
following final system of linear equations: 

(A20) 

_ ____ __ .J 
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Eq.-uat ions (A20 ) can now be wr i tten in matrix form. The equation 
f or each s t ation can b e writ t en as 

4 

2::= ~j 7, j = ~~Cl.;2 
j=l 

(A2l) 

Equations (A2l) and therefore equations (A20) can be expressed in the 
general f orm 

In matrix notation equation (A22) becomes 

where 

kll k12 

k2l k22 

[S~ == 
k3l k32 

k4l k42 

k13 

k23 

k33 

k43 

(i 1, 2, 3, . . . n) 

(A22) 

(A24) 
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1.1 

{1.} 
1.2 

= 
1.3 

24 

and 

4qml cx,1 

4qm2cx,2 

4qm3cx,3 

4qm4cx,4 
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(A25) 

(A26) 

The development of the steps necessary to compute the kij elements 

in the [SiJ or "downwash" matrix follow. As a first step the relation 

which exists between the strength of a segment of a straight-line vortex 
and the induced velocity at a nearby point should be found. If the 
strength of the vortex (whose sense is given by the right-hand rule for 
moments) is f, the velo~ity induced at the point P can be written as 

f(cos cx, - cos (3) 

4nR 

where cx, and 13 are the angles between the direction of the vortex seg­
ment and lines joining the ends of the segment to the point as shown in 
the sketch 

r, in.o/sec r~ 

~ 
Efld 

R, in. view 

t 0 .. wp , in.!sec 

Equation (A27) is used in the subsequent derivation of the [S~ matrix. 
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A plan view of the geometry of a typical horseshoe vortex on the 
left-hand wing i s given in the following sketch, in which distances and 
angles are considered positive as indicated and the sense of the circu­
lation of the elements of the horseshoe vortex is given by the right­
hand moment rule : 

Sy 

Vor tices of strength -+f-----...... 

r extend to infinity 

v 

Dimension 
reference point 

These dimensions are 
those of the actual 
wing plan form 

The points V and D are a typical horseshoe reference point and a 
typical control point, respectively . 

The incremental downwash velocities induced by a single horseshoe 
vortex, if downwash velocities are cons idered as positive, are: 

-- - - - __ - - - - - ---" 
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(1) For the left-hand trailing vortex the relations 

cos a, 1 

o f3 = 270 - 8 cos f3 -sin 8 

are substituted into the general relation 

r(cos a, - cos ~) wL = ~----------~~ 
4nR 

. to obtain the incremental downwash velocity 

r (l + sin e) 

4n (Sy - h) 

(2) From the right - hand trailing vortex where 

cos a, = sin ¢ 

cos ~ = - 1 

the incremental downwash velocity is 

r(sin ¢ + 1) 

4n (Sy + h) 

35 

(A28) 

(A29) 

(A30) 
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(3) From the bound vortex where 

a = 1800 
- e cos a = -cos e 

cos 13 = -cos ¢ 

the . incremental downwash velocity is 

r(cos ¢ - cos e) 

4rcsx 
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The total downwash velocity at a typical control point due to a 
complete single horseshoe is then 

<.~ 
1 + sin e 1 + sin ¢ cos ¢ - cos 9) 

+ + 
s - h Sy + h Sx y 

(A32) 

Substitution of the identities 

Sx cos e 
By - h == 

sin e 

Sy + h a 
Sx cos ¢ 
sin ¢ 

into equation (A32) yields 

r (1 + sin ¢ 1 + sin e) w 
= 4rcsx cos ¢ cos e 

(A34) 
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Equations (A34) and (A2) are identical; therefore, 

1 ~l + sin ¢ij 

= 4rcsx . . cos ¢ .. 

1 + sin 8 ij) 

cos 8 ij 
(A35) 

lJ lJ 

If, as indicated in the sketch 

Typical horseshoe 
reference point, , 

--+-- -y 

\ 
<PC> \ 

"Typical 
control point 

I 

~ 
the control points are assumed to be located on the left semispan of 
the wing so that 8L and ¢L represent the pertinent angles for a 

horseshoe located on the left semispan and eR and ¢R represent the 

pertinent angles for the corresponding horseshoe on the right semispan, 
then for a typical control point 

1 [1 + sin ¢L 
11:. = 4rcsx \ cos ¢L 

1 + sin 8L) 

cos 8L 

1 ~l + sin ¢R _ 1 + sin 8R) 
KR =--

4rcsx cos ¢R cos 8R 
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From equation (A16) , 

so that in the [s~ or downwash matrix each element k is computed 

from the equation 

k = 2... r.~ + sin h 
Sx \ cos ¢L 

1 + sin 8L + 1 + sin ¢R. + 1 + sin 6~ \ 
cos 8L - cos ¢R cos 8R ) 

As in equation (A16) , the upper sign is to be used for symmetrical span­
wise airload distributions, and the lower sign is to be used for anti­
symmetrical spanwise airload distributions. Note that in equation (A34) 

cos ¢ 
YD - Yv + h 

sin 6 

cos 6 
YD - Yv - h 

--- ~--- - -----~---------- -~ -------"'-~-~-
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The [S~ matrix therefore is computed from the matrix equation 

rS~ = -
. ~ ~l + sin ¢L 

L :J Sx cos ¢L 
+ 

_l_+_s_i_n_¢R_ -+ 1 + sin 8 ~ 
cos ¢R cos 9R R)j 

where the upper sign is used for symmetric flight conditions and the 
lower sign is used for antisymmetrical conditions. 

Since the [siJ matrix is used in equation (A23), which is 

39 

(A38) 

the elements of the Q31J matrix are seen to be influence coefficients 

relating the incremental downwash angle at each control point to the 
intensity of the running lift over each increment of the semispan of the 
wing. In general, all the elements in the principal diagonal of the 

[s~ matrix will always be positive and those elements not in the 

principal diagonal will always be negative because the velocities were 
considered as positive downward and wash velocities from a horseshoe 
vortex are downward only in the region behind the bound vortex and 
between the trailing vortices of that horseshoe. 

Compressibility Corrections 

The method by which compressibility effects are handled in this 
report is based on simple sweep theory. This t heory is presented in 
references 6 to 8 and substantiated in references 9 to 12. Summarized 
briefly, infinite-aspect-ratio sweep theory indicates that compressi­
bility effects are functions of the effective Mach number Me, which 
in this case is the Mach number of the stream velocity component that 
is normal to the leading edge, so that the lift-curve slope in com­
pressible flow is given by 

m 
(A39) 
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where 

m 

M 
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section lift-curve slope at M o 

stream Mach number 

effective sweep angle for compressibility effects or yaw 
angle of infinite wing, radians 

The Same relationship exists for the effect s of Mach number on 
section pitching-moment coefficient 

cillo (A40) 

Compressibilit y effects on a finite-aspect-ratio swept wing can be 
handled in a similar fashion . For the finite-aspect-ratio swept wing, 
however, recognition should be given to the fact that compressibility 
effects will vary across the span of the wing . In general, smaller 
values of the effective sweep angle are indicated for the wing root and 
tip sections than for the midsemispan region. Even in the midsemispan 
region the effective sweep angles for compressibility effects are not 
functions of the wing plan-form geometry alone; the spanwise variations 
of camber, thickness ratio, chordwise thickness distribution, and angle 
of attack are likewise involved in the determination of the value for 
the local effective sweep angles. 

Consider equation (7) for the downwash angle induced at a distance r 
rearward of the lifting line which was derived from t wo-dimensional 
considerations 

This equation expresses the relation between the downwash angle at the 
three-quarter-chord point (i.e., at r = c/2) and the geometric angle 
of attack ~f when the section lift - curve slope is equal to its theo­
retical value 2rr. 

Several approaches can now be made t o the compressibility problem 
regarding the values of lift-curve slope, the angles of attack, and the 
location of control points to be utilized for equating downwash angle 
to geometric angle of attack. In the method used in this paper the 

--- ---.---
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distance r is always equal to one-half of the local streamwise chord, 
so that in matrix not ation equation (7) reduces t o (see eq. (9» 

The applicable values of IDa to be used in this equation are those 
at the effective Mach number Me = M cos AM, and thus each wing station 
is permitted to have its own compressibility corrections. In the absence 
of test data reduced according to the method of appendix G, a value of 
IDa can be calculated from equation (A39) for a value of AM equal to 
the geometric sweep angle of the plan-form streamwise quarter-chord line. 
Although, in general, this procedure will yield on~ an approximation 
to the correct theoretical value, this value will usual~ be sufficient~ 
accurate for preliminary design purposes when A/COS A is large (where 
A is the aspect ratio) or M cos A is small, or bot h. 

This "modified angle of at tack" method is characteristical~ dif­
ferent from the "plan form distortion" methods of handling compressi­
bility effects (refs. 13 and 14); the former distorts t he angle at the 
original three-quarter-chord point, whereas the latter stretches the 
half-chord distance. 

An imp~rtant advantage in the compressibility-correct ion method 
presented in this paper is that only one IT3i1 mat rix need be computed, 
whereas a different [SiJ matrix for each Mach number is required in 
the plan-form-distort ion method. 

The follOwing developments show the equivalence of these two methods 
of accounting for compressibility effect s. The first comparison is for 
the case of an infinite wing in yaw. 

If AM is the sweep or yaw angle for this infinite wing, then 
according to the plan-form-~istortion procedure (indicated by t he sub­
script pd) the equivalent wing in incompressible flow (M = 0) is to 
be at a yaw angle such t hat 

Further, the lift-curve slope of this equivalent wing in incompressible 

flow, multiplied by the factor 1/(1 - M2, is equal to the lift-curve 
slope of the original wing in compressible flow. 

____ J 
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The lift equat ion for the equivalent Mach number met hod of t his 
paper (indicated by the subscript Me) is 

LMe qca. 

and that according to the plan-form-dist ort ion theory i s 

In order for t he two lifts t o be equal) t he following equalit y must be 
true for any value of M: 

cos AM 
= 

It can be shown that such is -the case by the use of element ary trigo­
nometric identities. 

The next comparison is for t he case with zero sweepback . The plan­
form-distortion method st retches t he half-chord dist ance as a funct ion 
of Mach number t o 

which when substituted for r in equation (3) gives 

w 
1tC 
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Equating the downwash angle at the s t retched control point to the 
section angle of attack gives 

w 
(A41) v - -rc-cv-- = Cl.f 

The compressible lift-curve slope (ref. 14) is 

(A42) 

Equations (A41) and (A42) may be substituted into equation (2) to give 

r = 

or 

r = pvr 

For the compressibility- effects method of this paper the downwash 
angle at the three-quarter-chord point equated to the angle of attack 
corrected for effects of sect ion lift-curve slope is (see eq. (8)) 

from which 

2r 
CLf= 

mocv 

When equation (A43) is substituted into equation (2) the same final 
answer is obtained: 

r = pvr 

The identities of compressibility corrections in the case of either 
the unyawed (AM = 0) infinite wing or the yawed (AM r 0) infinite wing 
substantiates, at least qualitatively, the use of the compressibility 
correction methods as presented in this paper. 
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APPENDIX B 

The purpose of this appendix is to explain, in brief f'orm, the 
structural theory involved in and the steps necessary for the computa-

tion of the elasticity matrices [S2J and [S2J. 

Development of' the [S~ Matrix 

In the development of' the downwash matrix [SlJ in appendix A, a 

continuously varying spanwise air load distribution was replaced by a 
series of constant - intensity running loads, each of' which covers an 
increment of the wing semispan. This concept of an equivalent system 
of loads is also used in this appendix. 

Consider the geometry of the structural skeleton of the wing to be 
as represented in figure 3, in which double arrows indicate that the 
right-hand rule of moments applies. The notation in figure 3 is defined 
as follows: 

total lift of increment of wing baving span of 2hl , 

2~, ... 2hu, respectively, numbered inboard 

from the left wing tip, lb (see eq. (Bl)) 

streamwise distance from horseshoe reference point 
at a wing station to elastic axis at the same 
station, positive when elastic-axis point is to 
rear of horseshoe reference point, in. 

streamwise distance from elastic-axis reference 
point at a station to elastic-axis reference 
point at the next inboard station, positive when 
inboard elastic-axis point is forward of outboard 
elastic-axis point 

lateral distance between elastic-axis point at a 
station and elastic-axis point at the next station 
inboard 

local sweepback angle of e l astic axis 

- - --- -- -- -- - -- -- --- -' 
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Mx,Mx, ... My 
1 2 "n 

My ,My, ... My 
1 2 n 

rolling moment at elastic-axis point around longi­
tudinal axis through local elastic-axis reference 
point due to total lift of all the vortices out­
board of this point, positive when it raises left 
wing tip, in-lb 

pitching moment at elastic-axis point around lateral 
axis through local elastic-axis reference point 
due to total lift of all the vortices outboard of 
this point, positive when nose up, in-lb 

beam bending moment at elastic-axis point about an 
axis perpendicular to local elastic axis, positive 
when it puts compression in wing upper surface, 
in-lb (see eq. (B2)) 

torsional moment around elastic axis at local 
elastic-axis point, positive when it is in direc­
tion of leading edge up, in-lb (see eq. (B3)) 

The general form for the wing lift is 

(Bl) 

where In is the intensity of the running lift at station ~ measured 

in pounds per inch and 2hn is the span of the horseshoe vortex at 

station ~; the general form for the bending moment is 

(B2) 

and the general form for the torsional moment is 



1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 

46 NACA TN 3030 

At station 1, on the center line of the horseshoe vortex nearest the 
left wing tip (see figs. 3 and 4), the following equations applY: 

Mxl 
Ll hi Llhl 

:=--=--
224 

Which, when substituted into equations (B2) and (B3), yield 

e l cos Al 
Tl = Ll ----

2 

At statton 2, on the center line of the second horseshoe vortex 
inboard of the left wing tip, 

(B4) 

(B6) 

(B8) 



--~----------------------------------"----------------~-----~~--~.---- --
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and equations (B2) and (B3) become 

(BlO) 

(Bll) 

At station 3, 

(Bl2) 

(Bl3) 

and, similarly, 

(Bl4) 
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E~uations similar to these can be developed for M and T for 
the remaining stations on the left semispan of the wing. 

In algebraic form, the e~uations for Mn and Tn are 

n-l 

sin Au ~ 
k=l 

en cos Au 
Ln -.----

2 

(B16) 

Notice that the first two terms in each of these e~uations are e~ual 
to zero when n = 1, that is, for the tip station. 

In matrix notation, e~uations (B16) and (B17) become 

(B18) 
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where 

(B20) 

(B21) 

(B22) 

sin Ai 0 0 0 

0 sin ~ 0 0 

0 0 0 sin A3 0 
[!in A] = 

(B24) 

0 0 0 sin A4 

:J 

~~~~------



0 0 

e1 - fl 0 

e1 - fl - f2 e2 - f2 

[~ = 
e1 - fl - f2 - f3 e2 - f2 - f3 

e1 - fl - f2 - f3 - f4 e2 - f2 - f3 - f4 

~- e1 t an "1 
0 0 

4 cos2)\1 2 

d1 
~ e2 t a n ~ 

0 
4 COS 2"2 2 

d1 + ~ ~ 
h) _ e) tan )\) 

4 cos2,,) 2 

~iJ 
d1 + d2 + d) ~ + d) d) 

d1 + ~ + d) + d4 d2 + d) + d4 d) + d4 

0 0 

0 0 

0 0 

e3 - f3 0 

e3 - 1'3 - f4 e4 - f4 

o 

o 

o 

h4 ell. tan )\4 

4 c062~ 2 

d4 ~ 
4 c062~ 

o 

o 

o 

o 

0 

0 

0 

0 

0 

e5 tan ~ 

2 

. I (B25) 

(B26) 

VI 
0 

~ 
f; 
;t> 

~ 
\.N 
o 
\.N 
o 



r 
I 

el o o o o 
2 tan 11.1 

e 2 o o dl o 
2 tan ~ 

e, 
o o d l + ~ d 2 

2 tan A, 

[r~ = (B2,) e4 d, o dl + d2 + d, d2 + d, 
2 tan A4 

2 tan ~ 

e5 
~+~+~+~ ~+~+~ ~+~ d4 

Equations (B18) and (B19) provide the means for computing the bending and torsional moments 
along the span of the wing due to the' loads L as given by equation (Bl) • 

Each of the loads ~ or L, however, is affected by the variation in angle of attack from 
root to tip. This problem is handled by computing the streamwise angle-of-attack change as 

due to the structural deformations caused by the series of loads [L}. Since a streamwise angle­
of-attack change is required, assume that a unit positive pitching moment my (nose-up moment) 
is applied in turn at each of the points 1, 2, ... n on the elastic axis. The unit pitChing 
moment is in the plane in which as is to be measured and its direction agrees with the posi-

tive sense of as. 

~ 
(") 

>-
~ 
\..N 
o 
\..N 
o 

\J1 
~ 
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The streamwise angle-of-attack change can then be obtained by 
applying the general relation (see ref. 15) 

where 

m 

t 

ds 

EI 

GJ 

roM ds 
EI 

tT ds 
GJ 

(B28) 

desired streamwise angle-of-attack change due to values of 
bending moments M and torsional moments T along elastic 
axis of wing resulting from the series of loads {L} 

beam bending moment per unit pitching moment applied at sta­
tion at which ~scr is to be determined 

torsional moment around elastic axis per unit pitching 
moment 

increment along elastic axis 

effective beam bending stiffness around the axis of the bending 
moments M and m 

effective torsional st iffness around the axis of the torsional 
moments T and t 

The stations on the wing for which the angle-of-attack changes ~s 

are to be computed are those on the center line of each horseshoe vortex. 

It is assumed that sufficient accuracy in the results will be 
obtained by using the values of bending moment M and torsional 
moment T obtained by means of equations (B18) and (B19) and that these 
values of M and T may be considered to be constant over the incre ­
ments of the wing span corresponding to the span (2h) of each horseshoe 
vortex . 

Values of EI and GJ are also assumed to be constant over each 
S1.1.ch increment in wing span, and the values to be used are the effective 
values which correspond to the wing station ~ at the midpoint of each 
horseshoe vortex. 

The general relation (eq. (B28)) can be used to express ~s in 

matrix form by letting 
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.t\n 

~j 

sweepback angle of el astic axis at station ~) radians 

beam bending moment at station ~n due to loads {L} on winG 

tors ional moment around elastic axis at station ~ due to 

loads { L} on wing 

beam bending moment at station i per unit pitching moment 
applied at station j 

tors ional moment around elastic axis at station i per unit 
pitching moment applied at station j 

(ds) n 
cos .t\n 

a.s n 

horseshoe span at station n 'In 

angle-of-attack change at station 'T1n due to a l l t he 

loads {L} on wing 

Then) for station 1) 

~ mlll\~ 2m2 1M2 h2 2mnl M"h" j a.sl :=: + + ... + + 
(EI) 1 cos .t\l (EI)2 cos ~ (EI)n cos !I.u 

~ t nTlhl 2t21T2~ 2tn1Tnh" j 
(GJ) 1 cos .t\l + 

+ ... + (GJ)n cos !I.u (GJ)2 cos ~ 

for station 2) 

~~Mh m22M2h2 ~~J a.s2 
:=: + + . . . + + 

(EI)l cos .t\l (EI)2 cos ~ (EI) n cos An 

~ 2t12Tlhl t22T2~ 2tn2Tn~ ~ 
(GJ) 1 cos .t\l + 

+ ... + 
(GJ)2 cos ~ (GJ)n cos !I.u 

and so forth. 

(B29) 

(B30) 
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From the geometry of the problem) when point i is at or inboard 
of point j) t he bending moment due to a unit pitching moment applied at 
point j is 

-sin ~ (B3la) 

when point i is outboard of point j) the bending moment is 

= 0 (B3lb) 

when point i is at or inboard of point 
a unit pitching moment applied at point 

j) the t orsional moment due to 
j is 

t .. = cos ~ lJ 
(B32a) 

and when point i is outboard of point j) the torsional moment is 

(B32b) 

and the complete series of equations for as) of which equations (B29) 

and (B30) are representative examples) can be written in matrix form as 

= [mJ [2~ Jr~J{M} + [tJ[2~ J[~J{T} 
Lcos ~LEIJ Lcos AJ GJJ 

- ----------- ------ ------~-
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Typical elements in [m] and [tJ are 

-sin A"L/2 -sin ~ - sin 11.3 -sin ~ 

0 -sin ~/2 -sin 11.3 -sin 11.4 

0 0 - sin 11.3/2 -sin -'\ 
[m] = (B34) 

0 0 0 -sin 11.4/2 

cos 11.1/2 cos ~ cos 11.3 cos ~ 

0 cos ~/2 cos ~ cos ~ 

0 0 cos 11.3/2 cos 11.4 
[tJ = (B35) 

0 0 0 cos 1'.4/2 

Substituting equations (Bl), (B1B), and (B19) into equation (B33) 
gives 

{as} = ~m]Go~h J[;~ ~co~ AJl'"~ - ~i~ ,g[uJ] + 

[tJ ~o:h~[~J[~i~ AJrr~ + @o~ AJ[u~J LfhJ{l} (B36) 

~ ___ ~ __ ~_~-,"-_____ J 
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If 

o 
@os 

then 

Equation (B37) represents the most general form for the [s~ matrix, 

and each element of this matrix represents the angle-of-attack change 

in radians at. station i due to the structural deflection of the wing 

caused by a unit loading at station j. In effect, the [S~ matrix is 
an array of i nfluence coefficients, and the elements of this matrix may 
be computed according to equation (B37), or, when an actual wing is avail­
able, they may be obtained by load-deflection tests of that wing. 

Development of the Auxiliary Elasticity Matrix ~2J 

The [S2J matrix as defined in the previous section considers air­

loads outboard of each specified station, as defined by a streamwise cut 
through the "ring box. Inasmuch as ribs are conventionally installed in 
a plane essentially normal to the elastic axiS, the spar-box loads are 
more correctly determined by considering the airloads outboard of a plane 

- - - - - - - - - -- - - - - - - - - - ---~ 
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normal to the elastic axis. These l oadings are represented in the fol­
lowing sketch: 

Trailing/ 
edge 

/ 
/ 

I 

1Jn 

aXIs 

1Jn 1Jn 

The corrective loading is then the loading obtained by subtracting 

the loading of ® from that of ®. The triangular areas © and © 
represent the corrective loading. It will be noticed that the loading 

over the area ~ is the negative of the loading of the corresponding 

area in ® and the loading over ® is the positive of the corresponding 

area in dY . In order to obtain these corrective loadings, it will be 

necessary to assume a distribution of pressure over the corrective areas. 

The equat ions are now developed that represent the shear, wing 
moment, and wing torsion due to the corrective loadings, and the 

[s~ matrix is modified to include these effects. A plan view of the 

left wing is shown in figure 5, where 

E local angle between e l astic axis and lateral axis equal 
to A, the sweep angle of the elastic axis 

L local angle between leading edge and lateral axis 

T local angle between trailing edge and lateral axis 

The correction terms for moment, shear, and torsion due to wing 

airload in the [s~ matrix are 



r-

ld'lJ 6T2 , 

. 6Tn 

681 , 682 , 

. lBn 
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correction to rolling moment at elastic-axis point 
around longitudinal axis through local elastic-axis 
reference point, positive when it raises left wing 
tip, in-lb 

correction to pitching moment at elastic-axis point 
around lateral axis through local elastic-axis 
reference point, positive when nose up, in-lb 

correct ion to wing bending moment at elastic-axis point 
about an axis perpendicular to local elastic axis, 
positive when it puts compression in wing upper 
surface, in-lb (see eCl. (B39)) 

correction to torsional moment around elastic axis at 
local elastic-axis point, positive when it is in direc­
tion of leading edge up, in-lb (see eCl. (B40)) 

correction to local shear, positive up, lb 

The wing bending moment Mu is 

Mu ==, cos En - My sin En 
n 

(B39) 

and the wing torsional moment Tn is 

Tn == My cos En + , sin En n (B40) 

Assumed pressure distribution.- The distribution of pressure p 

over the corrective areas is assumed to be given by the two-dimenSional 
eCluation for a thin flat plate 

~
-~ 

p = 4qa, c 

x/c 
(B41) 

and modified t o account for the actual value of local running lift. In 
the modified f orm, the distribution of pressure (measured in pounds per 
sCluare inch) along a streamwise chord becomes 

R
-~ 

p=~2: __ c 
1{ c x/c 

(B42) 

----- - - ----~- - .------~ 
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where x/c is the fraction of the streamwise chord to the rear of the 
leading edge. The ratio llc is assumed to be constant so that the lines 
of constant pressure radiate from the origin 0 in figure 5. In accord­
ance with the assumptions previously given concerning the corrective 
loadings, the pressures are negative (downward) over area FDG and posi­
tive (upward) over area ABG. 

A polar coordinate system (p,e) is selected, and the shear, moment, 
and torsion due to the pressures on area OFB will be subtracted from 
the shear, moment, and torsion due to the pressures on area ODA. Lines 
of e = Constant are lines of constant pressure and p will be a func­
tion of e only. 

From the geometry of figure 5, p may be expressed as a function 
of 8 by writing 

c + OM tan T - x OM tan(L - 8) 

Hence 

x = c + OM ~an T - tan( L - 8 D 
and 

c + OM tan T = OM tan L 

or 
c 

tan L - tan T 

Combining equations (B43) and (B44) yields 

E 
_ta_n_T_-_ta_n_(_L_-_89 

x = c 1 + 
tan L - tan T 

If equation (B45) is substituted into equation (B42) , 

where 

tan(L - 8) - tan T 

tan L - tan(L - 8) 

21 
K =­

nC 

(B44) 

(B45) 

(B46 ) 
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ROlling-moment correction at station n, 6MXn .- The rolling-moment 

correction at station n, ~,is obtained by adding the rolling 
n 

moment ~A due to area OFB to the rolling moment 6MxB due to 

area ODA (fig . 5). 

The r olling moment 6MXA due to area OFB may be found by writing 
the equation for the elementary moment about FM for any value of p 
between 0 and that at the line FM as: 

d6MXA = P~M - p eos(L - eD p dp de 

The equation of the line FM is 

p cos(L - e) = OM 

or the value of p at the line FM is 

OM 
p =-----

cos(L - e) 

Over area OFB the moment is negative; hence, 

lL-T 

tlIrxA = ··KOM 0 
tan(L -

tan L -

OM 

e) - tan T delCOS(L-e) 

tan(L - e) 0 
p dp + 

tan(L - e) - tan T cos(L _ 

tan L - tan(L - e) 

OM 

1 cos(L-e) 
e )de 

o 

Since 8 varies between 0 and L - T, the integrals can be evaluated 
by letting 

tan L - tan(L - e) 
== sin2U 

tan L - tan T 

(B48) 

tan(L - 8) - tan T cot2U == 
tan L - tan(L - 8) 
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It follows that 

deL - e) = -2(tan L - tan T)eos 2(L - e)sin U eos U dU 

Consequently, 

~A ~ -KOM3(tan L - tan T) J:~/2 cos2u dU + 

= ~KOW( tan L - tan T) 
12 

= 
6(tan L - tan T)2 

61 

(B49) 

The rolling moment ~B due to area ODA may be derived in a 
similar manner to get 

l
L_T 

.6MxB = KOM 0 
tan(L - 8) - tan T leOS(L_e_E) 
--~--~------- de 
tan L - tan(L - a) 

o 

R 

p dp -

where 

tan(L - 8) - tan T eoseL 
tan L - tan(L - a) 

) feOSCL_a_E) 
- 8 de 

o 

R 

R = OM eos(E - T) + e(l _ E)sin E 
cos T 

(B50) 

(B51) 

j 

~~-~-

___ ~~J 
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Aft er integration this equation simplified t o 

nKOMR2(tan L - tan T) 
~B 

nKR3(tan L - tan T)(4 - 3Q2) 
(B52) 

where 

2 tan L - tan T 
Q := ------

tan L + cot E 

Equations (B49) and (B52) may now be combined to give t he rolling­
moment correctlon 6Mxn at station n: 

~ := l:'Mx: + l'MX nAB 

~K~CR2(1 - Q2)(tan L + cot E)sin E - R3(4 - 3Q2) (tan L - tan T) 

:= 24~ ~(l _ Q2)3(tan L + cot E)3sin3E 

2c
3 J 

(tan L - tan T)2 

If U defined in equat ions (B48) is writ ten as 

cos(E - T)cos L 
U = 1 + --.:....--~--

sin E sin(L - T) 

(B53) 

(B54) 

------------ _._--- ----
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and if 

v = tan L + cot E (B55) 

then R (see eq. (B51» becomes 

R = c(U - E)sin E 

and 

For the special case of the untapered wing where the leading edge is 
parallel to the trailing edge or T = L, 

&fXn = (B58) 

Pitching-moment correction at station n, ~n'- The incremental 

pitching-moment corrections due to the areas OFB and aDA m~ be 
derived and combined in a manner similar to that for the rolling-moment 
corrections and the equation for ~n becomes 

.6My = 7. c2 {Q2 (U - E) 3 ~ 4 - 3Q2) tan L - Q2vJ + 6 ( 1 - Q2) (u - E) 2 ( EQ2v - tan L) _ 

n 12 V2(1 _ Q2)3/2 

For the special case of the untapered wing where the leading edge is 
parallel to the trailing edge or T = L, 

7.c
2 

(8E2 _ 4E + 1) sin E cos LE _ sin E cos L tan Ll 
6MYn = 16 cos(E - L) cos(E - L) ~ 

(B59) 

(B60) 
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Shear correction at station n, 6Sn .- The element ary shear is 

dlilin = pp dp d8 (B61) 

From this equat ion the increment al shears over t he areas OFB and 
ODA may also be derived and combined in a manner similar t o t hat for 
the rolling moment t o give 

(B62) 

For the special case of the untapered wing where the leading edge is 
parallel to the trailing edge or T = L, 

Ic sin E cos L (4E _ 1) 
4 cos(E - L) 

(B63 ) 

Modification of [S~ matrix. - The [S~ matrix is modified by 

using the corrective rolling and pitching equations. Using the equations 

~ = , cos En - ~n sin En (B64) 

mn = tM~ s in En + tM~ cos En (B65 ) 

and letting (from eqs. (B57) and (B59) ) 

f..l -6MxJI (B66 ) 

J -6MrJl (B67) 

- -- ---- -- ._- -- -- ---- - ---
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results in 

~n = (-~ cos En + J sin En)l 

or, in matrix form (with Au = En), 

(B68) 

(B69 ) 

Equation (B18) thus becomes 

and equation (B19) becomes 

The corrected form of the [s2] matrix thus becomes 

~2j = ~mJ[~:: J t!rj ~o~ A] ~J [~~ - ~ ~ - [Si~ AJ~UJ~~ - [~~J + 

[tJ~:: ~[~ ~i~ A] ~~ [2~J - ~~ + [;o~ AJ [~J[~hJ - [1] 
(B72) 

- -----~ ---~~-
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where, as in equation (B38), 

(B73 ) 

It should be noted that, because of the assumed pressure distribu­
tion given by equation (B4l), this correct ion does not correct~ handle 
conditions involving deflected flaps and roll-control devices. 
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APPENDIX C 

COMPUTATION OF {agJ MATRICES 

This appendix outlines the method by which the component parts of 
the {a~ matrices may be determined. The {ag} matrices comprise two 

classes of twist: (I) those which would be present even if the wing were 
rigid and (II) those due to inertia effects, thrust or drag, and section 
pitching moments on the £lexible wing. A given airplane design condition 
may obviously require any combination of the twists lis t ed under classes I 
and II, that is, 

(Cl) 

For simplicity, the sources of {ag) may be summarized as follows: 

Class I - aerodynamic twists (i.e., zero-lift-line shifts due to 
effects other than wing structural deflections) 

(a) Built-in twist due to camber or construction, or both. 

(b) Interference twist due to fuselage, external stores, and 
so forth. 

(c) Twist due to flap deflection. 

(d) Twist due to aileron deflection. 

(e) Twiat due to spoiler deflection. 

(f) Apparent twist due to airplane rolling velocity. 

(g) Apparent twist due to airplane pitching velocity. 
attack due to airplane pitching velocity should be measured 

Angles of 
at 3c/4. 

Class ' II - structural twists due to wing deflections caused by the 
following fnertia and aerodynamic loadings which are independent of the 
wing lift distribution: 

(a) Vertical acceleration acting upon dry-wing dead weight, 
wing internal-fuel dead weight, and external-stores dead weight. 

(b) Effect of airplane rolling acceleration upon dry-wing dead 
weight, wing internal-fuel dead weight, and external-stores dead 
weight. 

_ J 
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(c) Effect of airplane pitching acceleration upon dry-wing 
dead weight, wing internal-fuel dead weight, and external-stores 
dead weight. 

(d) External- stores thrust or drag. 

(e) Section pitching- moment coefficient with flaps, ailerons, 
spoilers, and so forth in neutral position. 

(f) I ncremental section pitching-moment coefficient due to flap 
deflection, aileron deflection, or spoiler deflection, or in various 
combinations. 

Of the class I twists, the aerodynamic built-in twist is known from 
the wing geometry and the characteristics of the profiles used, and the 
interference twist may be obtained from actual tests of the complete air­
plane configuration, either model or full-scale! by using the procedure 
of appendix G or from other calculation methods . Twists due to control 
deflection are determinable from the same type of tests as were used to 
evaluate the interference twist . Apparent twists due to airplane rolling 
and pitching velocities are completely determined when the airplane flight 
condition to be investigated is specified. 

The type of twists due to the effects of wing deflections arising 
from loads which are independent of wing angle of attack, such as those 
listed under class II, may be computed with the aid of equation (B33) 

Since, in this case, [as} = {ag} 

{"J 0 [m] ~D~\1 ~~ H + [t) ~~~ ~~JH (C2) 

where {M} and {T} are the wing bending moments and the torsions along 
the wing elastic axis due to the loadings of class II or to any combina­
t ion of them . 

Although the {ag} twists do not all explicitly require the cal­

culation of loadings, they do influence the equilibrium airload and must 
be accounted for in determining the net wing loads from equations (21), 
(22), and (23) . 
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APPENDI X D 

DERIVATION OF EXTERNAL-STORE MATRICES 

The term external stores as used in this report is intended to apply 
to such items as nacelles, external fuel tanks, bombs, rockets, and 
similar items commonly attached to the wings of airplanes. 

In this appendix the lift coefficients and pitching-moment coeffi­
cients for each external store in the presence of the rest of the air­
plane configuration are assumed to be known and to vary linearly with 
angle of attack . On this basis a set of linear e~uations is developed 
in which the airloads on each external store are accounted for in com­
puting the deflections of and airloads on the elastic wing or airplane. 
The coefficients used are based on the airplane wing area and the wing 
mean aerodynamic chord. There is a specific lateral reference axis for 
each external-store pitching- moment coefficient , and the angle of attack 
of the external store is taken to be the angle of attack of that wing 
sta tion within the span of whose horseshoe vortex the station of the 
external store lies. Special symbols used in this appendix are as 
follows : 

C~, C~ 

~O ) M.E0 

lift and pitching-moment coefficients, respectively , of a n 
external store measured at its aerodynamic center (see 
e~s. (Dl)) 

lift and pitching- moment coefficients , respectively , of an 
external store at zero angle of attack mea~red at its 
aerodynamic center 

lift and pitching moment, respectively) of an external store 
measured at its aerodynamic center (see e~s. (D2)) 

rolling moment at elastic- axis p.oint around longitudinal 
axis through local elastic-axis point due to loads on a 
particular store outboard of this point, positive when 
it tends to raise left wing tip, in-lb 

pitching moment at elastic- axis reference point around 
lateral axis through this reference point and due to 
loads on a particular store outboard of this point, 
positive when it tends to raise nose, i n-lb 

Addit i onal symbols re~uired are shown in the following sketch: 

-------------~--~-.-
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Aerodynamic center 
i of external store 
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rrwar: 
Inboard 

t+ MX 

L........+My 

Consider one external store whose characteristics are 

(Dl) 

so that 

------ - -.-------~-------
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The lift and moment on the external store ~O and ~O are located 

with respect to point E by the dimensions YE and x E as shown in 
the s ketch . 

At the first station inboard of the ext ernal store E , 

MxE == ~OY E 

(D4 ) 

At the next i nboard station E + 1 , 

- .------.- - - -
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At station E + 2} 

(Dl) 

(D8) 

At station n} the most inboard station considered} 

Since 

Mu = Mx: cos An - My sin f,n n n 

Tn = Mx sin An + My cos An n n 
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then} 

n-l 

L 
m=E 

fm ~ - MJ<o sin An 

(D9) 
and 

n-l Y 
~ fm ~ + M.E0 cos An 

(D10) 

In matrix notation, the following eQuations, typical for each 
external store on the semispan) are equivalent to the algebraic equa­
tions (D9) and (D10): 

{MJ<} {~o~ A] {R} - ~i~ A] {u } } L"o - ~ig AJ {IE} MJ<o (DU) 

{TE} " {~ig AJ {R} - ~o~ A] {u }} LEO + ~o~ AJ {IE} MJ<o (Dl2) 

where) if the value at the top of the column is for the tip and the 
other values are for the successive stations inboard to the root and 
E is the station within whose horseshoe span the external store is 
located) 

o 
o 
o 

YE 
YE + dE 

YE + dE + dE+l 
YE + dE + dE+l + dE+2 

(D13) 

J 

J 



{u} = 

From equation (B33) 

o 
o 
o 

XE 
XE - fE 

XE - fE - f€+l 

XE - fE - fE+l - fE+2 

{TE} = 

o 
o 
o 
1 
1 
1 

0 
0 
0 

T€ 

T€+l 
TE+2 
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(D14) 

(D16) 

(D17) 

- J 

________ c __ 
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where the external-store bending moment and torsion are given by e~ua­tions (Dll) and (D12) , respectively. 

Substitution of e~uations (D2) into e~uations (Dll) and (D12) l eads to: 

{"E} = {Go~ AJ~} - Gi~ AJ~}}SCLEO + ~o~ AJ{~} -
~i~ A] [u }}s (Cr.E )<L"'fE - ~i~ A J ~E }qSCC"'Eo -

~ig A] ~E}~SC(C~)<L<LfE 

and 

{TE} ~i~ tJ{R} + I£o~ AJ{u}}SCLEO + ~i~ AJ{R} + 

~o~ AJ {u }}s (C4;)<L <LfE + (Co~ A] ~E hscC"'Eo + 

~o~ A] {rE}~SC(ClllE)<L<LfE 

For convenience , let 

{X2M} = {~o~ AJ{R} - ~i~ AJ{U}} 

{X2T} = {Gi~ AJ{R} + ~o~ A]M} 

then e~uations (D19.) and (D20) become 

{"E} = qS{{X2M}cLEQ + {X2M}(CLE)<L"'fE -

IE i,'; A J ~E} c (C"'E)Cl <LfE} 

(D19 ) 

(D20) 

(D2l) 

(D22) 

(D23) 
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{TE} " qS ~X2T }CLEO + {X2T} (CLE)" "fE + ~O~ It] {IE} CCffiJlO + 

~o~ It] {rE}C(CffiJl)" " fE} (D24) 

Now let 

and 

then 

{Me} " ,<S{Q<lM} + 02M}CLfE} (D29 ) 

{TE} " ,<S {{K1T} + ~2T }CLfE} (D30) 

E~uation (D18) relating {as}E with {ME} and {TE} can now be 
written as 
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where 

o 0 0 0 

{K~ = [m] ~: AJ [ftJ{KlM} + [tJ G: ~ [aljJ{K1T} 
o 0 0 0 (D32) 

{IS} " [m] G~ AJ~l~{ISM} + ~] G~ a ~1J{IST} 
The e~uations just derived are typical for a single external store 

on the semispan. Each additional external store on the semispan re~uires 
a similar set of e~uations. 

The total angle-of-attack change due to the wing airloads shear and 
the airload on the external store is 

(D33) 

where the subscript W denotes wing and E denotes external store. 

Here there is an {a.J E term on the right-hand side for each exter­

nal store; that is, 

(D34) 

E~uations (12), (13), and (B38) for {l}, {eLf}' and {a.s}w' respectively, 

repeated for convenience are 
a 

[4~J~lW} 0 {'"f} 

{a.r} = {a.r} + {a.g} + {a.s] 

~2J{l} = {a.s} W 

-------~- ---.--~ 
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Including the effects of external stores on ~s} according t o 

equations (D34) yields 

o 

From equation (D3l) 

However, can be f ound from 

CLfE n 

where a typical value for LEnJ is g iven by 

o 1 0 o o 

(D35) 

(D36) 

(D37) 

o o (D38) 

The row matrix LEnJ has as many columns as there are horseshoe 

vortices on t he semispan and has a value of unity entered in the column 
which corresponds to that horseshoe within whose span the external store 
is located. (In the example implied in eq. (D38) there are ten stations 
and the external store n is within the span of the fourth horseshoe 
from the left wing tip.) 

Combining equations (12) and (D37) results in 

o 

CLfEn ~ LEnJ[4q~J ~~ {r} (D39 ) 
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Combining e~uations (D35), (D36), (D39), and (B38) yields 

o 

[4~J[SIJ{!} = far} + h} + [S2J{!} + 

qS[ht + ~2}ILE~~~~ lSI] N} + 

qs'{bL + [K~2[E~~~~ [SIJ {I}} + , , , (n40) 

Let 

(D41) 

and 

(D42) 

If eQuations (D41) and (D42) are substituted into e~uation (D40), 
the following matrix eQuation is obtained for an elastic wing having a 
number of external stores on the semispan: 

This eQuation is similar in importance and usefulness to eQua­
tion (16) except that the aeroelastic effects of the airloads upon the 
external stores are now included. It reduces to eQuation (16) if all 

o 
the [A] and {B} matrices are set e~ual to zero, since [IJ = Ll.~. 
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APPENDIX E 

WING-FUSELAGE INTERFERENCE 

In this appendix an approximate method of calculating the effect 
of a fuselage on the spanwise airload distribution on the wing is devel­
oped. The primary sources of this interference are considered (ref. 16 ) 
to be as follows: 

(1) The effects of the image vortex system inside the fuselage on 
the downwash angles at the various cont r ol points over the wing semispan. 
This image vortex system induces a flow which is a first approximation 
to that necessary to satisfy the condit i on that there be zero velocity 
normal to the fuselage. 

(2) The effects of the vertical "overvelocities" resulting from t he 
fuselage angle of attack. These velocity increments affect the l ocal 
angle of attack at the various control points on the wing. 

This method of analysis can be used when applicable data of the type 
described in appendix G are not available. 

Item (1) may be considered as the effects of wing air loads upon 
themselves due to the presence of the fuselage; whereas item (2) accounts 
for the effects resulting from the fuselage having an angle ' of attack. 

In the development that follows the fuselage is assumed to be of 
circular cross section, of constant diameter, and infinitely long. 

For the image vortex system mentioned in item (1) " the individual 
images of the wing trailing vortices can be shown to be located on a 
straight line joining the axis of the fuselage with the axis of the par­
ticular wing trailing vortex at a distance from the fuselage center line 
such that 

(El) 

where a is the fuselage radius and Rl is the distance from the fuse-

lage axis to the trailing vortex (see fig. 6). 

In similar fashion the bound vortex is assumed to have an image 
within the fuselage cross section. The image of the bound vortex is 
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assumed to lie on a straight line joining the forward ends of the image 
trailing vortices. The forward ends of these image trailing vortices 
are assumed to lie in the same transverse plane (perpendicular to the 
airplane center line) that contains the particular bound vortex being 
represented. Figure 6(a) shows a transverse section for the high-midwing 
configuration and figure 6(b) shows a plan view for the midwing 
configuration. 

This system of real and image vortices is only an approximation. 
It satisfies the condition of no flow across the fuselage boundary only 
at the transverse plane containing a bound vortex and its image and the 
transverse plane infinitely far behind the wing. In general, some flow 
will occur across the fuselage boundaries, and hence, to some degree at 
least, the corrective downwash velocities induced at the wing control 
points by the image vortices will be in error. 

Within these limitations it is therefore considered that wing­
fuselage interference effects upon the wing spanwise air load distribu­
tion can be obtained by: 

(1) Adding to the elements of the matrix for the exposed wing 

a corrective matrix whose elements represent the vertical downwash 

velocities induced at t he various wing horseshoe control points by the 
image vortex system within the fuselage boundaries. 

Each image vortex within the fuselage is of the s~~e strength and 
sense of circulation as its real counterpart and there are as many image 
horseshoe vortices within the fuselage as are used to represent the wing. 

(2) Adding to the twist of the wing ~.e., [a.J) a correction due 

to the vertical overvelocity field arising from t he effects of fuselage 
angle of attack. The correction applied to [a.g} is proportional to 

the quantity (ay - a.i) where ay is the angle of attack of the wing 

root-section zero-lift line and a.i is the incidence angle bet'tTeen the 

wing root - section zero-lift line and the fuselage center line. 

The above corrections are developed as follows. 
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The el ements of the corrective matrix ~iJ may be derived by con­

s i dering the geometr y of the following sket ch : 

z (up) 

5 ' y 

Og ie i s a hor izontal plane 

The horseshoe vortex shown in this sketch is considered to be one 
of the image vortices ] the location of which is gi ven by equation (El). 
The strength of circulati on r of thi s image vortex is equal to that 
of its real counterpart . The pl ane of the horseshoe ooaboo is at an 
angle 1 to the hor izontal pl ane Ogi e and the bound vortex ab lies 
in the plane Omhg . The point k may be considered to be one of the 
downwash control points as described in appendix A. 

The total ve r tical downwash wk at the point k due to this image 
horseshoe vor tex is the sum of the contributions due to each segment. By 
means of equat i on (A27) the contribution of the trailing vortex aoo is 

Wa.o " 4~ e + ~os ,~y ' -: cos y) (E2) 



---- --- --- --------~----------~------------------~--__ ·--__ ~-~r-----__ __ 
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that due to the trailing vortex boo is 

w
boo 

~~ + :OS ~~y' + ~ cos 1) (E3) 

and that due to the bound vortex ab is 

~~os rj' - cos 9~{) w __ = 
ab 4rc D 

(E4) 

where 

A ck 

B dk 

D fk 

From the geometry of the sketch the distances A, B, and D are found 
from 

A2 (Sy' + H cos 1)2 + (SZI + H sin 1)2 

B2 (Syl H cos 1) 2 + (SZI + H sin 1)2 (E6) 

D2 = Sx 
,2 

+ (Sy' sin Sz I cos 1)2 1 -

and the angles are obtained from 

8' = 
- 1 fk tan -= tan -1 D 

Sy 
, 

cos 1 + Sz sin 1 - H fa 

cj' tan -1 fk -1 D -= tan I sin 1 + H fb Sy cos 1 + Sz 
(E7) 

A tan 
-1 dk t - 1 B -- an ----- Sx 

I 
ad 

tan-1 ck = tan - 1 A 
Il = ---, 

bc Sx 

J 
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Summing the individual downwash'contributions (eqs. (E2) , (E3), and 
(E4)) gives the total downwash at k due to one image horseshoe 

w =.L IlSY' + H cos r)( 1 + cos ~) + ( cos 9' - cos 9' ) Sx' 

k 4n A2 D2 

(E8) 

The downwash angles at the control points on the wing due to the 
fuselage images may then be vITitten in matrix notation as 

{~} = ~@~ {r} 
V i 4nV 

(E9) 

in which the desired correction matrix for image vortex effects is ~J' 
the elements of which are the locally applicable values of the function 
inside the brackets of equation (E8). The development for antisymmetrical 
conditions would be analogous to that for symmetrical conditions, the only 
change be ing that the sense of the vortices (and their images) on the 
left- hand side of the plane of symmetry in figure 6 would be reversed. 

The sec~nd interference effe ct , that due to vertical overvelocity, 
may be taken into account as shown in the following analysis: With respect 
t o the fuselage center line there is a transverse component of the free­
stream velocity Vz , given by (see sketch) 

\ 

Fuselage <t 
" Root- section 

zero-lift line 

Since the fuselage displaces the air in this transverse flow fie ld, there 
are local changes in this vertical f low velocity . 

If Vz ' is equal to the total l ocal vertical velocity in the pres ­
ence of the fuselage, then the over velocity 6Vz is 

6Vz = Vz I - Vz (E10) 
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This vertical overvelocity can be expressed as 

(Ell) 

Contour maps from which the value of 6Vz /Yz can be obtained as a 

function of vertical and lateral distances from the body center line are 
shown in figure 7. 

These contours were developed from the equations for uniform flow 
past an infinitely long circular cylinder from reference l7 as follows : 

Vz ' :::: Vz (1 + 6~:) (E12) 

V' a2cos 28 (El3) z 1 + ---Vz R2 

where a is the cylinder radius, R is the radial distance from the 
axis, and 8 is measured from a line normal to the axis and V z . 
Thus 

(E14) 

From equat ion (Ell) the angle - of- attack increment ~g at a control 

point due to the local overvelocity becomes 

Equation (E15) in matrix notation is 

(E16) 

o 
where @oJ is a diagonal matrix whose elements are the locally appli-
cable values of 6Vz /Vz ; that is, 

t~~ 

~-~ -- --- -----
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By use of the matrices 

doymwash· matrix given by e~uation (A38) for the wing alone 
(the port i on of the wing outboard of the fuselage) 

wing elasticity matrix given by e~uation (B37) 

ima.ge - vortex matrix given by equation (E9) 

overvelocity matrix given by equation (E17) 

and the equation 

the equation for wing equilibrium including fuselage-interference effects 
can be written as 

or, in a more convenient form, 

+ [S:~ N ~ h} - "i[S~{l} 
(E19 ) 

E~uation (E19 ) may be substituted without change for equat ion (21) for 
the wing load distribution. 

- -- - - -- -- - ---- - - -- - ----- ----
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APPENDIX F 

EQUATIONS FOR TAILLESS AND TAIL-BOOM AIRPLANE CONFIGURATIONS 

This appendix develops equations which, when properly inserted into 
the basic equations, allow solution for (1) a tailless airplane and 
(2) an airplane with the tail load entering the wing structure through 
tail booms. The equations are left in general form. Constant sweep 
angles and equal vortex spacing simplify the equations considerably. 

Tailless Airplane 

For the case of a tailless airplane longitudinal balance is usually 
accomplished by the deflection of controls on the wing'. These control 
deflections alter the span load distribution over the wing while con­
tributing to the balance of the airplane, and therefore terms expressed 
as functions of the control deflection 5 will appear in the lift­
distribution equation (eq. (21)) and the pitching-moment balance equa­
tion (eq. (23)) in place of the PT terms. Since the lift produced by 
the control deflection is part of the wing lift, PT in the lift balance 
equation (eq. (22)) will be zero. 

The development of expressions in terms of the control deflection 
follows. 

The required expression for 5 to be substituted into equation (21) 
consists of two ~g components; ~gI' which is the apparent twist due to 

control deflection, and ~gII' which is the twist due to section pitching 

moment with control deflected. From equation (C2) 

For class II twists due to section pitching-moment coefficient 
(type (f) in appendix C), the following equations may be written for 

{M}cm and {T}cm in equation (Fl): 

{M}Cm = -q ~i~ A] ~3J ~;c2J 0IDa} 

{T }cm '< lo~ AJ ~3 ] ~c~ {CIDa} 

(F2) 

----~~--- ~-. -
_.~J 
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where 

1/2 0 0 0 

1 1/2 0 0 

1 1 1/2 0 
13 = 

1 1 1 1/2 

For [m] and [tJ in e~uation (Fl), equations (B34) and (B35) may be 
written as 

[mJ = - ~~ Gi~ A] (F4 ) 

[tJ = ~OJ ~o~ A] (F5 ) 

where 

1/2 1 1 1 

0 1/2 1 1 

0 0 1/2 1 
10 = 

0 0 0 1/2 

Substituting equations (F2), (F3), (F4), and (F5) into e~uation (Fl) yields 

(agI~cm = [IOJ [;J~~ ~~~q~i: ~ ~3J [?:c~ + 

~~q~o: AJ ~~ 13:c~("",,} 

------- --
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or 

E~uation (F6 ) gives the structural twist due to control deflection. If 

wind- tunnel data are not available, theoretical expressions for (crna} 
in terms of the deflection 5 may be used. From reference l8, 

where 

80 cos-l(2~ - 1) 

cf 
s = c 

and cf is the flap chord. .substituting these values for 80 results in 

= - ~~~;(1 - ,) - d,O(l - ,) (2, - 1] [B} 

-2~'(1 : ,)j{B) 

The ~gI term re~uired can be obtained from the following expres­

sion for the lift produced by control deflection (ref. 18): 

o 

{cD-a == 2 E - 80 + sin 8~ {a} 

for a two-dimensional lift-curve slope of 2rr. For a two-dimensional 
lift~curve slope of IDa, this e~uation can be written as 
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Substituting the values for 80 results in 

o 

{Cl}5 = ['::'J E -~ c08-
1 (2< - 1) + ~ 21< (1 - <~{5} (F8) 

o 
Dividing both sides by [~J yields 

o 

rg:) cm = E -~ c08-
1 (2< - 1) + ~ 2l< (1 - < j{5) 

The total ~g term to be substituted for the PT term in the 1ift­

distribution e~uation is obtained by combining e~uations (F6 ), (F7), and 
(F9), to give 

o 0 

~ ~~ ~hC~ Qs (1 - s)~ {5} 

o 

E -~ cos-l(2~ - 1) + ~ 2~~ (1 - ~~ to} (FlO) 

For the pitching-moment balance e~uation (23) the expression re~uired 
to replace PT may be obtained from the theoretical expression for flap 

pitching-moment coefficient (e~. (F7)) as 

(F11) 

'Since in the system of e~uations given in matrix f orm (e~s. (21), 
(22), and (23)) there are two unknowns other than PT, it would not be 

--- .- - --.-
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possible to have more than one unknown in the expression to be substituted 

for PT; in other words) the (a} matrix in eq.uations (FlO) and (Fll) must. 

have a known distribution shape. Let or be the unknown reference 

deflection; the {a} matrix may then be written as {a} = ar~ar} where 

[:;} is any chosen distribution shape. For the reference deflection at 

the second station from the tip this e~uation becomes 

1.0 

°3f6r 

For a constant deflection across the span) the distribution matrix 

becomes {l}. 

Balancing Tail Load Entering Wing Through Tail Boom 

For the case where the tail load enters the wing structure through 
a tail boom) the distribution of load over the wing will be affected 
when the tail load changes and will vary in a different way depending on 

where the tail boom enters the wing. An expression to be substituted into 

the lift-distribution eq.uation (21) for PT(O} is developed in this sec­

tion of the appendix. 

From figure 8) the beamwise moment produced at the point P by the 
tail load entering the wing through the tail boom can be written as 

PT PT PT ~ d,n 
= -2 eT sin IIrr + -2 yp cos Arr + L-

2 m=E+l cos 1m 

where l'Irf is the sweep angle of the elastic axis at the entry section 
of the tail boom. 

_J 
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In matrix form 

o 0 

{M}PT == :Trr~ [dJ~ 1 ~pT} + PT(eT sin Ar + Yp cos J\:r) [IT} (F12) 
- cos ~ 2 

where [l=2] , {IT}, and ~] for six reference stations a re defined as 

0 0 0 0 0 0 

1 0 0 0 0 0 

1 1 0 0 0 0 

~~== 
1 1 1 0 0 0 

1 1 1 1 0 

~ 1 1 1 1 1 

0 Tip 

0 

0 

{IT} == 1 ~Tail-boom entry point 

1 

1 Root 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 

[d] 
0 0 0 0 0 0 

0 0 0 0 dE+l 0 

0 0 0 0 0 dE+2 
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The equation for torque is 

(F13) 

Substitution of equations (F4), (F5), (F12), and (F13) into equa­
tion (C2) gives an expression for the class II twist due to tail-boom 
entry: 

The column to be substituted into equation (21) is therefore 

~~~ ~~J ~a~ ~ [~ ~~ [~1 ~o; ~ + 

~T sin l>r : Yp cos l>r~ + [~ ET cos l>r : Yp sin ~J ~T} (FI4) 

This column will be multiplied by PT in equation (21). Equations (22) 
and (23) remain unchanged for this configuration. 

- -----~------~~~-

• 
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APPENDIX G 

METHOD OF REDUCING WIND-TUNNEL DATA 

Difficulty is usually experienced in applying data obtained from 
wind-tunnel tests to the design of a full - scale airplane, especially in 
those cases where of necessity the stiffness of the model differs from 
that of the full - scale airplane. The purpose of this appendix is to pre­
sent a method of analysis by whi~h model flexibility effects may be 
removed from the aerodynamic coefficients. 

Description of method. - The method utilizes equation (12), which is 

where 

When equation (12) is used for computing the lift distribution {I} 
for a given full - scale airplane of any given flexibility, the and 

matrices used depend only on the particular configuration and the 

flight 

of the {a.g} 

conditions, except for certain aerodynamic-twist components 

matrix (see appendix C). There remain to be selected, then, 

applicable values for these components and for the matrix. 

These values may be determined with suitable data from wind-tunnel tests 
of a scaled model in conjunction with equation (12) as it applies to the 
model. 

The approach taken is usually applicable and is based on the assump­
tion that the following data are available from wind-tunne~ tests of the 
model: (a) the spanwise variation of the section normal-force coefficient 
obtained from integration of pressure data and (b) spanwise variation of 
section chord-line angle of attack with free-stream direction obtained from 
model deflection data . These data should be available for each of several 
root - section angles of attack and at each of several Mach numbers over the 
essentially linear range of section lift coefficient. 

- - ~- - ------- - - - ~ 
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A downwash matrix [SlJ for the model should be computed according 

to procedures of appendix A. In general the horseshoe system should be 
identical with that which will be used in determination of the airload 
distribution on the full-scale airplane. The matrix for the model [SlJ

M 
will then be eQual to the reciprocal of the model scale factor times the 
~IJ matrix for the full-scale airpl ane) where the model scale factor is 
eQual to the model span divided by the full-scale span. 

The final angle-of-attack matrix for the model may be written as 

where 

{~] 

[agJIa 

{aJM 
{aJIb 

angle of attack of root section with undisturbed stream 
(measured) 

built-in twist (known) 

twist due to model flexibility (measured) 

(GI) 

interference twist due to aerodynamic interference effects of 
neighboring bodies (fuselage, nacelles, external stores, etc.) 

. upon the wing (unknown) 

sum of measured or known values 

EQuation (12) for the model then becomes 

(G2) 

Since measured values of {z} are used, equation (G2) represents a 
system of independent eQuations (one for each reference spanwise station 
of the model) which do not reQuire a simultaneous solution. 
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If [~1 is assumed to be invariant with change in wing angle of r gjIb 
attack, the following matrices may be computed from data taken at two 
different root - section angles of attack: 

{fur} = ( ~ }meas - {~l Jmeas 

{L;l} "[ 12} -{II} (G4 ) 

The matrices [~J and [6Z} may be substituted for (~}meas 
and {Z} in equation (G2), since the t erm {~g]Ib has been eliminated, 

and the applicable values of {mo} can be computed from 

("o} " [4q~~] [Sl]JL;I} (G5) 

The interfer ence twist [~1 may now be computed from equation (G2) l gj Ib 

by using the values of {mol computed from equation (G5 ) and the values of 

[l} and [~}meas measured at any root-section angle of attack, for exam-

ple [12} and (~meas· 
The foregoing procedure indicates the simplest solution for the con­

stants in the straight - line equations given by equations (G2). If desired, 
equations (G2) may each be solved somewhat more accurately for {mo} 

and {~g} Ib by a least- squares procedure which utilizes values of {z} 
and J~) taken at several values of root -section angles of attack. \.: meas 

If the interference twist ~ 
gIb 

at any section is ass'umed to include 

a component that varies with change in some section chord-line angle of 
attack, the method is still applicable to a close approximation. In this 

case the variable interference effects will appear implicitly in {IDa}-
The approximation arises from t he assumption (implied in the above 

solution) that for a body at some spanwise station j there exists an 
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interference twist at some other station i which is proportional to the · 
change in geometric angle at i; whereas in actuality the interference 
t wist at station i is proportional to change in geometric angle at the 
body station j. 

Justification for t he assumption can be s hown as follows. Denote 
interference twist by ~, and t he measured section chord-line angles at 

stations i and j by o,i and o,j. Interference twist at station i 

due to t he body at station j is written as t he sum of a constant plus 
a variable twist 

(a.r).=(~) +k .. o, . l o. lJ J 
l 

where is t he proportionality constant. The final angle of attack 

at station i then is 

and equation (G2) for t he spanwise s tation i is 

1 lsJ. {l} = ("i + kij"j + ( "rO)i) 4 q mi 
l 

However, 

0,. 0,. + (a, j - o,i) J l 

t herefore, 

The middle term is small compared to t he first term and may be neglected 

since, for station i close to station j, the difference o,j - o,i 

negligible, and for station i far from station j t he interference 

is 
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effect and therefore k is negligible. If the middle term is neglected, 
equation (G6) becomes equivalent to equation (G2) and the factor 
1 + k·· is apparent in the values of mo computed by equation (G5) IJ 

even though it does not appear explicitly; that is, mo computed by 

equation (G5) is equal to the term mi(l + kij) in equation (06). 

Although only interference twist was considered in the foregoing 
description, the method is obviously applicable for determining other 
aerodynamic twists (see appendix C), for example, that due to flap 
deflection. 

The foregoing method of analyzing data is relatively simple and 
straightforward and ,has the following advantages over other currently 
available methods: 

(1) It provides a means by which data obtained from wind-tunnel tests 
of a properly instrumented elastic model wing can be evaluated for appli­
cation to a full-scale wing of different elasticity distribution. 

(2) It evaluates the variation of effective section lift-curve slope 
and of aerodynamic twist across the span as influenced by the presence of 
the fuselage, the nacelles, and other bodies on or near the wing (these 
obviously include spoilers, ailerons, and flaps). 

(3) It determines the manner in which section lift-curve slope varies 
with Mach number. 

Although the variation of lift-curve slope with Mach number can be 
obtained by the foregOing method by using wind-tunnel data at various 
Mach numbers, it is sometimes desired to determine the change (or changes) 
in lift distribution for section configurations for which suitable wind­
tunnel data are not available, for example, variation of section lift 
with flap deflection c

lo
" 

If the incompressible value of clo can be obtained or estimated 
by some means (e.g., from tests for the flap deflected at some other sta­
tion) and if the effective sweep angle at the new flap station is known, 
then compressible values of Clo can be obtained by substituting the 

c!o values for the section lift-curve slopes in equation (A39) 

m o 
m 

= -:::======== 
~l 

where IDe and m are the compressible and incompressible section lift ­

curve slopes, espectively . 
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It is therefore advantageous to evaluate the spanwise variation of 
~. The effective sweep angle for each section can be obtained from 
equation (A39) by using the previously measured variation of IDa with 
Mach number. For example, equation (A39) can be rewritten as the linear 
equation (linear in squared terms) 

This equation can be solved for m and AM by a least-squares procedure 
if a series of equations are formed by substituting the values of mo 
and M obtained for each of several Mach numbers. 

Alternatively, a solution for m and AM can be obtained by a 
graphical procedure (ref. 19). Plot the variation of rna with M in 
a fashion such that the abscissa (~scale) is proportional to the fac-

tor 1/11 - M2cos2AM' The plotted points will fallon a straight line 

which passes through the pole (IDa = 0, I/vl - M2cos2AM = 0), provided 
AM is correctly chosen and the law (eq. (A39)) applies. Note that 

1/ Vi - M2cos2AM = 1.0 when M = o. A form is presented in figure 9 by 
which the roo values can be conveniently plotted on such an abscissa 
scale for each of a number of values of AM. For example, if a value 
of AM is tentatively chosen as AM = 300 , draw a horizontal line inter­
secting the right-hand ordinate at 300 • The intersect ions of this hori­
zontal line with the Mach number lines are the abscissa locations for 
the indicated discrete values of M. Values of IDa are then appro­
priately plotted vertically above or below these intersections. The 
intersection of this horizontal line with the pole-distance curve gives 
the pole location in scale units to the left of the abscissa point M = o. 
The desired value of AM is then the one which gives the most nearly 
linear variation of the plotted data with consideration given to t he 
pole point. The desired m is the value of the intercept at M equal 
to zero. 

Illustrative example.- This section presents an analysis of wind­
tunnel data obtained on a flexible model to determine the compressible 
section lift-curve slopes {rna). 

The model was a wing-fuselage configuration with nacelles mounted 
below and forward of the wing on sweptforward struts attached to the wing 
semispan stations ~ = 0.37 and 0.65. The wing had the following addi­
tional pertinent physical characteristics: 

Aspect ratio . . 
Taper ratio 
Sweep at quarter-chord line, deg . . 

8 ·55 
. 0.40 

35 
and the locus of aerodynamic centers was assumed to coincide with the 
quarter-chord line. 

_~~~_._J 
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The model wing was instrumented with strain gages cemented to the 
surface of the wing steel spar along one semispan and with pressure 
orifices located along streamwise chord sections on the opposite semi­
span at staUons i'l = 0.155, 0.35, 0.56, 0. 75, and 0 . 92. 

Tests were made at root - section angles of attack of 00 and 60 
for 

Mach numbers 0.30, 0 .50, 0.70, 0.75, and 0.80. 

The spanwise variation in section angle of attack for each test con­
dition was obtained, £rom the root-section angles of attack in conjunction 
with strain-gage readings. The spanwise variation in section normal-force 
coefficient for each test condition was obtained by a spanwise fairing of 
the various local integrated chordwise pressure distributions. 

Elements of the [SlJ matrix were computed for wing semispan stations 

i'l = 0.10, 0.30, 0.50, 0.70, 0.85, 0. 925, and 0.975. The resulting matrix 
is 

0 .14869 -0.04630 - 0 . 01249 -0.00482 -0.00149 -0.00082 -0.00063 

- 0 . 04084 0 . 14811 -0.05547 - 0.00793 -0.0018a -0.00094 -0.00070 

- 0 .00287 -0.01260 0.07827 -0.02713 -0.00285 -0.00121 -0.00084 

[S~ = - 0.00042 - 0.00068 - 0.00426 0.04382 -0.01109 -0.00229 -0.00130 

- 0 .00013 -0.00017 - 0.00053 -0.00522 0.04153 -0.01143 -0.00287 

- 0. 00008 -0.00009 - 0.00023 - 0.00093 -0.00617 0.03969 -0.01307 

- 0 . 00006 - 0.00006 - 0 . 00015 - 0.00050 -0.00124 - 0.00794 0.02917 

where the columns read down from the tip to the root and the rows read 
across from t he tip to the root. For these same stations 6cnc/4 and 
increments of section geometric angle of attack Da due to the 60 change 
in root angle of attack were computed from data at each test Mach number 
and tabulated in table I. 

Substitution of {6Z} = {6CnqCJ for [Z} and {Da} for {CLf} in 
equation (12) gives 
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8 

from which the values [illo] were computed and tabulated in table I. 

Values of mo for ~ = 0 . 975 are not shown since mo is very sensitive 

to the manner in which the spanwise variation of ~cn is fa ired in the 
region of the wing tip . These values for each wing station are plotted 
against Mach number in figure 10(a). 

Since the [SlJ matrix is based upon the "wing alone" configuration, 

the body interference effects which vary with body angle of attack will 
be apparent in the values of lift-curve slope particularly for those 
stations near the wing root . 

It was assumed that the Prandtl-Glauert relationship was applicable 

for these data. Accordingly the Lillo} values were plo~ted (by using a 

form similar to that shown in fig. 9 ) for various selected values of AM' 

The plots which yielded the most nearly linear variation of the data 
are reproduced in figure (lO(b) for each span station. In selecting the 
plot which gave the most linear variation of IDa, consideration was given 

to the fact that at very low Mach numbers (approx. 0.30) the value of mo 
could be affected by Reynolds number; whereas those obtained for high 
Mach numbers would reflect the effects of shocks, and so forth. These 
points were therefore given less weight in determining the best fit. 

Plots showing the spanwise variation of effective section sweep 
angle ~ and lift-curve slope m are given in figure 11. 

_J 
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APPENDIX H 

CALCULATION OF THE DIVERGENCE DYNAMIC PRESSURE 

Although the sweptback wing is usually considered to be divergence­
free , it is conceivable that, with a large external divergi ng t orque 
such as may be contributed by a tip tank, the wing could diverge. This 
appendix is concerned with the calculation of the dynamic pressur e at 
which divergence will occur. 

An expression for the static lift on a flexible swept wing with an 
external tank has been derived in appendix D and, for a divergence inves­
tigation, may be written as follows: 

(Hl) 

This is a matrix equation in which the elements in the column represent 
the lifts on the various spanwise segments of the Wing. The total lift 
can be found from equation (Hl) by multiplying the lift per unit span 

by the row matrix L?~ where 2h defines the segment width in the 

spanwise direction . Then 

or 

(H2) 

Equation (H2) represents the lift on a wing in static equilibrium. 
Under the condition of wing divergence the equilibrium wing lift would 
be infinite. 
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The divergence ·speed is then represented by the lowest value of q 
for which the lift in equation (H2) becomes infinite. For the right­
hand side to be infinite, the determinant of the matrix whose inve r se 
is given in equation (H2) must be zero, or 

which can be written in the form 

o (H3) 

The procedure is t o solve for the lowest value of q which satisfies 
equation (H3). From the Cayley- Hamilton theorem, the dominant or highest 
modulus r oot A in the equation 

A[I] - [D] = [oJ (H4) 

may be found by iterating the matrix [OJ. In this case equation (H3) 

may be put in the f orm of equation (H4 ) by multiplyi ng through by 

The result is 
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Now A ~; therefore) iteration of the matrix product 

(H6) 

will yield the lowest value of q) which in this case is the desired 
divergence dynamic pressure. 

The theory of matrix iteration may be found in reference 20; however) 
a simple outline of the steps required to iterate the matrix product (H6) 
to obtain the divergence dynamic pressure is given here. First a trial 
column is chosen and this column is premultiplied by matrix (H6) to 
obtain a result column. The elements of this result column are divided 
by the last element of the result column and then become the elements of 
a second trial column (the last element will be unity, having been 
divided by itself). The second trial column is then premultiplied by 
matrix (H6) to yield a second result column. This procedure is repeated 
until the same value is obtained for the last element in two successive 
result matrices. The reciprocal of this value is the desired divergence 
dynamic pressure q. 
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TABLE I. - MEASURED DATA AND RESULTING SECTION LIFT-CURVE SLOPES FOR ~ n 
:t> 

WIND- TUNNEL MODEL OF APPENDIX G ~ 
\.,N 

M = 0.30 M = 0.50 M = 0.70 
~ 
o 

T} D.cnc/4 tn, radians rno Dc.nc/4 tn, radians rno D.cnc/4 tn, radians rno 

0·975 l3.897 0.lOl35 ---- l3.628 0.09665 ---- 14.358 0.09117 --- -
.925 l6.966 .lOl40 4.75 l7.460 .09672 5.08 l8.8l9 .09132 6.20 • 
.85 20·775 .lOl48 5.4l 2l.682 .097l0 5.54 22.998 .09192 6.08 : 
· 70 24 .390 .l02l7 4.83 27.023 .09849 5.98 28.903 .09422 6.7l 
· 50 30 .490 .10317 5.84 3l.658 .lO097 6.25 33.669 .09832 6.79 
·30 36.112 .l040l 6.97 36.ll2 .l0294 6.69 38.24l .10177 6.93 
. lO 37 .485 .l0455 7·l9 39.490 .l0424 7.74 43.587 .l0392 8.72 

M = 0.75 M = 0.80 
T} D.cnc/4 tn, radians rno Dc.nc/4 tn, radians ID.o 

0·975 l5.5l0 0.08972 ---- l5.433 0.08762 ----
.925 19.684 .08997 6. 59 20.63l .08792 6.97 
.85 23.8l4 .09066 6.46 25.492 .08867 7. 071 
·70 29. 548 .09316 6.86 3l.804 .09l52 7.45· 
·50 34.837 .09772 7·l5 37.886 .09662 7·83 
.30 39.077 .lOl37 7·00 42.650 .lo082 7·59 
.lO 45.l57 .l0382 9.09 50 .l26 .10382 lO.l6 

------- ----

~ 
~ 

~ 
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.... - Undisturbed 
wind direction 

NACA TN 3030 

/ Equilibrium position of 
/' section zero -lift line 

Root - section zero'­
lift line 
~ 

Figure 1. - Angle-of-attack definitions and sign conventions. Positive 
angles shown. 

• 
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~---------------- b/2 ------------------~ 

Pitch ref. ax is,,_ 
--~-- --~--

--<t Airplane 

_ C b~y/_2 ---{ J 
~ ,Origin 

Horseshoe ref. point " 
at "f) b/2 " Locus of local 

aerodynamic centers Bound vortex with -,_ 
midpoint at 7J b/2 

c/4 

\ 
\ 

\ 

\ 
I 

I 

I 

3c/4 line " 

"- Elastic axis 

-Control point 0 
at 7J b/2 

-~ -J--~ --:: c -------- - Semi - infinite 
trailing vortices 
at "f) b/2 

Figure 2.- Typical vortex locations and l ocation of pertinent points on 
an arbitrary wing plan form. 
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--+---- d2 ---.; t F:rword 

Inboard 

, 

"Elastic aXIs 

2h, -+4---2h2-~--- 2h3 
---- Left ~ 

wing tip 

Figure 3. - structural skeleton of outboar d s ect i ons of left wi ng s hown 
in p l an v i ew. 

-- --~---- -------

.. 
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Leading edge " 

i hl
/

21/ 

~ _ r For~ord (streomwise) 

Inboard 

- Locus of aerodynamic centers 

111 

--Centroid of the load Lion the 

E 10 stic -­
aXIs 

I~ 2hl 

streamline strip of span 2 h I 

------ -- -/.:::: - - Centroid of the load L 1/2 
on that portion of strip 1 
that is outboard of point 1 

- --Point 1 

--
, --Trailing edge 

Figure 4 .- Pl an view of left wing tip section . 
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o T '--Trailing edge 

Figure 5 .- Polar representation of left Wing us ed in development of the 

02 ~ llJatrix . 

-------- ------------------ -------- ------

• 
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~ Airplane 

I 

Locus for R2= ~~ --- ->--1-----
/ --

/' "-
/ " Fuselage boundary - -! I \ 

, 
'Wing plane 
at 3c/4 rearward 
of leading edge 

/ - '-
/ \ 

* Point "k" at a distance of 

Real vortex system 
~ 

Point "k:'· 
I 

r .' r 
~ /' ,.---.. 

wz 

113 

sx' rearward of the transverse 
plane conta ining the bound vortex 
and its image and is on the locus 
of control points . 

(Note that a straight-line image bound 
vortex is used instead of its true shape) 
i. e.) chord of the arc instead of th e 
circular arc itself.) 

(a) Front view of t ypical vortex- image system ( high-midwing configuration). 

Figure 6 .- Diagram of vortex- image sy stem for a wing- fuselage combination. 
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Airplane 

t--------+ 5 y'---I 

TYPical{~j h h 

(Left) 
y r r I r r 
~ 

T r r r r 
5 ' X 

--L -+; 

rro ro ro 
r 

co 

(b) Pl an view of typical vortex- image system (midwing configurat ion) . 

Figure 6. - Concluded. 
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ct Airplane 

<t Station 

I 
c/4 

~ -Elastic aXIs 

-

PT 2""" ( POS. up) 

Figure 8 .- Diagram of a representative wing--tail-boom combination showing 
entry of tail l oad on to wing structure (d is distance between stations 
measured perpendicular to streamline). 
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Figure 10.- Variation at several semi span stations of section lif t-curve 
slope with Mach number for linear scale and expanded M-scale. Wind­
tunnel model of appendix G. 
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Figure 11.- Spanwis e var i ation of effective sweep angle ~ and section 
lift- curve slope m for wind- tunnel model of appendix G. 
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