KN ‘a4vy AHYUHEIT HOaL

O
o~ [
o =
G =
o=
. 8 =
= o=
1z 3
< NATIONAL ADVISORY COMMITTEE =
<
= FOR AERONAUTICS
TECHNICAL NOTE 3168
A NEW HODOGRAPH FOR FREE-STREAMLINE THEORY
By Anatol Roshko
California Institute of Technology
1
P
{
.‘
Washington
July 1954

Y

]
»y
L

> o

e
e
-

. T
.‘ -
- 3

:
2
-



1T

TECH LIBRARY KAFB, NM

[MANHREA T

NATTONAL ADVISORY COMMITTEE FOR AERONAUT.cw OOG583k

TECHNICAL NOTE 3168

A NEW HODOGRAPH FOR FREE-STREAMLINE THEORY

By Anatol Roshko

SUMMARY

In the method of Helmholtz-Kirchhoff for separated flow past a flat
plate (normel to the stream) the separation velocity and the "base pres-
sure" are fixed st the free-stream values. In the present treatment a
modification is introduced to allow arbitrary separation velocity and
base pressure, so that values more in conformity with experiment may be
chosen. The solution depends then on the single (base-pressure) parsm-
eter k. When k is suitably chosen, the drag and the deteils of the
potentlial flow near the plate agree well with experiment. The compu-~
tations depend on a perticular choice of free-streamline hodograph, which
has the feature that it gives a definite wake width for every value of k.
In this way the wake width is correlated with the drag.

The same ideas are epplied to work out the free-streamline flows for
a clrcular cylinder and a wedge of 90° vertex angle.

INTRODUCTION

Tt is remarkable that the problem of flow past bluff bodies, one of
the earliest to recelve attention, is not yet understood. The early
investigators already had very good insight into the problem; and,
although considerable experimental and some theoretical information on
the matter has been collected since then, there has been little essen-
tial progress towerd a theoretical formulation. One of the methods used
to attack the problem was that of the free-streamline theory, Introduced
by Helmholtz and extended by Kirchhoff and many others. Kirchhoff's
exasmple of flow past a flat plate, normal to the stresm, is well-known.
The theory is based on the observation that for the configurations in
question the flow separates from the body, leaving behind it a wake and
creating a pressure drag quite distinet from that due to shearing forces
on the surfaces. The main aim of the theory is to f£ind the "free stream-
lines" defining the wake, outside which the flow is potential, and to
compute the resulting pressure drag. '

In the Kirchhoff theory there 1s a basic assumption which results
in a conslderable loss of reality. This is the assumption that the
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velocity on the free streamline at separation is equal to the free-stream
velocity U,. The pressure at the separation points, and on the "base"
of the body, behind the separation points, is then equal to the free- v
stream pressure. This is not in agreement with experience, which shows

that the base pressure 1s actually always lower than the free-stream

value and that the drag is higher than that calculated by the Kirchhoff
theory. However, the Helmholbtz-Kirchhoff assumption is sttractive, in

that the veloclty all along the free streamline may be considered con-

stant (U,) wup to infinity, which leads to a simple formulation in the
hodograph plane. The theory has been applied to many shapes other than

the normal flat plate; in fact, there is a rather extensive literabure

on the subject. However, in all cases (with the possible exceptiom of
cavity flows) the computed results fall to agree with experience, the i
discrepancy being mainly due to the basic aZsumption about the separation
veloelty.

Clearly, if any progress 1ls to be made with the free-streamline
theory, i1t is necessary that the separation velocilty be allowed to assume
values different from Uw. The modification regquired in the theory may
be summed up in & single parameter k, which defines the separation
velocity Ug = kUx and gives a base-pressure coefficient Cps =1 - k2,
The base-pressure coeffilcient is aslways less than zero, corresponding to
k>1, Of course, it is not known what value of k should be assumed,
but this ie a problem that cannot be determined by the free-streamline
theory. It must come from other considerstions, principally of the
dynamics of the wake.

One might doubt that the free-streamline theory is applicable at
all, particularly in view of the last remark. To sum up the evlidence for
end agalnst it, the followlng experimental observations may be useful: .
(1) The discontinuity surfaces, or free streamlines, idealized in the
theory, are well approximated by the actual shear layers that exist in a
real fluid, for some distance downstream of the separation points (ref. 1,
p. 553). (2) On the back of the obstacle, downstreasm of the separation
points, the distribution of pressure 1s remarkably constant for almost any
form of bluff body, even the extreme example of a flat plate inclined at
small angle of attack (ref. 2 or ref. 3, p. 679). This means that the
velocity at the two separstion points is the same, a fact which is rather
essential to the theory. (3) The shear layers do not continue far down-
stream as assumed, but "roll up" to form vortices, alternately on each
side. This vortex formetion occurs behind all bluff bodies, provided
there is no interfering barrier between the separsted shear layers, at a
frequency which is characterilstic for each body shape. Fage and Johansen
(ref. 4) noted that the vortex freguency for different bluff bodies could
be correlated by expressing it as a dimensionless frequency based not on
the body dimension but on the distance d4' between the shear layers,
measured at the section where they become parallel, before "rolling up.”
Whether or not the vortices are formed, the idea of free streamlines
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extending to infinity is unrealistic, for the shear layers diffuse raspidly.
Therefore, 1t appears rather fruitless to be too concerned with the details
of the free streamline &t infinity; the main aim should be to obtain a
solution which is valid near the body. A more realistic way to formulate
the problem is as follows:

The flow past a bluff body is considered in two parts. Near the
body it may be described by the free-streamline theory, provided that the
parameter k is properly chosen. The description of the wake farther
downstream must come from other considerations; if It can also be obtained
In terms of the parameter k, then a camplete solutlon may be found by

Joining the two parts.

Even if it is not possible to complete the solution in this way, on
theoretical grounds, the results of the free-streamline theory should be
quite useful, particularly for correlating verious bluff shapes experi-
mentally. For instance, if from a study of one or two cases it can be
determined how k depends on wake breadth, condition of the separated
shear layers, and so forth, 1t may be possible to choose the appropriate
value of k for any other bluff body. As ancther example, the relatlons
between "bluffness," drag coefficient, wake breadth, shedding frequency,
wake energy, and so forth, might be easily classified.

The Kirchhoff solution for the normal flat plate is reviewed. Then
it is shown how a more reeslistic solution may be obtalned by allowing
arbitrary base pressures. The examples of a wedge and circular cylinder
are also worked out.

The research was conducted at GALCIT under the sponsorship and with
the financial assistance of the National Advisory Committee for Aeronautics.

SYMBOIS
Al,AE, . .,An
constants

al,a3, 3 Y o,an

k2 + 1
8 =

k° -1
b streamwise distance to section where streamlines become

parallel

CD drag coefficient
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pressure coefficient
value of Cp at separation point and on base

average of C, (over a surface)
average value of CP on front of plate or wedge

breadth of any cylinder measured normal to streem
distance between paraellel free streamlines

functions defined for convenience of calculation,
appendix B

length of wedge measured along a side
wedge-angle parameter, 2ufx
megnitude of velocity (dimensionless)

value of q &t separation point

Reynolds number

intermediate mapping function

magnitude of free-stream veloclty (dimensionless)
components of veloecity

complex stream function, @ + 1y

streamwise coordinate in real plane

coordinate normasl to flow

dimensionless complex coordinate, x + iy
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half-angle of wedge

angular position on cylinder circumference, measured from
stagnation point

angular distance to separation point on circular cylinder

<

inverse of complex velocity,

direction of flow
velocity potential
complex veloclty, qe‘ie
density

Levi Civita plene
intermediste mapping function
stream function

intermediate mapping function, log.f

intermediste mapping function for k # 1

"shaping" term in €

KIRCHHOFF PROBLEM

The problem made famous by Kirchhoff was that of the flow past a
flat plate set normal to the stream. It will be useful to review his
solution, following essentially the notation of Lamb (ref. 3, p. 99).
In sketch 1 the z-plane is the plane of the actual flow. The solution

y
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consists, as usual, of mapping 2z onto the plane of the complex poten-
tiel w =9 + i¥. This is accomplished through the medium of the complex

_ v 10

hodograph or v-plane, where v =u - iv = ge” is the complex

velocity. It is with this plane tﬁat the elegance of the Helmholtz~
Kirchhoff method 1s realized. The essential assumption is that every-
where on the free streamlines SI and S'I the velocity is equal to
the free-stream valuve TU,. Then in the hodograph plane the free stream-
line is simply the circle fv| = U (=1 after normelization). Sec-
ondly, the trace of the plate SS' in the hodogreph plane is known,
since the flow direction there is constant. Thus the boundaries of the
flow in the hodograph plane are known & priorl and are of simple form,
so that the mapping to the w-plane is easily accomplished.

In practice it is convenlent to use { 1I1nstead of v, where

t = % =110 %%. Thus € glves the true flow direction and the

q
reclprocal of the velocity magnitude at the corresponding point in the
physical plane. Once the mappings are known, the solution is given com~

pletely by
z=f§dw=z(wﬂ

P ey = @)

q E A -

HE

o

where q? determines the pressure, since Bernoulli's equation may be

used to evaluate the pressure coefficient

=1 - g2
Qp =1 - ¢

From relations (1) the pressure everywhere in the flow field may be
computed.

In particular, at separation and all along the free streamline
Cp-= Cps.= O, since gg = 1. The pressure coefficient in the wake and

on the back side of the plate is also zero. The drag then is simply due
to the excess of pressure on the front; its value in the Kirchhoff example

is Cp = 0.88.

Now actual experlience shows that the drag is considerably larger,
being of the order Cp = 2; the increase is due mainly to suction on the
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back of the plate, CPs < 0. Corresponding to this, the velocity on the

free streamline at separastion is higher than the free-stream value. If
Qg = kU,, k> 1, then Cps =1 - k2, and the drag contribution from the

back side is k° - 1.

The difference between the computed and the actual drag is a serious
discrepancy in the Kirchhoff solution, as well as in the many solutions
which have been worked out for various body shapes using the same tech-
nique. In cother respects, the flow in the immediate vielnity of a flat
plate normal to the flow does resemble the conditions anticipated in the
theory, as already stated in the "Introduction," so that the free-streamline
theory need not be sbandoned. Tt would appear necessary to modify the
theory only to the extent of allowing the velocity at separation to assume
an appropriate value qg = kU,.

Such an adjustment may be made, in fact, by introduecing the hodograph
of sketch 2. Here, the velocity at separation is allowed to be gqg = kU,

sl @
U .
B
S
Sketch 2

and to remain at this value along the free streamline (circle in the
hodograph plane) until the latter becomes parallel to the free stream
(point B in the hodogreph plane)}. At infinity the flow must have returned
to the point I, so that the free streamline in the hodograph is simply
drawn by Joining BI, giving the notch shown in sketch 2. The singularity
(doublet) is still at I, as in the Kirchhoff hodograph, which is shown by
a dotted line for comparison.

This "notched hodograph” is convenient, for it may be easily mapped
onto the w-plane; but it also approximstes experiments, since the pressure
on the free streamline does tend to remain constant for same dilstance
downstream of the separation point. The solution for flow past a normsl
flat plate, using this hodogreph, is worked out in the next sectilon.
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NOT'CHED HODOGRAPH

Sketch 3 shows the planes needed to mep the flow from the z- to the

1
k
St C)
' I
c B ® '—g
P s || s
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®
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e SR
168
B '
B! I I
-1 f
C SBI
c
® SYB'I
1
a2
Sketch 3

w-plane, under the assumption that in the hodograph plane it is like
sketch 2. To make the radius of the circle in the v- and {-planes equal
to unlty, the velocity at infinity 1s set at Uy = l/k; that is, q5 = 1.
The transformations are:
i 1
X = ={t - =
e -2)

which 1s the Joukowsky transformetion,

2 2
t = Ez_i_i__
h™ + 1

-
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where

and

Solving for & glves

= 11 k22;l(/%-;:52-+¢%-1) (2)

where

Then,

=U/‘§ dw
k? + 1 [9;—i-:_;3 + tan~ /_—:_- iv;__'TT:B + a tan'lvaavi ;]

(3)

the constant of integration heving been determined from the condition
=0 at w=0. Relations (2) and (3) give the complete solution.
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Of particular interest are points on the plate and slong the free stream-
line, which correspond to real values of w(=q>), so that the expresslons
there are somewhat simplified.

To locate these positions in the physical plsne z = x + iy, one
has from equation (3):

ﬂ
X =0 0<SQsl

e - b
_,___kzazl[m + tan™1 —_1q-)cp+%m + atan-ﬂ/ach-q], ( )
v

«
[

-~

x=ﬁ21+7i:VCP(l-qJ)+loge(‘I;+Vq)-l§] 1<pga2

_ > (5)
2 .
y=k2;l%+%;/q)(a2—q>)+atan'l|/J—a2-cp
- ~
| J_ 2
x=k22]-:1[:(p(q)_l)+1oge(ﬁ+\jcp-1)+\an(q>-a?7+aloge‘£+_aq’_{| y
¢ (6)
2
=K K 41 . _ : > g2
Tt e ¢ea J

Equetions (4), (5), and (6) locate positions on the plate, on the free
streemline from S +to B, and on the free streamline from B to oo,
respectively. At B the free streamlines became parallel, separated by

‘bhe(gi-stance d', which may be found by putting ¢ = a2 in equatioms (5)
or (6):

2
d‘=:‘fkk + 1 . . (7)
k2 - 1



NACA TN 3168 11

Also, the downstream distance to B is
2 2 g vl
p=fE XL + log, k +l)2 (Ta)
X2 -1 k2 - 1

The pressure coefficlent may be evaluated from

=l—'—§|—2' (8)

The values of |§l2 are fournd from equation (3), which gives, for the
positions corresponding to equations (4), (5), and (6) above, the
expresslons

-\
2
_kS+af T T T <o<
¢ =1 1S¢Se® ¥ (9)
|c|=%;—l<¢§-cp+J -%) 02 o
W

To find the drag coefficient, the average pressures on the front and
back of the plate are computed:

a/z 1
T =2 =2 R--A kN
cP dfo cp dy dj; (1 K q_)q ap (10)

where use has been made of the relstion

dy =

8l&

ds
dp = X2
q
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on the plate. Substituting from equations (9) gives for the average
pressure on the front

—_— 2 2 ok .
CF=1'-—(—1-{-—-t—];)—-‘ba,n'l————2(k2-l) (11)
é k k2 _-1 - . -

On the back the pressure 1s constant, so the average pressure there is
simply

Cpg = 1 - k2 (12)

Finally, the drag coefficient is
p = CpF - Cps (13)

The breadth of the plate 4 1is easily found from equations (h) by setting
¢ = 1:

2 2 : _ _
q=5+1fx 2k Kk +-ltanl——-k2 = (1%)

The expresslions derived gbove completey describe the flow, for any value
of the peremeter k. For k =1 they reduce to the Kirchhoff solution.
In real flows, however, k > 1 and the problem remaining is to choose
the correct value. This problem will be returned to later (see the sec-
tion "Discussion"). First it is necessary to test the validity of the
notched hodograph by comparing 1t with experimentael results. For this,
%here an;-e available some excellent measurements by Fage and Johansen
ref. 2).

COMPARISON WITH EXPERIMENTS AND WITH ANOTHER HODOGRAPH

In one of the cases studied by Fage and Johansen the velocity at the
edge of the plate and the pressure on the back correspond to k = 1.54.
Using this value in equations (8) and (9), the pressure distribution on
the front of the plate may be computed and compared with the measured
values. Figure 1 shows that the asgreement is excellent.
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Now it is not at all clear that some other hodograph might not
give equally satisfactory agreement, especially since the "end points"

of the pressure distribution (CP =1 and Cpg = 1l- k2) are fixed once
k has been chosen. Any other hodograph curve jolning the points S
and I (sketch 2) will give the same base pressure coefficlent CPs

but will otherwise change all the values that have been computed above.
To investigete the sensitivity of such a change, SIS' was chosen to
be & smocth curve, as shown in sketch 4, defined in such a way that its

g @
"Elliptical"
S Notched
Kirchhoff
Sketch 4

inverse (in the {-plane) is an ellipse. This permits an easy trans-
formation, the details of which are given in appendix A. The pressure
distribution on the plate calculated for the "elliptical" hodograph is
also shown in figure 1. It does not asgree with the measurements so well
as does the case of the notched hodograph.

A much more sensitive comparison is given by the pressure distribu-
tion along the free streamline, as shown in figure 2(a) for the two
cases. The superiority of the notched hodograph 1s indicated by a com-
perison with the experimental curve (measured for this purpose), which
shows that the pressure tends to remaln constant at first, as antici-
pated. Figure 2(b) shows the streamlines computed for the two hodogrephs
and for the Kirchhoff case. The shaded region is the actual shear layer,
measured by Fage and Johansen, which the free streamlines are intended to
approximate.

An unusual and very useful feabture of the notched hodograph is that
the free streamlines become parallel at some section B-B'. In this way
a definite value of the wake width 4' 1is defined for every value of k.
The definition of a wake width opens some new possibilities which will be
taken up later.
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Figure 3 shows how the drag coefficient Cp and the wake width
d'/d depend on the base-pressure parameter k; the calculated values
are given in table I.

After the sbove method wes worked out, the suthor's attention was
drawn to another method, which was glven by Riabouchinsky (refs. 5 and 6)
and which accomplishes essentislly the same thing. Riabouchinsky intro-
duces, further downstreem, a second plate which 1s the mirror image of
the first one. The two plates and the two streamlines which join their
corresponding edges enclose a reglon, or cavity, which is assigned an
arbitrary pressure. This is then the base pressure, as well as the con-
stant pressure glong the free streamline, =snd may again be specified by
the parsmeter k. For a given k +the outer potentlsl flow and the shape
of the cavity are glven by the theory. The maximum cavity width, which
varies with k, may be taken as a measure of the wake width 4'. 1In
short, the Riabouchinsky theory, like the notched-hodograph theory, gives
a flow which depends on the single parsmeter k and of which the "front
part" may be used to epproximate the flow near a bluff plate. For a
given base pressure, the drag is very nearly the same as that from the
notched-hodograph method, as may be expected. The wake width, however,
1s somewhat larger, and the free-streamline shape, of course, is somevhat
different. The Riabouchinsky theory has been extended to the case of
wedges by Plesset and Shaffer (ref. 7), who alsoc found it necessary to
use numerical methods to evaluate some of the integrals which occur. It
could alsd be adapted to the case of a circular cylinder, as has been
done here for the notched hodograph. '

In addition, an early paper by Joukowsky (ref. 8) has recently come
to the author's attention. This gives a general method for the case with
arbitrary veloclty specified along a free streamline. The notched- ’
hodogreph results for the bluff plate appear there as a speclal example
and are interpreted as the flow at a channel mouth which is shielded by
a flat plate shead of it.

WEDGES

The results of the preceding section give some confidence that the
notched hodograph will also be suitable for other bluff body shapes and
that many of the solutions that have been worked out for the Kirchhoff
condition k =1 can be generalized in the same way as the case of the
normal flat plate. The generalization 1s straightforward for a wedge of
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arbitrary nose angle 2ux, shown in sketch 5. For k =1 the problem

St g?

kn fe—k3
Sketch 5

has been worked out by Bobyleff (see ref. 3, p. 1OL).

The only additional transformetion required is one which will open
the segment in the {,-plane onto the half cirele in the t-plane, from

where the mapping to the w-plane is identical with that worked out in
the section "Notched Hodograph." The appropriate transformation is

ty = L2 2
where

n = 2a/x 0<ns2 > (15)
Also, then

kl - knl/n y
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(The subscripts 1 and n, to distinguish flat plate and wedge, are
used to prevent confusion in the transformetion; they may be amitted
later.) The mapping from w to {, then, referring to equation (2),

is

¢ =P
2 4 1\ g
- (ti)n(-lg—k-;—) \/%-aiz+ 1.1 (16)

The mepping from w %o 2z 1s

d/tn dw
(ti)n(k_l‘;;_l)n f (J% - ;1.2. + ﬁ - 1)n aw (17)

Since a general solution of the integral in equation (17) could not be
found for arbitrary values of n, or even for specific values of n other
than O or 1, one case (n = 1/2, corresponding to a = 45°) was worked out
numericelly. The resulting values for Cp and d4'/d, as functions of Kk,
are shown in figure L and tabulated in table II. The detalls for the
numerical integration asre given in appendix B.

n
]

CIRCULAR CYLINDER

In dttempting to apply the free-streamline theory to the circular
cylinder, two new difficulties are encountered. On the one hand, the
trace of the cylinder surface in the hodograph plane is not known a
priori. BSecond, the separation point in the physical plane 1s not known,
ag it was in the cases of the plete and wedge. The first difficulty is
one only of degree — the mapplng may always be accomplished 1n principle.
The problem of the separation polnt, however, is more difficult; it may
be appreciated from the following discussion.
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Consider the flow past the curved arc shown in sketch 6. If the

Sketch 6

opening angle 285 1s not too large, then separation wlll occur at S,
just as in the case of the flat plate. The curvature of the free stream-

line at separation will depend on the base pressure coefflcient Cps’

thet is, on the paremeter k. The lower the base pressure, the more
sharply will the streamline curve toward the center. As long as the
"eylinder" consiste only of the curved plate shown by the heavy line,
the streamline can adjust itself to any base pressure, always separating
st the point S. But if the curved arc i1s actually part of a complete
cylinder, shown dotted, then the radius of curvature of the streamline
cannot be smaller than that of the cylinder; otherwise the streamline
would intersect the eylinder. It may, of course, be larger. For one
particular value of k, that is, of the base pressure, it will be Jjust
equal to the radius of the cylinder. If the cylinder 1s actually the
complete one, then Bg 1s not known a priori; but if it be assumed that
the streamline at separation has the same curvature as the cylinder, then
there will be a unique value of B for every value of k. Thus, with

this assumption, a solution masy be obtained, depending as in the previous
cases only on the parameter k. On the other hand, 1f the radius of
curveture at separation is assumed to be different from (grester than)
that of the cylinder, then PBg will be scme other function of k. This
uncertelnty ebout the conditions at separation makes the free-streamline
problem of the cylinder consldersbly more difficult than the cese with
fixed separation points.

Tt seems worth while, as an Initial step, to work out the case where
the streamline curvature is the same as that of the cylinder. This had
already been done for k =1 by Brodetsky (ref. 9) and later by Schmieden
(ref. 10). Using a mepping due to ILevi Civita, Brodetsky was able to
obtain an approximate solution by an iteration procedure which converges
quite rapidly. He found the separation to occur et fg = 559, giving a
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drag coefficient Cp = 0.5. It may be expected that for k > 1 the
values of Bg and Cp will be higher.

To investigate such asrbitrary values of k, Brodetsky's method has
been adapted to the notched hodograph. A more complete discussion of
the method is given in appendix C. The results are given in figure 5,
which shows how the separation polnt Bg, the drag coefficient OCp, and

the distance between streamlines d'/d vary with k. Although the
iteration was carried through only one step, the results up to k = 1.6
appear to be accurate to a few percent (appendix C). At higher values

of k the accuracy (with one iteration) becomes more uncertain, so these
have not been plotted.

Figure 6 compares an experimental pressure distribution with one
computed on the basis of the above theory for k = 1.4, chosen to match
the base pressure on the experimental curve. There is considerable
improvement over the Kirchhoff case computed by Brodetsky and Schmieden.
Only in the vicinity of the separation point 1s there a serious dis-
crepancy, resulting in quite different values for Bg in the two cases.

It is in this region that the uncertainty about the separation condition
is most noticesble. Clearly the assumption that the streamline has the
same curvature as the cylinder is not satisfactory. With this assumption,
there is no adverse pressure gradient (fig. 6), whereas it is well-known
that to separate a boundary layer on a contlnuous surface an adverse
gradient is necesseary; it exists in the experimental case.

One might, of course, introduce more plausible assumptions about the
curvature at separstion, but for this 1t asppears necessary to go back to
a study of the boundary-layer separation. That the nature of the boundary
layer cannot be neglected is clear, since at high Reynolds numbers (sbove

105) the separation point moves to fg > 900.__The theory in the shove
form is suiteble only for values less than 90°.

DISCUSSICN

In each of the examples treated in the preceding sections, and in
every case to which the theory aspplies, the solution depends on the single
parameter k, which cannot be determined without further considerstions.
In this respect the theory is not closed as 1s the classical (Kirchhoff)
theory, in which 1t is simply assumed that k = 1. That cholce of k,
however, 1s arbitrary, and experience shows it to be unreslistic. One
might just as well choose a value in much better asgreement with experience.
For instance, 1f the value is determined, experimentally, for one biuff
body, then it may be used fairly confidently for other shapes at the same
Reynolds number; at least the result will be much better than that with
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k = 1. However, this is a rough observation based on emplrical informa-
tion, not on an essential understanding of the problem. A theoretical
or semitheoretical basis (e.g., dimensionless analysis) 1s needed to
choose k, but the free-streamline theory can take one no further in
this direction. Some essentislly new information must be added; and
this, it appears, wlll not be obtained without a consideration of the
wake, the mechanics of which plays a part in setting the base pressure.

Due to the fact that the wakes of different bluff bodies develop in
the same way, from the two separated shear leyers, they have many features
in common. In fact, a wake may be discussed independently of the body if
its geometrical and velocity sceles ere known. This is brought out in
Karmén's analysis of the vortex street, in which the two parsmeters needed
to close the problem are a dimension and a veloeity (relative to the
body). The only function of the body is to determine these two parame-
ters, or scales; it can hardly have any further influence on subsequent
developments in the wake (except for Reynolds mumber effects). That is,
the wake 1s completely determined by a specification of the geometrical
and velocity scales early in its development, in the transition from the
body regime to the wake regime. The velocity scale may very appropriately
be characterized by the velocity elong the edges of the free shear layers,
while the geometrical scale may be specified by the distance between the
free shear layers. These correspond to the parameters k and d'/d. In
the free-streamline theory based on the notched hodograph, the relation
between k and d'/d 1is determined, for a glven body shape, so that
there is only one independent parameter, a result which should prove very
useful.

While 1t may be possible to obtaln same results, having only the
geometrical and velocity scales of the wake, it will be necessary even-
tually to consider the Reynolds number effects. These are related prin-
cipally to the state of the free shear layers, or of the boundary layer
before separation. Instead of a Reynolds number based on the body dimen-
sion, 1t will probaebly be more appropriste to introduce the thickness of
the shear layer and Its ratio with respeet to d'. This problem has
recelved much more attention in the supersonic "base-pressure problem"
than 1n the older problem of incompressible flow past bluff bodies.

Another way in which the results of the notched-hodograph theory
may be useful is related to the observations masde by Fage and Johansen
(ref. 2), already mentioned in the "Introduction." They observed that
the frequency of vortex shedding from a bluff body depended not on the
dimensions of the body but on the distance between the free shear layers,
and they were able to get a good correlation between bodles of different
shapes by using this distance in the dimensionless frequency. A single
parameter like this might be used, in conjunction with the free-streamline
theory and with measurements of the shedding frequency, to determine the
drag, for these would give d'/d end thus k and Cp. Here agaln there
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is some dependence on Reynolds number, or rather on the ratio of the
shear-layer thickness to 4'.

Although there seems to be little possibility at present of obtaining
a theoretical description of the mechanics of the wake, especially in the
reglon where it develops from the free shear layers, there is still the
possibility of finding a correlation between bodies of different shapes
on a semiempirical basis. Since the completion of this work, a study,
based on experiment, has been made of the dependence of k on the shear
leyers and on the distance between them. The free-streamline theory is
combined with some experimental results to obtain a correlation between
bluff bodies of different shepes, as well as some of the relations between
wake and body discussed above. The results of this semlempirical study
ere presented In reference 11.

Californis Institute of Technology,
Pasadena, Calif., August 3, 1953.
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APPENDIX A
ELLTPTICAL HODOGRAPH

If the free streamline in the {-plane is an ellipse (sketch Al),

1© | #@
g1

Sketeh Al

the mapping to the w-plane is easily found. (Although the corresponding
trace of SIS' in the v-plane (sketch 4) is not an ellipse, 1t will be
convenlently referred to as the elliptical hodograph.)

The ellipse in { is first mapped onto the unit circle, in a new
plane Ql, from where the mapping to the w-plane is the same as that in

the Kirchhoff case of figure 1. The first mepping is accomplished by a
Joukowsky transformation,

l+k
2

1 -k
284

ve
]

£, +

while the second is (cf. eg. (2))

These give

§=t1<{%+k %—l)
z=f§ dw=i‘i[2ﬁ+ kV;(l-W) "‘ktan-lq]_‘.fw]
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On the plate

x=0

o
n

while on the free streamline

"
It

I

v

k’§‘+ o

The breadth of the plate is clearly

d =kn + 4

2{e + k \o(T - 9) +kta.n"l\,lq)
-

NACA TN

0€p<sl

o D + 2060 (T )

To evaluate the pressure coefficient given by equation (8),

so that

on the plate and

%=|§|=g+k‘/%-1 0g

2,1 -x2
ke + 2= KT
P

Psl

3168
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on the free streamline. The saverage pressure, computed from equation (10),

on the front face is
a 2 * 1 2
=< = - K a
IF d]; (% q) ®

o -1 |k -1
= x+ L - 1 tanh
dk Ve + 1

which may then be used to find the drag

0

CD=CPF+k2—l
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APPENDIX B
MAPPING THE WEDGE

The general mapping for the wedge is given by sketch 5 and rela-
tions (16) and (17). Only the wedge surface and the constent-pressure
portion of the free streamline will be of particular interest. On these

=@ 1is real and equation (16) reduces to

o T T esen

t=e® 1s9sga? (82)
where
6 =a - n
and
@ = tan -1
1l - @Ia

The average pressure normel to one of the front faces, camparing
with equation (10), is

L

@:% . ¢, dL = f (l-k2q2)l (3)

where .1/q = [¢{| in equation (Bl). (The subscript has been omitted on
k, but retaine on Xkj.) The _component in the streem direction contrib-
utes to the drag the amount ECPF sin o. But eguation (B3) is averaged

on L, whereas it is more convenient to compute the drag with reference
to the base dimension d = 2L sin a. On this basis the contribution from
the front becames CpFJ and the drag coefficient is
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Q
o
I

CoF - Cps

Cop + K2 -1

The length L of a front face 1s

2 n A1
(kT + 1 1 1 1
L‘(_Eﬁl__) f; (\/a'“fa?';i) @

The position of the poilnt B is

a
ZB=Ieim+j;- o1 ap

In particular, the distance d' between free streamlines, given by the
imeginary part of 2zn, is

al
d'=2Lsina,+2f sin 0 49
1

2 a2

cosnmds:p-zcosmf sin oo 4@
1

a
=2Lsincr,+251na.f
1l

and the streamwise distance to B, measured from the base, is

b =2cos_ccf
1

The above expressions have been reduced to the operatlons listed in the
following summary:

a2 a2

cosncbdsp+2sinmf sin nn 4Q
1
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1
G(n,kl) =k/; g ap

amr)= [ g

7(ns1)

JF cos nuw 4
1

a2
I(n,kﬁ:fl sin mw 49

where

K-
\-/E‘

CP,nkl («—-1+ = -

2
o) k_‘_|_2+ 1

2
k2 -1

n = 2afx

=1 ¢ -1
W = tan _—
1 - cp/a2
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Then
2 n
S+ 1
L=-2% G
2k
at _ 1+ < - =cot o

_ 2 + 1\" ok; \©
CoF L2 Y o2 =L \ g
LI\ 2K k2 + 1

The solution for given values of k; end n corresponds to flow over a

wedge of half-angle o = nﬁ/2 and base-pressure parameter k = kln.-



28 NACA TN 3168
APPENDIX C
MAPPING THE CIRCULAR CYLINDER

Brodetsky (ref. 9) shows how the Kirchhoff flow (k = 1) past a
curved arc can be computed by means of the mappings shown in sketch Cl.

s
@ + I——9¢======;
I Cc 2Bs gt st I

Sl

Sketch C1

First, ¢ 1is mapped onto the Q-plane, often used in free-streamline
theory and defined by

Q = loge { = loge % + 16 (c1)

The real part of Q depends only on the magnitude of the velocity, while
the imaginary part is the flow direction. The values of 6 on the line CS
give the flow direction along the surface. For the normal flat plate CS

in the Q-plane would be straight, simply 6 = ix/2, Now Q is to be
mapped onto the w-plane, and the idea used is that the mepping for the are
may be obtained by adding a "correction" to the mapping for the flat

plate, which is known.
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To accomplish this, it is helpful to replace W by the Levi Civital
plane 1, defined by

‘J; = T22;.Tl (02)

In the 7-plane the flow is mapped onto the interior and boundary of the
gsemicircle, which has the doublet at I. For the normal plate the mapping
is

Q = logg 1+7 (c3)
1 -7
It is assumed that for the curved arc
Q = log, L+ 1, g1(q) (cu)

l -

where Q' 1s to be determined. The singularity occurs in the first term
so that Q'(r) may be expressed as a power series,

' (1) = AyT + % A5T3 e (c5)

The condition that the streamline curvature at separation should be the
same as that of the surface (see the section "Circular Cylinder") is
shown by Brodetsky to imply

Al=-l+3l

A5=al+a.3

A-5=a.5+8.5

15 rether complete discussion of the ILevi Civita transformstion and
of the Q-plane, as well as gpplications to the mapping of curved surfaces,
is given by Brillouin in reference 12.



30 NACA TN 3168

that is,

Q:logejl-i:-<l—al)'r+(al+a3)'r§+... (c6)

To evaluate the a,'s, the radius of curvature of the surface is expressed

in terms of them. For a circular arc they are then determined to make the
radius of curvature constant on the arc. The solution proceeds by iter-
ation, starting with ea; # 0, &z = 85 = . . . =0. Brodetsky showed that

aq = 0.05T4 gives an arc whose radius is constant within 5% percent,
while &, = 0.0585, a5 = -0.0083 reduces the maximum discrepancy to
0.06 percent. The corresponding values of the separation angle Bg are

55.1° and 55.0°, while the drag coefficients are 0.49 and 0.500, respec-
tively. This indicates that the convergence is quite repid, a; already

giving a fairly accurate result. Therefore, in adapting the method to
flows where k > 1, it was considered sufficient to use only this one
term of the iterstion. :

For k > 1, the Q) -plene appears as shown in sketch C2, "notched"

c

&

T -

W W o

]p&g

Sketch C2

like the corresponding (-plane; thet is, along SB the veloclty is con-
stant (g = 1), while along BI and B'I the streamlines are parellel. Now
) can be mapped onto the {l-plane (sketch Cl) by the transformetion

2 2 | 2 2
sinh® O = E_;t;L) sinh® o + (=1 (c7)
2k k¥ + 1

The physical plane corresponding to @ will be called 2z, while that
corresponding to . & 1is =z. - : -
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Now the procedure is simply as follows: A value is chosen for aj.

This determines a certain cylinder shape in the z-plane which corresponds
to another shape in the zy~plane. Then k 1s computed to give a con-

stant redius of the cylinder in the zp-plane, or as nearly as is possible

with only the single term a;. Thus for each value of aj there is a
value of k which gives a circular arc in the zy-plane. The values

calculated are given in table III. Each arc has a definite opening
angle 2Bg; which determines the corresponding separation angle

(sketch Cl). The results, referred to already in the section "Circular
Cylinder," are plotted in figure 5. Of course, using only ay in

series (C6), 1t is not possible to maske the arc perfectly circular. All
that can be done 1s to check the accuracy obtained at each value of k.
It was found that at k = 1.6 the radius is constant within 2 percent
and comparable to this at lower values. At higher values of k the
accuracy becomes lower; therefore the curves of figure 5 have not been
extended beyond k = 1.6.

Details of the rather cumbersome calculations for the various quan-
tities are not shown here. They are analogous to those in Brodetsky's
paper, with only the additional introduction of transformation (CT) to
glve the correspondence between the Q- and Qp-planes.

It might be well to point out why it wes necessary to introduce this
transformation from Qk to & instead of worklng directly between

and 7. With the latter procedure the notch would have been distorted,
since the approximate solution attempts only to obtain a fit on the sur-
face SC. In the procedure used, on the other hand, the adjustments are
made in the Q-plane in such a way that the imeginary values on SC are
constant in the Qy-plane. There is no need then to worry sbout BIB',
for equation {CT7) maps it exasctly onto the notch in the Qp-plane.
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TABLE I
FIAT PIATE
k CoF Cp a'/a b/d

1.00 | 0.880 | 0.880 P p

1.05 .868 .970 | 9.460 | 59.400

1.10 855 | 1.065 | 5.073 | 15.900

1.15 843 ) 1.166 | 3.615 T7.600

1.20 831 | 1.271 | 2.888 k.610

1.30 806 | 1.h96 | 2.168 2.390

1.k0 .82 | 1.742 | 1.81k 1.570

1.50 .8 | 2.008 | 1.606 1.170

1.60 35 | 2.295 | 1.471 .936

1.80 690 | 2.9%30 | 1.308 692

2.00 650 | 3.650 | 1.217 .569

TABIE IT
90° WEDGE
k | ¢ | B | 7 I |CrF |Cp |a'/4|p/a

1.000|-~=-- el CEEET Y PRSER 0.63710.637| 0
1.10611.742}0.633{19.870114.510| .562} .786{4.040(19.540
1.178|1.733| 639} 7.370| 5.090] .515| .905|2.280| 7.800
1.23611.723| .643| 4.390( 2.790| .475]|1.003|1.889| 3.980
1.360[1.710| .649| 2.010{ 1.111} .411|1.261|1.438| 1.528
1.45211.696| .660( 1.311| .683| .361[1.471|1.328| 1.036

TABLE ITT

CIRCULAR CYLINDER

0.0574 1.000
.0500 1.175
.0%00 1.263
.0200 1.387

O. 1.470

-.0k00 1.600
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Figure l.- Pressure on flat plate.
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Figure 2.~ Comparison of elliptical and notched hodographs.
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Filgure 3.- Normal flat plate.
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Figure 4.- 90° wedge.
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