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SUMMARY

It is shown that the correlation of fluctuating static pressure (in
an incompressible and homogeneous turbulence) with any fluctuating quan-
tity in the flow field can be expressed in terms of the correlation of
the same quentity with two or more components of the velocity.

The correlations of pressure with itself and of pressure with two
velocity components are investigated in detaill for the case of isotropic
turbulence. These correlations cen be expressed in terms of correlations
involving two velocity components at a point and two velocity components
at another point. A postulated relation between the fourth-order and
second-order correlations is investigated. This relation is satisfied,
for example, if the joint probability density of the four components of
velocity is Gaussian. The consequences of this relation are compared
with the measurements of the fourth-order correlations.

The root-mean-squsre pressure and pressure gradients are computed
from second-order correlation for a range of turbulence Reynolds num-
bers. §Since the pressure gradient is related to diffusion of marked
particles from a source, the computed pressure-gradient level is com-
pared with that calculated from a set of diffusion measurements.

The triple correlation equation and plausible hypotheses relating
higher order correlations with second-order correlation are examined for
the possibility of getting a determinant set of equations for isotropie
‘turbulence.

INTRODUCTICN

Although in isotropic turbulence the dynamical (correlation) equa-
tion does not contain any pressure correlations, the correlation of pres-
sure with itself is of interest in turbulent 4iffusion and in the study
of sound generation by turbulence (for very low Mach numbers of turbulence
velocities when there is little effect of sound on the turbulent field,
that is, only a slight amount of energy is drained away from the turbulent
energy in the form of sound waves). The static pressure fluctuations are
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also intimately connected with the onset of cavitation in turbulent flow
of liquids.

The pressure-gradient fluctuation, in connection with diffusion in
isotropic turbulence, was first considered by Taylor (ref. 1). He postu-

2 —/3u 2
lated that £%<§E—) is of the order u12<5;l> independent of Reynolds
. 1

number of turbulencel. Heisenberg (ref. 2) later derived, from detailed

spectral considerations, an expression for ag/axl as follows:

S 2
(1/92)(ap/ax1)2 w~ uliéaziizzé) vwhere R = u /4J aullaxl 2 is the
* A

Reynolds number of turbulence and the symbols are defined in the symbol
list.

Obukhov (ref. 3) derived an expression for the correlation of pres-
sure with itself for distances between two polnts whose spacing is within
Kolmogoroff's "inertial subrange." Batchelor (ref. 4) and Iimber (ref. 5)
have considered the pressure-pressure and pressure-and-two-velocity-
component correlations in isotropic turbulence. Chandrasekhar (ref. 6)
has considered these correlations for the isotropic turbulence in
magnetohydrodynamics. All these correlations can be expressed in terms
of the correletions iInvolving two components of velocity at one point
and two components at another point. These investigators have from the
very beginning assumed & simple relation between the fourth-order and
the second-order correlations. In order to compare the primary result
with experiment it is necessary to have the results in terms of the

fourth-order correla‘bion.2

Next to the simplest case of istropic turbulence is homogeneous
axisymmetric turbulence, in which all statistical properties are symmetric
about a particular axis, instead of belng spherically symmetric as in the
cagse of 1sotropic turbulence. This introduces one new element: The
energies in different components of the velocity are not the same and
there is a transfer of energy from one component of veloclity to another.

lIn the present paper an overbar indicates mean value or statistical
average and an underbar indicates a vector quantity.

2The main results were derived before the publication of refer-
ences 4 to 6, but publication was delayed until the completion of the
experiments reported here.
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This transfer 1s essentially due to the correlation between velocity
and pressure or pressure gradient (ref. 7). This is in addition to the
transfer of energy from big eddies to small eddies; both of these
transfers are expressible in terms of the nonlinear terms of the equa-
tlons of motion and these can be expressed in terms of the triple-order
correlations. Axisymmetric turbulence is the only case of homogeneous
turbulence that has been theoretically studied and even this has been
largely limited to general tensor forms for the correlations and equa-
tions governing these correlations. The physics and solution of the
problem remain virtually untouched. In the general case of homogeneous
turbulence the pressure-velocity correlation is undoubtedly of interest.

Before some special correlations are taken up, correlations involving
static pressure in general will be considered and it will be shown that
these correlations can be expressed in terms of correlations involving
more than two velocity components. This is convenient from the theor-
etical point of view, since it may then be possible to express higher-
order correlations in terms of second-order correlations on the basis of
some plausible hypotheses, such as those used by other investigators. It
may be also noted that Heisenberg's expression for the spectral transfer
term (ref. 2) is a hypothesis for the triple correlation in terms of the
second~order correlations. The fact that correlations involving static
pressure can be expressed in terms of correlations involving more than
two components of velocity 1s also convenient from an experimental point
of view, since at present there exists no technique for the measurement
of static pressure fluctuations. On the other hand, the standard hot-
wire technique can be extended to correlations involving more than
two veloclity components.

This work was sponsored and financially supported by the National
Advisory Committee for Aeronautics. The author should like to thank
Drs. S. Corrsin, F. H. Clauser, and L. S. G. Kovészndy for their helpful
suggestions, and to thank the following people for their help in measure-
ments and data processing: Mr. A. L. Kistler, Miss Patricia Clarken,
Miss Patricia O'Brien, and Miss Ingeborg Busemann.

SYMBOLS
Aj,Ap dimensional constants
a,b,c,d arbitrary unit vectors
aq,by direction cosines of two arbitrary directions at x

C constant
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C1 absolute constant (eq. (28))

c velocity of light

cy,4y4 direction cosines of two arbitrary directions at x
E electric-field strength

e output of hot-wire

ey,en output of hot-wires set at x and x', respectively

£(r),g(r) correlations used by Von Karmén and Howarth

H magnetic-field strength

b = (u/bsp)H

J current in conducting fluid in motion
X universal constant

L = P/

M mesh spacing

n integer

P=(1/p)p - )+ (1/2)<|2l2 - l—gl—a)

P! value of P at x'

P static pressure fluctuations

q' any quantity at another point x!
R scalar correlation

Rl, 2) 3 correlations

R7\ » Reynolds number of turbulence

1/2
T distance between two points x and x°, (gigi) /
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Sl...n

set of random varisbles

time
velocity in x-direction
velocity component

components of instentaneous fluctuating velocity, wu;, u,, uz
or u, VvV, W

volume
velocity in direction perpendicular to hot-wire

root-mesn-square velocity in y-direction

coordinates of point x

Yy variable of integration
A= ————
Ox4 0x4
o) Kronecker delta
€ energy dissipation per unit mass of fluid, (l/2)(duiui/at)
—=|1/2
—5/(3u\? / 1
A BEulerian microscale, nme == 5 E-ﬂuo
Bxl

Lagrangian microscale

permeability
kinematic viscosity

component of displacement vector
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density
charge
conductivity

time difference

(81,55,5%,S Jjoint probability density of S . . . S
1r%2 L 1 N

W(tl,tg,t3,tu) characteristic function of ¢; t1, to, t3, and by

are independent varigbles

() vector

(—d statistical gverage or mean

Subscripts:

e excess

i,J,k free indices characterizing general vector component; each can
take value of 1, 2, or 3 corresponding to component in x-,
y-, and z-directions, respectively

1,m,n directions (see fig. 1)

P,a,r,s free indices

refers to pressure
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GENERAL RELATIONS

Consider a statistlically homogeneous and incompressible turbulence
with no mean velocity (i.e., a "box turbulence"). The equations of
motion for an arbitrary point x are for momentum

(a’li/at)+uj’aﬁ='l§}‘)—+ v Auy (1)
J

and for continuity

duy /S5 = 0 (1e)

where the symbolé have the usual meaning and repeated index means sum-
mation over the index. Taking the divergence of equation (1) and making
use of equation (1a), the following well-known relation results:

1 62p _ 32‘11“3

paxi aJ'[fi_ axiax,j

(2)

The fact that the pressure in an incompressible viscous fluid satisfies
Poisson's equations means that it is not & primary variable, since the
pressure caen be expressed in terms of the velocity derivatives by using

the well-known solution for Poisson's equation.3

Multiplying equation (2) by q', any quantity at another point x',
and taking a statistical average,

ol

3‘.T.'he solution of the equation A"P =T(x) where A = a%/axiaxi

is discussed in reference 8. In the following discussion the solutions
for n =1 (Poisson's equation) and n = 2, in three dimensions, are
needed. Here @ and I' are arbitrary functions of X and n is an
integer.
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Making use of the fact that the turbulence is statistically homogeneous
and interchanging the order of differentiation and averaging,

o J—,
e agi aﬁi aﬁi 653

where p(x)q'(x') =pq'(t) and x' =x+ £. An overbar denotes statis-

tical average. Equation (3) is Just the Poisson equation for pq' and
its solution (ref. 8) can be written immediately as

- I,
1— i |9 wusa’ () av(y) L
o)=L )
ppq_(é) W | oy %, IZ‘EI (

where dV(y) is & volume element. Equation (3) in one form or another
is the basis of the recent investigations reported in references 3 to 6
which have been mentioned earlier. Next particuler cases of equation (3)
are considered.

Case (1): q' = 1y’

o
1 au_lujuk' av(y)

1l - _ 1

The quantity pu,' 1s8.2zero in isotropic turbulence because it is a first-
k

order isotropic temsor, but it is different from zero in the general case
of homogeneous turbulence. TIts role in the axisymmetric turbulence is

discussed in reference 7. In axisymmetric turbulence pu,' gives the

transfer of energy from one component of velocity to another. As in
isotropic turbulence there is transfer of energy from the large eddles to

small eddies which is given directly by uiujuk'. This transfer and the
transfer of energy from one component to another can both be expressed

in terms of uiujuk'.
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2, 2 g !
Case (2): q' = % B'P : =..a u% ull
axi axi axk axl

52 1 Bzu 'y, !

Substituting q' = = p' . _ k1

8 g q into equation (3), inter-
[o] axi'axi' axk'axz'

changing the order of differentiation, and averaging,

l+ au_'_T
1 a u.ju ;. u

p2 ot bgi agj agj ot ng o, Of,

Making use of the fact that the elementary solution of the bi-Iaplacian
in three dimensions is r/2 where r = \[t;&; is the distance between
the point of observation and the point of integration (ref. 8),

JL G JF B uyuy uk'uZ

Y —— ay,y—g] av(y) (1)
i) Yk 1

Case (3): q' = u 'y
When q' = up'u,’,

11— _ aauiuj Y'Yyt av(y)
5 Pk 'Yy E;; 1 lz'él (8)

Case (4): Correlations Involving Pressure in an

Incompressible, Highly Conducting Fluid

’ The correlations involving pressure in an incompressible, highly
conducting fluild have been investigated in reference 6. The current J

in a conducting fluid in motion is given by -

d = o(cE + yu x E) + (penfc)
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where o 1is the conductivity, E is the electric-field strength, 1
is velocity vector, H is the magnetic-field strength, p 1is the perme-
ability, c¢ 1s the velocity of light, end p, 1s the excess charge.

The quantity peI_J/c represents the convection current. As o —> = it
may be assumed that

E=~ -pyu X H/c

otherwise the current will become large. The energy in the electric

field is of the order IE|2/°2 of the energy in the magnetic field,
therefore it can be negelected. 1In this approximation only the inter-
action between the two fields u and H needs to be considered, and
the equations of motion are (ref. 6)

M Doy ) 2l ) e O
3
dh d
b+ (nany - weg) = ooy (o)

where h = (%)H and A = % npo. Taking the divergence of equation (9)
h <o)

and meking use of the condition of incompressibility (1),

2
Pp  _ 9 (wuy - byby)
Sy oy -y

(11)

where

-1 -5)+ 1(1n)? - nl?)
P =3 -3)+ 3" - [zl

Chendrasekhar (ref. 6) has considered three correlations Puy'u;', Phy'h,'
and PP'. It can be seen from equations (7) and (8) that these correlations

1
can be expressed in terms of uiujuk'u.[", hihjhk hZ" and uiujhk'hl'.
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The quantities Puy 'y and puk'uz' have similar tensor forms and they
satisfy similar differential equations (equations (11) and (2)). Also

PP' and pp' satisfy similar differential equations, so that it is not
necessary to calculate separately all these expressions. When the

expressions for pp' and puk'uz’ have been calculated the corre-
sponding expressions for other correlations can be written at once.
Furthermore, pp' and puk'uz' are not independent., If q' = p' in
equation (3)

1 o | P

Pog; dgy  OEy Ok

In all these cases (except case (1)) the correlations involving
pressure can be expressed in terms of correlations between two velocity
components (or two magnetic-field components) at one point and similar
quantities at another point. Some investigetors have assumed that the
Joint probabllity density of these four quantities is Gaussian (refs. k4
and 9). If Sy, S, Sz, and §); are any such variables then it can

be shown that

8185838), = 8185 S8y + 518y 5,55 + 515, Sz8) (12)

and in particular

uiujuk'uz' = uu ujuz' + yu! ujuk' + ujuy uk'uz' (13)
hihghy 'hy ' = hyby' hyhy' + hyhy' hyby' + hyhy Wy 'hy! (1)
uiujhk'hz‘ =uh 'u h ' uihl’ ujhk + uiuj hk'h ' (15)

(The opportunity has been taken to correct the expression corresponding to
equation (15) in reference 6 where the last term uyuy hy 'hy ' = uizhk28135kz

(no summation) is missing).
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The hypothesis of Gaussian Joint probability density makes all odd
moments (e.g., triple correlations) zero. However, the above relations
are only integral conditions on the Jjoint probability density and the
hypothesis of Gaussian probability density is strictly not necessary
for their validity. Without meking any such hypothesis about the prob-
ability density, equation (12) is taken as a plausible hypothesis.

The joint probebility demsity ((S),85,55,5),) 1is the Fourier trans-
form of the characteristic function v(tl,te,t3,tu)

isyt
LZZZ]b(sl,sz,SB,sh)e k% g5, 48, dSs ds),

e’%<§;§;£ktl)

W(tlytg:t3:tu)

where ¢ is Gaussian and ¥ is a function of independent variables t7
to tL. The moments of all orders are determined from the behavior of

the characteristic function near the origin. As has been pointed out by
Chendrasekhar (ref. 6), if

Z-%(giégfktz)

\lf(tlJtQJ t3:tl|.) = (l + CqutPtqtr)

is taken as the characteristic function, then there is the same relation
between second- and fourth-order moment as for a Gaussian probability
density, but the third-order moment will not, in general, be zero. In
view of this 1t can be asserted that the hypothesis of equation (12)
does not impose any restriction on the triple correlations.

Cases (2) and (3) will be investigated in detail for the simple
case of isotropic turbulence and the results compared with experimental
observations.

FOURTH-CRDER VELOCITY CORRELATIONS IN ISOTROPIC TURBULENCE

The fourth-order correlation uiujuk'uz' enters prominently in the

expressions for the correlations involving static pressure fluctuations.
It is a fourth-order isotropic tensor and its form can be derived using
some simple results of the invariant theory (see appendix). Thus:
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1
R,,(r) + R o) - 28! ( ) - 4R
wpup g = n i €1 838ty + Fon(r )0y 581 +

r

%qug(r) ] Rﬁﬁ(ri’(siksjz b Bydg) + [ L) -
Rﬁﬁ(rﬂ(gigj By + B 88y5) * [ 1 (x) - Bpp(r) -
Rﬁﬁ(rﬂ(eigk By + EifByy + EyEBy + EES) - (16)

Since uiujuk'uz' is not solenoidal, the continuity equation gives no
relation between the five scalars defining uiujuk'uz'. However, it
glves relations between derivatives of uiujuk'ul' and other fourth-

order correlations involving derivatives of velocity. Some representative
correlations are shown in figure 1.

Under the assumption of equation (12),

5 )
R%%(r) = EE?L’(rE] + 3”2
2
Rgﬁ(r) = 2‘%;(551 + Rnn2
Rl (x) = LR ) 1 v D
Rem = RyzBon
RF® =R R
nn nn mm \J

These relations and the expression for uiujuk'uz' for the case k =1 =
were first given by Millionshtchikov (ref. 9). The second-order corre-
lations Rg(r) and R;(r) (essentially the Von Karmén-Howarth g(r)
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and f(r)) are connected by the continuity equation of incompressible
flow (ref. 10).

Ry(r) = R (r) + 3 R (r) (18)

With the corresponding inverse relation,
1 1 T n
R, (r) = = R,(v)y ay (18a)
A 2 0

The fourth-order correlation uiujukuz' involving three velocity

components at one point and one at another is not directly related to
the pressure correlations that have been considered. It enters explicitly
in the equation for the propagmtion of triple-order correlation which will

be considered later. For isotropic turbulence, the correlation uiujukuz'
has the following form (see the appendix):

W = _11:( 221 * Ramn - 3Fpon - BRI;nn)gig,jgng +
%Rﬂnn( 1% * ¥y * ?115&1) +
;lé(Rlzlzn -3 Rﬁnn) (gig,jak‘l, T 6Dyt 5 §k511) *
LB - 3 ) (Besuy * G50+ Ei80y) (19

The various correlations are shown in figure 1. Here uiujukul' is a
solenoidal tensor and the four correlations characterizing it are not
independent. Taking the divergence of uiujukul' with respect to the

last index and equating it to zero,

1 9 (.25t _ n I
;s;( R, )_-2R11n+'3_R§nn
(20)
1 9.2 .
FB}:( Rzn)"6Rnn
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Because of these two relations there are only two independent correlations
characterizing the tensor uiujukul'. It is observed in passing that

uiuiukul' 1s & solenoidal second-order tensor. This gives a relation

between the four functions characterizing uiujukuz', which, however, is

not independent of those written above and serves as a check on the alge-
braic errors. If the hypothesis of equation (12) is satisfied,

1 1)
Rzzz - 3RnRz

n
Ronn = 3Rynfy

- (21)

n n
Rlln RZZRn
n o _ 1
RZnn - RnnRZ \J

STATIC-PRESSURE CORRELATION IN ISOTROPIC TURBULENCE

y 3 s
For the 1sotropilc case 3h( ) = d E?( ﬂ +.&.d () = l.d [;(.ﬂ
Ok4 aéi aéj a&j art T g T gt
and the bi-Iaplacian equation (6) simplifies to

_ p—
1 3p(r) _ Ouyuguyuy!
p2r ot aﬁi BEJ aﬁk aﬁz

(22)

After four repeated integrations, for any fixed value of t, corresponding
to equation (7),

1 — 1 f“ ( )3 O uyu gy Uy a (25)
~—= pp' = — yy -r y 23

It was assumed that pp' —> O fast enough as r —) «. Substituting

equation (16) in equation (23) and carrying out some algebraic simplifi-
cations and integrations by parts,
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— 2 2 *[ n1 11
p—la'Pp'(r)=Rn(r)—Rn -ufr ER§Z+RDD_RE§+

2
2+ nlt - anld - )| @)

The pressure gradient is of special interest since it is related to
the diffusion of marked fluid particles from a fixed source (see the
next section, "Pressure Gradient and Diffusion Measurements"). Now,

(g—)—a - 1im ep(x1) p(x1')

r—>0 % '
where

Xl' =xl+r

Interchanging the order of integration and averaging,

» V_ |Fr)
&y a2

r=0

Substituting for pp' from equation (24),

1/ VP a2 [ u nn:l ®/on 11 12 n1\dy
p_2<axl> —-dreERll(r) - Rpn(r) ot Bfo (Rnn+ Ry - 2By - “an);g

(25)

In order for the above integrals to converge it is necessary that the
series expansion of (Rnn + RV - oM L hRE%) at the origin begin with

nn 11 nn
2
terms of order ru; therefore ‘E——(Rnn + R - 2R hRnZ) = 0. Use
dr2 nn 11 nn nl =0

has been made of this fact in deriving expression (25). Under the assump-
tion of equation (12), equations (24t) and (25) become :




NACA TN 3116 17

: 2
— ® 2 1
fé- op' (r 2fr (y - r;)[ad; R, (}’ﬂ dy (2ka)

~—
]

and

5 o 2
1(% \ _ 4 gl d
p_2(§x—l> = hj; dyﬁl(yﬂ - (25a)

For vanishing turbulence Reynolds number, RK'—_9 0 where

R}\ = u_l_z- 7\/V and

The correlation R%(r) can be calculated neglecting the inertia terms
of the equations of motion (ref. 11),

R;(r) = u12 exp (—re/ék2)

Substituting this result in equations (2ia) and (25a),

P (x) = pEE{é]z exp (-22/32) = Rf(r) (26)
and 5
?(u,2
&)

On the basis of Kolmogoroff's hypothesis of local isotropy, for large
Reynolds numbers and values of r with the "inertial subrange" (ref. 12)
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(o - P = 2@ - mle)| = ey (=" (28)

where u is the velocity along the displacement vector, ¢ =x' - X,
dusu

e _ _ 1 %Yy

R -
fluid, the length L = v3/ue1/h, and Cy 1s an absolute constant. The

guantities € and A are connected by Taylor's decay equation (ref. 1):

is the energy dissipation per unit mass of the

1 duyuy
2 at

= a5v,2/i2

Hence for values of r within the inertial subrange

r 2 of 2
2 (52 - opt ) = 4 gt - r2 4 gt &
2p2(P D ) j; I;lsz(yz' y dy L l;sz(yEI ral (29)

The integrals in equation (29) can be evaluated approximately by using
equation (28). After some transformation the result is

L 22 -77) - C o)

2
%(p - p' )2 = l:(u - u’ ){l (30)

This relation was first given by Obukhov (ref. 3) and equations (24a)
and (25a) were given by Batchelor (ref. L).

or

PRESSURE GRADIENT AND DIFFUSION MEASUREMENTS

In reference (13) the "Iagrangian" microscale M wes related to

the accelgration in isotropic turbulence without the neglect of viscosity.
A brief resumé follows:
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2 = 22l(55) - (32 2

where v' 1s the root-mean-square velocity in the y-direction. Squaring
and averaging the v-component equation of motion,

(%)2 - égf + 2v)® + 2By (32)

The term (@ AV‘) = O because of isotropy. All terms in the expansion

dy
of equation (32) can be expressed in terms of the derivatives of R;’:(r)
by meking use of the relations given by Von Karman and Howarth (ref. 10).

5 _3 3”35 (r)
Thus (Av)S = ?5 5 . Townsend (ref. 14) has made measurements
or

r=0
BMR% (r)
of _— end his result is

L
or r=0

]
\N
\J1

o]
o~ o
7~
H
S
l

2
25l em) o

a2
200 2

For the isotropic turbulence (the "decay equation"

formulated by Taylor in ref. 1). Thus

(:2 ¥ (%)2 - oy k)
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Substituting equations (32), (33), and (34) in equation (31),4

p2(v ) _ (% %?2 - 252 - ;'3>-1 (35)
2 ?\n R')\ A
G

dy

Heisenberg (ref. 2) has calculated an expression for pressure gradient
using the hypothesis that various Fourier components of the velocity
field are statistically independent. As far as the fourth-order corre-
lations are concerned the consequences of this hypothesis can be shown
to be equivalent to equation (12) (see ref. L4). His result is

2, \k
2 178.5
xe@)
oy

Instead of Heisenberg's original extrepolation formule for the stationary
velocity spectrum, Chandrasekhar's solution (ref. 16) was used to calcu-
late equation (36). Here K is a "universal" constant which has to be
determined from experimental data. Heisenberg found from turbulence
decay that X = 0.85. Iee (ref. 17) gives its value as 0.13 based on

uThis is the first step toward the establishment of a possible rela-
tion between Iagrangian and Eulerian correlations. If nondecaying iso-
tropic turbulence is considered then the Lagrangian correlation

2
- a"u 2n
ug (g (6 + 7) = Ry (1) = 032 + (_1)n<;tn1> (;n):

Each term of this series can be expressed in terms of the Eulerian corre-
lations by using equations of motion. The first nonconstant term involves
pressure or fourth-order velocity correlations. The next term will involve
still higher order correlations. It may be possible to relate higher order
correlations with second-order correlations by making a further hypothesis
gbout the Joint probability density of the velocities at two points. The
first step of this computation has Just been carried out. The next step
will involve many more calculations. This is probably not the best method
of attack of the problem of relating the Lagrangian and the Eulerian corre-
lations. Frenkiel has related Iagrangian and Eulerian microscales under
some assumptions (ref. 15).
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du
skewness of the probability density of (5;; as measured by Townsend
' 1

(ref. 14). Proudman (ref. 18) has calculated double and triple corre-
lations from Chandrasekhar's solution of Helsenberg's self-preserving
spectrum. He has estimated its value as 0.45 from comparison of theo-
retical correlations with measured correlation. Heisenberg's results
are only approximate and the value of K depends on the range of spec-
trum (or correlation) which is made to fit the experimental data. The
value of K = 0.45 has been taken as a compromise value.

PRESSURE-VELOCITY CORRELATIONS puy'u;’

Equation (8) relates the correlation pu 'u;' with the fourth-order
correlations

1 azpuk'uz' _ a%.liujuk'uzl (37)
P oy ok, Of; Ot

Here puk'uz' is a second-order isotropic tensor; therefore it has the

same form as, for example, the tensor ukuz':

11 nn
R (r) - By (r)
P = = S ki B 8, + By (r)By, (38)

r

N

The correlations Réz(r) and R;n(r) are shown in figure 1. Substi-

tuting the expression for ujuyw 'u;’ (eq. (16)) in the right-hand side
of equation (37),
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- ) EL - ey (39)
r

where VY3 and YV, are functions of r which are defined by the above
equation. Substituting equations (38) and (39) in equation (37),

14af1L a 2Py Exfy
] EE ﬁ(ﬂ (G o - 0 B0 v
Equating coefficients of the above equation,

all a/ 3\ _-_1
ar | 4 dr(Plri‘ rwl(r)

After integrating twice,

Plr3 = ‘% f (}’5 - 1‘5)’4'1 %E_r (’-I-O)

and
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After integrating twice,
o 2:91 1‘2
oo 2D
2 r 2 y2 Y

However, it is more convenient to calculate pl + 3p2, the correlation

between static and dynamic pressure. It follows directly from equa-
tions (37) and (39) that

A(py + 3pp) = = ?%E@l + BPQH = -(¥y + 3%)
After integrating twice,

Py + 3P, =j:°(""1 + 31#2)< - 5;—2> dy (1)

Substituting for Wl in equation (40) and integrating by parts,

p,(r) = -REL 4 RUL . L fr<7Rnn+ oRL 4+ 12R% - SR -
1 A e N R T n7 ~ *’on

11 12r2 ®/ 11 11 nl\ dy
1I-R]m)y2 dy - —5—fr (R + Ryy - 2Rpp + ll-RnZ) 3 (k2)
and from equation (41),

1
[

11 11 2
- RE_ 2\ _
Ry, - 2R+ 3(uy?) 2f

Uy luk t

Py + 3P,




ol NACA TN 3116

From equation (38) and equations (42) and (43),

2
11 1 nn 11 nl mm
r

i) ay - 42 [T g} - exly - )

r
o ®/on  _11 11 _mm\ &y
3_[r (Rnn ~ B - By - Rnn)? ()

and

11 _ Ll

11 _
nn

11\ 2 8 [[T/mn  _11
mmm-hRm)y dy+§‘_/;(Rm+Ru-2R

11 _m\ dy
)% -2/ (- - ) (45)

Using the hypothesis of equation (12), equations (43), (44), and (45)
become

1 nn ® 1 2
%puk'uk' = R; + 2R, = —f I:% RI(YE] y dy (432)
) 2 w/ 2 > 2
nn _ T yr\(d gl (=D A gl
2= L (L R)E ) @ fr(y cB)L ) @ (e

3G v [ P e



X

NACA TN 3116 | 25

Comparing equations (24a) and (43a) it is seen that

p

This result is a consequence of the equations of motion and of equa-
tion (12).

As in the case of pressure-pressure correlation, an explicit rela-
tion for pressure-velocity correlations for the limiting case of small

and large Reynolds numbers can be derived (see eq. (26) and the related
text). For R, —> O,

R%(r) = :1? exp (-r2/2?\2)

Substituting this in equation (43a),

_\2
- 2
% Py 'yt = _(ul2 ) (1 + ;—2) exp (—r2/7\2) (47)

For R7\ —> », and, on the basis of Kolmogoroff's hypothesis of local

similarity, for values of r within the inertial subrange Zsee egs. (28),
(29), and (30) and the related text)

(w - = 2| =) + 5'2'] - c(ve)l/2(§)2/3 (48)

Substituting this result in equation (43a),

%(Pukuk - Puk'uk') = % CPve (%)2/3 (49)

or using equation (48)

e T
%(Pukuk - Puk'uk' ) = EEU -u' )é_—l (50)
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or using equation (30)

o - o) - o7 - ) o2

Equations (43a), (4ka), and (45a) and (49), (50), and (51) were first
given by ILimber (ref. 5).

TRIPTE-CORRELATION EQUATION IN ISOTRCPIC TURBULENCE
Consider the equation of motion at the point x and time ¢

Oup  Oujuy _ 1 3p
3% | Gxy P oxg

+vAu1

Multiplying this equation by 'u,' and teking the statlstical average,
e

+ v duguy u (52)

In order to express uk'uz' ;u—i- in terms of the triple correlation

uk'uz'ui', it is necessary to proceed as follows: Conslider the equations

of motion at x' and t:

Owe' OSug'ug' 1 Jp! .
St + aXS, ——'S axkl + VAuk
du, " Ou,‘u.’ '

L + L s =-}-BP;—+VA'u-L'
3t g P ;"
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Multiply the first equation by uz' and the second equation by uy !
and add the two equations:

ow'u, ' Owy,'u, u.' t !
kl_'_ k7,6=_l._<uzt_a_P_+ lap +

3t g’ P\t A R ag

v(ul! Al.uk! + .ukl A'ul l)
Multiplying the last equation by wuy and taking the statistical average,

Bu 'u ! au "ll 'u !
k *1 k % Ys W _ 1 , Op' : Op'
ui ST + 3 B' = - .6 ui(“l —_— 3 W .a__'> +

v(uz' Alge' + uy' A'uz')ui (53)

It is not possible to express uz' A'uk'ui in terms of uz'uk‘u:L or to

1 ————
express uz' % u; in terms of uy 'p'ui without introducing new
k

correlations. The ettempt to express uk'ul' % in terms of uk'uz'ui

has resulted in introducing two new correlations, each of which is sole-
noidal third-order isotropic tensor characterized by a single scalar.
Adding equations (52) and (53) gives the equation for the propagation

of uiuk'uz !

_ 1 apukluzt
= 5 _-é;i_

Bu_luk'uz' N Buiujuk'uz' N auiﬁk'ul'us'
ot BxJ- Ooxg'

1
B(uz _<k' + Uy _Ez'>ui + vA uiuk'ul' + v(ul' A'uk' + uk' A'uz')ui
(54)
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Millionshtchikov has derived an equation relating third- and fourth-
order correlations (ref. 9). His result is

auk'uz'ui . auiujuk'uz' _l—, apuk'uz'
o]

+ v Ay 'u,
3t ; &y T2

au 1
The first term is wrong; it should be replaced by uk'ul' —5%—.
Millionshtchikov used this equation together with the hypothesis of
equation (12) to derive an expression for the second-order correlation
which is vealid when the inertia terms are small. As a,figst approxi-
mation he calculated the double correlation from the Karman-Howarth
equation by neglecting the triple correlation, which is valid as
Ry, —>0. As a second approximation he used his equation for the triple

correlation and the hypothesis of equation (12) to express the triple
correlation in terms of double correlation. In his calculetion he neg-

lected the correlation puk‘uz'; however, this omission can be rectified

since puk'uz' can be expressed in terms of the second-order correlation

by using equations of motion and the hypothesis of equation (12). The
error in his equation for the triple correlation is more serious. When
this 1s corrected a rather complicated equation for the triple corre-
lation results (eq. (53) above).

The purpose in deriving an equation for the triple correlation was
to express the triple correlation in terms of correlations which can be
expressed in terms of double correlation by use of a plausible hypothesis.
If this were possible there would be (with the Kédrman-Howarth equation)
two equations for two unknowns, that is, the two scalar functions char-
acterizing double and triple correlation tensors. This has been only

partly successful, however, since uiujuk'uz', uiujuk'uz', and puy'u,’

can only be expressed in terms of double correlations by using the
hypothesis of equation (12) and the equation of motion. The two remaining
correlations appearing in the equation for the third-order correlation
cannot be expressed in terms of known correlations without making further
assumptions. Some of these difficulties can be overcome if correlations
can be considered that Involve quantities at three different points and
later make two of the points coincide.

Previously it was believed that higher-order correlation equations
could not be Investigated because of pressure-velocity correlations
entering in these equations. Most of the pressure-velocity correlations
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can be expressed In terms of correlations involving velocity components
at two polnts, and others, in terms of velocity correlations at more

than two points. Consider, for example, the correlation puju.' which
’ 113

is related to g;%" ujus'. The latter quantity enters in the triple-
Xk

correlation equation. Now, pu.u.’' = lim pui"u ' and it is seen from
iJ *"—>x J
equation (3) that
2 2
Op(xhuy (x"uy(x') . Oy (x)uy (x Juy (" uy (')
dxy Ay dxy Oxy

so that by using three point correlations, it is possible to express all
the pressure-velocity correlations entering in the triple-correlation
equation in terms of velocity correlation. It may be possible to relate

ukuzui'uj" with double correlations wu,’, ui'uj", ukuj", and so
forth, using, for instance, the hypothesis of equation (12).

It is of interest to investigate what limitations and errors, if
any, are introduced in the dynamiecs of turbulence by the use of the
hypothesis of equation (12). TIf the fourth-order correlations could be
simply related to the triple correlations it would be possible to inves-
tigat? tgeoretically some of the consequences of the hypothesis of equa-
tion (12).

MEASUREMENT OF SECOND- AND FOURTH-ORDER CORRELATTONS

Equipment and Technique

The measurements of the second- and the fourth-order correlations
were made in a 2- by 2-foot wind tunnel at 48 mesh lengths downstream
from a l-inch-square mesh grid made from 1/4-inch circular rods. The
electronic equipment used is described in reference 19. The new equip-
ment used here is an electronic squaring circuilt which has been developed
by Koveszndy (ref. 20). The circuits consist of pairs of rectifiers with
series resistors acting as a full-wave rectifier. All pairs are in par-
allel; however, each pair is biased more than the preceding, so that as
the input voltage increases more and more of these pairs of rectifiers
conduct. The bias voltage and the series resistors are chosen so that
the total rectified current of all the conducting pairs 1s proportional
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to the square of the instantaneous voltage. The squaring circuit responds
instantaneously within the limitations of the capacity effects in the
diodes. Calibration with & harmonic signal showed that its response is
good up to TO kilocycles.

The schematic diagram of the equipment used in measuring the corre-
lations 1s shown in figure 2. The preamplified hot-wire signal is fed
to0 & push-pull power amplifier which drives the squering circuit. The
output of the squaring circuit is passed through a microammeter and a
thermocouple. Because of the inertia of the moving coil of the ammeter
it is sensitive only to the average current or mean square of the input
voltage. The output of thermocouple, due to 1lag, is proportional to the
average square of the current and hence it is proportional to the average
fourth-power of the Input voltage. This arrangement measures simulte-
neously the average square and average fourth power of the input voltage
and this enables one to measure simultaneously the fourth-order and the
corresponding second-~order correlations.

The squaring circuit has hardly any measurable error. However, the
thermocouple, because of radiation and other losses, is not a perfect
squaring device, and the error depends on the probability density of the
signal. The complete fourth-power circuit (the squaring circuit and the
thermocouple ) was calibrated with a "noise" generator which gives a
signal having Gaussian probability density (see fig. 3). In view of the
fact that in most of the turbulence measurements approximately Gaussian
signals are dealt with, the above calibration was used to correct all the
measgsured data. The error in the corrected results is expected to be
within 5 percent. If e; 1is the output of the hot-wire set at x

and ep is the output of the hot-wire set at X' and furthermore if
the two wires are set perpendiculer to the mean flow, then

el = a.lu
ep = a2u'

where u 1is the fluctuating velocity at x 1in the directlon of the mean
flow and u' 1is the corresponding quantity at x'; then
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(e1 + o)t + (o1 - ek - 2oyt _ et 2 e W ()P

12 \ek oF fou¥ et 8 Gt

(e1 + &)t - (eg - ep)t _ ey, + erep” _ u(u’

e —\1 —_ —\1/2 ——\1 —_ —\1/2 w2
8(e14 eelF) /r (ellb + egll-) / 2@ eeu) /]Jr(el1L + ezh) / "

1
if u(u')3 = wWu so that in order to measure the fourth-order corre-

lations u2(u‘)2 and udu' and the second-order correlation uu' it
1s only necessary to measure the average square and average fourth power
of (a) the outputs of two hot-wires, (b) their sums, and (c) their
difference.

The correlations R%%(r) and R%Zl(r) were measured by moving

one hot-wire with respect to the other in the direction of the mean flow.

The correlations Rgﬁ(r) and R-_(r) were measured by moving

one hot-wire with respect to the other in a direction perpendicular to
the mean flow.

11 nn nn nl
The combination (R +R_+ 2R, + 4R ) was measured by moving
11 nn 11 nl

one hot-wire with respect to the other along a line making an angle of
459 with the mean motion (see fig. 8).

The combination (R%% + REE + 2R?? - hRE%) was measured by using

two wires perpendicular to each other and each inclined 45° to the mean
flow. Vhen one wire is on top of the other the combination of wires is
essentially an x-type hot-wire which is sensitive of v-component of the
fluctuating velocity.

The correlation R?? was measured by using one x-type hot-wire

sensitive to v and a single wire sensitive to u and moving apart the
two probes in the direction of .
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The correlation Rgg was measured by using an x-type hot-wire sensi-

tive to w and a single wire sensitive to u and moving the two probes
apart in the direction of wv.

The length of the hot-wire was quite small (the ratio of the micro-
scale A to the length being about 10), so that no appreciable length
correction was necessary.

Results

The measurement of various correlations was made in isotropic tur-
bulence at R, = 60. The correlations R%(r) and Ri(r) were meas-
ured (see fig. 4) and they satisfy reasonably well the relation

R(r)-R() R(r)

2 or

which arises from the continuity equation of the incompressible flow and
the condition of isotropy (ref. 10). 'This served as a check on the iso-
tropy of the turbulence.

nn mm
The correlations R (r), R (r), and R (r) and two independent

1 IA
combinations ( L + R + IZ hR ) and ( L + R + 2R hR )
11 nn il

were measured. The measurements are compared with the hypothesis of
equation (12) in figures 5 to 9. For large displacement of the points

the correlation between uiz and (uj')2 disappears and uiz(uj')e

tends to a constant value uig (u.'j')2 = (ulz) for isotropic turbulence.
If the probability density of wuy; is assumed to be Gaussian then

- _\2
ulu = B(ule) and therefore for large displacement of the points

u,? ( uj')2/ u;* tends to a constant value of 1/3. This is indicated by

a dashed line in figures (5), (6), and (8). While the fourth-order
correlation was measured the corresponding second-order correlation was

also measured simultaneously. The correlation R?? (fig. 10) was also

measured; this is not independent of the above five correlations. Since
the hypothesis of equation (12) gives it a constant value it is of interest
to see if the measured value deviates from this constant. Within the
experimental accuracy, all the fourth-order correlations are close to
those(coTputed fram corresponding second-order correlations using equa-
tion (12).
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The correlations R%Zz(r) and Rznn(r) characterizing the quad-

ruple correlation uiudukul' were measured. These are compared with

those computed from corresponding second-order correlations using equa-
tion (12) in figures 11 and 12. The hypothesis of equation (12) is

satisfied for R%zz and Rgnn within experimental scatter.

CALCULATION OF ROOT-MEAN-SQUARE PRESSURE AND PRESSURE GRADIENT

FROM VELOCITY CORRELATIONS AND DIFFUSION MEASUREMENTS

Iet Ry, Rp, snd Ry denote the correlstions R’ and Koo and

11
1{,11 nn 11 1

the combination E(RIZ +R _+2R -+ hRﬁZ), respectively. This set of

correlations, among other possible sets, suffices to determine the pres-

sure correlation. In terms of the &bove notation equation (24) becomes

L e = me) - (m2f e [0 BaRe + Ry - bR) -
4re dy
;5‘(R1 + Ry - 2R3) 3

where R, was measured for both positive and negative values of r

(see fig. 6) and the point r = 0 was determined from the fact that it
is an even function of r. The correlations Ry end R3 were measured.

for positive values of r and there is some uncertainty (0.025 inch) in
the determinetion of the point r = 0 for these two correlations. This
uncertainty, the experimental scatter, and the fact that small differ-
ences between relatively large quantities are required to compute the
pressure correlation have made the results very uncertain.

Two widely different sets of curves were drawn for each measured
correlation, taking into account the experimental scatter and the uncer-
talnty in the determination of the point r = 0. Two pressure corre-
lations were computed from these two different sets of fourth-order
correlations. The result of these computations and those from the
second-order correlation are compared in table I and figure (13).

o e e e i e ———
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Tt appears that for the computation of pressure correlation one
should measure directly the differences (3R2 + Ry - 4R5) and

(Ry + Ry - 2Rz) instead of the individual correlations. This involves

the difficult problem of measuring small correlation between relatively
large quantities. In view of the fact that the hypothesis of equa-

tion (12) is approximately satisfied, the double correlation can be used
to compute root-mean-square pressure and pressure gradient. However,

one unfortunate circumstance must not be overlooked. It is possible that
the hypothesis of equation (12) is approximately satisfied but the root-
mean-squere pressure and the pressure gradient computed from using this
hypothesis are still in error because the root-mean-square pressure and
pressure gradient depend on the differences of various fourth-order
correletions.

Equations (24a) and (25a) express the desired quantities in terms

of the longitudinal second-order correlation Ri. The correlations R;
and Rz are connected by equations (18) and (18a). Tt is necessary to
9 !
express S; RZ in terms of Rz. Since
ji.Ri = _E;.ji_r5 ji.RZ
o o2 or\ or 1
therefore

Using this result, equations (24a) and (25a) become

2
# Jo(a - o f[f 2 gl &
w

E’g pE(F)Z ) (_:1%5\/:@ %RE(Y)YQ ay i—f(
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Root-mean-square pressure and pressure gradient were computed from meas-
ured values of Rg(r) for verious Reynolds numbers. The results of the

computation are shown in figures 14 and 15. The data for the two highest
Reynolds numbers were taken from reference 21. The data in reference 21
are glven in terms of grid Reynolds numbers. Turbulence Reynolds num-
bers R) and MM (where M is the mesh spacing) were estimated from

grid Reynolds numbers by assuming that U%/ul2sa t~1 in the initial
reriocd where U 1s the mean velocity.

Equation (35) relates the Iagrangian microscale Ay with the root-
mean-square pressure gradients. Measurements of xn have been made by

Simmons (reported in ref. 1) and Collis (ref. 22), and an extensive set
of measurements is given in reference (13). The experimental data

(table II) are used to compute the pressure gradient (eq. (35)) and the
results are compared with Heisenberg's analysis (eq. (36)) in figure 15.

CONCLUDING REMARKS

It is of theoretical interest and experimentally convenient that
correlations involving static pressure fluctuations can be expressed in
terms of higher velocity correlations; the latter in turn can be related
to second-order velocity correlations by using some plausible hypothesis.
The fourth-order correlation, which enters prominently in the corre-

lations pp' and Du, 'u,', may be related to the second-order corre-
b ey

lation by using the hypothesis of equation (12). Experiments lend sup-
port to this hypothesis. Since the differences of quadruple correlations

are involved in the expression for pp', a slight deviation of the quad-
ruple correlations from those computed using double correlations can lead

to considerable error in pp'. Further experimental improvement involves
the difficult problem of the measurement of smaell correlation between
relatively large quantities.

<

The experimental determination of root-mean-square pressure gradient
from diffusion measurements 1s also not very accurate because of the
Inherent double differentiation of the experimentel curves involved in
this technique. The hypothesis of equation (12) relates the Lagrangian
microscale to Eulerian microscale. It mey be possible to relate the
Iagrangian and Eulerian correlations for larger values of the independent
variaebles by use of the equations of motion and higher-order correlations.

The dynamic equation relating quadruple correlations to triple corre-
lations is worth further investigation, firstly, to see 1f one can possibly
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get a closed system of equations for the dynamic of isotropic turbulence
by use of the hypothesis of equstion (12), and, secondly, to see the
limitations and errors introduced by the use of the above hypothesis. In
this respect it is noted that experiments lend support to the hypothesis

of equation (12) for ujuju'uy’, the quadruple correlation involving

two components at one point and two at another, and also for uiujukuz',

the quadruple correlation involving three components at one point and
one at another. If this were strictly true then the quantity

- 2
(ul - ul')j/[gél - uif)%] would be constant and equal to a numerical

value of 3 (the value for Gaussian joint distribution) independent of
position, where u; and u;' are velocity components at two separate

points and perpendicular to the displacement vector. The quantity

____—_____2
(ul - ul')ﬁ/[igl - uif)Eﬂ has been measured (fig. 16) and its value

deviates from 3 for small displacement of the points and in this region
2

2
Bul l" au']_
it approximately equals | —= 5;; . The deviatlon of

o

_— T2
(u - u')h/[iu - u')%] from the numerical value of 3 for small dis-

placement of points shows that the hypothesis of equation (12) is not
satisfied for small eddies; however, the maximum error is only about
20 percent. Since the differences of correlations are involved in the

2
quantity (u - u’)%/[gu - u')%] small deviations in the values of
quJuk'ul' and uiujukuz' from that computed from the hypothesis of

2
equation (12) show up prominently in the values for (u - u')u/[gu - u')%ﬂ
while these small deviations are hardly noticeable in the values for

1 1 1
uiujuk uZ and uiujukuz .

Batchelor (ref. i) has discussed the correlation uiujuk'uz' in
connection with pressure fluctuations. He has presented Stewart's meas-

2
2
urements of (u - u')ﬁ/[gu - u'):J to show that the joint probability
density of wy, Uy, w' and u;' is Geusslan. As far as the pressure
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fluctuations are concerned it is only necessary to assume that uiujuk'uz'

satisfies the hypothesis of equation (12) which is less restrictive than
the hypothesls of Gaussian joint probability density of uj, Uy, ',

2
and u;'. Even if (u - u')ﬁ/[iu - u')%] is equal to & numerical value
of 3 this does not prove that uy, Uy, w ', and u; ' are jointly Gaussian

or that uiujuk'uz' satisfies the hypothesis of equation (12) since

2
ujugmau, ' also enters in (u - u')h/[;u - u')%] .

The Johns Hopkins University,
Balitmore, Mi., June 9, 1952.
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APPENDIX A

Consider the fourth-order correlation uiujuk'uz' where uy is
the velocity at the point. x and wuy' 1s the velocity at x' =x + §.

An outline of the procedure, based on invariant theory and essentially
following Robertson (ref. 23), will be given for deriving the form for

the isotropic tensor uiujuk'uz'. Consider the scalar correlation

between the two velocity components in two arbitrary directions at x
and two velocity components in two arbitrary directions at x'. ILet ay

and by be the direction cosines of the two arbitrary directions at x
and c; and d; be the corresponding quantities at x'. Then the scalar
correlation R 1is

R(a,b,e,d57) = uyuguy'uy' agbyeydy (A1)

Where r = (gigi)l/e is the distance between two points x and x'.
The correlation R(e,b,c,d;r) has the following special properties:

(1) It is invariant under an arbitrary translation or rotation, as
a rigid body, of the configuration defined by the points x and x' and
the unit vectors &, b, ¢, and 4.

(2) Tts value is unchanged by the reflection of the above configu-
ration in any point. These two are the conditions of homogeneity and
isotropy.

(3) Tt is homogeneous quadrilinear in the components of the four
vectors a, b, ¢, and 4.

The form of R(a,b,c,d;r) has to be determined under the above

three conditions. According to the invariant theory of rotation groups
in three dimensions (ref. 23), any invariant function of any number of
vectors £, a, b, . . . can be expressed in terms of the fundamental

invarients of the following types: (1) The scalar product (& b) = &4by
of any two vectors including the scalar square £5£4, and (2) the
determinants

€1 a1 b3
E]: Eo 8y Do

3 az b3

IIU'WI
|
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of any three vectors. In terms of geometrical notions the invariants
assoclated with a set of vectors are their lengths €181, the angle £i84

between any two vectors, and the volume Eg a LZ] of the parallelepiped
whose edges are any three given vectors. However, the volume of the
parallelepiped changes sign on reflection, [5 a “E:I = - [g £ E] » hence
these invariants do not appear in the expression for R(a,b,c,d;r).

Since R(a,b,c,d;r) 1is a homogeneous quadrilinear in the components of
the unit vectors a, b, ¢, and 4, it must be a linear function of the

form (g a)(& b)(& ¢)(& &), the six forms of type (& a)(& b)(c d), and

three of the type (a b)(c d), with coefficients which are even functions
of r. Thus,

R(a,b,e,d57) = By (r)(g 2)(& B)(E c)(& 4) + Ro(r)(g 2)(& D)(c &) +
Rz(r)(& c)(2 d)(a b) + Ry(r)(g d)(& b)(a c) +
Rs(r)(g 2)(g e)(b @) + Rg(r)( p)(& c)(a &) +
Ry(r)(g 2)(g 4)(c b) + Rg(r)(a D)(c 4) +
Ry(r)(a e)(b d) + Ryp(r)(a 4)(b c)
R(g,b,2,857) = Ry (v )18 58x8181b50d; + Rp(r)EsEsdypaybyeyd; +
Ry (r)8y8,0; g8 Pyeydy + Ry(r)E €385a5b5ed, +
R5(r)§i§ksjlaibjckdz + R6(r)§J§k6Haibjckd-L +
Ry(r )k €,85x81Pekdy + Rg(r)dy jByqabyeyd; +

Equating equations (Al) and (A2) and making use of the fact that this
equality 1s true for arbitrary unit vectors &, b, ¢, and 4,




o) NACA TN 3116

uugu 'yt = Ry(r)EgE 8, + Ro(r)E 656, + Ra(r)E 6,5, +
Ry (£)8;65Byy + Ro(r)Eg8ybyy + Bglr)eyybyy +

Ro(r)E18,84; + Rg(r)By 48y, + Ro(r)Byy By, + Ryglr)oy;dyg
(43)

This is the general form of the correlstion involving four velocity com-
ponents, elther two velocity components at one polnt and two at another,
or three velocity components at one point and one at another. Use is

made of the fact that for the correlation uiujuk'uz' the indexes 1

and §J can be interchanged, k and 1 can be interchanged, and 1}
can be interchanged with ki. Using these symmetry conditione it is
found that

uiu,juk'uz' = ngigjﬁkéz + -]é-(Re + R3) (gigjskz + gkgzsij) +
%(R"" + R5 + Rg + R"{) (gzgjaik + §1§k531 + gjgk‘éu +
§i§15'jz) + 3851351;1 + 32'-(R9 + RlO) (Sizskj + SikS;]Z)

The five scalars characterizing uiujuk'uz' can be expressed in terms

of five special correlations. When this is done equation (16) is
obtained.

As mentioned earlier, equation (3) gives the form for the general
fourth-order correlation, so that uiujukuz', the correlation involving

three velocity components at one point and one at another point, has the
form

wyugmay ' = S1(r)E EyEuty + Sp(r)EsEsByy + Sz(r)Ext By + Sy (r)E 8504y +
S5(r)§1§k531 + s6(r)gj_s,]b,_zsiz + S7(r)§15153k + ss(r)sijzskz +
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Meking use of the fact that indexes 1, J, and k can be interchanged,
wugu, = 8y (r)EgE gkt + %—I—i-g(l_') + 85(r) + Ss(rﬂ (e18500cz +
B8 By * E48idyq) * %[%(r) + 8, (r) + s7(r:):| (gkgzsij +
By EsBux + E1ByBp) * %Eg(r) + Sg(r) + S;Lo(rz] (5158%7 +

B11Byy + B178kj)

————————————

The four scalars defining uiudukuz' can be expressed in terms of four
special correlations. When this is done equation (19) is obtained.
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PRESSURE CORRELATIONS COMPUTED FROM FOURTH-

AND SECOND-CRDER CORRELATIONS

NACA TN 3116

1l/2
Y Py )2 RS S/
p2/e?(w2) P = 1%P2/\ 5]
(2)
Two extreme values 3.3 0.28
computed from
fourth-order A5 .20
correlation
Computed from 0.50 0.20

second-order
correlation

Inimension of velues is approximately (in.
2Dimension of values is approximately in.

)—2




2 o, \#
Investigator and date | Ry i‘_a 71‘2’ %‘2 fie + ;‘—5 7‘2(%)_ \ i%%g
| T TR |1 )
Bimmons 1935 37.0 { 0.16 0.08 8.00 0.08 7.52 0.35
Collis 1948 23.0 L1 .20 1.00 .15 .85 1.08
Collis 1948 38.0 L1k .20 1.00 .09 .91 1.05
Reference (13), 1951 29.0 17 L1l L.78 .11 4.67 46
Do, —=mmm - - 32,0 | .12 12 2.00 .10 1.90 T3
DOy mmmmmmme 36.0 Rs1 .36 2.60 .08 2,52 .63
DO. = mm e ba,5 | .23 235 | 1l.g2 .07 1.9 ST
Do, -~ =mmmmm 4z,5 .165 245 .910 .07 .8 1.09
DO, ~=—=mm == 49.0 | .35 .22 5.0l .06 .98 A5
DO, ———mmmmm 61.0 .23 30 .914 et .87 1.06
DOu mmmmmmmm 67.0 <3k .22 L, 76 N b.72 RIS
DO, === .0 .19 .27 .990 .04 .95 1.02
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— R%ll (r)

”T Rann(")

TL R%nn(r)

T — R?ln(r)
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. (a) Fourth-order correlations.

. RRO —
L Pressure
. Rp" () H

(b) Pressure-velocity
correlations.

R} (1)

—

T Rp ()

1 Ran=RAO)

(c) Second-order
correlations.

Figure 1l.- Correlation diagrems.
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Flgure 2.- Schematic diagram of measuring equipment.
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Figure 4.~ Correlations R¥(r) and R2(x).
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Figure 5.- Correletion R%%(r).
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A, O Limiting correlations
computed from fourth-order
correlations, eq. (24)

O Computed from second-order
correlation, eq. (24q)

Figure 13.- Correlation pp'(r).
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