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SUMMARY 

A systematic study is made of the approximate inviscid theory of 
thin bodies moving at such high supersonic speeds that nonlinearity is 
an essential feature of the equations of flow. The first-order small-
disturbance equations are derived for three-dimensional motions involv-
ing shock waves, and estimates are obtained for the order of error 
involved in the approximation. The hypersonic similarity rule of Tsien 
and Hayes, and Hayes' unsteady analogy appear in the course of the devel-
opment. 

It is shown that the hypersonic theory can be interpreted so that 
it applies also in the range of linearized supersonic flow theory. 
Hence, a single small-disturbance theory, and associated similarity 
rule, apply at all supersonic speeds above the transonic zone. 

Several examples are solved according to the small-disturbance 
theory, and compared with the full solutions when available. These 
include flow past a wedge and cone, and determination of the initial 
gradients at the tip of plane and axially symmetric ogives. For the 
axially symmetric ogive it is shown that further terms can be found 
only by using Lighthill's technique of rendering solutions uniformly 
valid., and thus the initial curvature of the pressure distribution is 
calculated. It is concluded that on a body of revolution described by 
a power series, the pressure distribution and shock wave are also given 
by power series. 

A brief discussion is given of various additional approximations 
from existing theories. 	 - 

INTRODUCTION 

Aerodynamic shapes are ordinarily most efficient when they cause 
the least flow disturbance. For this reason, simplified theories based 
upon the assumption of small disturbances due to thin bodies have proved
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to be of practical value in analyzing incompressible, subsonic, tran-
sonic, and supersonic flows.' For flows at Mach numbers large compared 
with unity, however, the pressure disturbances may no longer be small 
(compared with the static pressure) even for thin shapes, so that in 
this sense it has been said that no small-disturbance theory exists 
(ref. 1). However, if viscosity can be neglected, the velocity disturb-
ances remain small compared with the speed of flight (though not compared 
with the speed of sound), and even the pressure changes are small if com-
pared with the dynamic pressure. In this sense, therefore, a small-
disturbance theory exists, and the assumption of such small disturbances 
leads to a useful simplification of the equations for compressible flow 
at arbitrarily high Mach numbers. 

Viscosity and heat conduction must be neglected in order to have a 
small-disturbance theory. Otherwise, for example, the viscous no-slip 
condition would introduce velocity disturbances equal to the speed of 
flight. In many cases this simplification does not destroy the essential 
features of the flow. In other cases, the inviscid theory may serve as 
a basis for including viscosity and heat conduction. Thus, recent studies 
of the hypersonic boundary layer (refs. 2 and 3), which indicate that vis-
cous effects become essential at extreme Mach numbers (say, greater than 
17), replace the boundary layer by a fictitious solid surface and then 
utilize inviscid theory of the sort considered here. 

At sufficiently high Mach numbers, inviscid flow past any given thin 
object requires nonlinear equations for its description. We take this as 
the definition of hypersonic flow: Supersonic flow past a thin body is 
termed hypersonic if the Mach number is so great that nonlinearity becomes 
an essential feature. Thus, the definition of hypersonic flow stands on 
an equal footing with the generally accepted meaning of transonic flow 
at the other extreme of the supersonic range; that is, flow at a Mach 
number so close to unity that nonlinearity (of a different sort) is an 
essential feature. These two terms - transonic and hypersonic - are most 
meaningful when defined (as here) only for thin shapes. They then describe 
two quite distinct regimes which are, moreover, separated by a consider-
able range of "ordinary supersonic" flow in which the transonic and hyper-
sonic nonlinearities are unimportant, so that linearized theory can 
account for all significant features of the flow. If one attempts to 
extend the terms to thick bodies, the two separate regimes tend to merge, 
so that one must concede that a flow field can be simultaneously tran-
sonic and hypersonic. 

It should be noted that the term hypersonic has occasionally been 
used in the literature with other meanings than that adopted here. Flows 
are sometimes called hypersonic if the free-stream Mach number is simply 
large compared with unity (say, 10 or 5, or even 3). This is not strictly 

'Throughout, "thin" is used to refer to any body whose streainwise 
slope is small, and so applies to slender fusiform objects as well as 
flat shapes such as airfoils.
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equivalent to the present definition because, in principle, at any given 
Mach number a body can always be chosen so thin that nonlinearity is 
insignificant. However, such extreme thinness does not arise in prac-
tice, so that the two definitions are equivalent for practical purposes. 
Again, Oswatitsch has defined hypersonic flow as the limiting condition 
for a given body as the free-stream Mach number tends to infinity 
(ref. Ii-). This Is a limiting case of the present definition and, indeed, 
Oswatitsch's similarity rules for thin bodies are simply special cases 
of the more general rules. 

Associated with each of the various small-disturbance theories is 
a similarity rule which connects flows at different speeds past affinely 
related shapes. In the case of linearized subsonic and supersonic 
theory, the similarity rule was fully understood only long after the 
small-disturbance theory was in common use. On the other hand, the tran-
sonic similarity rule was developed concurrently with the small-
disturbance theory. For hypersonic flows, the simplified theory and 
associated similarity rule were first given by Tsien (ref. 5), but were 
restricted to irrotational flows (and to plane or axially symmetric 
shapes). This is a severe limitation because strong curved shock waves 
and consequent entropy gradients and flow rotation are. essential features 
of nearly all hypersonic flow problems. This restriction was removed by 
Hayes, who indicated in a brief note (ref. 6) that Tsien t s similarity 
rule is valid for rotational flows and for general three-dimensional 
shapes. The rule was further extended to unsteady motion by Hamaker and 
Wong (ref. 7). 

As a result of this circuitous development, there exists a gap in 
the hypersonic theory. The similarity rule Is known for full three-
dimensional flows with curved shock waves, but the underlying small-
disturbance theory has never been written down. (To be sure, however, 
its form is known from the analogy with nonsteady flow in one less 
dimension, which was pointed out by Hayes.) For the special case of 
plane flow, and for Mach numbers which are not arbitrarily large, this 
gap has recently been closed by Goldsworthy (ref. 8). The published 
examples of applications of the theory are limited to the few special 
cases which are strictly irrotational (e.g., the wedge and cone) or are 
assumed to be approximately so. 

The present paper undertakes a systematic study of the small-
disturbance theory for hypersonic flow. First, the small-disturbance 
problem Is derived by reduction of the full equations of motion, bound-
ary conditions, and shock-wave relations. The similarity rule and 
unsteady analogy appear in the course of this development. This portion 
of the paper may be regarded as an elucidation of Hayes' note, with esti-
mates obtained for the order of error. Next, it is pointed out that to 
within terms of the order neglected, the hypersonic similarity theory 
can be written in the form of the similarity theory for linearized super-
sonic flow, so that a single theory and associated similarity rule cover
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both regimes. Then, a number of special problems are solved according 
to the small-disturbance theory and are compared with the full solutions 
when they exist. 

The symbols' used in the text are defined in Appendix A. 

HYPERSONIC SMALL-DISTURBANCE THEORY 

Basic Assumptions 

Consider a three-dimensional body fixed in a steady uniform stream. 
Viscosity and heat conduction are neglected, which implies that shock 
waves will be approximated by abrupt discontinuities. 

The body is assumed to be thin, in the sense that the streamwise 
slope of its surface is everywhere small compared with unity. The degree 
of thinness will be measured by the small parameter 'r which may, for 
example, be taken to be the maximum slope of the body, 2 or its thickness 
ratio. However, for inclined shapes T must be identified with the 
angle of attack if it is considerably greater than the body thickness. 

The free-stream Mach number M is assumed to be so high that the 
flow is hypersonic. That is, linearized theory is inadequate for pre-
dicting the essential features of the flow. It is known that linearized 
theory yields an adequate approximation if the maximum body slope is 
small compared with the slope of the free-stream Mach cone, that is, 

if T<<l where 3 = JM2_l. As this ratio approaches unity, linear-
ized theory grows increasingly inaccurate. Therefore the flow is hyper-
sonic if the ratio PT is not small compared with unity. Since i - is 
small, this means that 0 and, therefore, also N will be large in the 
hypersonic range, so that 0 is nearly equal to M. Thus, the criterion 
for hypersonic small-disturbance flow may be written 

T<<1	 with MT 	 or >>l	 (1) 
M>> 1 J 

From a mathematical point of view, it is convenient to regard all the 
small-disturbance theories as being asymptotic forms of the full theory 

2
If the slope is high in some small region of the body, as at a 

slightly blunt leading edge, it may be presumed that the small-disturbance 
theory remains valid except locally. In this case T might be taken 
to be the thickness ratio.



x 

LI - 

NACA TN 3173	 5 

for vanishingly thin bodies. Thus, the criterion for hypersonic flow 
may be expressed more formally as: 

-o(i)1TO 
MT	 as	 (2) jM4  

We introduce a Cartesian coordi-
nate system with the positive x 
axis aimed with the free-stream 
direction (sketch (a)). Let the 
surface of the body be described by c 
B(x,y,z) = 0, and the complete system 
of shock waves by S(x,y ) z) = 0, 
where the function S is not, of 
course, known at the outset.

Sketch (a) . - Notation for hyper-



sonic flow past thin body. 

Full Problem 

Consider the problem of determing the three velocity components 
u, v, w, pressure p, and density p throughout the flow field in the 
vicinity of the body. The mathematical system required is the differen-
tial equations of motion (which govern the flow except at discontinuities), 
the Rankine-Hugoniot relations across shock discontinuities, and boundary 
conditions at the surface of the body and far from the body. 

Equations of motion. - The differential equations of motion, which 
express the principles of conservation of mass, momentum, and energy, 
are

(continuity)	 (pu) + (v) + ( pw ) = 0	 (3a) 

(x momentum) uu + vuy + uz + p/p = 0	 (3b) 

3llere the order symbols are used in the conventional sense: 
f(T) = 0(i) as T —> 0 means that 1(T) remains bounded as 'r—> 0; 
and 1(T) = 0(g[T]) means f(T)/g(T) is 0(1); similarly, 1(T) = 0(1) 
means. f(T) vanishes as T—>O.
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(y momentum) uv + vv + wv + Py/p = 0	 (3c) 

(z momentum) UWX + vw + wwz +	 = 0	 (3d) 

(energy)	 u(p/p7) + v(/ Y ) + w(p/pY ) = 0	 (3e) 

(See, e.g., ref. 9, ch. 1.) Here subscripts indicate differentiation, 
and y is the adiabatic exponent of the gas. The last equation actually 
expresses the fact that the entropy is constant along streamlines, which 
for steady flow is equivalent to the conservation of energy (ref. 9, 
pp. 15-16). 

Boundary conditions. At the body the normal component of velocity 
must vanish. The unit normal vector at the surface is proportional to 
grad B, so that the condition becomes 

q • grad B = 0 

where q is the velocity vector, or 

(tangency) uBx + vBy + WBz = 0 at B = 0
	

(!) 

The other boundary condition, which implies that the body is flying 
into still air, may be taken in various equivalent forms. For present 
purposes it is convenient to require that all disturbances vanish far 
ahead of the body:

u-4u03 

(upstream) v and w —O
as x —-.o	 (5) 

p —.p0 

P 

Shock-wave relations.- At a shock wave, conservation of tangential 
momentum leads to the requirement that the velocity component tangent 
to the shock surface be continuous. The tangential velocity component 

(sketch(b)) is given by qt = (n x q) x n, where the unit normal
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vector n is proportional to grad S. 
It is convenient to use brackets to 
denote the jump in a flow quantity 
across a shock wave so that, for 
example, [u] is the increase in u 
through the shock. With this nota-
tion, the condition of conservation 
of tangential momentum becomes 	

/ - 

(tangential momentum) 

jJ. = .L!J. = .11 at s = o	 (6a) 
Sx	 Sy	 Sz	 Sketch (b).- Components of 

velocity at shock wave. 

This imposes two independent scalar conditions at the shock wave, as 
physical considerations clearly indicate that it should. For plane 
flow, say, in the x-y plane, the last term becomes indeterminate and 
should, of course, be dropped. 

The remaining shock-wave relations express the conservation of nor-
mal momentum, mass, and energy across the shock. The magnitude of the 
velocity component normal to the shock is (sketch (b)). 

>	 uS+vS - f-wS 
q . fl =

I Sx+Sy+Sz 

Consequently, the other three shock relations are found to be (ref. 9, 
P- 300), using the jump notation, 

(mass)	 [P(uSx+vSy+wSz)J = 0	 (6b) 

(normal 
momentum)	 [P(uS-i-vS-i-wS) 2 + ( S2+S2+S2 )p] = 0	 at 3=0 (6c) 

(energy)	 1(US2x+vsy+wS)2 +	 (3x2+3y2^5z2)J = 0	 (6d) 

So far, these relations are quite symmetrical, remaining unchanged if 
the brackets are taken to denote the change upstream rather than down-
stream through the shock. A definite sense of flow direction is
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provided only by the second law of thermodynamics, which requires that 
the entropy shall not decrease across each shock wave, so that 

(2nd law of thermo.) [_]> 0	 at S = 0	 (6e) 

For later use we record Bernoulli's law 

(u-i-v+w) + _Z_ £ = const.	 (7) 
y-1 P 

which holds, with the same constant, throughout the flow field. 

First-Order Problem 

The full problem is now to be simplified by discarding all but lead-
ing terms in the body thickness T. This will give a first-order hyper-
sonic small-disturbance theory, which can be expected to provide aclose 
approximation for thin shapes. 

The reduction is conveniently carried out by introducing new inde-
pendent variables which are of order unity throughout the flow field. 
The form of this transformation is suggested by simple examples and 
limiting cases. For example, the approximate solution for a thin plane 
wedge at very high Mach number has been given several times. Pertinent 
results are that the lateral extent of the flow field is some moderate 
multiple of the wedge thickness, that the density never exceeds 
(y+i)/(y-i) times its free-stream value, and that the relative streamwise 
velocity disturbance and the pressure coefficient are of the order of 
the square of the surface slope. Again, the Newtonian impact theory, 
modified to include effects of centrifugal force, which yields the limit-
ing solution for M = and y = 1, shows pressure coefficients propor-
tional to the square of the thickness. The tangency condition suggests 
that, in general, all cross-wind velocities vary directly with the thick-
ness. Such considerations suggest introducting new (barred) independent 
and dependent variables, and redefining the functions describing the 
body and shock-wave surfaces, as follows: 

y= ;i: y	 (8a) 

1 
Z =- z 

T
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U = u [1+i-

V = UT v(,y) 

W = UT	 (8b) 

p = POO 	 (3T,) 

P = p00 

B =
(8c) 

S = 

The new dependent variables are dimensionless, and the others may be 
regarded as dimensionless if the body is of unit length. 

We tentatively assume that all the new dependent variables (iI,V, etc.) 
and the new functions B and 	 are 0(1) as 7 4 0 for fixed MT, and
that the reciprocals of the new independent variables (i/i, etc.) are 
likewise 0(1). The correctness of this assumption is suggested by 
examples such as those discussed above; its justification will come 
from the consistency of the resulting theory. 

It is important to realize that the notation V = 0(1) includes 
the possibility that in the limit 7 becomes arbitrarily small as well 
as the possibility that it approaches a constant nonzero value; only the 
possibility of its growing arbitrarily large is ruled out. For example, 
the reduced velocity components ii, V, and 7 will be identically zero 
in the region ahead of the body. On the other hand, it is definitely 
implied here that in at least some portion of the flow field the reduced 
quantities will not vanish in the limit as T +O. 4 To be sure, they 
,may not all be of order of magnitude unity in the intuitive physical 
sense; for example, for flow past a thin flat wing ü • and V will be 
moderate multiples of unity, but V will be numerically much smaller. 

Reduced problem.- This transformation of variables is now intro-
duced into the full problem of equations (3) to (6). If we discard 
terms which contain T2 explicitly; such as T 2pU in the continuity 
equation, the differential equations become 

(x momentum) ü- +	 + ü- + i-/p = 0	 (9) x	 y	 z 

4 That is, f(7) = 0(T) implies that f(T) is not identically 0(7).
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(continuity) P3j + () + () = 0	 (ba) 

(y momentum)	 +	 +	 +p P = a	 (lob) 

(z momentum)	 +	 + Wi + p-/p = 0	 (lOc) 

( energy- )	 (/p_y) + (/p) + W(P/) Z = a	 (lod) 

the boundary conditions become 

(tangency)	 +	 +	 = a	 at i = 0	 (ii) 

(upstream)	 , , 7W - 0 

	

l/7M-r2	 as	 -	 (12)

P--l. 

and the jump conditions at the shock waves become 

(tangential 
momentum)	 [ii.) = [ j = 

--	 - x	 y	 z 

(mass)	 [(++)]=o 

(normal	 -	 --	 --
momentum)	 [ (s- + vS + wS)2 + (2 + 2)] = 0	 at S=0 (13) 

(energy)	
1 2

.(s_ + VS- + wS-)2 + J_ (_2 + _2) !. 

I = 0 

	

x	 y	 z	 y-1 Y	 Z 

(2nd law	 r 
of thermo.)	 _o 

The parameters- M and T of the full problem enter this reduced 
problem only in the combination NT, which appears only in the upstream 
condition on 5 (eq. (12)). In the hypersonic range, where l/Wr=0(l),
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the reduced problem possesses complete internal consistency. This is 
most readily understood by considering first the case where it does not. 

In the range of linearized theory, where 5 MT <<1, equation (12) 
presents a contradiction. It was assumed at the outset that f is 0(1), 
but its value upstream, (1/M2r2), is then not 0(1). This inconsistency 
is an automatic warning that the reduction breaks down in the range of 
linearized theory. Indeed, it will be seen later that the assumed orders 
of reduced quantities are then actually incorrect, and that the reduced 
equations fail to describe linearized supersonic flow. 

In the hypersonic range no such inconsistencies arise. Hence, the 
tentative assumptions regarding orders of reduced quantities are justified 
a posteriori, as are the simplifications effected by discarding terms that 

involve 72 explicitly. 

Order of error.- Because terms of order ¶2 have been omitted in 
the reduction, first-order quantities will differ from their exact values 
by 0(72). For the special case of plane flow, an analysis similar to 
the preceding hasbeen given by Goldsworthy (ref. 8), who considers only 
a single bow wave; 6 he furthermore confines attention to the range MT "l 
(which, to be sure, may be the range of most practical importance) and 
finds the error to be 0(l/M 2 ). This is equivalent to the present result 
in that range. However, the present result is more general, holding for 
arbitrarily large values of the similarity parameter (assuming, of course, 
that the assumption of a continuum flow remains valid). For example, at 
infinite free-stream Mach number, the error in first-order theory is 
correctly 0(r2). 

It is interesting to note that the error in the various first-order 
small-disturbance theories decreases progressively from 0(72/3) in tran-
sonic flow to 0(T) in linearized supersonic flow to 0(72) in hypersonic 
flow. Therefore, under the plausible assumption (confirmed by later 
examples) that these mathematical order estimates give a reasonable indi-
cation of the actual physical magnitude of error, the practical need for 
a second-order solution is seen to be greatest for transonic flow and 
least at hypersonic speeds. 

Unsteady analogy.- A significant feature of the reduced problem is 
that the problem for the streamwise velocity a has been uncoupled from 
that for the other variables. Equations (10) to (13) constitute a com-
plete problem for v, w, p, and p, which can be solved independent of u. 

5 More precisely, where MT = 0(1) as T->0. 

6 1t seems important to consider multiple shocks, because it is not 
at all obvious that subsequent-shocks have the same status as the bow 
shock; in particular, at M = Co the upstream Mach number is infinite for 
the bow shock, but has moderate supersonic values for the subsequent 
shocks.
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Thereafter,	 (if required) can be determined from Bernoulli's law: 

7	 1 
-1- - — = const.	 (1)-i-)  (y-1)M2T2 

Consequently, equation (9) and the first terms of equations (12) and 
( 13a) are superfluous and can henceforth be disregarded. 

As pointed out by Hayes (ref. 6), this first-order, problem is com-
pletely equivalent to a full problem for unsteady flow in one less space 
dimension. The reduced problem of equations (10) to (13) is precisely 
the full problem of unsteady motion In the 	 plane due to a moving 
solid boundary described by = 0, where 2 is interpreted as 
the time, and all other barred variables as the actual physical quan-
tities. 7 The outline of the moving boundary is given by the trace of 
the original thin shape in a cross-stream plane which moves downstream 
with the free-stream velocity (sketch (c)). For example, the problem 
of steady hypersonic flow past a slender pointed body of revolution is 

equivalent to the problem of unsteady 
planar motion due to a circular 

-	 -	 cylinder whose radius varies with 
UM	 time, growing from zero at time 

= 0. Hayes has given a physical 
explanation of this analogy. 

Sketch (c).- Plane of 
unsteady analogy.

It may be noted that the analogy 
is similar to that arising in the 
slender-body theory of linearized 
compressible flow, as exemplified by 
the work of Jones (ref. 10) and Ward 
(ref. ii). There, however, the time-
dependent analogue is incompressible, 
whereas here it Is definitely com-
pressible. 

Similarity rule.- The parameters M and T appear in the reduced 
problem only in the combination MT, which is the hypersonic similarity 
parameter of Tsien. This means that for bodies derivable from one 
another by uniform contraction or expansion of all dimensions normal to 
the stream, the flow fields are related if the corresponding Mach 

7The undisturbed fluid has density	 =l and pressure =1/7M2T2.
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numbers are such that the similarity parameter MT IS the same in each 
case. The nature of this relationship is simply that the reduced flow 
quantities, as functions of the reduced coordinates, are the same in each 
flow. All distinctive flow surfaces, such as the body itself and the 
shock-wave system, have identical descriptions in terms of the reduced 
coordinates. This is the hypersonic similarity rule of Tsien, which was 
extended to rotational and three-dimensional flow by Hayes. Its implica-
tions with regard to pressure and force coefficients will be summarized 
later, after the hypersonic rule has been combined with that for ordinary 
supersonic flow. 

Extension to unsteady flow.- For simplicity, the preceding discussion 
has been restricted to steady flow. It can readily be extended to unsteady 
motions involving small time-dependent oscillations of a thin body exposed 
to a steady uniform stream (or, from another point of view, flying through 
still air executing slight time-dependent variations from a mean steady 
rectilinear flight). The full problem is obtained by replacing the sub-
stantial derivative u6/6x + v6/6y + w6/6z wherever it appears in equa-
tions (3) to (6) by its unsteady counterpart a/at + u6/6x + v6/6y + w6/6z. 
Correspondingly, if a reduced time t is introduced according to 

= ut
	

('5) 

then the unsteady small-disturbance problem is obtained from the steady 
problem of equations (9) to (13) by adding /t throughout to the 
operator /i +	 + ô/. For example, the reduced continuity 
equation (eq. (i)) becomes, for unsteady motion 

E ++ () + () = 0	 (16) 

The problem for ü remains uncoupled from the problem for the other 
variables. 8 Furthermore, in the remaining problem the	 and t deriv-
atives appear only in the combination 616E +	 This means that the 
number of independent variables can be reduced by one by adopting the 
viewpoint of an observer who is moving with the free stream (or, to put 
it another way, who is fixed in still air with the body moving past). 
Thus, introducing "still-air" coordinates 

X , =x-ut	 x' =x - ut 

-	 - 
tt=t	

(17) 
tt=t 

8llowever, ü can no longer be found immediately in terms of the 
solution of the remaining problem, because in unsteady motion there is 
no useful counterpart of the Bernoulli equation (eq. (iii. )); fortunately, 
u is seldom actually required.

/
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reduces the unsteady small-disturbance problem to exactly the form of 
the steady problem (eqs. (9) to (13)), with t replaced by t'. This 
means that Hayes' analogy remains valid for unsteady motion if account 
is taken of the actual variation of the contour with time as well as the 
apparent variation due to relative motion depicted in sketch (c). This 
result was first given by Hamaker and Wong (ref. 7). Recently, Lighthill 
has analyzed oscillating airfoils at hypersonic speeds from this point of 
view (ref. 12). 

If the body oscillates so rapidly or with such large amplitude that 
_ is much greater than f., the error remains of 0(T 2 ) only if T is 

taken to be the maximum instantaneous slope of particle paths at the sur-
face of the body. 

Unified Supersonic-hypersonic small-disturbance theory. - It would 
be advantageous if the hypersonic small-disturbance theory included 
linearized supersonic theory as a special case. Then the awkward ques-
tion of what is the lower limit of hypersonic flow would not arise. 
A single theory, and corresponding similarity rule, would hold for all 
supersonic speeds above the transonic range. 

In the case of transonic small-disturbance theory, a unification of 
this sort is known to arise quite naturally (ref. 13, P . 9). In its 
original form (with p2 not replaced by 2(M-1)) transonic theory 
embraces linearized theory as a special case, so that it furnishes 
effectively a unified subsonic-transonic-supersonic theory giving a 
first approximation at all speeds below the hypersonic range. 

In the case of hypersonic flow, a connection with the adjoining 
supersonic range can likewise be effected (ref. 14), but the reason 
therefor is much less straightforward. An immediate obstacle is the 
faät that the approximations leading to the hypersonic theory and those 
leading to linearized theory are mutually exclusive. The difficulty 
arises in the continuity equation (eq. (3a)) which in the hypersonic 
case was shown to reduce to 

u p + (pv) y + (pw) z = 0	 (18a) 

but in linearized theory reduces instead to 

+P.Ux + P( Vy + w ) = 0	 (18b) 

The term P0,Px must be retained in linearized theory, whereas it must 
be neglected in hypersonic theory in order to achieve similitude. It 
would therefore appear Impossible to give a small-disturbance theory 
which is general enough to describe both hypersonic and ordinary super-
sonic flows, and yet simplified enough to retain the corresponding 
similitudes. It must be regarded as a coincidence that this can, 
nevertheless, be accomplished.
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It is shown in Appendix B that the hypersonic theory covers the 
ordinary supersonic range if it is reinterpreted in accordance with the 
similarity rule for linearized theory (ref. 15). It is found that solu- 
tions of hypersonic small-disturbance theory remain valid at small 
values of the parameter MT (which is the domain of linearized theory), 
provided that MT is replaced by OT and the results are reinterpreted 
in terms of physical variables according to 

U = u,[l + T2U X	 13T)] 

V = ui	 r) 

w = ur	
(19a) 

P = p {i + 7M2T2 [P(Y; 
T)- 7T2

 ] } = p (7M2,.22
	

- 

P = PW {l +T) - 1 ] } =.(

M2

 P- 

rather than according to equation (8). The pressure coefficient is 
given by

1	
( = 1	 2 - T p -	
l9b) 

Since the error is 0(T 2 ) in the hypersonic theory and 0 ('r113 ) in the 
linearized theory, the error in this unified theory is 0(T 2 ) or 0(T/J3), 
whichever is the greater. 

The flow quantities of chief aerodynamic interest are the pressure 
coefficient and the various force and moment coefficients derived from 
it by integration. If the hypersonic small-disturbance problem has 
been solved to find Cp/T 2 as a function of the reduced coordinates 
and the parameter MT, the result is rendered valid also in the ordinary 
supersonic range simply by replacing MT by 3r. 

Unified similarity rule.- The unified supersonic-hypersonic similar-
ity rule may be summarized as follows: 

For steady flow past thin bodies derivable from one another by uni-
form contraction or expansion of all dimensions normal to the stream, 

9For slender shapes such as thin bodies of revolution the error 
-	 is only 0(T 2/t32 ) in the linearized theory and, hence, 0(T) or 

0(T2/ 2 ) in the combined theory.
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the flow fields are related if the corresponding Mach numbers are such 
that the similarity parameter 13T is the same in each case (i- being 
any measure of thickness). The relationship is such that the flow 
fields are identical when expressed in terms of the reduced flow quan-
tities

u-u	 .L, L,	 00 or	 --- 
m M21'2 P	 T2 M2PCO 

as functions of the reduced coordinates 

, 1•' •T 

When the body oscillates slightly, the same is true with the addition of 
ut to the reduced coordinates, provided that the time history of oscil-
lation in terms of reduced coordinates is the same for each body. 

From the rule for pressures follows the equality of the reduced force 
and moment coefficients

	

CD	 CL Cm 
-, etc. 

1^k 
T	

7	 . 

Here k = 1 if some plan-form area is taken for reference and k = 0 
if some cross-sectional area Is used. The connection between the simi-
larity rules for forces and moments is contained in the statement that 
the center of pressure is constant in terms of the reduced coordinates. 

An unlimited number of equivalent forms of the reduced variables 
can be produced, for example, by multiplying by any power of the simi-
larity parameter. However, the forms given here are the most useful ones 
in the hypersonic range, because they involve functions of order unity. 
In the supersonic range no forms have this advantage, except in the 
special case of plane flow, where it would be convenient to use 

13 

(u — 1)
and 

It should be noted that in the hypersonic and combined similarity 
rules the adiabatic exponent 7 must remain fixed, whereas its magni-
tude is arbitrary in the supersonic case (since it does not appear in 
the linearized problem).
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TYPICAL APPLICATIONS OF HYPERSONIC 
SMALL-DISTURBANCE THEORY 

Several problems will now be solved according to hypersonic small-
disturbance theory. These examples will illustrate possible methods of 
solution, and demonstrate the degree of simplification resulting from 
the assumption of small disturbances. Comparison with the corresponding 
solutions of the full equations (when available) will indicate the 
accuracy to be anticipated when the theory is applied to more elaborate 
problems.

Plane and Axially Symmetric Flows 

The examples to be considered are either plane or axially symmetric 
flows. Accordingly, it is convenient to introduce coordinates x,r 
where in the case of plane flow r is the Cartesian coordinate y. 
Henceforth, v will denote the velocity component in the r direction, 
which is the radial velocity fo± axially symmetric flows. 

Equations of motion.- In these coordinates, the hypersonic small-
disturbance equations of motion (eqs. (10) . ) become 

+ ()- + a	 = 0	 (2Oa) 

	

x	 r	 r

(2Ob) 
X r 

- 7	 G/ 
) + v(p/p ) = 0	 (20c) 

The distinction between two and three dimensions arises only in the 
continuity equation, where a = 0 for plane flow and a = 1 for 
axially symmetric flow.

= 

	

Boundary and shock conditions.- 	 r	
r s(x)

 

Let the surface of the body be 
described by r = 'rb(x), as indi- 
cated in sketch (d). Then the 	 U 

tangency condition of equation (11)  _____
 

becomes 

= b'(i) at	 = b()	 (21) 

The upstream conditions are given	 Sketch (d).- Notation for plane 
by equation (12). 	 or axially symmetric body.
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The examples to be considered will involve only a single bow shock 
wave, which may be described by r = rs(x). The shock-wave conditions 
are given by equations (13), but in this case it is easier to take advan-
tage of the convenient relations which are listed in reference 16. 
Equations (136), (128), and (129) of reference 16, when reduced to hyper-
sonic small-disturbance form, give 

-	 2 K2-1 
v=—

K2 

-	 27K2 - (y-i) s'
2 (i)	 at E = s()	 (22)p= 

	

=	 ( y-i-i) K2 

2 + (7-1) K2 

where K = MTs'() is the hypersonic similarity parameter based on the 
local shock-wave slope. 

Stream function.- The continuity equation (eq. (20a)) may be 
accounted for by introducing a stream function, setting 

r p = r	 (23) 

= 

so that

	

-	 x v= --
r	

(21) 

= 

Then equation (20c) states that / p is a function only of *, as is 
clear from the fact that entropy is constant along streamlines between 
shock waves. Substituting into the momentum equation (20b) gives 

7+1	 for plane 
(74-- + (A)(2)	 flow	 (25a) 

	

- 2 111 " 11'- +11r 2
	 - 

r xx	 xTrxr x
7+1 	 for 

r	
J 7&)( )+te_2J axially (25b) 
L \ rr	 /	 r symmetric 

flow
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where 

The pressure is given by

19 

-- 
= p/7p (25c) 

(26) 
-	 _7 
p = wp =w(r/r) 

Plane Wedge 

As a simple introductory example, consider hypersonic flow past a 
thin wedge of semivertex angle 5. Here, and in the examples to follow, 
the solution is most readily carried out by assuming a given shock wave 
and Mach number and calculating the corresponding body shape. It is 
therefore convenient to identify the thickness parameter T with the 
shock-wave angle rather than the wedge angle. This is quite permissible 
at hypersonic speeds, where they are of the same order; it is also per-
missible in the ordinary supersonic range, where they are not, provided 
that b rather than 7 is used in the error estimates. Let b = 
be the ratio of wedge to shock angles. 

The flow field is conical (velocities constant along rays), so that 
the stream function has the form 

-

	

	 *(x,r) =	 f(e)	 (27)

where U is a conical variable, defined by

(28) 

	

TX	 5i 

which varies from b at the wedge to unity at the shock wave. Thus, 
equation (25a) becomes

f U [f2 - 7W f 1(7	 = 0	 (29a) 

where, from equations (22) and (25c) 

W
27K2-(y-l)	 2+( 7 l) I 2 7 

=
7(7+1)2	 (y+l)2 

° I	 (29b) 0  

-	 with K = MT. The shock-wave conditions of equation (22) give (since 
s'=l)

f(l)=l 
- 

 ft (1)	
(7+l) 

° 2
	 (30) 

-	 =  
2 + (7-1)t2



20	 NACA TN 3173 

The solution of this problem, which corresponds to f" = 0, is 

(y+i) K 2 e - 2(K02 .1) 

	

f(0) =	
2	

(31) 
2 + ( y_i) Ko 

Requiring f to vanish at the surface gives the ratio of wedge to shock 
angles

	

b -	
- 2(I 02 - 1) 

T	 (7+1) 2 

The auxiliary hypersonic parameter K 0 = Mr can now be eliminated in 
favor of M8, with the result that 

	

S - b -	

+ 
J(l)2 + M252	 (33) 

Then from equations (26) and (27) the pressure coefficient at the wedge 
(or anywhere between the wedge and shock wave) is found to be 

	

= 2	
+ f( 2 +	 1	 (3k) 

P	
[	

J'\2 	 M252J

(32) 

These results were first given by 
Linnell (ref.. 17) . Numerical values 
of pressure coefficient are com-
pared in sketch (e) with the exact 
results for wedges of various thick-
nesses. Here S has been taken to 
be the tangent of the wedge angle, 
though within the scope of the 
small-disturbance theory it might 
equally well have been identified 
with the sine of the angle, the 
angle itself, etc.

8
bz tan -'R' 

cp 
R

4
	

SM 

theory 

WE 
.33	 .5	 I 

M R 

Sketch (e).- Wedge pressure 
according to hypersonic 
small-disturbance theory.
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Unified supersonic-hypersonic result.- Replacing the parameter M 
by 06 renders the solution valid in the ordinary supersonic range as 
well:

2 _ 
C  = 52 [, +) + 22 J	 (35) 

This result is again compared with 
the full solutions in sketch (f). 	 8 
The advantage of the unified result 
is obvious. In all subsequent 
examples the results will be pre-
sented only in this form. 

It is interesting to note that 
this formula has been proposed by 
Ivey and Cline (ref. 18) for pre-
dicting the surface pressure on any	 0 
supersonic airfoil. They obtained 	 .333 

it by seeking an interpolation 
formula connecting Ackeret's linear-  Sketch (f).- Wedge pressure accord-
ized theory with the hypersonic	 ing to unified supersonic-
result of Linnell (eq. (31)) for a	 hypersonic small-disturbance 
tangent wedge.	 theory. 

Initial Gradients for Plane Ogive 

Using the full equations, Crocco first determined the initial gra-
dients of flow quantities at the tip of a plane ogive by perturbing the 
solution for a wedge (ref. 19) . His analysis has been repeated and 
elaborated upon by Schfer (ref. 20) and others. This problem provides 
a good test of the small-disturbance theory in a case involving shock-
wave curvature. Let b be the ini-
tial ratio of body slope to shock-
wave slope, and 1 the cprrespond-
ing ratio of radii of curvature. 
Then in physical coordinates the 
body (sketch (g)) may be described 
by	 iLg__ ____br	 9ø_ 

2oIisturbance 
theory

.5
BR:,1
	 CD 

and the shock wave by 

r5 = T(x + icx2 + ...)	 ( 37)
	

Sketch (g).- Plane or axially 
symmetric ogive. 
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Here c will be negative for the convex shapes usually encountered in 

practice. 

Shock-wave conditions.- Conditions just behind the shock wave are 
found from equations (22) to be given by 

2( K 0
	 I	 (7_1)I04+(7+5)I02-2 	 - 

[2+(7-1)K
l+	 lcx+ 

2+(7-1)K J	 (K 
0 
2_1)	 2]	 ...}	

(38a) 

(7+1)K02	
1+ ________ lc + ...]

	
( 38b) 

2+(7-1)K 7 [2+(7_l)2 

= NOY- 
27 2_(y_l) r2+(y_1)021 

-	
+ 

7(y+1)2 
L 
(7+12 J {  

_ - 
Zcx + (38c) 

[272_(7_l)] [2+(y_l)2] 	 ... } 
 

where K = MT is the auxiliary hypersonic similarity parameter based 
upon the initial shock-wave angle. 

Equations of motion.- The flow behind the shock wave will consist 
of a uniform field upon which is superimposed a perturbation field due 
to body curvature. Hence, along each ray from the vertex the flow quan-
tities will have constant values associated with the initial slope of 
the body plus linear variations proportional to the initial curvature 
(together with higher variations which need not be considered in evalu-
ating initial gradients). Thus, the stream function of equation (25a) 
can be written in the form

=	 f(6) - zc 2 g(e) + ...	 (39) 

Along the shock wave

* = F = :5 +
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so that the entropy function () can be written as r(c) by replacing 
by \ in equation (38c). In this form (since w is constant along 

streamlines) the expression applies throughout the flow field downstream 
of the shock wave, so that

	

= w-jl + lc,* + ...]	 (oa)

where
2yi02-(y_1) [2+(y_1)Io217 

0	 7(i+1)2	 L (7+1)K02 1

(kwh) 

47(7]) (K2_1)2 
(A)1 = 

[27I02_(7_1)] [2+(y_l)o2] 

Substituting these expansions for	 and W into equation (25a) 
and equating like powers of x yields two. ordinary differential equa-
tions. The first is equation (29a), corresponding to the basic flow 
past a wedge. The second, when simplified with the aid of equation (31), 
becomes

2	 (y--i) 
f g"-2ff'g'+2f' 2g = (A)of! 	 019"-w1f '

2
 )	 (i) 

Solution for g.- By expressing conditions just behind the shock 
wave in terms of conditions at 0 = 1 through Taylor expansion, the 
boundary conditions on g are found to be 

g(l) = 2+(71)2	
.	 (2) 

[2+(-/-l) K02]2 

The velocities associated with g vary linearly with distance from 
the apex. Hence (as is readily verified from the differential equation), 
g is a quadratic function of e, and can therefore be written as 

	

g(0) = g(i) - (1-0)g'(l) +1(1_e)2gtl(1)	 (43) 

Here only g"(1) is unknown, and it is immediately found from the dif- 
ferential equation to be

3(7_1)i04+(3_7)I02+2(7+2) 
g"(l) = 2(y+l)K 0 4	 (44) 23 (K 0 2-l) [2+(7-1)K0 ]
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Curvature ratio and surface pressure.- The body curvature and pres-
sure gradient can be expressed in terms of the values of g(0) and its 
derivative at e = b. From equations (42) to (44) it is found that 

______ 2(27-l)1c04+(y+5)K02-(y-l) 

g(b) = (y+1)(K02-l) [2+(y-l)K02] 

2Pto2(3Ko2+1) 
gt(b) = - (K

2-l) [2+(7-1)K 0 
2] 

The surface of the body is determined by the vanishing of the 
stream function. Thus it is found that the ratio of shock-wave curvature 
to body curvature is given by 

fl(b) -	 (y+1)22(2_l)	
(14.6)

2g(b) - 2 [2(27-1)o+(7+5)o2(71)] 

The initial pressure gradient on the surface of the body is given 
by

6C P b = -yw1r'(b)7 g'(b) T 2 
ax I	 g(b) 

so that in terms of the initial slope B 0 ' = bT and curvature R0 " = CT 

of the body

(11.7) 

(7+1)02(3K02+1) [27K 02_(7_1)] 

pi b  (KO 2_1) [2(27_1)K0+(7+5)02(71)]
R0 'B0 "	 ( 48) 

- 

Although these results have been expressed in terms of the auxiliary 
parameter Ko = MT, they can be given explicitly in terms of Mach number 
and apex angle (in the combination MR 0 ' = Mbr) with the aid of equa-
tion (33). In this respect the small-disturbance solution is superior 
to the full solution, which yields no such explicit results. Replacing 

MRo' by 3R0 ' renders these results applicable at all supersonic speeds.



S	 15 
(Ref. 21)

Small-disturbance	 theory
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The small-disturbance result for the curvature ratio is compared 
in sketch (h) with the full solution for various vertex angles, taken 
from the convenient tabulation of reference 21. Sketch (i) gives the 
corresponding comparison for the initial pressure gradient. 

Sketch (h).- Initial ratio of 
shock to body curvature 
for plane ogive.

Sketch (i).- Initial pressure 
gradient on plane ogive. 

Circular Cone 

Consider flow past a slender 
circular cone of semivertex angle 6. 
(sketch (j)) . Again it Is conven-
ient to regard the Mach number and 
shock-wave angle as given, and to 
solve for the corresponding cone 
angle. Thus let the shock-wave 
angle be i- and the cone angle 
= br, where again b is a con-



stant less than unity that is to be 
determined.	 Sketch (j) . - Notation for cone. 

Equation of motion.- The flow field is conical so that all flow 
quantities are constant along rays. This means that the stream function 
of equatipn (25b) has the form

r	 r	
() = 2r( e),	 = = 

It follows that the equation of motion (eq. (25b)) becomes the nonlinear 
ordinary differential equation

('+) 
f2f't- 2ff'2=7o f'
	

(	

f' 

e(7_1)	
(o)

0 ) 
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Here wo is the constant value of /7 behind the shock wave, given 
by equation ( li-Ob), and K o = MT IS again the auxiliary hypersonic simi-
larity parameter based upon shock-wave angle. 

Boundary-conditions.- The shock-wave conditions of equation (22), 
together with equation (49), combine to give

1 
f 	 -.

(51) 
fT(l)

(7+1) KO
	 I 

=	 I 
2+(7-1)K02	 j 

The condition of tangent flow at the cone requires that the stream 
function vanish at the surface:

f(b) = 0
	

(52) 

Numerical integration.- The nonlinear equation for f, equation (50), 
can be readily integrated numerically. Choosing a value of the auxiliary 
similarity parameter i, we calculate w o from equation (40b) and the 
initial values of f and f' from equations (51), and then integrate 
step by step inward from the shock wave until f vanishes, which deter-
mines the cone surface. With the ratio of cone angle to shock-wave 
angle /T = b thus determined, the results can be re-expressed in 
terms of the similarity parameter based upon cone angle. Eight or ten 
intervals between shock wave and body yield ample numerical accuracy, 
provided that in each step the predicted values of f and its deriva-
tives are corrected by averaging and iterating before proceeding to the 
next step. (For values of rc near unity, the first few intervals 
near the shock wave must be taken smaller than the others.) 

The pressure coefficient is obtained in terms of the first deriva-
tive of the stream function according to

1 
62 Lb 2 e) yM22 

where the similarity parameter M5 of the hypersonic problem is to be 
reinterpreted as P6 so that the result is applicable throughout the 
entire supersonic range. 

Computations have been carried out for 7 = 1.1.05, in order to com-
pare with the full solutions tabulated by Kopal (ref. 22). The chosen 
values of the parameters are listed in the following table, together 
with certain of the results:

(53)
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MT 8/i- 05 ft(b)/b C/82 

1.014 0.3620 0.3765 1.217 3.183 
1.19 .5545 .6599 1.522 2.646 
1.8 .7281 1.150 2.207 2.333 
2.87 .86o4 2.469 3.925 2.154. 
14 . 14.7 .8921 3.988 14.973 2.116 

.9114. 0 6.149 2.091

The small-disturbance result for surface pressure is compared with 
the full results (from ref. 22) in sketch (k). The differences between 
the full solution and the small- 4 
disturbance limit are closely pro-
portional to the square of the 
thickness, in accordance with the 
estimate of the error as 0(82) 
or 0(82/32). It is noteworthy that	 3

the fractional differences are in 
fact very nearly equal to 62. 
The same is true of surface pres-
sures in the previous examples.	 CP, 2 
This suggests that the mathematical R'O 

order estimate may be relied upon 
to give a quantitative prediction 
of the error in the small-
disturbance approximation.	 I 

This approximate solution for 
cones was previously sought by 
Shen (ref. 23), whose result is 
also shown in sketch (k). It 
appears that his solution, which 
involves more involved computa-
tions, must contain errors.	 Sketch (k).- Surface pressure 

on cone. 

Initial Gradients on Ogive of Revolution 

Consider the axially symmetric counterpart of Croccots problem: 
the determination of the initial gradients of flow quantities at the 
tip of an ogival body of revolution. This problem has recently been 
considered for the full equations by Cabannes (ref. 24) and by Shen 
and Lin (ref. 25). It will be seen that the small-disturbance solution 
serves as a useful guide to the full solution. In particular, it clar-
ifies the behavior of the solution near the surface, which was glossed 
over by Cabannes and in Shen and Lin's work was misconstrued to 

o 
.333

]-disturbance theory 

(Ref. 23) 

Full solution

tanR 

.5

a 
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indicate a singularity which implied wrongly that the initial pressure 
gradient at the tip of an ogive is infinite. 

As in the plane problem, let the body be described in physical 
coordinates by

1 2 
rb = T(bX +	 cx + ...)	 (511.)  

and the shock wave by

r3 = T(x + 1 Zcx2	 () 

(sketch (g)). Conditions just behind the shock wave are given by equa-
tion (38), with 	 and 4r replaced by - 4r /i and 

Equations of motion. - Again along each ray the flow quantities 
have constant values corresponding to the initial slope plus linear 
variations proportional to the initial curvature (together with higher 
variations which are considered later). Hence, the stream function may 
be written in the form

= 2) - c 3g(e) + ...	 (56) 

Along the shock wave

= l2 = 12 + ••• 
2	 2 

so that an expression for the entropy function cj throughout the flow 
field downstream of the shock wave is obtained by replacing R with 
..[V in equation (38c). Hence, 

L(1]J) = wo [i + ZC(A)1	 + ...]	 ( 57) 

where W j and w, are given by equation (40b). 

Substituting these expansions into equation (25b) and equating like 
powers of 2 yields for f the nonlinear ordinary differential equa-
tion already treated in the problem of the cone (eq. (5 0 )), and for g 
the linear equation

Dg" = A + Bg + Cg'	 (58a) 

whose coefficients depend upon f according to
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(y+i) ________ ____ -	 ( - t)] A=0w1	 f'	 fi 

[ (7-1) 

B = 12ff" 

f?(7+1)[7+2	
(78b) 

C = 7w
&(7-')	

- (+i)	 ] - 8ff' 

D = 'yWo 
f	 -	 2 

As in the plane problem, initial conditions on g are found by 
expressing conditions just behind the shock wave in terms of conditions 
at e = 1 through Taylor series expansions: 

2_ 
0 g(1) = _________ 

2+(7_1)1c02

(59) 

g'( .l)	
- K02 (7-1)K02+2(27+3Y 

Behavior of solution near body surface.- Just as conditions at the 
curved shock wave have been related to those at 0 = 1, so with the 
present coordinate system it is necessary to relate conditions at the 
surface of the body to those on the initially tangent cone 0 b. 
However, the solution is nonanalytic near the surface, which means that 
Taylor series expansions do not exist. It is therefore necessary to 
examine the nature of the solution in the vicinity of the body. 

The function f associated with the basic conical flow is analytic 
near the surface (and vanishes at 0 = b), so that it has a Taylor series 
expansion:

f(0) = (0-b) f(b) + ... 0[(o-b) 2 ]	 (60) 

It follows from equations (78b) and (60) that near the surface the 
coefficients of the differential equation for g behave like 

A". (0-b)- 112 

B	 (0-b)
(61) 

D. 1
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Therefore the point 0 = b is a singular point of equation (58a), but 
is an ordinary (nonsingular) point of the homogeneous equation obtained 
by deleting A (see ref. 26, p. 73). Therefore the general solution of 
the homogeneous equation is analytic and can be taken to have the form 

n 

=	
a(0-b)	 (62) 

0 

where all higher coefficients an can be expressed in terms of the two 
arbitrary constants a 0 and a 1 by means of the differential equation. 
Then the procedure for calculating a particular integral (ref. 26, 
p. 122) shows that the nonhomogeneous equation (58a) has a particular 
integral of the form

(e-)	 L cn(0-b)
n 	

(63) 

0 

where the coefficients en can all be determined. Here the 3/2-power 
branch point arises from the fact that the pencil of fluid striking the 
tip of the ogive is spread thin over the entire surface, and the linear 
entropy gradient at the tip due to a curved shock wave is thus intensi-
fied to a square-root gradient normal to the surface elsewhere. The 
complete solution of equation (58) is the sum of gj and gp 

In treating the full problem in reference 25, Shen and Lin claimed 
to have found a logarithmic singularity at 0 = b, which considerably 
complicated their analysis. Because of this singularity, their solu-
tion was restricted to concave bodies (although they conjectured that 
it might be extended to convex bodies). The singularity also led to 
the conclusion that for an analytic body shape the shock wave is non-
analytic, and vice versa. Furthermore, the singularity would -imply that 
the initial pressure gradient on an analytic body of revolution is 
infinite, although numerical solutions by the method of characteristics 
give no indication of this. 

The present solution shows no such singularity. It seems unlikely 
that a singularity could have disappeared as a result of making the 
small-disturbance approximation, since this would imply that the approx-
imate model does not retain the essential features of the full problem. 
The alternative conclusion is that the singularity does not actually 
exist in the full problem. This has subsequently been confirmed by the 
authors of reference 2510 who find that the singularity is, in fact, 
only apparent in the sense of reference 26, page 406. 

'01n a private communication; see also Addendum No. 1 to ref. 25.
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It may be noted that Cabaimes, in treating the full problem, has 
completely ignored the nonanalytic nature of the solution, and simply 
extrapolated his numerical solution to the surface of the body (ref. 24). 
His results may not be seriously in error, because the effect of the 
nonanalyticity is small. 

Numerical integration. - The differential equation for g has been 
integrated numerically for the six values of the similarity parameter 
chosen previously for the cone. The integration was carried out step by 
step starting from the known values at the shock wave and using the same 
intervals as for the cone. This step-by-step solution was joined at the 
two points nearest the surface with the series expansion about e = b 
given by equations (62) and (63): 	 - 

	

g(e) = 22fT(b)3/2(e_b)3/2 	

+ €_(970_ 
12 

37 	 32) + •..] + 

g(b) [1 + 27€ - A(1+27\)€4 + ...] + 

g'(b) (e-b) (1+ € - 	 +	

+ ...)	
(6a)

where
(7-1) -1 

?\=[7wO

	

 
f' (b)	 1	

(64b) L	 '	 b 

(Values from the step-by-step integration and the series expansion were 
also compared at the third point from the surface as a check.) Because 
they are based upon the previous solution for a cone, the computations 
were carried out with 7 = 1.405. 

Curvature ratio and pressure gradient. - Because the nonanalyticity 
appears only in higher terms of the series, surface values of g and 
its first derivative (but no higher derivatives) can be expressed in 
terms of values at e = b. The surface of the body is determined by the 
vanishing of the stream function. Thus the ratio of shock-wave curvature 
to body curvature is found to be given by 

f'(b)	
(67)

2g(b) 

Proceeding as in the plane case, it is found that the initial pressure 
gradient is expressed in terms of the initial slope R 0 ' = bT and curv-
ature H0 t' = CT of the body by
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= f'(b) 7 	 [-g'(b)]
RQ 'R0 "	 ( 66) 

	

lb M2R0,2b	 g(b) 

Numerical values of g(b) and g'(b) are listed in the following 
table, together with the resulting values for the curvature ratio 2 
and surface pressure gradient: 

PRO I (b) '(b) 2 1

b 
0.3765 5.170 -8.502 0.011.26 5.532 

.6599 1.800 -3.60 .2311.6 4.662 
1.150 1.573 -.073 .5106 4.5111. 
2.469 2.101 -6.820 .8039 
3.988 2.487 -8.638 .8921 4.8o2 

2.931 -10.76 .9586 11..929

The curvature ratio is plotted in sketch (l),and the initial pres-
sure gradient in sketch (in). The. curvature ratios calculated from the 

6 

/ 

83O •-' 
(Ref. 25) 

100

- - - - - 

J	 Small-disturbance 
theory

.8 

.4

.333	 .5	 'S	 0 
IR0 	 .333	 .5	 I 

B R, 

Sketch (Z)._ Initial ratio of 	 Sketch (m).- Initial pressure 
shock to body curvature for 	 gradient on ogive of revo-
ogive of revolution. 	 lution. 

full equations by Shen and Lin are also shown in sketch (i) for com-
parison, because the error introduced by incorrect treatment of the 
solution near the body is probably small. 
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Higher Terms in Series for Ogive of Revolution 

It might be supposed that for an ogive of revolution described by a 
power series, the perturbation scheme could be continued indefinitely to 
find successively higher terms in a power series expansion for surface 
pressure. However, because of the nonanalytic nature of the stream func-
tion near the body, complications arise if one proceeds simply by adding 
further terms to equation (56). 

It has been seen that g(0) involves an authentic 3/2-power branch 
point near the surface. However, it can be shown that the next term will 
involve a spurious 1/2-power branch point there, the next an inverse 1/2-
power singularity, and so on. As a consequence of this spurious reinforce-
ment of the actual nonanalyticity, it is impossible to evaluate surface 
pressures. Hence, straightforward continuation of the perturbation pro-
cedure breaks down. 

The difficulty arises from the fact that in the first perturbation, 
the 3/2-power branch point in g arises at the basic cone (e = b) rather 
than at its actual location on the ogive surface. Although this dis-
crepancy has no effect upon the first perturbation, it is compounded in 
subsequent terms so as to be catastrophic. The remedy Is to choose a 
slightly strained coordinate system such that for each term the 3/2-power 
branch point appears precisely at the body surface. Both the difficulty 
and the remedy are just those considered by Lighthill in his discussion 
of a technique for rendering approximate solutions uniformly valid 
(ref's. 27 and 28). As In the previous examples, the solution proceeds, 
in effect, by assuming a given shock wave and determining the corre-
sponding body shape. Therefore, the required straining of coordinates 
is not known at the outset, but must be determined to successively 
higher accuracy as the solution progresses; this is characteristic of 
Lighthill' s technique. 

With this modification, the perturbation procedure can, In principle, 
be continued indefinitely. It can therefore be concluded that an analytic 
body of revolution is accompanied by an analytic attached bow shock wave 
at supersonic speeds, and an analytic pressure distribution. 

Uniformly valid equations of motion.- Let the body be given in 
physical coordinates by 

rb = T (bx + cx2 
+dx + ...)	

(6) 

-	 and the corresponding shock wave by 

r3 T [x + ILZCX2 + (md + nc2)x3 + ...]
	

(68)
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Now introduce a slightly strained radial coordinate 	 such that the 
body surface is given byr = bx. The simplest choice is

(69) 

The procedure which led to equation (57) gives for the entropy 
function behind the shock wave 

	

= {1+ i zcI + [ w1 (md+nc2 ) + w2 1 2c2 ]	 + ... 

}	

( 70a) 

where C. 0 and ( 1 are given by equation ( ifOb), and 

11.
 

(7+1) 
=	 (A)1	 (70b) 

(o2_1)[2+(7_l)Ko2] 

The stream function has the form 

4 = 2f.() - cx g8) - x [c2(0) +	 ' d()J + ...	 (71) 

where V is the nearly conical coordinate 	 The differential 
equations which result from substituting this series into the equation 
of motion are simplified by setting 

= zg() --f'() 

() =nth( ' ) -f'()	 (72) 

= zi() + nh( ' ) + zg'() - If ,, ( 6 ) 

(The functions g, h, and j thus introduced are those which would 
appear in place of g, h, and j if no straining of the coordinate system 
had been undertaken.) Then the differential equations (and boundary 
conditions) for f and g, as functions of the strained variable , are 
(as implied by the common notation) found to be just those solved in 
the previous sections, where f and g were functions of the unstrained 
variable 0. The differential equations for the new functions h and j 
are	 - 

Dh" = E + Fh + Gh' 

Dj't = I + Fj + Gj'
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where D is given by equation (58b), and 
ft(7+1) [	 I	 ft'\ 

E=W0W1 Yf 
e(7_1) 1	 '	 0/ 

F = 14 (f t 2 + li-ff") 

f,(7+1) IL+G = 7W0 2 - (7+1)	 - 12ff' 
 e	 ft J 

fI(7+1)	

f2  
e(71 )

 [W2

7	 () 
(gti) I =	 _______ 

w2f 
+ 

[	 C 
g 2(y+1) 

I	 f'/f 

3 [3g2f ti - 2gg'f'

\2	 /
WI (g"(	 f" -	 2f 	 g	 + f!J	 - ) -2f	 0) 

L 11 ( - ftt)+ f' r	 +	 ft/f	 1 
L 27 (-g'/g)] 

g' 
	 }j 

- 2(g'2 - 2ggtt)f]	 () 

Boundary conditions.- Again,,expressing conditions just behind the 
shock wave in terms of those at 8 = 1 by Taylor series expansion and 
simplifying with the aid of the differential equations gives 

h(1) =	 g(i)

g'(l) -	 2f1(l) ht ( l ) =	 L	 2^(7_l)2
(7Iia) 

j(1) = -	 2g'(1) +	
2 ] 2+(y-l)i 

j'(l)	 f"'(1)-	 g"(l) - (7+1)2 2-(7-1)K02 

[2+(7-1) K 0 
2]3
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where f l (l) is given by equation (51b), g(l) and g'(l) by equation (9),' 
and

(7_1)2 

2+(7-1)K02	 I 

	

f lot	 - 2K02[272_(7_1)] [2+(37+1)K02] 
(7+1)(l2_1) [2+(7_1)I2]2 

g"(l) =	 I 

	

K 2	 (7_1)(27+3)+(2y3+372+5)K02_3(7_1)72+(67+1)Ko4+2(y_1)(57+3)Ko8f 

	

0	
(Ko 	 [2+(y-J)KO 	 ) 

Behavior near body surface.- The fact that f( ') is analytic 

	

at	 = b implies that the full solution for h is also analytic, and 
that the solution of the homogeneous equation for j is analytic. The 

Coefficient I is proportional to ( - b) -3/2
 , so that a particular 

integral for j is proportional to ( - b) ''2. For purposes of computa-
tion it is important to separate the regular part of I from the singu-
lar part, because either may predominate for the closest practical 
approach to the singularity, depending upon the value of the similarity 
parameter. Furthermore, the accuracy of joining the step-by-step solu-
tion for j to the series is increased by treating not j itself but 
the combination j + g 1 /2z. Hence, the series employed is 

(,)	 1/2

-	 + 

g t 	 ___

...] 2) 21	 7	 b 

gb 9br 1 + € +7 	
+ ...] + b'	 L 2.tJ 

j(b) [l+2€2+€3+ ...] 
+ 

j'(b)(-b) 11 + € -	 +	
+ ...]	 (75a) 

where fb f(b), etc., ? and € are defined by equation (64b), and
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= b (-gb') 

gb

(75b) 
2 N/ 2 W2 (bfb312 

37	 gb ) 

Numerical integration. - The differential equations for h and j 
have been integrated numerically in the manner outlined previously, 
with v = 1.405. Because h represents actually (like g) only a first 
perturbation of the basic conical flow 11 and is furthermore regular near 
the body, it is readily determined with ample accuracy. On the other 
hand, in the equation for j, the coefficient I is so strongly singu-
lar that it was found necessary to replace simple step-by-step integra-
tion by the more laborious five-term procedure of Milne (ref. 29, 
p. 12). The coefficients and boundary values are also considerably 
more difficult to calculate, so the integration of j has been limited 
to three values of the similarity parameter, on  h has been found 
for four values. 

The accuracy of the solution for j suffers from the facts that it 
depends upon the accuracy of the preceding solution for g, that one 
coefficient in the differential equation is strongly singular, and that 
the results of physical interest are found as differences of nearly equal 
quantities. Consequently, although results derived from the functions f, 
g, and h are probably reliable to three or four significant figures, 
those derived from j are perhaps not reliable to more than two. 

Body shape and pressure distribution.- The parameters m and n, 
which relate the shape of the shock wave to that of the body, are found, 
by requiring the stream function to vanish at the surface, to be given 
by

m	 I

(76) 

n =	 - 1 Zg' -
	 ) 

The surface pressure coefficient is given by 

-2	 (' - 11	 (77) 
T2 7K02 L	 r)	 j 

b 

11 
It corresponds to a pointed body with zero initial curvature; 

compare reference 24, part III.
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Thus it is found that on the surface of a body described in actual 
coordinates by

r	 R0 t x +	 + 1 B+ ...	 (78) 

the pressure coefficient is given by

3C p 2 /Cr \\	 ______	 _____ 
__________	 n2	 2Cp 

Pb 
= R'	

RoT2) + R0tR0" 16(RO'Ro"x) ] X + fRO 
[2(RttX)2 ] + 

R01R01" k(Ro
I x)6(Ro"'x) I I x2 + ...	 (79a) 

where

Cp	 EW 
21 

°0	

L(fb'
bI - R 2 

	

Cp 	 7w fb'\7 
= b (\T) (\gb)

(79b) 

2 No, (' (-b' 

	

(R0'x)(R0"x)	 3 b	 b / "ib 

	

62C 	 ib'\7(Y-1 gb'	 b'	 2 hb\ 

	

_	 _ 	 2n— -21 
(RttX)2 = 2?w0 b)	 gb2 -	 3b 

Numerical values of h(b), h'(b), j(b), and j'(b) are listed in 
the following table, together with the resulting values of the parameters 
m and n which relate the shape of the shock wave to that of the body, 
and the two functions which give the initial curvature of the surface 
pressure distribution.
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R0 ' h(b) h1(b) j(b) j'(b) m n P 2c
p 

(Ro"x) 2 (R0 'x)	 (R0"x) 

0.3765 14.34 36.11.0 0.0051 - - - - - - 5.6911. 
.6599 1.752 -5.401 -7 . 34 43.7 .0803 0.583 4.04 4.736 1.150 .9341 -3.665 1.911. 5.30 .2867 .868 5.20 4.561 

1.166 -6.948 7.63 -27.4 .8031 -.901 13.7 5.332

The two pressure-curvature functions are plotted in sketches (n) and (o). 
(Curves have been faired through the three calculated points by analogy 
with the results of the cone-expansion approximation discussed in the 
following section.) 

15 1	
I	 I	 6 

10 

at 
a(R:x)2

Small-disturbance 
5 

0'	 I 

.333 

Sketch (n).- First term in ini-
tial pressure curvature on 
ogive of revolution.

Small-disturbance theor1 

826p
8(Rx) a(Rx) 

2 

0 
.333	 .5	 I 

B R 

Sketch (o).- Second term in ini-
tial pressure curvature on 
ogive of revolution. 

Further Approximations 

The theory discussed heretofore is the simplest which retains all 
the essential features of hypersonic flow, so that its solutions approach 
exactness as the thickness tends toward zero. Further approximations, 
although desirable for facilitating solution, will introduce errors 
whose nature may be more obscure. In the case of plane flow, however, 
further approximations exist which are so simple and accurate that the 
problem may be considered solved for practical purposes (cases (6) and (7) 
below). These and other approximations will now be considered for three-
dimensional shapes, in comparison with the solutions already given. 

-

	

	 Most of these approximations are useful outside the limits of hyper-
sonic small-disturbance theory. However, we shall consider them here 
only as they are reduced to small-disturbance form, so that they actually 
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represent approximations beyond those already made. For example, the 
well-known shock-expansion method will be considered only in its hyper-
sonic small-disturbance form (ref. 17). 

The following additional approximations will be considered: 

(1) Linearized theory, second-order theory, etc. 
(2) Newtonian impact theory 
(3) Newtonian theory plus centrifugal forces 
(1)	 y1 
(5) Cone-expansion approximation 
(6) Tangent-cone approximation 
(7) Compression-layer approximation 

Linearized theory, etc.- The breakdown of linearized theory serves 
almost as a definition of hypersonic flow. Hence, the most that can be 
expected of linearized theory, second-order theory, etc., is that they 
penetrate somewhat into the lower end of the hypersonic range. 

For plane flow Donov (ref. 30, pp. 90-91 ) has determined the fourth-
order solution. Reduced to hypersonic small-disturbance form, his result 
for surface pressure coefficient on a single airfoil may be written as 

M2C = 2K+ 7±  K2 +Z	 K04 + 

37777233	 (7+l)2(37_5) 
K< K +	 K0tx + 

	

96	 128
(80) 

where K is the local similarity 
parameter (M times local surface 
slope), K0 its value at the lead-
ing edge, and Ko l its initial rate 
of change. Even in this reduced 
form nothing is known of the range 
of convergence of the series or, 
indeed, whether it converges at all. 
However, for a single wedge the 
solution is known in closed form 
from equation (34). Hence, it IS 
seen that in this special case the 
series is convergent for 
K E m5:5 Il./(y+l), which is 1.67 
for air. 

For cones the linearized and 
second-order solutions (ref 31, 
p. ii), as reduced to hypersonic 
small-disturbance form, are shown 

Sketch (p).- Further approximations in sketch (p). 
to hypersonic small-disturbance 
theory; pressure on cone, y=1.405.
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Newtonian impact theory- Assuming that fluid particles lose their 
normal momentum on impact with the surface leads to a prediction of pres-
sures proportional to the square of the sine of the angle of inclination 
or, in the small-disturbance approximation 

-=2	 (81) 

wherever the slope is positive, and zero elsewhere. According to equa-
tion (34) the actual value for a wedge falls only to 2.11 at infinite 
Mach number (with 7 = 7/5), so that the approximation is poor for plane 
flow. It is more satisfactory for fusiform shapes such as a cone 
(sketch (p)), for which the actual value at M = co (with 7 = 7/5) is 
2.09.

Newtonian plus centrifugal forces.- Newtonian impact theory has been 
improved by including the centrifugal pressure gradient through the layer 
of fluid streaming over the body (rem. 32 and 33). The result is pre-
cisely the limit of the full theory as M-> oo and 7— 1. In the small-
disturbance approximation (ref. 33), it gives for plane flow 

= 2(R' 2 + BR")	 (82) 

In both cases it is to be understood 
that negative values are to be 
replaced by zero. Sketch (q) shows 
that the improvement due to includ-
ing centrifugal effects is appreci-
able for the initial pressure gradi-
ent on an ogive of revolution. 

7 = 1.- It has just been seen 
that on fusiform shapes near 
M = so, the surface pressure is 
insensitive to the value of 7. 
At the other end of the hypersonic 
range, linearized theory is inde-
pendent of 7. These two extremes 
suggest that a close approximation 
throughout the hypersonic range 
may be found by setting 7 = 1 
(and this is particularly true 
since in a real gas 7

-S I

"_T 

 
-.5

Tangent-cone 

Cone- \ Newtonian + 
centrifugal 

Hypersonic small-
disturbance theory

Newtonian

.333	 •	 I 

Sketch (q).- Further approxi-
mations to hypersonic small-
disturbance theory; initial 
pressure gradient on ogive 
of revolution, 7 = 1.405. 

and for axially symmetric flow 	 8 

Cp = 2R' 2 + BR"	 (83)
6 

ac,
a(RR:s) 

4 

2 
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approaches 1 at high temperatures). This choice simplifies the theory 
by rendering it effectively isentropic; that is, although shock waves 
produce entropy jumps, entropy does not appear in the pressure-density 
relation and is therefore absent from the problem. 

This approximation has been tested by computing the hypersonic small-
disturbance solution for a cone with y = 1. The results corresponding 
to those tabulated on page 27 are shown in the following table (including 
the known value at M = co). 

Mi- E/T I3 f'(b)/b Cp/2 

l.04 0.3912 0.4069 1.255 3.076 
1.17 .7609 .6450 1.546 2.627 
1 .50 .7647 1.147 2.498 2.277 

1 00 00 2

Sketch (p) shows close agreement with the results for 7 = 1.405, the 
discrepancy being, indeed, less than that due to the thickness of a 100 
seinivertex angle (cf. sketch (k)). 

"Cone-expansion" approximation. - The shock-expansion method for 
plane flow, which neglects disturbances reflected from the bow wave, has 
recently been shown to yield good accuracy at all supersonic speeds away 
from the transonic zone (ref. 34). 

A more surprising discovery is that an analogous procedure yields a 
reasonable approximation for certain three-dimensional shapes in hyper-
sonic flow. In this "cone-expansion" method the flow behind the tip of 
a pointed body is approximated by a Prandtl-Meyer expansion (refs. 35 
and 36). The accuracy of this approximation is indicated by the compar-
ison shown in sketch (q) for the initial pressure gradient on an ogive of 
revolution. 

Tangent-cone approximation. - Newtonian impact theory predicts pres-
sures depending only upon the local slope. This suggests approximating 
the pressure at each point of a body by that on a locally tangent cone 
or wedge at the same Mach number. For plane flow this gives equation (35), 
which yields good accuracy. For bodies of revolution, sketch (q) gives 
an indication of the accuracy obtainable. 

Compression-layer approximation.- In the upper end of the hypersonic 
range the bow shock lies close to the body (if the body slope is posi-
tive). This suggests making an approximation somewhat analogous to that 
of the Prandtl boundary-layer theory, assuming that the layer of com-
pressed fluid between the body and shock is very thin. 

For example, assume that the shock wave lies so close to a circular 
cone that a linear variation is adequate to describe the stream function. 
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Then according to equation (51) the stream function is given by 

j•	
(y+l),2 

	

= - -	 (i-e)	 (84) 
2+(7-1)K 0 

2 

Requiring this to vanish at the surface gives as the ratio of cone angle 
to shock-wave angle

b = = (7+3)K2_2

	

T	 2(y,l)I2 

This result has been derived by Lees (ref. 37). At infinite Mach num-
ber with y = 1.405 it gives 0.916 compared with the true value of 0.914, 
and Lees shows that it is accurate even in the lower end of the hyper-
sonic range. However, for the corresponding surface pressure coeffi-
cient, the range of good approximation is much smaller, as shown in 
sketch (p). 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Mar. 18, 1954

(85)



NACA TN 3173 

APPENDIX A 

PRINCIPAL SYMBOLS 

A,B,C,D,E,	 coefficients of differential equations. (See eqs. (58) 
F,G,H,I	 and (73).) 

B(x,y,z)	 function defining body shape 

o(x)	 reduced radius (or ordinate) of axially symmetric (or 
plane) body 

b,c,d	 coefficients in series expansion for radius (or ordinate) 
of body (See eqs. (36) and (67).) 

CP	
- pressure coefficient, (

p p 0)

1.	 2 —puco 

f,g,h,j	 functions in series expansion for stream function (See 
eqs. (39) and (72).) 

2	 initial ratio of shock-wave curvature to body curvature 

m,n	 coefficients relating shapes of shock wave and body 
(See eq. (68).) 

M	 free-stream Mach number 

p	 pressure 

R(x)	 radius (or ordinate) of axially symmetric (or plane) 
ogive 

r	 radius (or ordinate) in cylindrical (or plane Cartesian) 
coordinates 

S(x,y,z)	 function defining shape of system of shock waves 

S(X)	 radius (or ordinate) of shock wave attached to axially 
symmetric (or plane) body 

t	 time 

u,v,w	 velocity components in Cartesian or cylindrical 
coordinates
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x,y,z	 Cartesian coordinates with x in streamwise direction 

dM2_i 

adiabatic exponent 

5	 semivertex angle of wedge or cone 

(e - b)
b 

0	 conical variable, r 
x 

auxiliary hypersonic similarity parameter based upon local 
slope of shock wave, MTSt(x) 

[
WI 

K 02 b(7+1JJ 

b(_gl) 

gb 

2fj (bfb')
3,y	 gb 

P	 density 

a	 constant which is zero for plane flow, unity for axially 
symmetric flow 

T	 thickness parameter of body; in examples, initial slope of 
shock wave 

stream function for plane or axially symmetric flow 
(See eq. (23).) 

entropy function (See eq. (25).) 

terms in series expansion for u(See eqs. (40) and (ro).) 

{ ]	 denote jump in quantity through shock wave
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()	 reduced form (See eqs. (8).) 

()	 form associated with strained coordinates. (See eqs. (69) 
and (71.)) 

( )'	 derivative with respect to argument 

( )	 value at tip of pointed body 

( )	 value at surface of body (or at 	 = b) 

( )	 value at shock wave 

( )	 value in free stream
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APPENDIX B 

CONNECTION BETWEEN HYPERSONIC AND LINEARIZED 

SUPERSONIC SIMILITUDE 

The similitude for linearized supersonic flow is now well understood, 
having been first correctly stated by Gthert in reference 15 (for the 
analogous case of linearized subsonic flow). This similarity rule implies 
that the reduced coordinates 3F,Y, and T of equation (8a) may again be 
Introduced, and that then the reduced flow quantities, 

T 2 ucc j 

T U00	 (Bla) 

T U 

l (p 
7M2 T 2 V) 00 - 

1 

p2 (^p	 (Bib) 

M2 oo	 ) 

depend only on the reduced coordinates and the supersonic similarity 
parameter f3T. 12 The error, in the theory and associated similarity rule 
is O(T/13), in general. It may be emphasized that here, as in all the 
similarity rules, the choice of reduced variables is by no means unique; 
an unlimited number of equivalent forms can be. produced, for example, by 
multiplying each reduced variable by, or adding to it, any constant 
multiple of powers of the similarity parameter. The particular forms 
adopted here were chosen to correspond as closely as possible to their 
hypersonic counterparts in equation (8b), so as to facilitate the follow-
ing argument. 

For Mach numbers so large that M is effectively equal to 3, 
these results agree with those for the hypersonic case, 13 and this was 
pointed out by Tsien (ref. 5). However, it is more fruitful to reverse 

12 Here, in contrast with the hypersonic case, the reduced variables 
and	 are definitely not 0(i) as T—O (for fixed M). 

13 With 7 = 1 + and	 (yMr2)1
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the argument, and observe that the hypersonic similitude, just as it 
stands, is entirely consistent with the linearized similitude. This is 
immediately apparent for the reduced velocities ii, V, and 	 which (as 
implied by the common notation) have identical forms in the two cases. 
They differ only in depending upon different parameters, but In hyper-
sonic flow M and 13 are Interchangeable to within the accuracy 0(T2) 
of the theory, so that MT can be replaced by 13T to complete the 
correspondence.. For the pressure and density, the hypersonic theory 
(eq. (8b)) shows that

	

1 (-L - 1) = P_ 	 1 

7M212 	 - 7MT 

E! I (^^_f	 132

 ) 
=	

- i) 
M2  

Again utilizing the fact that M and 13 are interchangeable in the 
hypersonic range, these can be rewritten 

1 /D	 -	 1	 = 

	

i -=---li =p—	 =p 
7M2T2 \p	 )

-  
p
= 

=P-1	 = 

M2 \	 ,1

(B2a) 

(B2b) 

where the final forms depend upon the parameter 13T and are therefore 
(as implied by the notation) identical with their linearized counter-
parts in equation (21b). Thus the correspondence is complete. 

This means that the hypersonic small-disturbance theory, when 
properly interpreted according to.the linearized supersonic similitude, 
yields a first-order solution at all speeds above the transonic zone. 
The reduced problem of equations (10) to (13) is solved for a given 
value of the parameter MT, and then with MT replaced by 13T is 
interpreted, in terms of physical variables according to 

U = u [1 + T 2u(x,y,z; 13T)] 

V = U
OO 

W = ucc, TW 

p = p [i + 7M2r2 ( 
-713T2) 

= p. (fl2T2 - 1) 

M2 	 1 
P =p [i +	 (- i)J 

= 
p(	 _)

(B3)
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