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SUMMARY

Linearized compressible-~flow analysis is applled to the study of
wind-tunnel~wall interference for subsonic flow in either two-
dimensional or circular test sectlons having slotted or porous walls.
Expressions are developed for evaluating blockage and 1ift interference.

INTRODUCTION

In solid-wall wind tunnels the effects of blockage severely limit
model sizes that can he tested at high subsonic speeds; in fact, the
model must become vanishingly smsll as sonlc speed 1is approached. It
hes been demonstrated that if the walls are ventilated (e.g., slotted
or porous) then blockage 1s reduced and much larger models can be
tested. However, wall-interference effects, although reduced, still
exist and must be evaluated in order to correct the wind-tunnel data to
free-air conditions.

It is the objective of the present investigation toc analyze two of
the principal wall-interference effects, blockage and 1ift interference,
for two- and three-dimensional subsonic flows in ventilated test
sections, where blockage refers to the mean incremental velocity induced
in the wvicinity of the model by wall interference and 1ift interference
is the mean upwash s80 induced. In the three-dimensional case it 1s
convenient to perform the analysis for a circular test section. The
results obtained for the circular test section may be applied to & square
test section of equal cross-sectional area since the wall interference
at the center of the tunnel should be relatively insensitive to such a
change in the shape of the wall,
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SYMBOLS

factor in Fourier integral transform of o*
slot width of slotted wall (see fig. 1)
wing span of model wing }
congstant factor in nonlinear term of boundary equation
Fourier integral transform with respect to x of @

dummy variable of Fourier transform

half tunnel height _

modlfied-Bessel function of the flrst kind and order zero
modified Bessel function of the first kind and order one

modified Bessel function of the second kind and order zero

modified Bessel function of the second kind and order one
slot constant, — L In |sin( X2
x 21

slot separation of slotted wall (see fig. 1)

1ift on the model

free-gtream Mach number

parameter proportional to size of two-dimensional model, I%E
paremeter proportional to size of three-dimensional model, Tyl
coordinate in the direction of the outward normal to the wall
dummy variable of integration

porosity parameter

cylindrical coordinates

free~stream velocity
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u,v,w

uk , Vi, Wk

perturbation velocity components in the x, y, z directions,
regpectively

additional veloclity components due to the presence of the
walls

additional velocity components having rapid spacewise
variation near the wells

additional velocity components at the position of the model
due to the wealls

complex velocity in the y, z plene
complex variable equal to z + iy (physical plane)
Cartesian coordinstes

dunmy constant in limiting process

J1-¥

circulation

complex velocity potential

total perturbation veloeity potential, ¢, + o*

approximate perturbation potential due to model in free air

additional perturbation potential due to tunnel walls

additional wall-interference potential arising from non-
linear term in boundary equation

free-stream density

cross-gsectional area of two-dimensional model
volume of three-dimensional model

function of X, equal to § + in (transformed plane)

Cartesian coordinetes in trensformed plane
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ANALYSIS T

Genersal Statement of the Problem

The effect of the tunnel walls on the flow around a model, in the
case of ventilated walls, can be calculated using the same basic method
as that used in reference 1 for the closed-wall case. As in reference 1
the analysis 1s based on the linearized equation of subsonlc compressi-
ble flow

where @ 1s the perturbatlon velocity potential of the flow in the
tunnel.

Iet 9= @ + O, vhere ¢ 1s the potential of the flow ebout the
model in free air and @%* is the potential of the additional flow due
to the presence of the walls.

If @, 1s taken to be a known solution of equation (1) which
approximates the true free-air potential at points far from the model,
P* can be calculated from the fact that the sum @; + @% Bgatisfies a
known boundary condition at the wall. Since the values of @; at the
wall only are used, any lnaccuracy in the value of ¢P; near the model
should not affect the calculation of . ¢¥ appreciebly.

The primary objective in this procedure is to estlimate the change
in stream conditions caused by the walls at the position of the model.
It 1s assumed that the velocity components derived from ¢% are con-
stants near the model which can be subtracted from the stream velocity
to obtain the eguivalent free alr stream velocity. Thus,

*
My = éEL- at x=y=2z=0
ox '
is the blockege correction, and
¥
Lw = Q0 at x=y=2=0
oz

is the upwash correction in the three-dimensional case.
Boundary Conditions

In this section a single expression appf@xim&tely regresenting the
boundary conditions of solid, porous, and slotted walls and an open Jet
will be developed.

| \“

|
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Let x De the coordinate in the direction of the free stream
and n the coordinate in e direction perpendicular to-the x . direction.
Consider a wall which is perpendicular to the n direction (i.e.,
parallel to the free stream). If the wall is solid, the condition of
no flow through the wall can be expressed as

99 =0 gt the wall
on
In the case of an open Jet there is no pressure drop across the jet
boundary so that there is zero perturbation pressure at the boundary.
With a disturbance in the stream this boundary does not remain parallel
to the free stream. EHowever, for convenience, the condition of zero
perturbation pressure is imposed at s surface parallel to the free
gtream and colneciding with the Jjet boundary far upstream of the
disturbance (see ref. 2). Also, for canvenience, this surface can be
called an open wall and the boundary condition can be expressed as

éf = at the wall
ox
In reference 3 an average boundary condition for a porous wall is

derived. The average velocity normal to the wall is assumed to be
proportional to the pressure drop through the wall, a linearized
approximation to viscous flow through a porous medium, and the pressure
outside the wall is assumed equal to the free-stream pressure. This
leads tc the boundary equation

R L1, at the wall (2)
3 R on

The quantity R is a porosity parameter defined by

U
op =80 2 (3)
where
Ap pressure drop through the wall
o) stream density
U stream velocity

The gquantity pU/R can be determined experimentally by measuring the
mass flow and pressure drop through s sample of the wall under con-
ditions corresponding to zero stream velocity.

Porous walls to which equations (2) and (3) are applicable will
henceforth be referred to in this report as ideal porous walls.
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An approximate boundary equetion for a slotted wall is derived in
Appendix A. The pressure at the slots is assumed constant and equal to
the free-stream pressure. The resulting uniform boundary condition is

QC.P + K __ach =0 at the wall (4)
ox dxdn oo _
where K is related to the slot geometry by
1 i
K=--1n [%in <;Z ] (5)

Slotted walls to which equation (4) is applicable will henceforth be
referred to in thils report as ideal slotted walls.

Solutions for wall interference based on equations (2) and (4) can
be obtained in one calculation by combining them in the form

éf + K —939 + 1 §9 =0
dx oxdn R on

Thus, well-interference solutions based on equation (6) contain, as
special cases, those of the closed wall (K <> o or 1/R-> »), ideal
porous wall (K = 0), ideal slotted wall (1/R = 0), end open jet

(K = 0 and 1/R = 0). TFurthermore, equation (6) can be sssumed to
describe a slotted wall having mixed potential and viscous flows in the
slots. In that case the porosity parameter R can be determined }
experimentally, as i1t is in the case of a porous well, by measuring the
mass flow for a given pressure drop through a_sample of the wall.

If it 1s found that a nonlinear relationship between pressure drop
and mass flow exists, it may be necessary to add a term of the form
£(3P/3n) to equation (6). This case is discussed in Appendix B.

In addition to the foregolng interpretations of equation (6), an

interpretation identifying it with slotted walls with tapered slots
(l and a Tunctions of 2? and potentiasl flow in the slots is possible.
This case is discussed in Appendix C where 1t is found that instead of
representing viscous effects, the parameter R is related to the taper
by '

1 d__K‘

= E L, (7)

vhere K(x) ie the same as in equation (5).
Blockage in a Two-Dimensional-Flow Tunnel

Under the assumption of infinitesimal model size, the blockage cor-
rection will be calculated using equation (6) as the boundary equation.

everywhere at the wall (6)
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Let x %be the coordinate in the free-stream directlion and y the
coordinate In the direction perpendicular to the walls. Let h be the
half tunnel height so that the walls are at y = -h and at y = +h.

In these coordinates equation (1) becomes . :

2 e P9
SN QTS I A 8a
32 oF (8e)
and equation (6) becomes
39 . Fe , 1239
> oy FR Yy y=ih=o (8v)

The % signs on the second and third terms are required because at
the upper wall, n = +y and at the lower wall, n = -y, n being the
coordinate in the direction of the outward normal to the wall.

If 9 is replaced by 9; + ¢*, equations (8a) and (8b) yleld

B—axz ay2 (9e)

82; Lé‘@_)
o <ax Sy R vy - e (9v)

These two equations are sufficient to determine 9* yhen P;, the dis-
turbance due to the model in free air, is known.

acp : g F9* 1aq:*>

Bxay R Oy v

As in reference 1, the disturbance due to the model at zero angle
of attack in free air is approximated by a two-dimensional doublet

which can be expressed as
b
—— 10
<x2+32y2> (10)

The reasoning behind the choice of the doublet is as follows: The
source-sink distribution representing a nonlifting model contains the
same total sink strength as total source strength, so that the distant
flow field would not resemble that of a singlie source or sink. The
center of gravity of the source distribution would lile forward on the
model compared to the center of the sink distribution which would be aft.
Hence, there would be a dipole or doublet effect of the model at a
distance. Other higher-order effects would be much less than that of
the doublet at large distances. The constant me 18 related to the
g8ize of the model with sufficient accuracy for present purposes by
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TeU
B
is the area of the model in the xy plane.

(11)

where Te

It is convenlent to solve equations (9) by the Fourier transform
method. The Fourier transform of @, 1is defined by the relations

1
Gi(e,y) = Eﬂ'f Py (x,y) el ax (12a)
-0
o0
olx,y) = G1(g,y)e 18" ag (12v)
-00
Analogous expressions defining the Fourier transforms of ¢* are
-]
* *
¢ (g,y) = —%—f P (x,y) 8% ax (132)
n —-00
% (-]
* s
" (x,y) =f G (g,y)e™ & ag (13p)

-

With the substitution of equation (13b) into (9a) and with an interchange
in the order of differentlation and integration there results

(-] Q0

f g® 5 ¢*(g,y)e 18 ag -+ ay2 6™(g,y)e 18 g = 0

Performing the indicated x differentiation and collecting the two
terms under the common integral yields

This integral will be zero if

- zng*+ (lha)

Byz

Substituting equations (12b) and (13b) into equation {9b) and
proceeding as before yields
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~ *
(—igG*¥igK-o£-i%a+G—> - <1gGl;1gKa—G—
+

'.Illl-'

).
= th
(1kv)
Equailons (1sa) and (14¥b), involving the transforms G; and G¥ of

P, and 9¥ , can now be solved in the place of solving equations (9a)} and
(9b). The general solution of equation (1ka) is

G* = A(g) cosh (Bgy) + B(g) sinh (Bgy)
Substituting the second term of this expression into equation (13b)
yields & term of ¢*¥ having an odd y dependence. From symmetry

considerations it can be seen that ¢¥ should have even y dependence.
Therefore, B(g) must be zero and, hence,

= A(g) cosh (Bgy) (15)

The unknown factor A(g) will be determined by substituting equation (15)
into equation (1hb), but Gy must be known for this purpose.

In order to find G, equation (10) is substituted into equa-
tion (122) and there results

G (g,y) = 5 2ﬂu/ﬁ "":—Eggg-eigx dx (16)

From reference 4, it is found that”
o

etex 5. - 1 e-[SIBIY[

1 1
. _/; Z + B 2By ]

—
1Tn reference 4, G(g) is defined as G(g) = d/\ F(£)el2nf8 g¢, 1n
- OO

the tables of F(f) versus G(g), F 1s usually given as a function
of p vhere p = i2xf. If P(p) is the function of p glven in the
table, it follows that F(f) = P(p) = P(i2xf). With the substitution,

-]
= 2xf, it is found that G(g) = 51- f P(1x)e*® ax. Thus, G(g) in
n

the tables is the Fourier transform, as defined in equations (12) of
the function of x which resulte from replacing p by ix in P(p).
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where the symbol I l denotes absolute value. Differentiating both
sldes of this with respect to g ylelds

T - N
so that
me B
o =2 I%l e le[Ply] (17)

Substituting equations (15) and (17) into (14b) yields

Alg) [— ig cosh (Bgy) ¥ ig K g sinh (pay) t % Bg sinh (Bgy)] o
y = X

_E il—zT[_ ig e-lglslyl;igK<_]g|B%>e-lglslyl .

% <-|g|a Tg_l) e-IEIBIyl] .

Making the indicated substitutione (y = +h) and solving for A(g) yields
the single complex equation -

o (1 Tgl—-—ig KB +E> e~|&|Ph

Alg) = — — -
[cosh (Bgh) + KBg sinh (Bgh) + i E sinh (Bgh) ]
(18)

Substituting equations (15) and (18) into equation (13b) yields

w & _ - |g|fh ~igx
¢*=_Ef (i i ig KB+R> - cosh (Bgy) e N
= :
=0 [}osh (Bgh) + KBg sinh (Bgh) + 1 ﬁ-sinh (th)]
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Upon separation into real and imaginary parts and meking use of the fact
that an integral from - to +®» is twice the value of the integral
from O to « if the integrand is an even functlon end zero if 1t is an
odd function, this becomes

x_ _me| B m, cosh (Bgy) cos (gx)
A [Rf

2% F de+
2 [eosh (Beh) + KBg sinh (ssh)]E + [% sinh (th)]z

¢ o E:osh (Bgh) + KBg sinh (th):l + [-1% ginh (th)}

Lt 8] [ ) (8 e

cosh (Bgy) sin (gx) dg]

With the substitution, ¢ = Bgh, this becomes

g cosh <ﬂ> cos <£>
% Mg B f h gh
=

¢ = &)
© l:cosh (q) +-IK1 qa sinh q:| + [% sinh (9.)]

“oxph R

dg +

Pl -@-le ey @] =

[cosh (q) + % q sinh (q) ]2 + [% sinh (q_):la

cosh (%) sin (% )dq (19)

N -
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The integrals indicated in equation (19) have not been found in
cloged form. However, if the derivatives of @¥ are desired at a
small number of polnte for a small number of values of K/h and B/R
the derlvatives can be taken in the integrand and the resulting inte-~
grals evaluated numerically or graphically.

The quantity of primary interest is Au, the value of BCP*/ax
evaluated at x =y = 0. Performlng the indicated differentiation on
equation (19) end setting x = y = 0, the expression

S ECINEBEC

b PHZ [cosh (q) + -1-1- g sinh (q)J +[-1§ sinh qJ

M= -

(20)
is cobtained for the additional stream velocity at the position of
the model due to the walls.

Solid wall.- Letting K —> w or 1/R ~> o in equation (20) yields

m x e"qq T Me
e
N 22f- dq=—22_ (21). .
K 21({3 h sinh (q) 2L g=n

‘H - o

Tdesal porous wall.- At K =0 equation__(EO) becomes

ng iy I:cosh (q) - (-%)2 sinh q}

B=0 TS ° [cbsh (q)r,r K@ ioh (q)r e"dqdq (22)

Ideal slotted wall.- With 1/R = O we have

L

o (l - = q) "2%qdq
Au. = - gez f (23)
% B<h
B_o P o <1+§q>+<1-%q> e 24
R
Open jet.~ For both K = 0 and 1/R = O
o«
m 'Zq.qd . x Ig
A = - € f € 4 . _ — (2)4-)
1B2H2 / 1 4+ e24d 18 212 _

™ 1A
i
o
"
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In the general case (eq. 20), the value of Au lies between the
values for the solid wall and the open jet, and Au can be made arbi-
trarily small by an appropriate choice of K/h and B/R. Figure 2 is a
plot of the values of K/h and B/R at which Au = 0. These values
were computed mmerically near the ends of the curve and interpolated
in the middle. Equations (21), (22), and (24) are in agreement with
the results of reference 3. Figure 3 is a plot of equation (23), show-
ing the variation of blockage factor with slot parameter for the two-
dimensional-flow, ideal, slotied tunnel.

Since the effect on the blockage correction of letting B approach
zero is the same as letting l/R approach zero, it can be concluded
that a8 the stresm Mach number approaches unity, the blockage correction
factor for an ideal porous wall aspproaches that of an open jet. Simi-
larly any effect of viscosity or taper of a slotted wall described by
equation (6) would be suppressed at near sonic speed so that the block-
age correction factor would approach that of an ideal slotted wall.

Blockage in a Circular Tunnel

Again, the blockage due to the wall interference of a very small
model will be calculated using equation (6) as the boundary equation.

ILet x be the coordinate in the free-stream direction and r the
eylindrical coordinate perpendicular to the x direction. Let r, Dbe
the tumnel radius so that the wall is at r = rgy. Using these coordi-
nates, equation (1) becomes, in the case of rotational invariance,

Fo,10 (.29} . 2
P A2 * T Or g or © (23)

and equation (6) becomes

R,k Fe_ 4100 =0 (26)
ox dxor R or

r = TIg
Then Q* must satisfy the equations

2P 13 (LX) -0 (272)
%2 r Or or

39™ | x Fo¥, 130" = - aq)3-+K32(pl+ia(pl> (270)
ox dxdr R dar/r = 1o ox dxdr R or /.

l
H
(o]

(See fig. 1.)
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Again, from reference 1 the free-air solution is gpproximated by

L. S (28
Yk (o 4 pPr2)/7 (28)

The constent my I8 related to the size of the model by

my =U T, (29)

where Tpr 1is the volume of the model. Correétion factors which take
into account the shape of the model and the presence of shock waves are
discussed in reference 5.

Substituting, as before, the Fourier integral expressions for o¥
and ¢1 into equations (27) ylelds

*
-B2g26% 4+ % g% T %§i> =0 (30e)
* e Gl N 3 . 13¢
- - = 4 === = = - - X 1, =24
<igG Klgar+Rar (igGl igar+Rarr_r
r =ry = To
(30p)

The general solution of the first of equations (30) is
¢* = A(g) Io (Bar) + B(g) Ko (Ber)

where Io and Ko are the modified Bessel functions of zero order of the
first and second kinds, respectively (see ref. 6). Since Ko (Bgr) has
a singularity at r = 0 which would lead to a singularity in ¢* at r =
B(g) must be zero and, hence, )

¢ = Alg) I, (Ber) (31)

Substituting equation (28) into the Fourler integral expression of
®, yields

my 1 igx

X
e o )

G1=

From reference 4 it is found that

18 ax = % K, (Brlgl)

if 2
end JE &+ 2R
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According to equations (12), the inverse relation

1 -igx = __l_._.
i < Ko (rlg]) e dg ]

follows. Taking the derivative with respect to x of both sides of
this equation yields

-4

1 -1 X
[ (18 2 Ko (rlele™® ag = - ey

—co

From this, according to equations (12),

El; f (2 + B:ra)a/z ' ax = 1g % K, (prlel)
8o that
2 = gz 18 %o (brleD) (33)

Substituting equations (31) and (33) into equation (30b) yields

A(g) [-ig I, (Bgry) -is KBg I (Bgro) + i Bg I (Bgro)] =

- %fﬁ ie [‘ig Ko (Brolel) -1g x(-lel) X (Brolel) +

% (-8le]) X (Bro[g[)}
the derivatives of Iy and K, belng found in reference 6. Upon

solving for A(g), substituting the result into equation (13), and
substituting q for PBrog there results



P =
Tl [B 5 F I_KI(Q)IO(Q) + Ko(Q)I:L(Q)] (% )cos q:n)q dq
- T ¢Z2Z N0/ Nankep +
b p2ro? lR n J [Io(q) X qu(q):IE . |:§ Il(q)]a

2o B To(@o(@)Tola)+ 0 £ Ko@)+ (e £ ) (s 1o (%) otn @\ g |

=0/

A
o]
]

I( 4 _IS_.I

' g -I
I. ° * rg _|
(34)
Differentiating with respect to x apd settlng x = r = 0 ylelds

- A ‘{I%(q)IG(q) +4q 3.[-(5 [IG(G}L\(Q) + Kn(q)L(q)] ( —Kz' + —\KJQ)L(Q)l aZdg

=
2,3, 3
enfirg 0 I_L\(a) rq £ L(M + B (q)]
To LB i
(35)
Closed wall.- Setting 1/R —>® in equation (35) yields
T P 2.4
M | = f,l,q? Pia = ——5 3 (36)
B, Umpr® Y Iilq) 2n~r B
R

Ideal porous well.- At K =0 equation (35) becomes

ot

QLTE NI VOVN
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2
°°[I‘io(q)lo(q.) - E i (0)11(0) 1q2dq
t - - 2 f - s (37)
4ﬂ53r03 T 2 8 2
K oo [Io(q):l + [—Il(q)]-
Tro R
Ideal slotted wall.- With (1/R)= O we have
2 n [Ko(q) g = Kl(Q.):I g®dq
m| e m2f o (59
8 bnp®ro? = [Io(q) tath (q)]
g=0
Open jet.- For both (1/R) = O and K = O
Au - - oy Kb(Q) @dq = - 0.63 m,.
B_o lmssros xd Tol@) 5% 7 7 o2 epe (39)
R
K .o
To

The values of Au in equation (35) lie between the values for the
closed wall and the open jet. Figure 4 is a plot of values of K/rO
versus B/R at which Au = O; the shape of the curve was calculated near
the ends and interpolated in the middle. A graph of equation (38) appears
in figure 5 showing the variation of blockasge factor with slot parameter
for the cylindrical, ideal slotted tunnel.

Again, letting B - 0 has the same effect on the blockage cor-
rection as letting (1/R)-=>0, so that near sonic speed the ideal porous
wall should act like an open Jjet and the slotted wall should act like
an idesl slotted wall.

Lift Interference in a Circular Tunnel

The upwash correction will be calculated using the infinitesimal
model size approximation and the approximate boundary condition of
equation (6).

Iet x be the coordinate in the free-stream direction, z the
coordinate In the direction of 1lift on the model, and ¥y +the remaining
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Cartesian coordinate. The cylindrical coordinates r and & are related

to the Cartesian coordinates by r =./y° + 22 and z = r sin 6. It can
be seen from reference 1 that the appropriate free air solution is

(40)

I'v b sin 6
q)1=£;r-<l+"/.m> -

which is the potential of a horseshoe vortex having infinitesimal span.
The fact that the actuasl span is finite introduces higher-order terms
which are negligible gt distances large compared to the slze of the
model. Here I'b 1is related to the 1ift on the model uy

L = pUl'd : (1)

The Fourier transform with respect to x of ®; cannot be found.

An erbitrary parameter o will be introduced into the potential so tha’;

the Fourier transform of a related function can be found. ILet this
function be

@, 1 = LR <e-d.vx2+82r2 }‘--ie
17 hx T o ox

'CW_XZ + pore ) sin 8 (42)
r

so that - -

1im ' =@
G‘—>O(pl 1

Then o wlll be eliminated from the resulting ¢* ! by teking the limit
with a at zero. )

From reference 4 1t ig found that the Fourier transform of

» By the use of an inversion,

o R, dr K (er/é + &)
e + 2

differentiation, and reinversion, as in the derivation of equation (33),

/ >
it 18 found that the transform of 9 e ¢ &+ PP is

ox
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_ 1gaprK; (Br./ &2+ &)

so that the transform of ;' is
1 E+2
Gyt = TP (g14) KalBri/g®40®) sine (43)
Yol JE T & :

From physical reasoning, it can be seen that the s8in 8 factor
of @, will result in the same angle dependence for @%, so that sin 6
will be a factor common to @3', @*' and their Fourier transforms Gi'
and G*'. With cylindrical coordinstes, equation (1) is

Bz@+_l.i(ra_¢ L L P2,
3x2 r or\ Jr 2 397

In the case of 8in 6 dependence, this becomes

R FE,13 () 1L g0
o r dr or r?

and the boundary condition remasins the same as in equation'(26). Sub-
stituting the Fourier integral expressions for @;' and ¥ In these
equations, as before, ylelds

_ * 13 .Y 1 a%'
B2e=C +;§5(r ar) -6 0 (hha)

= - <—igG1'-Kig oGy’ 4 1 3G1’)

dr R Or rer,

(1hp)

The solution of equation (h44a) which has no singularity at r = O is

¢*' = Ag) I.(pre) ein 0 (45)
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Bubstituting this and equation (43) into equation (44b) yields

A(ghI « ig Thi(prg) + ig K _L(Ei'.ﬁ_ 1g K Bel (Brog) - 1 L (Bros) . % I;{Prag) } gin 8 =
R To

—"‘—(mig) ig Kl(ﬁrom) +igKKl(BroV :"E ) 1g KB (Br /ga 2)__:_|-_K1(Bro E@a—)
t JEZ rodEE K°. TR ol

A "D . — ® . a\u' - [l a a 1w - . a
ing in the integral expression for $% , and taking the limit

o [KI(Q)IO(Q) + Kg(q)I;(g)] a®I, (E\s1n 6 cos [ dgq
/ L ] \To/ \ Fro/ _ 2
o ¢® I— 6— "_'\Il(Q) + q/ \ I, (.q)‘|2+/5\ |_I1(u) - oI, (aﬂa 8

w[ r/ n\ 2 1)
/ 2\1-7 /Bla)-a 5 Ko(q)_l |_ Q 1(q + 45 Io(q)_l K ) LKl(Q)ﬂKo(q)_l |_I:.(q ~aTo(a) }

° q® [(l -r—o—> I(q) +q — w I,(a) J + ('ﬁ) [Il(q) - q I (q) :r
-

Il(%) 8in @ ain (%; dq
NTE S \ =0/

(16)

9)1E NI VOWN



Replacing I, (ar/ro) by ite power series expansion, differentiating with respect to =z,
which Iis equel to r sin 6, and setting r = 0 yieldse

9LTE MI VDOWN

— o /g\
dp* r L 8 ;f [K;(Q) Tola) + Ky(a) Ip(a)) ¢ cos (Bro) dq B
3z =0 bar o R n¥o g2 [ l—-;;) I(q) +Q_TIZ Is(a) ]2+(§-)Z I: In(a) - aIy(q) ]2 x

j i PN T T M T R0 ¢ T R R R T Ry R | 0 }
© q’?[(l "K"'\Il(ﬂ.) +q = Iolq) T .Y | 12(a) - a Tolg) |
| L\" o/ To i \&/ L i J

(47)

el
in
[-l-
s
'UD
*1
%g/
| I

for the upwash at r = 0.

When X = 0 we have ,
' A (K. (q) To(a) + Ko(a) Il(q)] q%dq (48)

M e | * [f[(l-fg)ll(q *qr—I”) () [Il(q _qIO(qT
O

for the value of upwagh at the poeltion of the model due to the walls.

Solid wall.- Letting 1/R — «» ylelds

=
o'
1e
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Ideal porous wall.- At K = O equation (48) becomes

I'b 81 [ [Kl(a)Iz(a) + Ky(a)Ta(a)] o®dq (49)
ol g {PRE S S —
X 5 Tro o ¢I1%(q) +<g> [I:1(a) - qlo(q)]
To

Ideal slotted wall.~ When 1/R 1is set equal to zero in equa-
tion (48), & limiting process is required to, obtain the correct result _
at (B/R) = O. The result of this process is :

(50)

Open Jet.- Letting K = O in equation (50) yields _

I‘.b < .- - _— . .
h“rog ;? : - pi

The value of Aw in the general case of equation (HB) lies between
the values for the.closed wall and the open Jjet.

CONCLUDING REMARKS

A method of evaluating wall interference of partly open walls involv-
ing mixed potentiasl and viscous flows has been presented. Expressions for
blockage and lift interference for both slotied and porous walls have been
derived. Some new details of the method may prove useful in other theo-
retical treatments of this type of problem.

The results of the analysis indicate that near sonic speed, the
blockage correction for an ideal porous wall approaches that of an open
jet. Similarly, any linear viscous or taper effect of a glotted wall 1s
supprossed near sonlc speed, so that the blockage correction approaches
that of an 1deal slotted wall. - o

Ames Aeronsutical laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 29, 1953
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AFPENDIX A
DERIVATION OF THE BOUNDARY EQUATION

In this appendix an approximate smoothed or average boundary equa~
tion for a slotted wall will be derived.

An ideal slotted wsll has zero perturbatlion pressure at the slots
and zero normal flow at the strips. These condltions can be expressed
as

99 =0 at the slots
. ox

(A1)

ég =0 at the strips
on

When the slot spacing and model dimensions are small compared to
tunnel dimensions, the perturbation flow can be separated into a rapidly
varying and a relatively uniform part so that the two parts can be
investigated separately. It will be shown that the effect of the repidly
varying part can be replaced by & condition on the relatively uniform
part.

Iet $, E; 3; and w represent the rapidly varying part of the flow
field and @, u, v, and w the remaining part of the perturbation flow.
For a plane wall at z = h equations (A1) require that

A +u=0 at the slots
N (22)
wW+w=20 at the strips
In addition
¥=¥=w=0 far from the wall (a3)

In order to solve for &L use can be made of the fact that u, v,
and w are nearly constant at the wall compared to U, ¥V, and %, so
that u and w can be considered constant in equations (42).

Since the slots lie along the x direction, o is nearly constant
in the x direction, so that Of/0x can be neglected compared to

B?VBy and Bgyaz. As in slender airplane theory, this leads to a two-
dimensional crossflow for which
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éz_:q\.)‘ +a_'§=o . (All.) )
dy° dz2 . "

Then ¢ can be of the form Q(x) f(y,z) where Q(x) is a slowly
verylng function of x, and f(y,z) satigfies the two-dimensional

Laplsce eguation. Then,

U = és-p: %9' f(Y;Z)

dx X ;

and since W 1is equal to -u, a constant, at the slots, f(y,z) must be
constant at the slots or .

¥=X_-g% _0 at the slots
oy

This equation can be used to replace the first of equations (A2),
and altogether there results

¥ =0  at the slots .
W = -w = constant at the strips (A5)
P=V=w=0 far from the wall

asguming that 0Q/dx 1is not absolutely zero.

Equations (A4) and (A5) can be solved using the conformal trans-
formation technique.

Let the wall at z = h be slotted periodically from y = -« 1o
¥y = +o with the center ofa slot at y = 0. Let a be the slot width
and 1 the slot separation (see fig. 1). It 1s sufficient to consider
only one period of the periodic flow configuration so that solid hounda-
ries can be placed at y = i(z/z) and sttention confined to the region
between them.

Iet X =z + iy be the complex physical plane and & = { + in the
transformed plane. ILet @ be the complex velocity potential such that
W =% - i¥, the complex velocity, is equal to d®/dX, and § = real part O.
Then equation (A4) is satisfied if @ 1is any analytic function of X.
The boundary conditions (A5) are satisfied by finding the analytic func-

tion £ (X) which transforms the boundaries in the X plane into a con- oA

figuration for which the flow field with the desired flow at the bound-
aries can be found.
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In the X plane the reglion under conslderation is from z = -
to z=h and from y = -(1/2) to y = +(1/2). The slot lies on the
line X =h + 1y from y = - (a/2) to +(a/2). (See fig. 6.) The

two half strips lie on the same line from y = -(1/2) to y = -(a/2)
and from y = (a/2) to y = (1/2). The remainder of the solid boundary
lies along the line X =2z — 1(1/2) from z = -» to z =h and along
the line X =z + i(1/2) from 2z = ~» to =z = h.

The transformatlion which will place the origin at the wall, and the
domain under congideration in the right half-plane is

£, =h - X (a6)

The effect of the transformation on the positions of the boundaries is
obtained by substituting the equations representing the boundaries into
equation (A6). Thus, the line X = h + iy becomes £, =8, + in, = -iy
in the &; plane and the slot lies on this line from 173 = -(a/2) to

M1 = + (a/2). The two half strips lie on the same line from 10y = -(1/2)
to -(a/2) and from a/2 to 1/2. Simllarly, the remainder of the solid
boundary in the £; plane lies on the line £; =h - 2z - 1(2’,/2) from

£, =0to {; == and on the line &1 =h - z + i(21/2) from £, =0

to §1 =0,

To satisfy the boundary condition at the strip, a term wg,; = w(h-X)
is added to the potential in the transformed plane.

The remaining boundary-value problem is solved with the aid of two
further transformetions.

The transformation
g2 = sinh (’{ 51) (a7)

transforms the region under considerastion in the £, plane to the entire
right half of the €&, plane, as can be seen by following the procedure
outlined for the first transformation. It is found that In the ¢&,
plane, the slot lies along the imaginary axis from -i sin (na/22) to

+1 sin (na/zl) and the solld boundary including the two half strips lies
along the imaginary axis outside of i sin (na/21).

The transformation

£ = Eo +,/t,2 + sin® (g% (A8)
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transforms the region under consideration to the positive real half of
the & plane, excluding the circle of radius sin (na/QZ) centered at
the origin. The slot lies along the half of this circle in the right
half plane, and the complete sclld boundary lies along the imaginary
axle outside the circle. Thus, & source at the origin in the £ plane
will satisfy the condition of no flow through the solld boundary and no
flow across the slot. Hence,the desired potential is

® = Aln (&) + wi; (A9)

Substituting equations (A6), (A7), and (A8) in (A9) yields
7T . AN
= Aln {sinh I:% (h-X):l + ,‘/E;:lnh2 |:7 (h-Xx) :| + sin® <§)} + w(h-X)

The constant A 1s evaluated by the last of equations (A5), ¢

=0
X —> -9

being the equivalent of that equation.

As X —> -, the potential simplifies to

o  Aln {2 sinh [" (h- X)J} + w (h-X)
_> 00

Aln | e’ T (%) + ;_(h-X)
[ ]

A’% (h-X) + w (h-X)

ne

The neglected terms are of order smaller than 1/h-X. Thus, ¢ will be
zero at infinity if A = -(1/n)w eo that

= -w f In {sinh [’-{- -(h-X)] + »/sinhz[“ (h-X) 1 +8in® < )} + w(h-X)

(A10)

o ]y=0= -w :% in {sinh [%‘ (h-z)] + /sinhz [’% (h-z)] + sinzé—?:)} + w(h-z)

11

»
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It was assumed that the velocity potential is constant over the slot.
The value of this constant is

o = wtin|sin (Z2) -3 st the slot
_ x 21
y=0
z=h

é? aw — = 1ln [31n < J} iy at the slot
d3x  dx T

Substituting this in the first of equations (A2) yields

u + {—% in [sin E)] B_w =0 at the slot

and

21 ox

Since it was assumed that u and w do not vary appreciably from
slot to strip, this equation applies everywhere at the wall and yields

3¢, x 9 Fo _
ox dxdn

l na
r o=l i na
K = - in {s n <%Z ]

In considering a curved cylindrical wall, it appears that the above
results are not altered appreciably if the radius of curvature of the
wall is everywhere large compared to the slot spacing.2 Hence, it can be
assumed that equations (Al1l) are applicable to any slotted wall.

at the wall (A11)

for & plane wall.

ZFor a circular cylindrical slotted wall, solutlion of the boundary value
problem

0 at slots

-W at strips

a Y% ¥I%,

=0 at r =0
Ylelds a value for K identical with that cobtained from equation (All).
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In an attempt to take viscous effects in the slots into account, it
can be assumed that as in the case of the "ideal" porous wall there is a
pregsure drop through the wall which is proportional to the normal
velocity at the wall. In that case the first of equations (A2) is
replaced by (u + u) +(1/R)w = O at the slots which leads to

00, x P L1239, everywhere at the wall . (a12)

ox dxdn R on

where K remains the same as in equation (All) and R 18 to be deter-
mined experimentally.

Equation (A10) can be used to calculate the neglected variations
in flow quantities near the wall and also at the model if the variations
are not negligible there.

DISCUSSION OF A CRITICAL ASSUMPTION IN THE DERIVATION
OF THE BOUNDARY EQUATION )

It 1s assumed that the perturbation pressure at the wall is pro-
portional to u + u. This 18 a good approximation only if

(v+92 + (wi+wiB<<2(u+u) U

in addition to the usual requirements for linearization. This addi-
tlonal requirement can be reasonably relaxed to

(w + W) <<2uU . at the wall . (A13)

Equation (A10) indicates singularities in W at the edges of the
slots. Experience with wing leading edges indicates that this dis-
crepancy can be reasonably lgnored. However, equation (A13) should at
least be satisfied at the center of the slots. The effect of this
condition on u and v will now be determined. Differentiating
equation (A10) yields :

cosh [% (h-X)]

W= — =y _ - W

/ sinh® E (h-x)] + sin? ( gﬂ

Lk
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Then
c &y
os 2 N
W = W —-_ W =W
z=k fsinz X&) - sin® (W z=h
21 1
and
o+ ) N S
z=h gin (Xa
y=0 21
so that equation (A13) becomes
____w_z_.___<< 2T
ain2 (:x§>
21
or
W <« 2 sin® <E> Uu  at the wall (A1k)
21

This result places a lower limit on the ratio of open to total area
(a/l) for which the results of this analysis can be expected to apply
to slotted sections.



30 NACA TN 3176

APPENDIX B
BLOCKAGE IN A CIRCULAR TUNNEI WITH
NONLINEAR VISCOUS EFFECT
If, in the experimental determination of the porosity parameter R,

it 18 found thet an sdditional term of the form f (J¢/dn) is needed in
the boundary equation, the result is

@+K§2&+l-a—q’+f ﬂ)>=O at the wall (B1)
ox dxdn R on on

or

op¥ Po* L L1* 30 PR 139 _ Py §S’f>

> " am TR = oo Ron - \Uam taa (82)

This type of equation cannot be solved exactly by any presently known
method because of the nonlinearity. However, the equation becomes linesr
if the ¢* 1in the nonlinear term is neglected under the assumption that

9% , 3%* _f(a_q’i ce £\ at the weil  (83)
on on on on

Hence, the equation

OP¥ g BP* L LV _ 3P, P

qu-f<§cP—l> t the wall
ox oxdn R on Ax 3xdn " o~ a e wa

(BL)
will be discussed.
The transforms G¥* and G; of @* and @, remein the same as before,
with the exception that the factor A(g) must be evaluated from the

transform of equation (B4). For this purpose, the transform of
£(99, /Or) is needed and can be found by evaluating

1 f 9%y
G = 2x L/n £ Bp)

eleX gy (85)

I'=TYo
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The transform of equation (BL4) is found to be

A(g) [- ieT, (Bgry) - igKpgl: + % Bl ]=

ik 1
- X 4g (-1 1 KK, — < K1) ~ G
o 18 ( gko + 1g B |g [KKy Rﬁlg[1> £

Upon solving for A(g) and substituting in the inverse transform
expression for @%* equation (34) is obtained plus the additional term

5% = - = GrIo(prg)e ™ B¥ag
= o| & pali(pros) - ig [Io(Bros) + KpeT1 (Brog)

With the substitution ¢ = Prog this becomes

- Eilf a
so* = .f S — | Gee PTOTI (E) £4 (B6)
§ I:(q)-1 [Io(q) + rﬁo aT,(q) °\ro/ 4

As en example of the use of equation (B6) let
3
f(.a_cP =S éf) : ' (BT7)
on U2 \odn

This function is chosen rather than one proportional to (d®/dn)2
because the pressure drop should be an odd function of the normal
velocity.

Hence,

Go = - = (m_r>s (3p3r ):3 L1 x> e lexg,
T U= bx ° 2% [%2 + g2r 2]15/2
—_— fo)

From reference 4 it is found that
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1 1 1gx |lg|” k7 (Brolel)
- is/2 © dx =
on Y (22 + BPro2) JET ( :_L_5_> (23r0)7
2
Differentiating three times with respect to g yilelds
1 N -1x° igx 1
L[ ~ lel % (broel)
% J_ (¥ + B%rs?) ﬁp<l§. (2Br)73g
2
go that
Gp = g|" Kz (Brolgl)
by UE ’-I-:IBS 3) J_ (l5> 27 O aga ! I 7 o
or
3 a

Substituting this in equation (B6) and separating real and
imaginary parts ylelds

my 3°
S0* = - —a—n
B° Ug hxB rg ) geﬁr‘<¥)

r
[I (a) +— Iy (q)J : %; [q"K7(q)]-.éos (%) I, (%%) a

[ .1% I;_(q):l2 + [Io(q) + ;_KS qu(Q):|2

[

(B9)

Wl

———

f I:(q) El(;—oa'g [q7 K7 (Q)]sin (BI') ( )
o

l:g:[l-(q_):l +[I (a) +—q11 (q)_|
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Upon differentistion with respect to x and setting x=r=0, there
results

-‘.3

c mp N\ 38 E;/f I1(a) a® [Q7Kk(Q)J dg
v lmBSroS) esﬁ r <L5. Ry [.B_ I:(q) J [Io(q) + £ Il(q_)]z
2

5Mu = B3

From reference 6 it is found that

-d—z [q"K—r(q):I = (1152 + 168¢® - 5¢*)¢®Ki(q) + (576 + 126 - q*)a®Ko(q)

dq
and
3° __1t 2
- 28,/x T (%) 5005 =
s¢o that )
AU = my )Ssa_g__g 12 f(ll52 + 168¢%- 5q4)q211(q)K1(q) dg
a
bnB3rg U2 R 5005 = A [g Il(q)J + [Io(q) + 2 Il(q)}
To
(576 +120% - q*) ¢°I1(a)K,(a) a
4 (B10)

[ Il(q)] [Io(q) + r_I; Iy (q)T

Setting K/r, equal to zero in (B10) and recombining it with
equation (37) yields



f [Io(q)Ko (@) —% Kl(q)Il(q)] edg

_ o W
N e | @] +] Ent]
I I +| —1I
o l ) L o qJ : L -k qJ
/ Tr \F e B 1 f[(ll52 + 168¢% - 5¢*)12(q)K; (q) + (576 +12¢% -q*)oTa(@)Ky(q) ] tfdg]
(Feze? ) b % 2
barg B® R 5005 ) 1‘10(41)] + [% I:l.(q.)-lZ [
L i L J J
(B11)

a8 the blockage in 8 porous tunnel for which the boundary equation i1s

acp 1BqJ
Bx Rar ? at the wall

The unéar-viscous-effect term 18 zero when equation (Bll) 18 evaluated numerically at

B/R = 1.21, and

compared with the value of

for a sclid wall.

€

9LTE NI vowN
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Since the factor Tp/Umry® is very small, the nonlinear contribu-
tion to the blockage correction should be negligible at subsonic speeds
where f is not small. But as contrasted to the linear viscous effect
which becomes smsll as M approaches 1, this nonlinear viscous effect

may become large.
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APPENDIX C
DERIVATION OF THE BOUNDARY EQUATION
FOR A TAPERED SLOTTED WALL
In this appendix an approximate smoothed boundary equation for a
slotted wall with tapered slots will be derived.

The development in this case 1s identical with that in Appendix A
up to the point where 1t is found that

$ =W - in [sin <§% } at the slots
¢

or
® =wK at the slot (c1)
When the slots are tapered, the slot parsmeter K 1s a slowly

varying function of x which can be expanded in a power series about
x = 0 8o that neglecting the higher order terms

K(x) = K = X

,x=0 g =0
Then

3=k w+ & xv  at the slots
x=0 dx x=0

and

o =.§9 =K QE + & | w o+ 3K I éﬂ x at the slot

ox x:Oax dJCx:O d.X.x:Ox

Assuming that the last term will be negligible compared to the others,
we have

W at the slots (c2)

-
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Substituting this equation in equation (42) of Appendix A yields

u+K, Sw , &K w =0  at the slots
X =0 dx ax Xx =0

Then, as in Appendix A, since u and w do not vary appreciably from
glot to strip

)
e =0 everywhere at the wall

+‘3_K-‘
ax

- + K
ox ¥ x = O Oxon x =0 on

QP [ Fo
> (c3)

K(x) = - 22 gy [sin _(_ng@]

J

Hence, the parameter 1/R in equation (6) of the text can be interpreted
as the guantity dK/dxl x =0 which is related to the taper of the slots

in a slotted wall having purely potential flow in the slots.
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(a) Two-dimensional-flow slotted test section.
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(b) Circular slotted flest section.

Figure /.- Cross-sectional diagrams of the two slotted test sections in
a plane perpendicular fo the free stream.
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Figure 2.- Simultaneous values of slot parametler and porosity
parameter for zero blockage In a two-dimensional-flow tunnel.
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Figure 3~ Blockage factor as a function of slot parameter in o
two-dimensiona/—flow, ideal, slotted tunnel.




NACA TN 3176

Ko

Figure 4.-
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Simultaneous values of slot parameter and porosity

parameter for zero blockage in a circular cylindrical ‘tunnel.
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Blockage factar as a function of slot parameter in
a circular cylindrical, ideal, slotted ‘tunnel.
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Figure 6.- Skefch of complex planes (Appendix A).
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