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SUMMARY 

Pressure-distribution expressions and stability derivatives have 
been derived by use of linear theory for zero- end- plate triangular 
vertical tails with subsonic leading edges performing rolling, yawing, 
and constant-lateral- acceleration motions . Corresponding results for 
the sideslip motion, most of which have been previously reported, are 
also included herein. 

Consideration is given to the effect of end plates on the forces 
acting on the vertical tail. Stability-derivative formulas for a 
vertical tail in the presence of a complete end plate obtained from 
wing results are also presented, together with a suggested approxima
tion for partial-end-pla~e effects . 

The aerodynamic damping of the lateral oscillation in yaw is 
approximated to the first order in frequency from the damping of the 
yawing and constant-lateral- acceleration motions. Illustrative varia
tions of the stability derivatives for the special case of the half
delta tail for all the motions considered are included. 

INTRODUCTION 

Information avai l able at present that pertains to the aerodynamic 
forces acting on various tail arrangements is, in many instances, insuf
ficient to allow the accurate prediction of the lateral dynamic behavior 
of aircraft traveling at supersonic speeds . Theoretical results now 
available are, for the most par t, concerned with tail configurations 
either in a rolling or in a sideslip attitude (see refs . 1 to 11). 
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For the sideslip motion, the effects of Mach number and aspect 
ratio on the aerodynamic loads of a number of tail configurations with 
both one and two planes of cross- sectional symmetry have already been 
investigated extensively. The same effects on tail arrangements in a 
rolling motion have also received considerable attention but it has, in 
the main, been directed toward tails with two planes of symmetry such 
as cruciform arrangements. Additional theoretical analysis devoted to 
the evaluation of the Mach number and aspect-ratio effects on the forces 
and moments acting on tail systems in roll with one plane of cross 
sectional symmetry is required. 

Tail arrangements performing a steady yawing motion or a constant
lateral- acceleration motion have received little attention to date in 
the literature. Yet the forces and moments produced by these motions 
are by no means negligible, and some indicatio~ of their magnitudes is 
necessary, particularly at supersonic speeds, in order t o evaluat e t he ir 
relative importance on lateral stability . 

The primary purpose of this paper is to provide the pressure
distribution expressions and corresponding stability derivatives for 
isolated triangular vertical tails with subsonic leading edges per
fOrming yawing, rolling , and constant- lateral - acceleration motions. 
Some of these results in turn are used to approximate to the first 
order in frequency the damping of the vertical tail oscillating in 
yaw (one degree of freedom). 

A secondary objective, in view of the geometric nonplanar charac
teristics of tail arrangements, is to give consideration to the estima
tion of the mutual aerodynamic interference that exists between the 
vertical and horizontal tails . In this connection the stability deri
vatives for the vertical tail in the presence of a complete end plate 
have been included. 

For completeness, results for the no- end-plate and complete- end
plate vertical tails in a sideslip motion obtained from references 9 
and 11 are also presented . 

SYMBOLS 

The positive directions of the forces, moments, velOCities, and 
angles ar e shown in figure 1. 

X,y,z 

e = z 
x 

coordinates of field point 
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Xl,Zl 

cr = zl 
xl 

xo,zo 

t 

u 

v 

w 

V 

a 

p 

r 

ex. 

ex. 

f3 

f3 

p 

q 

6P 

B V(¥/ - 1 

K 

¢ 

¢n 

coordinates of doublet 

distances origin is displaced relative to tail apex 

time 

incremental velocity in x-direction 

y-component of velocity 

z-component of velocity 

free-stream velocity 

speed of sound 

rolling angular velocity 

yawing angular velocity 

angle of attack 

rate of change of ex. with time 

sideslip angle 

rate of change of f3 with time 

fluid density 

free-stream dynamic pressure, 

pressure difference between opposite sides of a surface 

constant determining degree of homogeneity of quasi
conical velocity field 

velocity- potential function 

potential of supersonic doublet distribution 
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x 

A(x,z) 

f(a) 

E 

C 

R 

k 

E' (BC) 

K' (BC) 

E' (k ) 
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potential of line of doublets 

steady-state potential corresponding to unit angle of 
sideslip 

steady-state potential corresponding to unit yawing 
velocity about z-axis 

doublet-strength function 

line-doublet-distribution function 

span of vertical tail 

vertical-tail area 

aspect ratio of vertical tail, 

apex angle of tail 

tangent of apex angle 

b 2 
v 

Sv 

2C 
= ---

1 - R 

ratio of slope of leading edge of tail to slope of 

trailing edge of tail, 1 _ 2BC 
BAv 

complete elliptic integral of second kind with modulus 

1
1(/2 

11 - B2C2, 0 11 - (1 - B2C2 )sin2n dn 

complete elliptic integral of first kind with modulus 

Yl _ B2C2, 11(/2 dn 

o 11 - (1 - B2C2 )sin2n 

complete elliptic integral of second kind with modulus 

'1(/2 
Vl - k2, 10 .jl - (1 - k2 )sin2n dn 
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complete elliptic iptegral of first kind with modulus 

"1 _ k2}j1f./2 _ _ _ dn _ _ _ _ 

o Vl 

constants 

N = NBC 

infinitesimally small quantity 

1 - B2C2 
G(BC) = -------- --- -

(1 - 2B2C2)Et (BC) + B2C2Kt (BC) 

Cy 

r ~ 

rolling-moment coefficient) 

yawing-moment coefficient} 

Rolling moment 

qSyby 

Yawing moment 

qSvbv 

side-force coefficient} 
Side force 

qSy 

Cl = (~) 
V r~O 

5 
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(
dCY) 

Cy f3 = df3 f3 -70 

(

dCY ) 
Cy~ = d~bv . 

V f3~ 0 
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Subscripts: 

p rolling condition 

r yawing condition 

sideslip condition 

constant-lateral-acceleration condition 

o zero-end-plate configuration 

C complete-end-plate configuration 

P partial-end-plate configuration 

SCOPE 

Derived in this paper are expressions for the surface pressure 
distributions on iso.lated triangular vertical tails performing yawing, 
rolling, and constant-lateral-acceleration motions. These pressure 
expressions have in turn been used to calculate the stability deriva
tives associated with the side force, yawing moment, and rolling moment 
due to constant yawing (CYr , Cnr , and Cl r ), constant rolling (CYp ' 

Cnp ' and CZ p )' and constant lateral acceleration (CY~' Cn~' and 

Cl~)' Also presented are the aerodynamic coefficients CY~' Cn~' and 

Cl~ obtained from the sideslip pressure-distribution expression given 

in reference 11. Stability derivatives presented for the vertical 
tail of figure 1 mounted on a complete end plate are CY~, Cn~, 

Cyr' Cnr ' Cy~, and C~. The equation of C 113 for a triangular-

vertical-tail--end-plate combination may be derived from the pressure 
distributions given in reference 9. This e quation has not been deter
mined and only curves of Cl~ taken from reference 9 for a vertical-

tail--complete-end-plate combination with trailing edges perpendicular 
to the root chord (see fig . 2 ) are presented. 

The stability derivatives presented herein are valid within the 
limits of linear theory for a range of Mach numbers for which the leading 
edge is subsonic and the trailing edge supersonic. Variations of all 
the stability derivatives with the parameter BC are presented for a 
triangular vertical tail with zero trailing-edge sweep (half-delta tail). 
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ANALYSIS 

The axes system used in the analysis and the positive directions 
of the forces, moments, velocities, and angles are shown in figure 1. 
The positive directions of the forces and moments in the analysis sys
tem have been fixed to conform to the positive directions of the forces 
and moments in the stability axes system (see fig. 3(a». The stability
derivative expressions are derived in the body of the report with respect 
to the analysis system whose origin is at the apex of the tail. Transfer 
formulas are presented, however, which allow these derivative expressions 
to be determined for a system of axes whose origin is displaced longi
tudinally and vertically with respect to the apex of the vertical tail. 
(See fig. 3(b).) 

The ensuing analysis is based on linearized theory and the results 
are restricted to vertical tails of zero camber with surfaces of van
ishingly small thickness . These conditions implicitly stipulate that 
the results are valid only for small angles of Sideslip, small rates 
of change of the sideslip angle with time (~ motion), and low rates of 
rolling and yawing . 

Throughout the analysis, when the potential of a surface in the 
xz-p~ane is referred to, it is considered to be the surface potential 
on the side of the vertical tail whose outward normal is in the posi
tive y-direction; that is, 

¢ = ¢(x,O+,z) 

and for a surface in the xy-plane, 

Pressure differences between opposite sides of a surface are formulated 
as follows: 

For a surface in the xy- plane, 

6P = p(x,y,O+) - p(x ,y,O-) 

and for a surface in the xz-plane, 

6P = p(x,O+,z) - p(x,O-,z) 

------~ 
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Determination of Pressure-Distribution Expressions 

for Yawing and Rolling Motions 

A method for solving supersonic-flow boundary-value problems 
governed by the classical, linearized, partial-differential equation 

o 

9 

(l) 

has been developed in reference 12 and an application to rolling and 
pitching triangular wings is given in reference 13. This method allows 
the prediction of the disturbance-potential function ¢, and hence the 
pressure distribution, for planar lifting surfaces. The analysis given 
in reference 13 is briefly summarized herein and is applied to the 
determination of the pressure distributions and associated forces and 
moments acting on a triangular vertical tail surface (fig . 1) performing 
rolling and yawing motions . (Yawing in the xz- plane is analogous to 
pitching in the xy- plane .) 

The determination of the form of the velocity potential.- As is 
well-known, the potentials of both the supersonic source and the super
sonic doublet and their distributions represent solutions of equation (1). 
For the determination of the potentials and pressure distributions of 
lifting surfaces of the type considered herein, that is, for lifting 
surfaces with subsonic leading edges, it is well-known that a distribu
tion of doublets that uniquely satisfies the prescribed boundary condi
tions must be determined. These boundary conditions on the vertical 
tail for the motions to be considered herein are as follows: 

On the rolling vertical tail, 

v = pz = z 
XPx 

and on the yawing vertical tail, 

v = -rx 

= xp8 (2) 

In addition, the following relations must be valid on the surfaces 
of the tail: 



10 NACA TN 3240 

For the rolling motion, 

~~) 
--p =p 

ct3 
(4 ) 

(} (~ )p 
= 0 (5 ) 

ct3 2 

and for t he yawing motion, 

d(~ )r 
0 (6) -- -

de 

o 

The potential in space produced by a distribution of doublets, for 
example, in the xz- plane, with the doublet axes normal to the plane is 

¢n(x,y,z) 
~ - A(xl,zl)dxl dZ l 

S -:/;::( X==-=X=1=)=2=_==B=2=( =z =-=Z=l=) 2=_=B=2=y=2 

where the area S is the region of the xz- plane intercepted by the 
forecone from the field point (x,y,z). 

(8) 

The potential on the sur face carrying the doublet distr ibution is 
given by 

l
' ~ JI lm -

y -.?±O dy S 
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As stated in reference 13, this surface potential is directly propor
tional to the doublet-strength function A(x,z); that is, 

¢n(x,z)y=±o = ±~A(x,z) 

The surface-pressure velocity u(x,z) therefore is 

±~ dA(x, z) 

dx 

and the linearized lifting-pressure coefficient 

6P = 4u(x,z)y=+0 

q V 

may be written as 

6P = 4~ a A (x, z ) 

q v dx 

(10) 

(11) 

(12) 

The problem to be considered in this paper is one in which the 
sidewash on the surface is prescribed (see eqs. (2) and (3)) and the 
surface velocity potential has to be determined. The doublet-strength 
function A(x,z) then is an unknown and the determination of this 
quantity requires in general the solution of an integral equation. In 
some cases the general form of the surface-potential function A(x,z) 
is known or can be obtained by inverting an integral equation. The 
problem then resolves simply into an evaluation of the arbitrary con
stants of the general solution by making use of the prescribed boundary 
conditions. 

Brown and Adams in their analysis of triangular wings with subsonic 
leading edges (ref. 13) were able to determine the function A(x,z) for 
these wings undergoing various motions by utilizing the concept that the 
conical properties of the produced flow gave rise to potentials and 
pressures in the crossflow planes that were similar in form to the 
potentials and pressures acting on flat finite segments in a two
dimensional flow; these segments correspond to a section of the wing in 
any crossflow plane. This remarkable connection between linearized 
supersonic conical flow anQ incompressible two-dimensional flow is dis
cussed by Busemann in reference 14. 

--- - -. -- -.--~~ 

I 
j 

j 
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A more general and rigorous approach to obtain the doublet-strength 
function m~ be formulated from an analysis presented in a later paper 
by Lomax and Heaslet (ref. 15) dealing also with conical and the so-called 
quasi-conical problems. In this analysis a general surface-pressure
coefficient expression has b~en determined for planar lifting surfaces 
with prescribed boundary conditions of the form 

This expression is 

(14) 

where bi are constants, e = i, K is determined by the boundary

condition equation (eq. (13)), and C and Cl are the tangents of the 
apex angles of the two panels of the lifting surface. When Cl = C, 
the lifting surface is symmetrical about the common root chord of the 
two panels, and when Cl f C, the lifting surface is asymmetrical about 
this chord. From equation (12), which relates the function A( x ,z) to 
the pressure coefficient, and equat ion (9) the form of A(x,z) or, 
synonymously, the form of the surface potential, may be obtained by a 
simple integration. It should be mentioned at this point that refer
ence 15 presents a method for deriving the arbitrary constants bi in 
the pressure coefficient (eq. (14)). This method is related to that of 
reference 13 which concerns itself with obtaining the arbitrary constants 
in the velocity potential. 

By application of equation (14) to the boundary problem of the 
vertical tail sketched in figure 1 (Cl = 0) and by noting from the pre-
scribed boundary conditions (see eqs. (2) and (3)) that K = 1, the 
pressure coefficient for both the yawing and rolling motions is 

The constant bO in this expression must be set equal to zero in order 
to satisfy the condition that along the streamwise edge the pressure 
must be zero. 

I 
. I 
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The velocity potential on the vertical tail surface is easily 
obtainable from the pressure expression by the formula 

Ix _v 6}> ¢ - - - dxl 
4 L.E. q 

and has been found to be 

l3 

(16) 

where 

The arbitrary constants in the so-called distribution function fee) 
are, in terms of bl and b2, 

N 

By relating equation (16) to equation (9), the doublet-strength func
tion A(x,z) is seen to be 

A(x, z) = x2f(~) (18) 

A comparison of the potential of equations (16) and (17) and the 
potential obtained for the slender, rolling, vertical tail reported in 
reference 5 shows, as expected, that both are of the same form. 

Evaluation of the constants M and N.- The constants M and N 
in the expressions for the velocity potential given by equations (16) 
and (17) are still to be determined. As indicated previously, the 
expression for the pressure coefficient, and hence the velocity poten
tial, can be determined completely through an application of the pro
cedures developed in reference 15; however, many of the integrations 
and integrating procedures required in the method in reference l3 were 
already known to the author at the inception o~ this project and, for 
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this reason) the analysis herein to determine the constants M and N 
closely parallels the procedures discussed in reference 13. 

The determination of the constants M and N depends upon satis
fying the boundary conditions associated with the vertical tail for the 
rolling and yawing motions. These boundary conditions are given by 
equations (2) to (7). The needed expressions for the prescribed veloc
ities and their derivatives with respect to e in ter ms of the dis 
tribution function f(cr) are derived in appendix A. 

For the rolling motion the constants M and N may be obtained 
by replacing f(cr) by its equivalent (eq. (17)) i n t he e quations gi ven 

in appendix A for v/x and o(v /x) and then applying the boundary 
Os 

conditions given by equations (2) and (4) . When the integr ations have 
been performed) the resulting equations may be solved simultaneously 
for Mp and Np . The yawing constants are obtained in a like manner 

with equations (3) and (6) replacing equations ( 2 ) and (4)) respectively. 

In the calculation of the quantities v/x and o(v/x) any value 
Os ) 

of e may be considered . I t is advantageous for integration purposes 
to let this value of e be zero. However) since one of the limits of 
integration is zero and since in several of the integrands a singular 
point exists at e = cr = 0) the integrations in which these singularities 
occur must be performed for 9 arbitrary and then e is set equal to 
zero . 

Substituting equation (17) into equation (A4) gives) for e equal 
to zero) 

11BC (MBcr + NBC)VBcr(BC - Bcr)(l - B2oe)2 1/l - B2a 2 
- d(Bcr) -
B ( ) 2 2 B 8+11 (1 _ B2cr2 ) (Bcr - B8) 

< I 
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Carrying out the integr ations in equation (19) yields 

where 

and 

y. 
x -1{ {K' (k) ~k3M + Nk2 (1 + k2U 

BYl + k 2 (1 _ k 2 )2 

k = 

N == NBC N 2k 

1 + k2 

These integrations were accomplished with the aid of the tables in 
references 16 and 17 and are discussed in appendix B _, 

15 

(20) 

Substituting the distribution function into equation (A5) results 
in, for e approaching zero, 

hm hm 2 - + 
. (. {lB (9 -fl ) r(MB(j + NBC)JBa(BC - Ba) (MBa + NBC)/Ba(Bc - Bel) 

9--70 fI~O 0 /1 - B2e 2 (Ba - Be) '11 _ B2e 2 (1 _ B2( 2 )(Ba _ Be) 

2(MBa + NBC ) VBa(BC - Ba>V1 - B2e~d(Ba) + lBC ~(MBa + NBC)JBa(BC - Ba) _ 

(Ba - Be)3 J B(9+T1) L / 1 - B2e 2 (B a _ 00)2 

(MBa + NBC!VBa(BC - Ba) 2(MBa + NBC)VBa(BC - Ba) V1 - B2e~d( -;======------- + Ba) -V1 - B2e 2 (1 _ B2a2 J(Ba _ Be) (Ba - 00)3 
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By performing the integrations in equation (22), the following 
expression is obtained: 

(23 ) 

Consider the rolling case ; that is, M = Mp, N = Np ' and from 

equations (2) and (4) v/x and o(v/x) are, for e = 0, equal to 0 
~ 

and p , r espectively. Solving equations (20) and (23) for Mp and Np, 
- 2k with N = BCNp Np ' gives 

1 + k 2 

-p'h + k2 ~2(1 + k2 )K' (k) + (1 - 4k2 + k+)E' (k~ 
-----------=~----------------------~~---- (24) 
1,: ~k+K' (k) 2 + k2(1 + k2 )K' (k)E' (k) + (2 - k2 )(1 - 2k2 )E' ( k)~ 

p (1 + k2 ) 3/
2 ~k2K' (k) - (1 + k2 ) E ' (k TI 

Np = --~----------------~------------------~--------~ 
2:n: tk+K' (k)2 + k2 (1 + k2 )K' (k)E' (k) + (2 - k2 )(1 - 2k2 )E' (k)~ 

(25) 

For the yawing case M = Mr, N = 2k Nr , and from equations (3) 
1 + k 2 

v o(v/x)r 
and (6) - = - r and = O. Solving equations (20) and (23) 

x , ~ 

simultaneously after making these substitutions yields 

BrkVl + k2 ~k2K' (k) - (1 + k2 )E' (kU 
Mr = (26) 

:n: tk4K' (k )2 + k2 (1 + k2)K'(k)E' (k) + (2 - k2 )(1 - 2k2 )E' (k)~ 

~ I 

I 

I 

I 

I 
j 

I 

I 

I 

" I 

I 

- ------- -- -- -- - -- -- -- -~-
_~_~J 
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21rk~0K' (k)2 + k2 (1 + k2 )K' (k)E ' (k) + (2 - k2 )(1 - 2k2 )E' (k)~ 

(27) 

It is convenient for plotting purposes and in expressi.ng the aero
dynamic coefficients to make the following definitions: 

- M I Br Mr - r 
1C 

N - N I E. p - P 1C 

(28) 

so that Mr I, Nr I, Mp I, and Np I are functions of BC only. The 
variations of these four parameters with Be are shown in figure 4. 

The velocity potentials for the rolling and yawing motions, com
pletely defined by the velocity potential (eqs. (16) and (17)) and the 
constants given in equations (21), (24), (25), (26), (27), and (28), 
may now be written as 

and 

(30) 
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The pressure coefficients for the rolling and yawing motions found 
from equations (29), (30), (10), and (11) are 

(~)p =2p 
Mp'C z2 + 3C2Np 'xz - 2CNp 'z2 

V 
(z(Cx - z) 

and 

, 2 + 3C2Nr 'xz - 2CNr ' z2 

(C:)r 

2Br Mr Cz 

V 
r/z(Cx - z) 

Determination of the Surface-Pres sure-Distribution Expression 

for Constant Lateral Acceleration 

The lateral-acceleration ~ motion is time dependent and is not 
governed by equation (1) but by the linearized partial-differential 
equation for unsteady supersonic flow: 

. 

(31) 

(32) 

The boundary condition for the ~ motion on the tail surface, which is 
approximat~ly in the y = 0 plane, is 

i3Vt (34 ) 

The potential function satisfying equations (33) and (34) may be obtained 
from the ~ potential function given in reference 18 for a wing in the 
xy-plane which was in turn obtained from an analysis by Gardner (ref. 19). 
This potential function is 

- I 

I 
I 
I 

I 

I 
I 
I 
I 

. I 

. I 
I 

I 

I 

I 
- -- -- -- _. ~ -' 
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where W is the steady-state potential corresponding to a unit yawing 
velocity about the z-axis and X is the steady-state potential corre
sponding to a unit angle of sideslip. Thus it is seen that the potential 
function for the ~ motion may be written in terms of the time-independent 
solutions already obtained. It should be noted that equation (35) dif
fers from the formula given in reference 18 by two negative signs) one 
before the whole expression and one before the second term within the 
brackets. These two sign differences are necessary to account for the 
fact that the boundary conditions for the ~ and ~ motions 

v SV 

v ~Vt 

are opposite in sign to those for the a. and a. motions 

w -a.V 

w = -a.Vt 

These sign differences on the boundary conditions for the analogous 
motions re quire that their potentials and pressures be of opposite 
sign. 

The pressure distribution for a time-dependent motion at the 
time t = 0 from the linearized Bernoulli's equation is 

liP = 2P(V ~ + ~) 
q \ Ox at 

Equation (36) in conjunction with equation (35) yields 

- = -2pV~ - = + - - + -eN) . a2 O,!r M2x oX X ) 
q ~ 2 OX VB2 OX VB2 

(36) 
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The pressure coefficient for the sideslip motion may be obtained from 
reference 11 as 

BE ' (k) V z (Cx - z) 

The reciprocal of the complete elliptic integral E'(k) appearing in 
equation (38) is plotted in figure 4 for various values of leading-edge 
sweep parameter BC. 

The expression for X, the only quantity in e quation (37) as yet 
undetermined , can be obtained by substituting e quation (38) with ~ = 1 
into 

X = ¢ =1 = Y..lx 
f&( xl'

zn dxl ~ 4 L.E.L q J~=l 

and carrying out the indicated integration. This process gives 

X - -
V~(l - ";1 - B2c2)/z(cx - z) 

BCE' (k) 
(40) 

The pressure coefficient for the ~ motion is now completely defined by 
equations (32 ), (38), (37), and (40). 

Force and Moment Coefficients for 

Zero-End-Plate Triangular Tails 

With the pressure distributions known (eqs. (31), (32); (37), and 
(38)) the total side force, yawing moment about the apex, and rolling 
moment about the root chord can be determined for the various motions 
by the formulas 

Side force = qff 6}> dz dx 
Sv q 

(41) 
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Yawing moment = qR 
Sy 

& x dz dx 
q 

Rolling moment " q ( ': z dz ax 

21 

(42) 

The force and moment coefficients and the stability derivatives may be 
readilY obtained ~rom these quantities ~or zero-end-plate triangular 
tails and are given in table I. 

Force and Moment Coefficients for Complete-End-Plate 

Triangular Tails 

For the sideslip, yawing, and constant-lateral-acceleration motions 
the pressures acting on the vertical tail in the presence of a complete 
end plate are the same as the pressures acting on one-half of a symmet
rical wing for the angle-of-attack, pitching, and constant-vertical
acceleration motions, respectively. Each half of this symmetrical wing 
should have the same plan form as the vertical tail under consideration. 
For the sideslip motion the pressures on the vertical and horizontal 
tails with a partial end plate have been reported in reference 9. 

Attention is now directed to the effect of end plates on the sta
bility derivatives. For the case of the complete end plate the following 
vertical-tail derivatives can be obtained from symmetrical-wing results 
(ref. 20): CY~' C~, CYr , Cnr , CY~' and Cn~. The transformations 

needed to change the symmetrical-wing derivatives into these vertical
tail derivatives are: 

Expression for CY~ = -(ExpreSSion for C~ with A replaced by 2Av) 

Expression for Cn~ 

Expression for CYr 

Expression for Cllr 

-4 (Expression for C~ with A replaced by 2Av) = -- X 
3Av 

= ~X (Expression for CL with A replaced by 2Av) 
3Av q 

= _8_ x (ExpreSSion for Cmq with A replaced by 2Av) 
9Av2 
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Expression for Cy~ 

Expression for Cn~ 
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= -2 X (Expression for C~ with A replaced by 2Av) 
3Av 

-8 ( ) = -- X Expression for Cma. with A replaced by 2Av 
9Av

2 

It should be noted that the above coefficients obtainable from wing 
results do not include the rolling derivatives Cl~' CZ

r
, and Cl~' 

Before these aerodynamic coefficients can be evaluated, the rolling 
moment induced on the end plate must be determined. This moment for 
the ~ motion has been derived in reference 9 but the induced moment 
for the other two motions are not yet known. 

RESULTS AND DISCUSSION 

General 

Table I contains the formulas for all the p, r, ~, and ~ stability 
derivatives for the tail shown in figure 1. Table II presents these 
derivatives for the half-delta tail (the special case of zero trailing
edge sweep, AvB = 2BC). The variations of these half-delta derivatives 
with the parameter BC have been plotted in figures 5 to 10. It is 
evident from tables I and II that the expressions for the ~ derivatives 
have been separated into two component parts, each part being multiplied 
by a different function of the Mach number parameter B. Each of the 
components, excluding this factor, is a function of BC. Figures 6, 7, 
and 8 show the variation of the two parts with BC for each of the 
~ stability derivatives. Once the Mach number, and hence B, has been 
specified, the two parts may be combined and the total derivative deter
mined for any given aspect ratio or leading-edge sweep. For the reader's 
convenience the variations of the ~ stability derivatives with Mach num
ber for a number of aspect ratios of the half-delta tail have been plotted 
in figures 11, 12, and 13. Mach number variations of the other °half_ 
delta stability derivatives may be obtained by inspection from their 
variation with BC. 

Side-force and yaWing-moment coefficients (as obtained from ref. 20) 
of the p, ~, and r motions for the complete-end-plate vertical tails have 
been presented in table III. As in the case for the zero end plate, the 
complete-end-plate stability derivatives for ihe half-delta tail are 
presented in a separate table (table oIV). The quanti ties liE' (BC) and 
G(BC) appearing in the expressions for the complete-end-plate stability 
derivatives have been plotted in figure 14 . 
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It should be realized that the force and moments given by equa
tions (41), (42), and (43) and the stability derivatives in tables I, 
II, III, and IV are for axi s locations at the tail apex and root chord. 
Formulas for the transfer of force and moment coefficients to a body 
system of axes with the origin displaced a distance Xo (positive 
forward) from the tail apex and a distance Zo (positive downward) 
from the tail root chord (see fig. 3(b)) are presented in table V. 

End-Plate Effect for Sideslip, Yawing, and 

Constant-Lateral-Acceleration Motions 

Figures 15 to 18 have been prepared to show, for the half-delta 
tail, the effect of a complete end plate on the side-force and yawing
moment aerodynamic coefficients . It is evident from the large magnitude 
of the differences between the two limiting cases of a complete end 
plate and no end plate shown in these figures that a reasonable estima
tion of the partial-end-plate effects would be highly desirable. End
plate effects for various sizes of horizontal tails for the sideslip 
motion have been evaluated exactly in reference 9 but are not presented 
herein. The following approximate formulas for the side-force and yawing
moment stability derivatives based on these partial-end-plate results 
are suggested: 

(CYr)p (CYr)c - ~Cyr)c (Cyr)~F 

(Cnr)p = (Cllr)c - ~Cnr)c (Cnr)~F 
(44 ) 

(CY~k = (CY~)c - ~ CY~)c (CY~)~F 

(Cn~1 = (Cn~)c - ~Cn~)c - (Cn~)~F 

where 

(CY13 )C - (CY13)p 
F = 

(CY13)c - (CY13) 0 
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It has been mentioned previously that the effect of end plates on 
t he rolling-moment coefficients has only been evaluated to date for the 
sideslip motion (ref. 9). By using the results of reference 9, figure 19 
has been prepared to show the variation with BC of the stability deri
vative Cl~ for both a half-delta vertical tail mounted on a complete 
end plate and an isolated half-delta vertical tail. Also plotted in 
this figure a re t he vertical-ta il and end-pl a te contributions to the 
Cl~ derivative of the complete-end-plate--vertical-tail combination . 

Partial-end-plate effects on the rolling-moment coefficients of a 
vertical tail performing ~ and r motions cannot be approximated by equa
tions similar to equ~tion (44) since the contribution of the complete 
end plate to the total rolling moment for these motions is unknown. 

End-Plate Effects on Rolling Motion 

In the analysis of end-plate effects, complete-end-plate stability 
derivatives were evaluated by using wing results. This treatment was 
possible because in the sideslip, yawing, and constant-lateral
acceleration motions the complete end plate acts only to uphold the 
loading in the same manner as one half of a wing does on the adjacent 
half. The complete end plate on a rolling vertical tail with, of course, 
the ertd plate rolling with the vertical tail causes a sidewash in the 
plane of the vertical tail which can result in large induced loads, 
depending on the size of the vertical t ail relative to the end plate. 
This is an end-plat e effect very different in nature from the one experi
enced in the sideslip, yawing, and constant-lateral-acceleration motions 
where the end plate does not cause a sidewash in the plane of the vertical 
tail . Clearly then the complete-end-plate "boundary can only be esta
b lished by s olving the difficult nonplanar problem. However, some idea 
of the end-plate effects may be obtained by considering the results 
shown in reference 5 for slender nonplanar tails. Reference 5 shows 
that for ratios of vertical-tail span to end-plate span greater than 
0.75 the vertical tail does not experience any large changes in loading 
due to the end plate. This fact suggests the possibility that the Mach 
number and aspect-ratio effects on the isolated rolling tail (fig. 9) 
might be applied to the slender, nonplanar, vertical-tail loadings of 
configurations with ratios of the vertical-tail span to end-plate span 
greater than 0.75 to yield good estimates (from a theoretical viewpoint) 
of the side force and yawing moment. 

Aspect-ratio and Mach number effects on the rolling isolated tail 
are apparent from figure 9. The same effects for a rolling wing, which 
may be thought of as an end plate with a zero-span vertical tail, are 
illustrated in reference 13. In both cases the magnitude of the forces 
can be predicted within 10 percent by slender theory up to leading-edge 
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sweep parameters BC of 0.5. It is not unreasonable to expect that 
the same agreement would exist for nonplanar tail arrangements as long 
as the sweep of the leading edges of the panels of the configuration 
satisfy the condition 

(B X Tangent of apex angle of panel) < 0.5 

Lateral Oscillatory Mot ion 

It has long been the practice to estimate the aerodynamic damping 
of longitudinal low-reduced-fre~uency oscillations of lifting wings from 
the damping in pitch and damping of the vertical- acceleration motion. 
An analogous approximation may obviously be used for isolated vertical 
tail surfaces oscillating laterally in yaw; that is, the lateral damping 
can be estimated from the results obtained for the yawing and constant
lateral-acceleration motions. This approximation which represents the 
first-order frequency terms is given by Cnr - Cnp' 

Figure 20 has been prepared to show the variation with Mach number 
of this damping (Cnr - Cn~ ) for half-delta tails of aspect ratios 1.0, 

1.5, and 2.0 with a complete end plate and with no end plate. The yawing 
axis for these examples is located at the tail apex . In order to illus
trate the relative magnitudes of the two terms , the Cn~ contribution 

is also plotted in figure 20. It should be kept in mind in comparing 
the no-end-plate damping with the complete-end-plate damping that Cnr 
is always greater (more ~egative) for a vertical tail with a complete end 
plate than with no end plate and that for any given aspect ratio Cnr 
will decrease (become less negative) as the Mach number is increased. 
(Note that negative values of Cnr - Cn~ indicate positive damping.) 

For the Av = 1.0 tail shown in figure 20(a), the total damping 
of the complete-end-plate vertical tail is greater than that of the no
end-plate vertical tail. This occurs even though the (-Cn~) contri-

but ion for the complete-end-plate tail is positive and therefore 
de t racts from t he total damping, Cnr + (-Cn~); whereas the (-Cn~) con-

tribution of the zero-end-plate Av = 1.0 tail is slightly negative 
over the Mach number range for which the theory is valid and hence adds 
to the damping. As the aspect ratio is increased from 1.0 to 1.5-
(fig. 20(b», the damping of the complete-end-plate vertical tail 
decreases at a more rapid rate than the damping of the no-end-plate tail 
to the extent that the total damping for the complete-end-plate Av = 1.5 
vertical tail is now slightly less than the no-end-plate tail. This 
change may be attributed to the fact that the (-Cn~) contribution to the 
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complete-end-plate tail damping increases more rapid~ (becoming more 
positive) than the (-Cn~) component of the no-end-plate tail. Figure 20(c) 

for the Av = 2.0 vertical tail shows that the damping of the complete
end-plate vertical tail continues to decrease more rapid~ than for the 
no-end-plate vertical tail so that the complete-end-plate tail damping 
becomes considerably less than that of the no-end-plate tail. 

The damping derivatives plotted in figure 20, as pointed out, are 
for an axis location at the tail apex. In order to depict the effect 
of moving the yawing axis forward from this point, damping derivatives 
have been computed for the aspect-ratio-l.5 tail with a yawing axis 
located 1 chord ahead of the tail apex (fig. 21). These computations 
have been made with the aid of the transfer formulas in table V. A 
comparison of figures 20(b) and 21 shows that the damping qualities of 
the complete-end-plate vertical tail relative to the zero-end-plate 
vertical tail were considerab~ improved by moving the yawing axis 
forward. This improvement can be accounted for by the appearance of 
the ~ derivatives in the transfer formula for Cnr . 

C0NCLUDING REMARKS 

Pressure-distribution expressions and stability derivatives have 
been derived for zero-end-plate triangular vertical tails performing 
yawing, rolling, and constant-lateral-acceleration motions by a method 
for solving supersonic-conical-flow boundary-value problems. In addi
tion, by using the yawing and constant-lateral-acceleration results, 
the damping of a vertical tail oscillating lateral~ in yaw has been 
approximated to the first order in frequency. End-plate effects have 
been discussed and suggestions made to aid in their evaluation. In 
this connection the complete-end-plate and no-end-plate stability deri
vatives for the sideslip motion obtained from other sources have been 
considered. 

The pressure-distribution expressions and stability derivatives 
contained in this report are valid for a range of Mach numbers for which 
the leading edge is subsonic and the trailing edge supersonic. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., August 10, 1954. 
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APPENDJX A 

DEVELOPMENT OF E'VATIONS RELATING THE v-VELOCITY 'IQ THE DISTRIBUTION 

FUNCTION f ( cr ) IN THE y = 0 PLANE 

Equation (8) gives the expression for the velocity potential every
where in space resulting from a distribution of doublets in the xz-plane 
with the strength of each doublet in this distribution being governed by 
the doublet- strength f unction A(x,z). The derivative of this velocity 
potential with respect to any one of the coordinates x, y, or z will 
give the perturbation velocity in that direction. Of primary interest 
herein is the v-velocity, or the y-derivative of this potential, that 
is, 

v(x,y,z) = 
0¢n(x,y,z) 

cry 

for points on the xz-plane. Brown and Adams in reference 13 have con
structed the velocity potential in space of a distribution of doub l ets 
by use of the following procedure. First, by using equations (8) and 
(18), 'the potential of a line of doublets in the xz-plane at an angle 
tan-lcr to the x-axis is determined. This potential is given by 

¢ - -

where 

2J32y Vx2 - B2(y2 + z2) 

2 
(1 - B2( 2 ) 

r = -:=====-;:::========== 
'11 - B2cr2 Vx2 - B2 (y2 + z2) 

The velocity potential of a distribution of line doublets in the xz-plane, 
on the vertical tail, with strengths governed by the distribution func
tion f(cr) may then be written as 

¢ = I C 
f ( cr ) ¢L dcr 

o 

where tan- l C = E, the apex angle of the vertical tail. 

I 
I 
I 
I 

I 
I 
J 
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Substituting equation (A2) into equation (A3) and differentiating 
with respect to y yields the following equation for the v-velocity 
as ~y/x approaches zero: 

! = 
3Bf( cr) (1 - B2ae )coth-l~ 
--~~-------------= + x 

(1 _ B2cr2)5/2 

(A4) 

The singularity which occurs in the term of equation (A2) when 
)'2 - 1 

Y is set equal to zero has been accounted for in equation (A4) (see 
ref. 13). 

By taking the first and second derivatives of equation (A4) with 
respect to 9, two other useful relations are obtained. They are given 
in the appendix of reference 13 as 

(A5) 

.---- -- - --.----.-- - -.- --- - - - -------
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and 

B3f (rr ) () 
----~ d Brr + 
(Brr - Be )4 

(A6) 

The factor multiplying the f" (e) term of the expression for 

as it appears in reference 13 is slightly in error and has been corrected 
in equation (A6). 

Considering equations (5) and (7)) it is evident that equation (A6 ) 
must be zero for both the rolling and yawing cases. This equation has 
already been satisfied by f(e) (eq . (17))) since equation (A6) is in 
essence the integral equation which was inverted to obtain the general 
pressure expression from which f(e) was derived (see ref. 15). 

- -----
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y. = 1: IBC 
x B 0 

APPENDIX B 

INTEGRATIONS TO OBTAIN v/x 

expr-ession for v/x is, for 8 approaching 0 

G) 

CD 
2(MBa + NBC)/r-B-a(-B-C---B-and(Ba) + 

(1 - B2( 2 )2 J 

NACA TN 3240 

(see eQ. (19 )), 

@ 
(MBa + NBcdr-Ba-(-B-C--Ba- )(l - B2ae )2..jl _ B2e2d(Bcr) 

2(MB8 + NBC)/B8(BC -

B21') 

(1 - B2( 2 )2(Ba _ B8)2 

(Bl) 

This expression has been broken into parts as indicated by the circled 
numbers with the third part being broken into two additional parts ~ 
and ® because of the singularity in the integrand. Since ® and ® 
are elementary integrations similar to those found in most integral 
tables (see ref. 16), only ~ is dealt with in detail. 
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Performing the integrations ~ and ~ and combining the results yields 

Vl - B2e 2 { 2(MBe + N)..jB9 (BC 

B B~ 

- B9) 

rc [!;1( -7B9 BC - 2 + 10B8 - BC) + N(4 - 7BC + 4B9 - B8BC j] 
~~----------------------------~-------------= + 

8 Vi - BC (1 - B8) 

rc ~(-2 - lOBe + BC - 7B9BC) + N(-4 + 4Be 

8 Vi + BC (1 + Be ) 

- 7BC + BaBC)] } 
(B2) 

where N = NBC. The first term of expression (B2) exactly cancels ~, 
and the total of @' 0, and ® for 8 ~O is 

1L~(2 + BC) - N(4 - 7BC) + M(-2 + BC) - N(4 + 7BCZl (B3) 

8B l "1 -BC 11 + BC J 
The following two integrals comprising ~ remain to be evaluated: 

(B4) 

_3jBC N03a(BC - Ba)tanh-1Vl - B2a~(Ba) 
13 0 (1 _ B2a2)5/2 

It should be mentioned at this point that the integrands of expres
sions (B4) and (B5) are finite and continuous over the interval 0 to 
BC and therefore must yield a finite quantity when integrated. 
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The integration of expression (B4 ) by part s gives 

f--_M_/B_a_(_B_C _-_B_a_h_anh_-_l_V"_l_-_B_2_a~BoC + ~~OBC 
B(l - B2( 2 )3/2 J t 

(BC - 2Ba)tanh- 1 Vl - B2a2d(Ba) 

2(1 - B2(2)3/2VBa(BC - Ba) 

(B6) 

Integration of expression (B5) by parts gives 

_ I C 
_NB_C _t_anh_-_l_V:_l_-_B_2_a_2_d (_B_c1_) _ 

o 2BBa(l - B2(2)3/2;Ba(BC - Bo) 

rc N/Bo( BC - Bo )d(Bo) 
2 o BB2a2(1 - B2cr2 ) 

L __ _ 

Combining expressions (B6) and (B7) results in 

JCBC (MBa + N)vBa(BC - Bc1)d(Ba) + 

o BB2cr2(1 _ B2cr2 )2 

The first term of equation (B8) , when evaluated at the limits, is either 

zero or infinity . The integrand of ~ as was noted is finite over the 

1 
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whole interval; therefore) infinities introduced as a result of parts 
integrations must) in the end) cancel themselves. 

The second term of equation (B8) is an elementary integration which 
when evaluated (with infinities neglected) yields 

!s..j?M + 4N - 3MBC - 5NBC _ -4N - 5NBC + 2M + 3MBC) (B9 ) 

8B\ (1 - BC (1 + BC 

It is now convenient in integrating the third term in equation (B8) 
to introduce the variable substitution 

Bcr 
~ + k 

1 + k~ 

so that BC and k are related by 

BC 

(B10) 

(Bll) 

The third term in equation (B8) when transformed by equation (B10) may 
be written in the form 

(B12) 

where 

_ J 
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k 

I7 =-1 
-k 

The integrals II, I 5, and I7 are elementary and m~ be determined by 

integration by parts. If the multiplicative factor before the summation 
sign in equation (B12) is neglected until all the components are totaled, 
these three components become 

(B13) 

Consider the integration required for I2, that is, 

(B14) 
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Let ~ = k sin 8; then expression (B14) becomes 

(B15) 

It can be shown that 

(B16) 

This fact allows expression (B15) to be rewritten as 

(B17 ) 

-1(/2 

The integrand of the second integral is an odd function; therefore, 
the integration between -1(/2 and 1(/2 of this function is zero. Since 
the integrand of the first integral is an even function in 9, this 
integration may be expressed as 

(B18) 
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After the inverse hyperbolic tangent is replaced by its logarithmic 
equivalent and the additional variable transformation 

(B19) 

is introduced, expression (B18) becomes 

lo~ 
1 + sin v dv 

(B20) 
1 - sin v.l 2 ) 

Vsin v - (1 - k 2 

It is convenient to let 

then 

Making these substitutions in expression (B20) gives 

rc/2 

f 1 + sin v dv 
loge 

.. 1 - sin v.J 2 2 
1\ VSin v - sin A 

(B21) 

which is exactly in the form of the fourth integration formula of 
table 335 in reference 17. This formula gives the va lue of expr es
sion (B2l) as rcK'(k). The integration of I2 may now be expressed as 

(B22) 

Using the same integrating procedure for I3' I4, and I 6 as just 
outlined for I2 and the integration formulas in tables 335 and 336 
of reference 17 leads to 
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Ii, + I 6 = .li( 1 - k 2 )k2rr {- (1-k2 ), Vl-k2,~} - li( 1 - k2 ) k""K , (k) -

Hk2n [i + K' (k) - E' (kU 

1 - k 2 

where II {- (1-k2 ), ll-k2,~} is a complete elliptic integral of the 

third kind wi th modulus Vl - k2 and parameter - (1 - k2 ). 

Summing all the various parts contributing to the third term in 
equation (B8), including the common factor, gives the following 
expression: 

B(l -

37 

rtE' (k) ~k2N + Mk.(l + k2 )l _________ U_ + ik2,r (1 _ 

1 - k2 
(B23) 

The addition of expression (B23) to expression (B9) completely 

evaluates (I). Expression (B3) gives the evaluation of ~, ~, and 
~. Before writing the total integration, the sum of expressions (B23), 
(B9), and (B3), it is desirable to combine expressions (B3) and (B9), 
which are functions of BC, and transform them by equation (Bll) to 
functions of k. This procedure yields 

rt (i&.2 + Mk3) 
(B24) 
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The total integration may now be written in terms of the param
eter k as 

(B25) 

By use of the process commonly known as interchanging the amplitude and 
parameter (see pp. 133 to 141 of ref. 21) the elliptic integral of the 
third kind appearing in e quation (B25) is found to be e quivalent t o 

E' (k) This operation permits the expression for v/x 

assume the form given in e quation (20) in the body of the report. 

J 

- I 
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TABLE 1. - LATERAL STABILITY DERIVATIVES FOR ZERO-END-PLATE 

TRIANGULAR VERTICAL TAILS 

Derivative Formula 

B(CYp)O ~Mp' ~ ~) ~AvB AvB ~ + 4 + 2AvB 

B(Clp)O 
~AvB (2BC ~Mp , + 5Np , + 3BCNp') 

16 AyB 2 2 AvB 

(CIlp) 0 ~E C 1) f 1 3BC ~ -~AvB AvB Mp 32BC + 16AvB + Np 32BC + 4AvB + 8Av2B2 

(Cyr ) 0 
~Mr' N' BCN ') ~AvB _ + -.!:.- + _r_ 

AvB 4 4 2AvB 

(Clr)O 
~AvB f!!!i~Mr ' + 5Nr ' + 3BCNr ') 

16 AvB 2 2 AyB 

(Cnr)o/B ~ E 'V 1) f 1 3BC ~ -~AvB AyB Mr 32BC + 16AvB + Nr 32BC + 4AvB + 8Av'132 

-J{ ..;;;;;B £ - h - B2c2 

B(Cy~)O E' (k){B6 

-~ p;.:;B J - Vl - B2c2 

B(Cl~)O 
2E' (k)VBC 

~VBcJl- Vl - B2C2CAvB ) 
(Cn~)o -- + BC 

3B2c~' (k)..;t::;B 2 

~- --- ---
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TABLE 1.- LATERAL STABILITY DERIVATIVES FCR ZERO- END- PLATE 

TRIANGULAR VERTICAL TAILS - Concluded 

DeriYatiYe Formula 

ltAyB - B Mr -- + -- + Nr - - + -- + -- -{fj 
f r '( 5 1) '( 5 1 3

BC
) 

AyB 32BC 16AyB 32BC 4AyB 8Ay2B2 

1~'(5 l ~ ,( 5 1 3BC~ 
B l 328C + 16AyB) + Nr 32BC + 4AyB + 8Ay2B2) -

-7tAyB~ LMr' + 5N ' + 6BCNr ' _ 
32 rA;B E r AyB 

ltAYB~EM' 5N' 6BCNr ' -- r + r +---
3282 AyB AyB 

V2~ - 11 - B2c
2(....:L. + _ 6 )J 

E' (k) ~2c2 BCAYB ~ 
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TABLE II. - LATERAL STABILITY DERIVATIVES FeR ZERO- END- PLATE 

HALF- DELTA VERTICAL TAILS 

Derivative Formula 

B(Cyp)0 lt~C(Mp' + 2Np' ) 

(C"p) 0 
3(, ') - ltaMp +2Np 

B(Clp)O "~C (~ Mp' + Np') 

(CYr)o ltBC(Mr ' + 2Nr ' ) 
2 

(Cnr) 0 
- 3>tB(, , ) 
- 8- Mr + 2Nr 

(Clr)O ltBC~ M' N ,) 2 - r + r 

B(Cy~)O ~~(l - Vl - B2c2 ) 
E'(k) 

(Cn~)o _2lt_~(1 _ ./1 - B2c2 ) 
3BCE' (k) 

B(CI~)O ~(2(1 - (1 - B2c2 ) 
2E'(k) 

-". &, · ",,' -4 ~(, - " - ''c'l 
2 3B2c~' (k) 

(Cy~)O 
BClt t ' , ~(l - ';1 - B2c

2 ~ - Mr + 2Nr - 2 
2B2 B2c~'(k) 

ltB ~ Mr' + 3Nr ' _ 2 Ml - n- B2c
2 ~ + 

4 2 B2c2E ' (k) 

(Cn~)O ~~ Mr' + 3Nr ' _ 3 /2(1 - Vl - B2c2~ 
4B 2 B2c~' (k) 

-BClt ~, a' ~(l - 11 - B2c
2 ~ - 2Nr + Mr - 3 -

4 2B2c~' (k) 

(CI~)o 

BClt ~, 5 , ~(l - h - B2c2~ -2Nr +-Mr -2 
4B2 4 B2c2E' (k) 
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Derivative 

B(CYI3)C 

(Cn13)c 

(Cyr)c 

(Cnr)c 

(Cy~)C 

(Cnp)c. 

l_ 

NACA TN 3240 

TABLE III.- LATERAL STABILITY DERIVATIVES FOR COMP~END-PLATE 

TRIANGULAR VERTICAL TAIUl 

~ormulas obtained from reference 20J 

Formula 

- 2BAv(1 - R)1/2 (If. -~ {l::R2) 2" + sin + R 1 - R 
E' (BC)(l + R)3/2 

4(1 - R)2 E ~~ (2 + R2)(~ + S1n-lR) + R(4 - R2) 1 _ R2 

3E' (BC)(l _ R2)5/2 

4G(BC)(1 - R)2&~ + sin-lR) + R(5 _ 2R.2 d1 _ R2] 

3(1 - R2)5/2 

-BG(BC)(l - R)3 ~ ) ~ Il="R2 ] 3(2R.2 + 3)(~ + sin-lR + R(4 - l2R.2 + 23) 1 - R2 
3BC(1 _ R2 )7/2 

4(1 - R)2 {I!: -E'(llC)G(Bel] &- -"') ( 2)~J 3 - + sin + R 5 - 2R - R -
3(1 _ R2)5/2 B2E' (BC) 2 

G(BC)~(~ + sin-lR) + R(5 - 2R2)V1 - R~ + 

E' (00) ~ + R2)(~ + ,'n-"') + R(4 - .2),/1 - R~} 

- (1 - R)3
2 

(Ii -E' ~llC)G(llC jJ ~(,.2 + 3 )(~ + ,'n-"') + R(404 _ 
3(1 _ R2)7! BC BE (BC) 

12R2 + 23)(" - R>] + B +J + .'n-"')~~B~/ - G(Be)(,.2 + 3j + 

~~4-5R2+18 4 j}) R - R2 E' (BC ) - G(Bc)(4R - l.ffi2 + 23) 

. I 

I 

j 
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TABLE IV.- LATERAL STABILITY DERIVATIVES FOR COMPLEl'E-END-PLATE 

HALF-DELTA VERTICAL TAILS* 

Derivative Formula 

B(CYf3)C 
-2n:BC 
E 1 (BC) 

(Cn /3)C 
41( 

3Et (BC) 

(CYr)C 2n:G(BC) 

(Cnr)c 
-31(BG(BC) 

2BC 

(CY~)c 2n: EG(BC) + 1 J + 2n: E(BC) + 2 ~ 
B2 E t (BC ) 3E t (BC ) 

(Cn~)c -- -G(BC) + - - -G(BC) + - 3< E l J 3<B E 2 U 
2BBC Et (BC) 2BC 3Et (Be) 

*(Clf3)C can be obtained from reference 9· 

45 
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TABLE V" - TRANSFER FORMULAS 

Stability derivatives in a 
body system of axes with 

origin at tail apex 

CYI3 

Cy 
P 

Cl 
P 

Cy 
r 

Cz r 

Cy" 
f3 

Formulas for transfer to a body system of 
axes with origin displaced distances x 

(positive forward) and zo (positive 0 

downward) from tail apex 

CYf3 

Cy 
P 

z 
C In + -.2. Cy 

J:' b v P 

Cy" 
13 

xo 
Cnj3" - - Cy" 

bv f3 

zo 
Clj3" + - Cy-bv j3 

1 
I 
I 
I 
I 

- I 

~ I 

I 
I 



Z,w 

r and yawing moment 

/ \ 
/ \ 

\ 

y , V, and side force 

rolling moment 

x,u 

Figure 1.- Sketch of the vertical tail showing the axes system used in L-85624 
the ana~sis and the positive directions of the forces, moments, 
velocities, and angles. Dashed lines on vertical tail indicate that 
the trailing edge may be swept forward or backward. 
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NACA TN 3240 

z 

y 

End plate 

Vertical tail 

x 

Figure 2.- Half-delta tail mounted on a complete end plate. L- 85625 
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r and yawing moment 

y and side force 

x 

p and rolling moment 

z 

(a) Positive direction of forces and moments in the stability axes 
system ((1, = 00 ). 

z 

• y 

x 

(b) Axes system to which force and moment derivatives may be transferred 
by use of table V. 

Figure 3.- Systems of axes. 
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Figure 4. - Variation of the parameters Nr'BC, 

l/E'(k) with BC. These curves are of use 
plate stability derivatives given in tables 
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Mr', Np ', Mp', and 
in computing the no-end
I and II. 
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Figure 14.- Variation of the parameters 1/E 1 (BC) and G(BC ) with BC . 
These curves are of use in computing the complete- end- plate stability 
derivatives given in tables III and IV. 
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