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TECHNICAL NOTE 3251

A THEORETICAL INVESTIGATION OF THE SHORT-PERIOD DYNAMIC
LONGTTUDINAL STABILITY OF ATRPIANE CONFIGURATIONS
HAVING ELASTIC WINGS OF 0° TO 60° SWEEPBACK

By Milton D. MeLaughlin
SUMMARY -

A theoretical investigation has been made to determine the effects
of an elastic wing on the dynamic longitudinal stability of thin-wing
alrplane configurations. In order to investigate the effects of various
important perameters, the configurations were assumed to vary in wing
sweep angle from 0° to 600, in center-of-gravity location from 25 per-
cent mean aerodynamic chord to 45 percent mean aerodynamic chord, and
in ratio of wing mass to airplane mass from 0.15 to 0.50.

Three degrees of freedom were assumed -~ freedom in vertical trans-
lation of the rigld airplane, pitching rotation of the rigid airplane,
and displacement of the wing tip due to bending of the elastic wing.

The elestic wing mode was determined from consideration both of the
deflection under static loading and the deflection in the primsry ground-
vibration mode and was represented by a combination of bending in the
primary mode and the associated torsion. Lagrange's method was used

to obtain an equation of motion for each degree of freedom. The char-
acteristic equation of the system was solved for the period and damping

of the airplane mocde and of the wing mode. Solutions were also obtained
for three simplified airplane and wing systems: (1) the wing mode alone,
(2) the airplane under quasi-static conditions, and (3) the rigid airplane.

An analysis of the solutions showed that, for configurations having
40° to 60 sweepback, no dynamic instability due to wing flexibility was
indicated; however, the loss in static stability duvue to wing flexibility
was found to be a fairly serious problem. For configurations having no
sweepback, the wing was subject to a decrease in oscillatory stability

. for the large ratio of wing mass to airplane mass accompanied by forward

center-of-gravity locations. The quasi-static method gave results com-
parable to those of the semirigid method for sweptback wings; however,
for straight wings the quasi-static method gave poor results.
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INTRODUCTION

As a result of the trend toward the use of thin sweptback wings on
large high-speed aircraft, the effect of structural flexibility on dyna-
mic longitudinal staebility must be considered. The inclusion of flexi-
bility modes as degrees of freedom in addition to those of the rigid
airplane results in higher order characteristic equations. As the order
of the characteristic equation increases, the amount and difficulty of
work involved in obtaining the solution increases. The additional work
is, of course, unjustified if the results do not differ appreciably from
the results obtained by using less rigorous methods.

The present paper presents a theoretical investigation of the
effects of wing flexibility on the dymamic longitudinal stability of
airplanes by including a degree of freedom for the elastic wing. The
results of the higher order equations are compared with the results of
less rigorous methods. In order to investigate the effects of various
important parsmeters, the configurations are assumed to vaery in wing
sweep angle from 0° to 600, in center-of-gravity locations from 25 per-
cent mean aerodynamic chord to 45 percent mean aerodynemic chord, and
in ratio of wing mass to airplane mass from 0.15 to 0.50. A single
value of wing bending and of torsional stiffness typical of those pos-
sessed by an actual airplane is used in the analysis.

The equations of motion are derived in the appendix by using
Lagrange's method. The resulting semirigid three-degree-of-freedom
equations of motion are solved at various flight conditions for the
period and demping of the two modes of oscillation, the first involving
primarily wing motion and the second, airplane motion. These solutions
are compared with solutions obtained for three simplified airplene and
wing systems: (1) the wing mode alone, (2) the airplene under quasi-
static conditions (flexible inertia and damping terms assumed to be
zero, and (3) the rigid airplane.

SYMBOLS

A diagram showing the system of axes and positive directions of
forces and moments on the airplane is presented in figure 1.

(b cos.A)2
A aspect ratio, — s
Agn generalized nondimensional mass coupling term between 2 and

h degrees of freedom, aZh/pSE
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Anh

Agh

a7h

8hh

8gh

generalized nondimensional mess term of flexible wing mode
between elastic wing and h degree of freedom, a3 /pSC

generalized nondimensional mass coupling term between 6 and
h degrees of freedom, agy/pST2

generalized mass coupling term between Z and h degrees of
b,/2
freedom, 2\/P [#w £,(y) - Sy f¢(y:]dyo, slugs
0

generalized mass term of flexible wing mode between elastic
wing and h degree of freedom,

b,/2
2f0 {mw' F.01)% - o8y £, (0)g(y) + T’ [f¢(y82}dyo,
slugs

generalized mass coupling term between 6 and h degrees of
freedom,

2 fo o/ [-5v'2,0) + I,'2g(y) - my'eg,(v) + 8y'etg(y) |avo,
slug-ft
span (along elastic axis), £t
force coefficient due to elastic wing deflection, Fh/qS
normal-force coefficient, N/gS

trim normal-force coefficient, W/gS

pitching-moment coefficient ebout Y-axis, M/qSE
mean aerodynamic chord, £t
chord, ft

sect?on pitching-moment coefficient about wing elastic axis,
m /qcc

section normsl-force coefficient, n/qc -




£,(¥)

£g(y)

GJ
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bending stiffness, 1lb-in.Z2

kinetic energy, £t-1b

potential energy, ft-1b

longitudinal distance frcom airplane center of gravity to wing
elastic axis (function of spanwise location), positive
forward, ft

force, 1b

section force, 1b/ft

spanwise bending mode shape along wing elastic axis

spanwise twisting mode shape about wing elastic axis per unit
tip bending deflection, radiams/ft

torsional stiffness, 1b-in.2
acceleration due to gravity, ft/sec?
wing-tip deflection, h/c, chords

wing-tip deflection of elastic axis due to bending, positive
downward, ft )

moment of inertia about Y-axis, myx2, mpx2, or mx2,
slug-ft2 . :

section moment of inertia, m,'x2, slug-fte/ft

radius of gyration @bout Y-axis, chords

reduced engular frequency, of/V,

longitudinal distance from gquarter chord of wing mean aero-
dynamic chord to quarter chord of tail mean aerodynamic
chord, ft

pitching moment about Y-axis, ft-1b

section pitching moment sbout Y-axis, f£t-1b/ft

mass, slugs

section pitching moment sbout elastic axis, ft-1b/ft
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=

section mass, slugs/ft

normal force, positive downward, 1b
section normal force, 1b/ft
generalized coordinate

dynamic pressure, lb/sq ft; also, pitching angular velocity,
radians/sec

ratio of local chord to root chord, -c/cr

wing plan-form area, sq ft

section mass moment about elastic axis, my'x, slug-ft/ft
mess moment, myX, mpX, or myX, slug-ft/ft

time to deamp to 0.1 emplitude, sec

time, sec

velocity, fps

weight, 1b

longitudinal exis of displacement fixed at airplane center
of gravity

longitudinal displacement, positivé forward, ft
lateral axis of reference fixed at alrplane center of gravity

lateral or spanwise displacement, ft

vertical displacement of airplane center of gravity, positive
downward, ft

vertical wing deflection of elastlic axis due to wing
bending, positive downward, ft

angle of attack, positive wing leading edge'up, radians
elevator deflection, positive tralling edge down, radians

dimensionless spanwise coordinete, —XE’ fraction of semispan

b/
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Yo

bo/2

dimensionless spanwise coordinate, , fraction of exposed

semispan

angle of pitch about airplane center of gravity, positive
airplane nose up, radians

sweep angle of elastic axis of wing, deg
nondimensional airplane mass, my/pSc
mass density of air, slugs/cu £t

angle of twist of eirfoil in plane perpendicular to elastic
axis, positive wing leading edge up, radians

angular frequency, radians/sec

®
Subscripts:

A airplane

av average

cg center of gravity

T fuselage

h flexible-wing degree of freedom

i intersection of elastic axis with fuselage
max maximum

o) exposed wing

Q generalized coordinate

T wing root

t tail

W wing

Z vertical degree of freedom

G} pitching degree of freedom
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Dots are used to indicate differentiation with respect to time;

. de
for example, 0 = —.
? at
The subscripts «, é, h, h, g, H, and 8% 1indicate differentia-
dc
tion with respect to the subscript; for example, CN@ = aa;.

BASTS OF ANALYSIS

Semirigid Method

A flexible structure may be considered to have an infinite nunber
of degrees of freedom because it can deflect an infinite number of ways
depending on the loading. However, in order to make the solution for
the motion of the flexible airplane as simple as possible, the number
of degrees of freedom and consequently the number of equations of motion
should be kept to a minimm. This method of approach is presented in
reference 1 and is called the semirigid concept. In this approach the
mode of flexure under load is always the same regardless of the loading.

Three degrees of freedom were assumed for the configuration studied
herein - freedom in vertical translation of the rigid airplane Z,
pitching rotation of the rigid airplane 6, and displacement of the wing
tip due to bending of the elastic wing h - and an equetion of motion
must be derived for each of these three degrees of freedom. A simplified
way of deriving these equations is by Legrange's method which is described
in reference 2. ILagrange's method consists in writing en expression for
the total kinetic energy and the total potential energy of the system.
The operations indicated by the general Lagrangian equation are then
performed in the expression for total energy, and an equation of motion
for each degree of freedom ls obtained. The application of this method
to a configuration with a flexible wing is presented in reference 3.

For the convenience of those who are not familiar with Lagrange's method,
a derivation of the equations of motion used in this paper is presented
in the appendix.

The flexible wing mode shape was assumed to consist of bending £,(y),
combined with twisting per unit bending deflection at the wing tip f¢ ).
When the wing is flexed in the degree of freedom characterized by the
wing-tip bending deflection h, the bending deflection at station y is
z and the torsional deflection is @#. No motion of the fuselage was
consldered to be gssoclated with the wing deflection mode. In practice,
some fuselage rotation or bending would occur in conjunction with the
wing mode and should be considered when making a specific analysis.
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In order to use the equations of motion, the characteristics of a
wing mode which satisfactorily represents the flexing configuration must
be determined, and the conditions under which the wing flexes must be
specified. The wing was assumed to be a flexible cantilever beam which
was anchored to the fuselage In a plane through the point of intersection
of the elastic axis and the fuselage and perpendicular to the elastic
axis. 'The basic mode of oscillation was considered to be a combination
of primary bending in a vertical plane containing the elastic axis and
the associated twisting about the elastic axis. The shape of the bending
and twisting modes could be expected to vary somewhat with the span load
distribution on the wing. At zero frequency the loading is static, the
result of steady additional 1ift forces. As the frequency increases
toward the wing natural frequency, the wing mode shape would be expected
to approach the mode shape corresponding to an elastic vibration of the
wing on the ground. Simple beam theory was used to obtain the static
bending mode shape and the twisting mode shape under steady load. The
moment of the additional 1ift forces about the wing elastic axis was
used in determining the twisting mode shape and the amount of twist per
unit tip deflection. The twisting mode was determined solely for static
loading inasmuch as the twist occurring in an elastic vibration of the
wing appeared. to be negligible. This observation resulted from the fact
that, for the assumed wing mass distribution, the wing was almost per-
fectly mass balanced about the elastic axis.

The bending mode shape of the wing oscillating at the ground natural
frequency was obtained with-the ald of reference 4. The two calculated
bending modes and the calculated twisting mode are presented in figure 2.
The calculated bending modes closely epproximate each other despite the
large variation in distribution between the static and dynamic loading.

A parabolic variation of spanwise bending f£,(y) = ﬁbe and a linear

of —
variation of spanwise twist f¢(y) = S% N, &re also presented in fig-
ure 2. The agreement between the calculated mode shapes and these sim-
plified approximating curves i1s seen to be very good; therefore, the
gimplified curves were used to represent the mode shapes.

The values of wing bending and torsional stiffness and the wing
structural weight distribution for the assumed alrplane configurations
were based on those possessed by an actuel swept-wing bomber airplane
and. are presented in figure 3. The bending and torsional stiffnesses

vary along the span in accordance with rch, the fourth power of the
ratio of the local chord to the root chord, as suggested in reference 5.
This assumption is In good agreement with the structural characteristics
of the actusl airplane. The actuel airplane had a ratio of wing struc-
tural mess to airplane mass of 0.15. The higher values of the ratio of
wing mass to airplane mass of 0.33 and 0.50 as presented in figure 3
approximate some typical wing-airplene mass ratios for wings having
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additional masses attached to them such as nacelles and external or
internal stores. However, in these cases it should be noted that the
assumed mass distribution does not necessarily correspond to an airplane
having such additional masses asttached to it.

The bending mode shape was used to calculate the ground natural
frequency of the wing. In order to obtain a range of natural frequencies
of the wing, the wing stiffness was assumed to remain constant and the
mass of the wing was assumed to increase so that the airplane mass also
increased. Frequencies were calculated for ratios of wing mass to air-
Pplane mass of 0.15, 0.33, and 0.50 and are presented in table I. |

Additional configurations used in the analysis were obtained by
modifying a basic configuration. The variations were obtained by holding
the wing area and the span along the elastic axis constant as the wing
panels were swept about a vertical axis which was located at the juncture
of the wing elastic axis and the airplane center line. As the wing was
varied in sweep, the wing root was moved forward or rearward so as to
keep the tail length 14 constant. Configurations having sweep angles
of 0°, 40°, and 60° measured with respect to the elastic axis were assumed
and are shown in figure 4. Because of the large aspect ratio, only a
small difference in angle of sweep between the elastic axis and the
quarter-chord line exists. In view of this small difference and for pur-
poses of convenience, the angles of sweepback used herein refer to the
sweep of the elastic axis which is the 38-percent-chord line. The fuse-
lage and teil dimensions were held constant. The airplane center of
gravity was assumed to be located at 25, 35, and 45 percent of the wing
mean aerodynamic chord. "

The inertia terms and the aserodynamic damping end restoring-spring
parameters were calculated for the configurations and are presented in
table II. The airplane 1ift and pitching-moment characteristics were
calculated by using references 6 and 7. Strip theory uncorrected for
compressibllity effects was used in calculating the force parameters.

In the computations of the generalized mass terms, some small terms were
neglected. The equations of motion were solved for period and demping,
and solutions for each configuration were obtained at three or more
dynamic pressures. Also, trensient solutions for a configuration at

two altitudes were presenmted in order to show the relation of the wing
oscillation to the airplane oscillation. Because of the variations with
altitude of the relative density of the airplane and the generalized
messes, the solutions of the characteristic equation for values- of dyna-
mic pressure at one altitude are not appliceble for the same values of
dynamlic pressure at other altitudes.
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Other Methods

In order to determine whether more simple methods could be used to
predict the dynamic characteristics of the flexible airplane and wing,
results were obtained by the quasi-static method and the wing-mode-alone
method. The quasi-static method consisted in eliminating all the inertia
and damping terms pertaining to the flexible mode (terms containing D2H
and DH) fram the equations of motion and solving the resulting second-
order characteristic equation for period and damping. In effect, the
results of this method are comparable to those of the rigid-airplane
method except that the effects of flexibility on the aerodynamic param-
eters are accounted for at any given dynamic pressure. It should be
noted that the rigid-airplane solutions are the same as the solutions
of the semirigid airplane at zero dynamic pressure. The simple wing-
mode-alone method consists in neglecting the first two equations of
motion and solving the third equation of motion after neglecting the
coupling terms (terms containing Da, a, Dee, and DO) that appear in
the third equation. It should be noted at this point that the condi-
tions for the wing-mode-alone method do not simulate the conditions used
in flutter work. The consideration of a separate torsionsl mode (as in
flutter work) is beyond the scope of the problem dealt with in this paper.
The frequencies of oscillation of the modes are low enough so that con-
sideration of unsteady-lift effects is unwarranted. The wing-mode-alone
method was evolved in order to understand better the effects of short-
period coupling in the wing mode. This method, therefore, represents
the wing motion that would occur if the alrplane center of gravity was
constrained to move In a straight line at all times without pitching.

RESULTS AND DISCUSSION

The equations of motion were solved for the damping and frequency
of the flexible wing mode and of the airplane mode for various dynamic
pressures at a standard altitude of 8,000 feet. The solutions for ratios
of wing mass to airplane mass of 0.15, 0.33, and 0.50 and for center-of-
gravity locations of 25, 35, and 45 percent of the wing mean aerodynamic
chord at zero sweep angle are presented in figure 5. TFor sweep angles
of 40° and 60° the solutions did not chenge sppreciably with increasing
mass ratio. Therefore the resulis for the mass ratio of 0.33 only and
with center-of-gravity locations of 25, 35, and 45 percent of the mean
aerodynamic chord are presented in figure 6. The wing characteristics
covered in parts (a) of figures 5 and 6 are expressed in terms of actual
time; whereas the airpleme characteristics covered in parts (b) of these
figures are expressed in terms of nondimensional time. The results are
presented in different forms inasmich as each form is believed to enable
the best interpretation of the data. The wing ground natural frequency
is shown in the plots of wing frequency agalnst dynamic pressure in
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figures 5(a) and 6(a). The wing-mode-alone solutions and the solutions
for the quasi-static conditions of the airplene mode are also shown in
these figures.

The results for the airplane mode are presented as a function of
the period and of the reciprocal of the time to damp to 0.1 amplitude
where time is expressed nondimensionally as units of distance traveled
measured in fuselage lengths. Fuselage length, rather than the usual
unit of wing chord, was used because the fuselage length remained con-
stant for all configurations whereas the wing mean aerodynamic chord
varied with the sweepback angle. Solutions for the rigid airplane con-
figuration presented in this form are independent of forwerd speed. At
zero dynamic pressure flexibility effects must vanish, and the solution
for the flexible airplane mode is identical to that of the rigid con-
figuration. Therefore, the deviation of the solutions from the values
for the configurations at zero dynamic pressure represents the effect
of flexibility at any particular dynamic pressure at an altitude of
8,000 feet.

Before examining the data, it i1s well to note a relation between
the wing mode and the airplane mode. By expanding the nondimensional
characteristic equation, the sum of the damping of the airplane mode
and the wing mode for a particular configurstion can be shown to remain
constant with variation in dynamic pressure. Any changes in wing
damping, therefore, result in opposite changes in airplane damping.

Semirigid Method

The solutions for the configurations having zero sweep obtained by
the semirigid method are discussed first. The effects of variation of
wing mass and center-of-gravity location are shown for zero sweep in
figure 5. In the lower half of figure 5(a), the damping curves do not
extend to zero dymemic pressure. In the .region of zero dynamic pressure,
the damping curves would approach infinity because of the assumed absence
of structural damping.

The effective damping of the wing oscillation decreases as the mass
of the wing increases. This effect is shown in the damping curves by
an increase in time to damp to 0.1 amplitude and also in the frequency
curves by a tendency for the frequency to become constant at higher
dynemi¢ pressures. The damping for the wings of greater mass also shows
an appreciable variation with center-of-gravity location at the highest
dynamic pressures. For the center of gravity at the most forwerd loca-
tion (0.25¢), the oscillation tends to become less stable with increase
in dynemic pressure. This effect is indicated by an increase in time to
damp to 0.1 amplitude while the frequency becomes approximately constant.
Solutions are presented at dynamic pressures which would be above the
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critical Mach number of a configuration in order to gain a general idea
of the stability trends. Although the solutions at those dynamic pres-
sures are meaningless for the present configuration, they would apply
at lower dynamic pressures for a configuration with a wing of greater
flexibility.

Some effects of the airplane mode of oscillation on the wing mode
may be seen from a comparison of the wing-alone solutions with the semi-
rigid solutions for the wing. To analyze these effects better the fre-
quencies of the ailrplane mode have been put in dimensional form and are
plotted in figure 5(a) together with the wing frequencies. The airplane
motion generally decreases the damping of the wing oscillation especially
for the mw/mA 0.50 configurastion at the higher dynamic pressures.
The frequency of the airplamne oscillation approaches the natural fre-
quency of the wing osclllation at these dynamic pressures. The tempo-
rary increase in wing frequency above the ground natural frequency of
the wing at low dynamic pressures also may be attributed to the effect
of the airplane oscillation on the wing oscillation. This conclusion
is substantiated by the lack of increase in frequency for the wing-mode-
alone method. As is well-known, damping in a single-degree-of-freedom
system, whether positive or negative, will decrease the frequency from
that of the system with no damping.

For the airplane mode (fig. 5(b)), the damping shows a slight gen-
eral decrease with increase in wing mass and, hence, alrplane mass. For
the light configuration my/mpy = 0.15 with the center of gravity located
at 45 percent mean serodynamic chord, the damping is sufficient to cause
the airplame oscillation to become critically over damped. The damping
of the airplane oscillation increases slightly with increase in dynamic
pressure. Generally, the desmping of the alrplane mode for configura-
tions having zero sweep angle is good.

At zero sweep angle the effects on the local incidence angle of
wing flexibility are due to the wing twisting - the bending deflections
have no effect. As the sweep angle of a wing increases, the effect of
twist on the local incidence angle gradually decreases and the bending
component of the flexible mode begins to exert a powerful effect. At
39 of sweep for the assumed basic wing, the effect of twist on the local
wing incidence is neutralized by the effect of bending; therefore, the
wing is aeroisoclinic. Above 3° of sweep the bending effects are
predominaent.

An examination of figure 6(a) shows that the wing freqpency increases
with increasing dynamic pressure for wings of 40° and 60° sweepback. The
trend of the increase in wing frequency above the wing ground natural fre-
quency at low dynamic pressures is the same as for the zero sweep angles;
for the 40° and 60° swept wings, however, the wing frequency continues to
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increase apparently as a result of increased aerodynamic restoring
moments which add to the elastic restoring moments of the wing. In gen-
eral, the data show that the wing mode is always satisfactorily demped
for the expected flight range of dynamic pressures. The damping appears
to become poorer at low dynamic pressures, but these results are pessi-
mistic because of the assumption of zero structural damping. It is also
apparent that the center-of-gravity position has no appreciable effect
on the characteristics of the wing mode. The damping is slightly less
for the 60° sweptback configuration than for the 40° sweptback configura-
tion because the lift-curve slope .is less for the 60° configuration.

The characteristics of the airplane mode for the swept-wing con-
figurations (fig. 6(b)) indicate that the static-stability considerations
completely overshadow the dynamic stability characteristics in importance.
At the lowest dynamic pressures for the most rearward center-of-gravity
location the semirigid configurations possess en oscillation similar to
that found in the rigld airplanes. With increased dynamic pressures,
this oscillation changes into two convergences as the maneuvering neutral
point approaches the center-of-gravity position being considered. With
still further increase in dynamic pressure, the maneuver point becomes
colncident with the center of gravity being conslidered, and one of the
convergences changes to a divergence. Any further increase in dynamic
pressure causes the divergence to be more severe as the maneuvering
neutral point moves farther ahead of the center of gravity. For more
forward locations of the center of gravity the same sequence occurs
except at higher dynamic pressures. This analysis is confirmed by the
date of figure T, which shows the location of the maneuvering neutral
point with dynamic pressure obtained by the quasi-static method for O°,
40°, and 60° sweepback angles.

The top part of figure 6(b) shows that when an oscillation does
exist the period increases with increasing dynamic pressure as would be
expected from the decrease in static stability with lncrease in dynamic
pressure. A comparison between the variation of wing frequency and
airplane frequency with dynamic pressure shows that these variations
are in opposite directions so that interaction between these two modes
appears to be impossible. The loss in static stablliity with increasing
dynamic pressure is caused by a forward shift in wing aserodynamic center.
There is, of course, a compensating factor in the form of decreased
wing-1lift-curve slope due to bending, but this factor is less important
than the forward shift in wing aerodynamic center.

Evaluation of Simplified Methods
Results obtained from the rigld-airplane solutions have already

been covered in the previous discussion inasmuch as the results are the
same as for the flexible airplane at zero dynamic pressure. In order
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to determine whether more simple methods could be used to predict the
dynamic characteristics of the flexible airplane and wing, resulis were
obtained by the quasi-static method and the wing-mode-alone method, and
these results are shown in figures 5 and 6.

An inspection of figure 5(b) shows that, for the unswept airplane
configuration at the highest dynamic pressures, the period and demping
can be determined with only a falr degree of accuracy by the quasi-static
method. It is noteworthy that the results of the quasi-static method do
not differ appreciaebly from the results obtained with the rigid-airplane
equations of motion. For swept-wing configurations (fig. 6(b)), however,
the period and damping are seen to be in somewhat better agreement wilth
those determined by the semirigid method. The major effects of static
stablility are shown by the quasi-static method. The variations in
damping with dynamic pressure are almost exactly-the same as those
glven by the semirigid method. It therefore appears that the quasi-
static method can be used to give a good first approximation of the
dynamic characteristics of a swept-wing airplane having a flexible wing.

Application of the wing-mode-alone method to the prediction of the
period and demping of the flexible wing mode (figs. 5(a) and 6(a)) shows
that for unswept wings the period and damping can be predicted with a
fair degree of accuracy except in the case of large wing mass ratios with
far-forward center-of-gravity positions. For sweptback wings within
the ranges of parameters covered, the wing-mode-alone method seems to
give good results.

Transient Solution

The period and damping for two modes of oscillation of a series of
flexible-wing aircraft have been presented and discussed. In order to
give a better idea of the relative importance of the wing oscillation
in the total airplane motion, solutions have been obtained on the
Reeves Electronic Analog Computer for the transient motions following
e disturbance. The longitudinal transient responses of a 350 swept-
wing aircraft configuration to an elevator step input at altitudes of
8,000 feet and 30,000 feet are presented in figure 8. The configuration
closely resembles the 40° swept ailrcraft for flight configuration of
mw/:mA = 0.33 1n mass, structural, and aerodynamic parameters. The plot
of wing-tip deflection h shows only a very small excitation of the wing
mode which quickly disappears. It 1s possible that the wing oscillation
would be excited to a greater degree by a gust or some other form of
disturbance; however, these records indicate that the wing oscillation
is not easily excited by use of the elevator. The airplsne oscillation
is heavily damped at both altitudes. ?
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CONCLUSIONS

On the basis of an analysis of the effects of wing flexibility om
configurations varying in sweep angle, center-of-gravity location, and
ratio of wing mass to airplane mass, the following conclusions are
indicated:

1. For configurations having 40° to 60° sweepback, no dynamic
instability due to wing flexibility was indicated; however, the loss
in static stability due to wing flexibility was found to be a fairly
serious problem.

2. For configurations having no sweepback, the effects of wing
flexibility were found to be serious only in the case of configurations
having a large ratio of wing mass to ailrplane mass and forward center-
of-gravity locations; for these cases, the analysis indicated that the
wing was subject to a decrease in oscillatory stability.

5. The quasi-static method eppears to be fairly realistic as a
means of obtaining a good approximation to the dynamic characteristics
of a swept-wing configuration. However, the method does not appear to
be accurate for unmswept configurations at high dynamic pressures.

4. A simplified wing-mode-alone method was found to give good
results in predicting the cheracteristics of the flexible wing mode
of motion for swept-wing configurations. However, this method did not
sppear to be reliable for use with unswept configurations.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., July 26, 195k.
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APPENDIX
DERIVATION OF EQUATIONS OF MOTION

The Lagrangian equation is

) )
a Ek)_aEk_l_ EP___FQ (A1)
dt\sg 3 9q

vwhere Ep and Ep are the kinetic and potential energies of the dynamic

system. The kinetic energy of the system is equal to the sum of the con-
tributions of the fuselage and of the elements of the wing which are
external to the wing-fuselage intersection. In this analysis the fuse-
lage is assumed to be rigid, and no motion of the fuselage is considered
to be associated with the wing deflection mode. The motion of the fuse-
lage is therefore due to motion of the rigid airplane, and the motion of
elements of the wing is due to motion of the rigid airplane and motion
of the flexible wing. The tail assembly is considered part of the fuse-
lage. The velocities and the geometric relations of the fuselage and
wing elements to the airplane center of gravity are presented in fig-
ure 9. From figure 9(a) the velocity at the center of gravity of the
fuselage Zp 1is seen to be

Zp = 7 - xB (a2)

end the kinetic energy of the fuselage unit is

. .2 .
B, = 3 mp(Z - x6) + % J:cgfe2 (3)

By expanding equation (A3), the kinetic energy of the fuselage becomes

% me?? - 8626 + 3 6% (k)

Ekp

where

162 = mo(:6)? + Tog §°
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)y

For the wing, the velocity at the center of gravity of a small
element of wing %, may be obtained with the aid of figure 9(b) as

Zy = Z - (e + x)0 + £5(y)h - £4(y)ix (45)
The kinetic energy of a smail element of wing is

. [ » * 2 [ 2
m,'|Z - (e + x)8 + £,(y)h - f¢(y)h£‘ dy + % Icger + fg(y)| ay

N

dEk‘W =
(46)

2
In the present analysis the term % IcgwE§-+ f¢(yi] dy has been con-

sidered to be small for the wings of high aspect ratio which have been
considered herein and, therefore, has not been carried further in the
derivation. Equation (A6) 1s integrated over the exposed semispan b0/2.
To put the equation in proper form for integration, let the variable
over the exposed semispan be yo-=y - yi. The equation is then inte-
grated from O at the wing-fuselage intersection to b0/2 at the wing
tip. Expanding equation (A6) results in

bo/2 . L. . s . )
By, = 2L/; ° <-é- mw'{z-? - 27e® + 2Zf,(y)h + (e9)2 - 2e8f,(y)h +

E‘Z(y)lgf} - Sw',:'zé + Zf¢(Y)h - e0° - eéf¢(y)£1 + éfz(y)l.n +

fz(y)f¢(y)ﬂ‘2:] + é— Ty' {éa + 2£g(y)6h + E¢(y)fz|2}>dy; (&7)

Equation (A7) contains mass terms pertaining to the rigid and
flexible degrees of freedom. These relative mass terms can be grouped
and assigned definitions. The terms of equation (A7) pertaining to the
rigid degrees of freedom are combined with equation (A4) to obtain the
kinetic~-energy equation of the rigid airplane. The mass terms in equa-
tion (A7) pertaining to the rigid degrees of freedom are obtained by
removing the mass terms containing the flexible degree of freedom h
from the equation. Then the kinetic energy of the rigid wing is obtained
as
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vo/2 [ : :
By = 2](; ° {;2L_ n 22 - 2062 + (8)7] - 84" (35 - e82) + 5 Iw'éa}dyo

(48)
If the 2° +terms of equations (A4) and (A8) are combined, the kinetic
energy of the rigid alrplane in vertical translation becomes

. . bo/2
g2 =2Lnmz?42 f Ly, '72ay, (49)
2 2 0 2
Similarly, if the 62 terms of equations (Ah) and (A8) are combined,
the kinetic energy of the rigid airplane in pitch becomes

. . bo/2 . .
Fuit-in e [0 [Ra 0 esei® s b uify, (o)

The terms remaining in equations (Al) and (A8) can be recognized as
static unbalance terms. Because equations (At) and (A8) are derived
about the airplane center of gravity, the sum of the static unbalance
terms must be equel to zero or

.. bo/2 .. ..
-S¢78 - 2f (my' €02 + 8,'26)dy, = O
0 .

Combining equations (A9) and (A10) yields the total kinetic energy of
the rigid girplane in vertical trenslation and pitch

D 2

1 114
By = 5 mpZ~ + 5 I (A11)

In a similar manner, some new terms representing the inertia effects
of the flexib;‘l‘e airplane msy be defined. After the terms in equations (AT)

containing B are collected, the generalized mass pertaining to the
flexible degree of freedom may be defined as

a.hhl:l2 = 21'12 j;bO/e {mw' Ez(Yﬂz = asw'fz(Y)fgj(Y) + Iw' E?¢(YZI 2}5\’7’0

(a12)
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By collecting the mass terms from equation (A7) conteining Zh and éﬁ,
the generalized masses pertaining to the coupling terms msy likewise be
defined as i

.. .. bo/2
2ath:n=2zn2f

. [mw'fz(Y) - Sw'f¢(yﬂdyo (A13)

2oy = 265 {2 fo o [-sv'22(5) + T'2(v) Jay,, -

D LbO/eE“W efy(y) - Sw'ef¢(yz,dyo} (A1k)

The abbreviated equation for kinetic energy is then
= 52 g2 =2 by :r
2By = myZ= + I8 + aphh” + 2a77h + 2a4,6h (415)

The potential energy of the system 1s composed of a contribution
from the airplane and a contribution from the flexible wing. The
potential energy of the airplane due to its vertical position is given
by -ZWp. The potential energy of the flexible wing is expressed in
terms of the frequency of the wing oscillating in the assumed deflec-
tion mode. If the wing is performing a sinusoidal oscillation, then
the potential energy at its point of maximum deflection is equal to
the kinetic energy of the wing as it passes through the point of zero
deflection. For a small strip of wing vibrating sinusoidally in the
deflection mode, the maximum velocity is (zZmax - Pmaxx) and the

corresponding potential energy expressed in terms of kinetic energy is

By, = &y [ - S]] 2

For any spamwise location, 2zpg, = f,(y)h and @ .. = f¢(y)h; substi-
tuting these vealues and integrating yields

bO
%mzhz@; ? {mw'Ef'z(y)]2 - 28y 2, (y)24(y) + Ty’ |:f¢(y)]2} dy; )

5 aPrlayy,

B
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If the potential energy of the airplane is combined with the potential
energy of the elastic wing, the total potential energy of the system
can be expressed as

By = -mpgZ + § oPh2ayy (A16)

where Wp = myg.

The equations of motion for each degree of freedom determined by
substituting equations (A15) and (A16) into the Lagrangian equation (A1)
and using the generalized coordinates Z, 6, and h are

I + sgph = Fy (A18)
apph + agpZ + ggpd + eppoh = Fp (A19)

The generalized forces Fy, Fgy, and Fy account for the forces not
included in the potential—energy term E,. In order to obtain the com-
ponents of the generalized force term, the airplane 1s assumed to be
composed. of the fuselage unit and the wing unit as in the development

of the inertia parameters. On a unit there are acting a normal force n dy
due to the variation in coordinate Z, a moment m dy sebout the alrplane
center of gravity due to the variation In coordinate 6, and a force F dy
due to the variation in coordinate h. The h coordinate is composed

of bending and twisting of the exposed wing. Therefore, the force ¥ dy
is composed of force n dy and moment m'dy about the local elastic

axis. The total sectlion work done by the forces on these units corre-
sponding to a virtual displacement AQ is

_ o . > 3z .g%}ah*
fQAQdy—AQ[n-a—é—l-mga-l- o+ S 8—ay (A20)
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where

7z Om dm . & om dm , ; om
=2 +90 W90, n Tyl
" V 3(2/V) » * 9 oh
w' =2 9m L gdm  gm Ly w0
V3N ) 3] oh oh
By definition
a = % f 5]

Substituting the partial derivatives of equation (A24) into equa-

tions (A21), (A22), and (A23) yields

3,5, ., ;o0
or,-é;+6-Pg+ha—h+ha£1

B

< dm . . dm . :.0m
R S

m'=a,@'—+9.am, 8m'+

3 X dh oh

Upon integrating over the wing, equation (A20) becomes

3z » f %/2 /3, 38\ on

21

(a21)

(a22)

(a23)

(A2k)

(a25)

(a26)

(A27)

(A28)
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where N and M include the normal-force contributions of the fuselage
and tail. The integral pertaining to the elastic degree of freedom h
is limited to the exposed wing span because no component of the elastic
motion has been assumed for the fuselage. Partial differentiation of
equation (A28) with respect to Z, 8, and h yields

FZ=N=aNa+éNé+hNh+BN1'1 (A29)

Fe.——-M=aMa+éMé+th+ﬁMfl (430)
B fbo/2 S, ,B¢

Fp =2 o (na—-h+m -&)dyo (a31)

The generalized force term Ty 1s probably the least familiar; there-
fore, the components of the force term are obtained in coefficient form.

by/2
Dividing equation (A31) by ¢S and multiplying by boja yields
o

F, Do/ fl 3 . . 3 \&o
-h = n-—+m == (a32)
68 v 3Jo \ On Sh /by /2

Yo

Let Cp = Fu/aS, n = cpge, m' =cp'qeC, and 7 = 575 Then equa-
o
tion (A32) becomes

18
bo (o4 aZ ] Cc —a¢ -
R T -

and equations (A25) and (A26) become

= 1 Ho. -
ey = @eny + Q5 Cny * chH + Heny (A34)

sz}' =acp '+ Q -]2= cmq' + HcmH' + ﬁcmﬁ' : (A35)
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where by convention, ne = é cn 5 cme =% ', and H =% Substi-
C
tuting equations (A34) and (A55) into (A33) yields

L
b 1

cav ah< mm' + a5 cmq' + HcmH + HcmH >}1no (A36)

Partial differentiation of equation (A36) with respect to the

<

various-generalized force components a, q, H, and DH, with H = — DH,.
. c
yields
1
b Sz - 8¢
Cp = -2 f L %y am, A
FCL b 0 <°na Cav ah mm cav ah T]o ( 37)
lcF=EFlfl ic c %z, ,1 'Lgéé aw (A38)
2 q b 0 2 nq, ca_v Bh 2 cmq Cav Bh T]O
1
b b VA — éﬁ
FH b o <CD.H C ah cmH Cav ¢ oh d-.TTO (A39)

1
_ by c - @_@)
CFDH - ?»/(; < IDH cgy oh * ;1 Cav Bh 4, (40)

The equations of motion (egs. (A17) to (A19) and (429) to (A31))

are now put in nondimensional form. Time is expressed as 8 = t% P)
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the distance traveled in chord lengths. Nondimensional derivatives are
obtained as .

6

-vas _
a ¢ a8

ct

Linear quantities are expressed in chord lengths ¢, and frequency is
expressed as o = kp!; Force equations are divided by pVQS end moment
equations by %stc. The resulting three equations of motion in non-
dimensional form are

2uD(e - 0) + 247 D?H - Cy o, - () - Da( cNm> m(lcN>

B(Cy) - DH(Cyg ) = Crgd ' (Ak1)

ouKy“D% + 28 D2H - a(%) - 1)(1(—2]: cmm> - m(% Cmq> -
H(CmH> - DH(deH) = Cpd ; (Ak2)

oA DPE + 2AzpD(a - 0) + 28gpD® + 2l kiH - afcg,) - m(% CFq> -
H(Cry) - DE(Cr ) = Crgd (ak3)

The elastic properties of the flexible .wing mode are manifested
primarily in the k2 term of equation (A43). The elastic mode shape
of the flexible wing is employed implicitly in the generalized mass and
force terms pertaining to the flexible mode.
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TABLE T.-~ CONFIGURATIONS AND PERTINENT CHARACTERISTICS

[s = 1,460 sq ft; 1y = 46.5 £t; e.a. location, 38 percent
wing chord; wing section c.g. location, 38 percent
wing chord (approx.i]

Configuration
Wing ground
Sweep C.g. c, £t A |natural frequency,
angle, mw/mA location, w, radians/sec
A, deg percent T
0 0.15 25 11 13.k4 9.87
35 11 13.4 9.87
45 1t 13.h 9.87
.33 25 11 13.h 5.98
35 11 13.4 5.98
45 11 13.h 5.98
.50 25 11 13.h k.21
’ 35 11 13.4 k.21
45 11 13.4 .21
ko .33 25 14.38 7.9 5.98
35 1L.38 7.9 5.98
45 14.38 7.9 5.98
60 .33 25 22 3.4 5.98
35 22 5.4 5.98
L5 22 3.4 5.98




TABLE IT.- INFRTTA TERMI AND DAMPING AND RESTORING-SPRING PARAMETFRB

TE2C NI VOVN

Paramsters
Garenp a.3.
Sy [leentien, 2 3 1. 01 L
: W[ | | o (Ke® | x| O |3 Oyl O 7 Ol Ong | O | Cog |Cwog O | Crg (Oere 7 OF, | Org

o

0 (o.1% 25 129.5| 2.56| k.6 | 0.6 |3.3@[-5.66[-1,25]-1.07 |-bk.%2 [-3.96|-11.69|0.0k2 -1.%(0 -1.38] 0 {-0.20k
» 129.5]| 2.36| k.6 J13(3.52|-8.66| -.6B]-1.0k |-B.3 [-3.k4 -11.17| .ok2|0 -1.35]0 -1.38] 0 | -.1%%| .01
o3

55 129.5| 2.36] k.6 | ~,32{3.32]-5.66| -.11|-1.02 {-kh.1 [|-2.9%|-10.6%{ .ok2[0 -1.%9lo -L.3lo | -.ch

6.5 (12.55] 1.65(2.6|-5.66[-1.25|-1,07 |-4.52 |-3.96{-11.6%] . 0 -1.39]0 -1.39| 0o | -.2ok| 019

33 2 o2
6.45112.55 .38]|2.68(-5.66| -.68]-1.0% |-4.3 |-3.4k|-11.27] o420 -1.29/0 -1.%9| 0 -3 | .o19
oh2

Q
(=)

o

1.9 |e5.2 | 3.27{1.98(-8.66(-1.28{-1.07 [-4.52 |-3.96{-11.69( ,042 -1.39|0 =135 0 | -.2| .01
12.9 |25.2 15| 1.98|-%.66] ~.68|-1,04 [-k.3 [-3.4&[-11.17] .ou2 -1.39
12,9 |2s.2 [-1.76|1.98|-8.66] -.11]|-1.02 |-k.1 [-2.93|-10.65| .ck2|0 -1.39

+50 2

!'_.
3
o
¥
B

164
16
L3 18, | 6.k5|12,%55| -.088|2.68(-5.66] -,11]|-1.02 |-4.1 |-2.93]|-10.65 -1.%9 L2 0 | -.0h5| .019
219
29
219

<o

~1.39| © -~ Ob5( 019

ho 53 25 125.8] h.93[ 9,61 9.61]1.75|-h.2l} -.93| -.82 |-2.6% |-2.98] -9.2%|-.h0 |-.268]-1.00|-. «1.00| 0 | -.848[.177
35 125.8| 5.95| 9.61| 8.63(L 75| v.e4| -.51| -.79 [-2.49 |-B.61| -B.B5(-.B0 [-.268(-1.00({-.95 [-1.00| 0 [ -.783|-.277
1] 125.6( %.93| 9.6 7.68(1.73|-h.24| -.08{ -.77 |-2.33 i-g.ok| .8.46)-.40 |-.268|-12.00|-.95 [-1.00| 0 | -.719|-.177

60 33 2 82.1| 3.22| 6.28 6.07| .83|-2.98| ~.65| .53 [-1,13 |-1.91| -k.0L|-.%0 |-.319| -.62|-.56k| -.62| 0 | -.h16|-.pR2
= 82.1| 3.22| 6.28| 5.k4| ,83|-2.96] -.56| -.m1 |-L.02 |-1.68| -5.73|-.%0 [-.319| -.562| .56k | -.6e} 0 | -.37B|-.2e0
L= f2.1) 5.22| 6.28| 5.82| .B5|-2.68 -=.06| -.48 | -.92 [-1.45] -3.50|-.%0 |-.319] -.62|-.m6k| .62 0 ko200

L2
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Figure 1.- A diagram showing the stability axes and positive directions
of forces and moments.
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Figure 3.- Wing spanwise elastic and weight distributions.
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(2) Altitude, 8,000 feet; Mach number, O.4; q = 176 1b/sq ft.

Figure 8.- Longitudinal transient responses of typical configuration
with flexible wing to l-radian step inputs of the elevator at
altitudes of 8,000 feet and 30,000 feet. Center-of-gravity location,
20 percent mean serodynsmic chord; A = 35°.
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(b) Altitude, 30,000 feet; Mach number, 0.6; q = 158 lb/sq ft.

'Figure 8.- Concluded.
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(a) Geometric relation of fuselage center of gravity to airplane
center of gravity.
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(b) Geometric relation of local wing center of gravity to airplane
center of gravity.

Figure 9.- Linear and angular velocities and geometric relations of the
fuselage and wing centers of gravity to the airplamne center of gravity.
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