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By John Laufer
SUMMARY

Measurements, principally with a hot-wire anemometer, were made in
fully developed turbulent flow in a 10-inch pipe at speeds of approxi-
mately 10 and 100 feet per second. Emphasis was placed on turbulence
and conditions near the wall. The results include relevant mean and
statistical quantities, such as Reynolds stresses, triple correlations,
turbulent dissipation, and energy spectra. It is shown that rates of
turbulent~-energy production, dissipation, and diffusion have sharp
maximums near the edge of the laminar sublayer and that there exist a
strong movement of kinetic energy away from this point and an equally
strong movement of pressure energy toward it. Finally it is suggested
that, from the standpoint of turbulent structure, the field may be
divided into three regions: (1) Wall proximity where turbulence pro-
duction, diffusion, and viscous action are all of about equal importance;
(2) the central region of the pipe where energy diffusion plays the pre-
dominant role; and (3) the region between (1) and (2) where the local
rate of change of turbulent-energy production dominates the energy
received by diffusive action.

INTRODUCTION

The one aspect of turbulent shear flow that stands out most promi-
nently is the transport of stream properties by turbulent motions. The
transfer process is fundamental, for it not only shapes the mean-flow
field through momentum transfer but supplies the mechanism by which
turbulent motions receive energy from the mean-flow field. The well-
known phenomenological theories were the first attempts to give analyt-
ical forms for the transfer mechanism by some simple physical congider-
ations and thereby succeeded in making predictions about the nature of
the mean-velocity field. Subsequent experiments, however, have clearly
demonstrated the inadequacies of these theories, and in a systematic
discussion Batchelor (ref. 1) has pointed out the inconsistencies and
unreal consequences of the assumptions involved. Recently, Rotta
(ref. 2) and Tchen (ref. 3) presented more extensive and deeper analyt-
ical treatments of the nonisotropic turbulence problem, and, although
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their results show some agreement with the existing experimental
findings, they cannot escape some arbitrariness in assuming the nature
of the transfer mechanism. It is the general opinion among investi-
gators in this field that more extensive experimental work on the tur-
bulence mechanism is necessary before a satisfactory analytical formu-
lation of the problem will be possible. '

In the last few years various experimental investigations were
carried out in different types of shear flows. It became apparent that
the dynamic and kinematic processes governing such flows may be quite
different. The difference between the so-called free turbulent flows
and flows past solid boundaries has recently been emphasized by the
phenomenon of intermittency, first noted in a jet by Corrsin (ref. L)
and later more clearly recognized and studied in detail in the wake of
a cylinder by Townsend (ref. 5). It is apparent by now that in flows
like wakes, Jjets, and those near the free surface of the boundary layers
the intermittency is present and seems to play a very important role in
the transfer mechanism, while in pipe and channel flows it is completely
absent.

Fairly large amounts of experimental information have been gathered
about flows with free boundaries (refs. 6, 7, and 8); especially exten-
sive is the work by Townsend in a turbulent wake (ref. 5). The recent
work in two-dimensional channel flow by the present writer (ref. 9)
brought out some significant features of flows with solid boundaries,
but the information was far from being complete. One consequence of
this study was the realization that in order to obtain a complete
picture, say of the turbulent-energy balance, a knowledge of flow con-
ditions in close proximity to the wall was of utmost importance.

Since no similar investigation, with emphasis on the turbulent
structure, has ever been carried out in fully developed pipe flow, the
present investigation was undertaken. A pipe also offered the sim-
plicity of axially symmetric mean flow and a turbulent field nonhomo-
geneous in one direction only. At the same time it afforded an experi-
mentally convenient setup for obtaining a shear flow of large scale.

A diameter of 10 inches was chosen as sufficiently large for the favor-
able application of hot-wires and for bringing the region near the wall
within practical reach. To cover the desired range, two working
Reynolds numbers were chosen, these belng 500,000, based on the diameter
and an airspeed at the center of 100 feet per gecond, and 50,000 at a
speed of 10 feet per second. The higher Reynolds number minimized
viscous effects while the lower one magnified the extent of the pre-
dominantly viscous layer near the wall. This turned out to be a fortu-
nate choice since experimental difficulties and errors encountered in
one case were usually absent in the other.

The purpose was to investigate the nature of turbulence and its
relation to the mean flow, in particular the rates of transfer,
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diffusion, and dissipation of energy. To this end measurements were
made of the relevant mean and statistical quantities, including their
spatial distributions from within the laminar sublayer to the center
and energy spectra at several radii. Thus the purpose was to reveal
details of flow structure that could not be found from studies of mean
flow alone, and yet stop short of a direct attempt to find the nature’
of the transfer mechanism. It is hoped, however, that advances toward
the latter goal will have been made through the present work.

The present investigation was conducted under the sponsorship and
with the financ*al assistance of the National Advisory Committee for
Aeronautics. The author wishes to express his gratitude to Dr. G. B.
Schubauer for his constant interest and encouragement throughout this
work. The valuable discussions with Dr. C. M. Tchen and Mr. P. S.
Klebanoff are also much appreciated. - Thanks are due to Miss Z. W. Diehl
and Mr. K. D. Tidstrom who carried out the numerical computations and
preparation of the report.

SYMBOLS
a pipe radius, 4.86 in.
Dys Dy dimensionless turbulent-kinetic-energy diffusion
_ a 14d U + v2 + wo
rates; Dy = —— = — rv y
g3 rdr 2
-
v 14 Ut + ve + we
D & ——=—71V
U, r dr )
e1s €5 voltage fluctuations across hot-wires
Fu(kl) fraction of turbulent energy u? associated with ky,
cm.5/sec2
Fv(kl) fraction of turbulent energy v2 associated with ky,
cm3/sec2
Fw(kl) fraction of turbulent energy w2 associated with ky,
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dimensionless gradient diffusion rate of turbulent

. v2 1 4 d wl + ve + we
kinetic energy, ——E-— —_—r —
Ut T dr dr 2

one-dimensional wave number in direction of mean
flow, em~1

mean pressure at any point in pipe
mean pressure at exit of pipe

dimensionless turbulent-pressure-energy diffusion

rates; (PD), =

4 —
= ©vp, (PD); =

dimensionless turbulent-energy production rates;

_ _uv du _ . uv au
(Pr)o = a -.[;—-3— d—r-, (Pr),r =V EI—-E a—l-"
T T

instantanecus value of pressure fluctuations

dynamic pressure at pipe center

Reynolds number based on diasmeter of pipe and velocity
at pipe center

correlation coefficient of u-fluctuations at two points
displaced in a radial direction

coordinate in radial direction; r = O corresponds to
pipe center

friction distance parameter, r'U;./v
time
mean velocity at any point in pipe

meximum value of mean velocity
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Ur

U.l, U.Q, U.3

u, v, w

u', v', w'

Wos Wy

frietion velocity; U}E = v(dU>

Ar/p=g

total (mean-plus-fluctuating) velocities in X, r, and
@ directions, respectively

instantaneous values of velocity fluctuations in
x, r, and ¢ directions, respectively

root-mean-square values of velocity fluctuations in
x, r, and ¢ directions, respectively

mean velocities in radial and azimuthal direction,
respectively

dimensionless turbulent-energy dissipation rates;
v ﬁmi duy
2
U, 2\ /\3x;
where u; refers to three velocity fluctuation
components u, v, and w and x

Wo

il

a

to three coordi-
nates; repeated indices indicate summation

2
dimensionless direct-viscous-dissipation rate, X—H<%g)
U\

dissipation length parameter
kinematic viscosity of air

total (mean-plus-fluctuating) pressure
air density

azimuthal coordinate
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ANATYTTICAL CONSIDERATIONS

Equations of Motion of Pipe Flow

The continuity equation and Reynolds equation in cylindrical
coordinates for incompressible mean flow have the following form:

_BLJ_*-_]:?EX*_}_?_V_J:O (l)
& r or r op
and
v, U, T 1@ (02 l—rﬁx?+l-a_ﬁv7>+vv2U
ox dr rdp P Xx ox r r dp
oV N OWwW W 1 0P 0 — 10 o
U&-l‘var -I—‘_é?p--;———gg;—<g{- v+;grv +
2
&é.ﬁ--w_>+v/vev-1-3@ s @)
r dp r K r2  r2 0
U_a_w_+V§w_+E§E_lw____l_éri_ é_ﬁﬁa}.
x d rodp T Pr dp  \ox
—é-v_vf+}-—a-w2—2——>+ V2W+-g—§-w——l
or r r r2 0p p2 )
where
v2=_af_+_a_2_+£_a_+i__a_2__
32 a2 T 22
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In a fully developed turbulent pipe flow the conditions are

(a) V=0 and W=0

(o) —a%=o

(c) The velocity.field is independent of the coordinate x

Equations (2) therefore become

1P 14 — a°U 1 au
ST =aIl UV 4+ Y| —— + ==
P Ox r dr dre r dr
1®_ .14 B, w
P Or r dr r
0 =..f£.$§ _ 2w
dr T r

Integrating the last equation and using the boundary condition v =0

at r =g 1t follows that ¥vw = 0 for all values of r. Thus the
Reynolds equations for the turbulent pipe flow reduce to

1P 14 (e U
S-&—-;drI(uv - v——-) (3a)
12,182, % (50)

Differentiating equation (3b) with respect to x one finds

BZP/ar ox = 0. Thus OP/3x is independent of r and equations (3a)
and (3b) readily integrate to

e = _r(ﬁ?r' -y g-g) + Alx) \ (La)

£=_v‘3+fr‘f__-vzar+3(x) \ (4b)
P a \
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The boundary conditions are at r =0

uv = 0
é‘l_}-_._-o
dr
and at r = g
u = 0
au 2
Va}-=-UT

Jo

Mso let P=0 at x=0 and r = a. Then from equation (4a),

Alx) = 0,
1 0P 2 .2
_._.=-_.U,r
PX &
and, integrating,
Pa2u 4 cr) (5)
p a :

From equations (4b) and (5), B(x) = -% U+2x. The equations finally

become
we=vE+Ly? (6a)
= Ty2 -%2 P 2.2
v2+f Y oM ar=-2.2y2 (6v)
a r P a

I§ is interesting to note, as already pointed out by Kampé‘de
Feriet in the case of flows between parallel walls (ref. 10), that the

shearing stress UV and the mean velocity occur together in one equa-
tion and the normal stresses v© and w2 and the mean pressure occur
together in the other. From the experimental point of view thisg has the
advantage that the equations furnish a method of checking the absolute
accuracy of the measurements of the Reynolds stresses if the mean-
velocity and pressure distributions are known.
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Energy Equations

The momentum equations may be written in the form

2
591 dujup g au1“13 ujup

__1l0ox 2
5 + ~ + = » + =75 > + vVup
2
it O +;%u3+u22-“32=_;é+v( 4 __u?__z_?_u2>><7)
2 2

o or r op r P or r r2 o
du du duz2 2 du

1 | iy 1 “2“3=-.1_§"_+V<v%5-32+_2__2>

xx or r o r pr O r2 2 op

Multiplying the three equations by uj, up, and uz; respectively, one
gets

duqus Ay 1 dupPus . up(u? - us?) _2y Y,
Ox d r ¢ r 2%
2 2 2
o[22 2-(3‘2) (i‘lg) _:.L_(?_“g) w2 s
2 2 ox or r2\op r re 2 o
aulu3 N 8112113 . i 81133 . 2%1152 _ -_2- 33_ E N
ox or r do r p T dp
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Introducing the velocity and pressure perturbations

Uy = U+ u

g =V
u§=w
n=P+p

averaging, and adding the three equations there is obtained the energy
equation for the turbulent motion

—dau . 14 <u2+v2+w2 p)_
W — + = — rv + 2] =
dr r dr 2 p
vd d ul + ve + we LY I v X V2 4+ we duy ) /uy (8)
rdr - dr 2 r\r 'S—@-_T—_v_gx;&_j

where in the last term wu; refers to the three velocity fluctuation
components and X35 to the three coordinates; the repeated indices
indicate summation.

The second term on the right-hand side of the equation may be
neglected compared with the other terms for all values of r, since
(2) near the center it approaches zero as r —> O as may be shown
from the continuity equation; and (b) everywhere else its order of

magnitude vue/%z, where D 1s a characteristic length of the order of
the pipe radius, is smaller than, for instance, that of the last term

of the equation; that is, vue/%? >> vuz/bg, since xz/b2 << 1.

The equation may now be rewritten as

2 2 duy\ [ duy
BB, V<axl.)(axl.>.= 0 (9)



NACA TN 2954 11

The energy equation thus obtained has essentially the same form as
that given by Von Karman for the case of a turbulent flow between two
parallel plates (ref. 11). The first term corresponds to the rate of
production of turbulent energy by the action of the shearing stresses.
The second term represents the rate of energy change due to transfer of
both kinetic and potential energies by the radial velocity fluctuations
and is usually referred to as the diffusion term. The third expression
may be regarded as a gradient type of energy diffusion and is important
only very near the wall. The fourth term expresses the rate of energy
dissipation into heat by action of the viscosity.

EQUIPMENT

Wind Tunnel

The investigation was carried out in the experimental setup shown
in figure 1. A centrifugal blower having a capacity of 12,000 cubic
feet per minute and powered by a 15-horsepower constant-speed motor was
placed inside a large pressure box. The box was octagonal in cross sec-
tion and was 10 feet high and 16 feet long. The air was discharged from
the blower into the space surrounding the blower and then passed through
& honeycomb, three screens, and a large contraction cone. The honeycomb
consisted of hexagonal cells 2 inches across and 8 inches long. The
screens had 24 meshes per inch and a wire diameter of 0.0075 inch. The
contraction cone, which was made out of hardwood and was circular in
cross section, reduced the air passage from 48 inches to 18 inches in
diameter. The cross section was then further reduced from 18 inches to
10 inches in diameter through a 90° elbow. After the elbow a short
elastic coupling was used to prevent the transmission of vibration from
the pressure box to the pipe. In order to minimize any flow irregulari-
ties due to the elbow, another screen and an 8-inch-long honeycomb were
installed in the entrance sections of a 25-foot-long steel pipe. Fur-
thermore, in order to accelerate the boundary-layer growth, the pipe
wall was artificially roughened by gluing floor-sanding paper to the

surface along a length of 2% feet. With this arrangement it was found

from the measured mean-velocity distribution at the end of the steel
pipe, that is, after an entrance length of about 30 diameters, that the
flow was fully developed turbulent. Following the steel pipe, a 16-foot-
long seamless brass tube was attached having an inside diameter of

9.72 inches. This served as the actual test section.

The speed of the tunnel was regulated by throttling the intake of
the blower with adjustable vanes and by venting the pressure box. In
the early stages of the investigation it was realized that for the very
low velocity pipe experiments, where the intake of the blower had to be
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nearly closed, the heat dissipated in the pressure box was sufficient
to affect the flow in the test section. This difficulty was overcome
by supplying the air to the system by a ventilating fan placed on the
side of the box as shown in figure 1.

Hot-Wire Equipment

The basic hot-wire equipment used during the investigation is
described in detail in reference 12. The hot-wires were made of plat-
inum drawn by the Wollaston process. ILater during the investigation
platinum-rhodium wires (90 percent platinum and 10 percent rhodium)
were used and were found to be very satisfactory. The wire diameters
were generally 0.0001 inch; only when the noise problem was very criti-
cal were finer wires (0.00005 inch) used. For the measurements of the
longitudinal components of the velocity fluctuations the length of the .
wires ranged from 0.0l to 0.025 inch.

Special care was taken in building the X-type of wires for the
measurements of the cross components v and w. In order to minimize
wire-length effects and to be able to work very near the wall, the size
of the wire holder had tc be as small as possible. With the use of
prongs made of fine Jjeweler's broaches the dimensions of the holder
head were cut down to approximately 0.015 inch by 0.005 inch, the wires
having a length about 0.025 inch.

Traversing Mechanism

The traversing mechanism simply consisted of a micrometer screw on
which the hot-wire support was fastened. The support could be rotated
in a plane perpendicular to the air flow so that the hot-wire could be
adjusted parallel to the wall.

The zero reading of the traversing mechanism (r' = 0) was found by
placing the hot-wire close to the wall (approximately 0.0l inch away)
and measuring the distance between the wire and its image in the polished

wall by an ocular micrometer. Since the curvature of the wall was small,

the space between the wire and the wall could be taken as half the
observed distance.

PROCEDURE AND RESULTS

While fully developed turbulent flow was readily obtained through-
out the 16-foot test length, tedious and time-consuming adjustments had
to be made to remove secondary effects and obtain axial symmetry. The
task was particularly difficult at the low Reynolds numbers where the
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effect of temperature gradient was most felt. This as well as disturb-
ances from the elbow had to be eliminated. After the final adjustments,
pressure and velocity surveys made along the 16-foot test length showed
that the velocity field at each section was the same and symmetry about
the axis had been cobtained. All the final measurements were made inside
the tube 2 to 4 inches from the exit. '

Measurement of Mean Velocity and Pressure

The experiment was conducted at two Reynolds numbers, 50,000 and
500,000, corresponding to maximum mean velocities of approximately 10
and 100 feet per second, these velocities being varied slightly in order
to compensate for the daily changes in air viscosity and density. 1In
order to cover the wide range of static and dynamic pressures, an
inclined manometer 5 feet in length was used. With benzol and a slope
of 10 to 1 the manometer was sensitive to 0.005 centimeter of water by
direct reading. With a traveling microscope and separate scale the
sensitivity was increased to 0.0001 centimeter of water.

The pressure distribution in the direction of the flow was meas-
ured through pressure taps located every 2 feet along the brass tube.
The results are glven in figure 2.

Small total-head and static tubes were made of 0.04-inch-diameter
nickel tube stock with 0.00%3-inch wall thickness. The tip of the total-
head tube was flattened to an opening of 0.006 inch. The static tube
was placed approximately O.4 inch above the total-head tube. This
arrangement was used for measuring the complete velocity distribution
in the low Reynolds number case. In the vicinity of the wall a correc-
tion had to be made because of the large level of velocity fluctuations.
The correction, having the form

was of the order of 5 percent or less.

For the high Reynolds number a hot-wire was used to explore the
mean-velocity distribution near the wall. ZEHere again a correction for
velocity fluctuations had to be made because of the nonlinear behavior
of the hot-wire. This was accomplished by an approximate graphical
method using the known static response curve of the wire (voltage
against velocity) and the known root-mean-square value of the voltage
fluctuations. The maximum correction was gbout 10 percent, the correct
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mean velocity being higher than the observed. At the low Reynolds num-
ber the velocity profile determined by the hot-wire was unreasonably
low in the vicinity of the wall after applying the correction. Except
for this, the agreement between the hot-wire results and those obtained
with the total-head tube was good.

The measurements are presented in figures 3 and 4. 1In figure 4
the dashed lines indicate the wall velocity gradients computed from the
pressure drop. The agreement with the measured values is satisfactory.

Measurements of Turbulence Ievels and Shearing Stress

The three components of the velocity fluctuations u', v', and w'
and the turbulent shearing stress UV were obtained by standard tech-
niques described in reference 6.

Figures 5 to 8 give the detailed results. In figure 8 the solid
lines represent distributions calculated by equation (6a) using the
independently measured mean-velocity gradients and u' and v'. It is
seen that for the high Reynolds number the agreement between these and
the directly measured points is very good while for the low Reynolds
number the measured points are somewhat higher. It should be mentioned
that lower accuracy of all the measurements in the low Reynolds number
flow is to be expected mainly because of the difficulty of forming con-
sistent time averages because of the inherent low-frequency fluctuations.

Measurements of Triple and Quadruple
Velocity Correlations
Measurements of the triple and quadruple velocity correlations are
given in figures 9, 10, and 11. The basic technique described in refer-

ence 12 was essentially adopted for these measurements. The schematic
diagram of the electronic circuit is given below:

Preliminary

elf"AmPllfler'l"'squaring circuit\\ //Squarlng circuit l-\\\
- Ratio
Mixing meter

eo— Amplifier 2 / \[Squaring circuit EJ/
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The two hot-wire signals e and ep are fed into two identical
compensated amplifiers after which ey 1is squared. The preliminary

squaring circuit uses the nonlinear characteristics of two balanced tri-
odes as employed in Townsend's circuit (ref. 13). The output of the
mixing circuit, which is a simple resistance network (ref. 12), gives
simultaneously the sum and difference of the inputs. Squaring cir-
cults 1 and 2 contain a series of diodes properly biased to give the
square of the inputs. If the signals before the mixing circuit are
equalized the ratio meter reads directly the correlation coefficient

e1%ep / V er'en?.

It is seen that in order to obtain the triple velocity correlations
by this method the mean fourth power is necessary. This could have been
avoided, of course, if instead of using the ratio meter the outputs of
the two squaring circuits had been recorded separately and then sub-
tracted. It was felt, however, that the method adopted gave more con-
sistent results. The mean fourth power was obtained simply by feeding
the amplified hot-wire signal into a squaring circuit and then squaring
the output again by reading the final output on a thermocouple meter.

Unfortunately, for the lower Reynolds number some inconsistency in
the measurements was found using the above technique. In comparing the
values of the double-correlation coefficient uv/u'v' obtained by this
setup (without the preliminary squaring circuit) with those obtained by
the conventional method, they were found to be from 20 percent to 30 per-
cent lower everywhere except near the wall. At the high Reynolds number
the agreement was very satisfactory. Although, because of time limita-
tions, 1t was not possible to trace definitely the cause of this dis-
crepancy, it is believed to be due to a difference in the low-frequency
phase shift of the two amplifiers. Consequently, the large difference
between the triple-correlation distributions at the two Reynolds num-
bers in figure 11 should be considered to be due to experimental error.

Measurements of Various Dissipation Terms

The expression for the rate of energy dissipation as it sppears in
the turbulent-energy equation (9) has the form

S CRCHCORORGROE

1/ 1 v\ 1 fon\ |
S+ ) - ) (0)
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The first three terms were obtained by the differentiation method intro-
duced by Townsend (ref. 13). By making the assumption

ox U ot

(2) - 42y

Thus by electronically differentiating the hot-wire signal e « u (or

(11)

he writes

2
v, or W), (%E) may be easily obtained. A recent paper by Lin

(ref. 14 ) shows that this assumption is valid if no mean-velocity gra-

dient exists and (u/U)2 << 1. TIn a shear flow he gives an additional
condition

U_a_u. >>va_U
ox or

In the present measurements these conditions were found to be satisfied
with the exception of a region inside the laminar sublayer. Also during
the course of a boundary-layer investigation at the NBS an experimental
verification of the validity of this method was made at 0.05 times the
boundary-layer thickness.

The fourth and seventh terms of equation (10) were obtained essen-
tially by a method first suggested by Taylor (ref. 15), in which

R, = ) 1 <§5)252

% ] - e
u'u' (F) o2 \or

as r —> 0, where u and u(r) denote fluctuations at distance T
apart. Thus by measuring the correlation coefficient R, for small

2
values of T, (%%) can be calculated. During the present investi-

gation the accuracy of the method was greatly improved by adopting the
following technique: The above equation may be rewritten as
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Since, for small values of T, u2 = u2(Y¥), one has

El - u(Fﬂa 1 <§5_.>§F2

o= =
ou2 2 \OF

Several values of o can be easily measured by placing two hot-wires

2
at various small distances T apart. Then (§E> may be calculated

or

from the slope of a straight line in a plot of o against ?E{

The remaining four terms of equation (10) could also have been
obtained with the method described above. However, the wire arrange-
ment necessary for such a technique made its application impractical.
Comparing the first three terms it was found that they satisfy the
isotropic relations fairly well except near the wall (figs. 12 and 13).
The other two measured terms, while not too different from the first

)

near the wall. This, of course, is not surprising since dissipation
lengths or microscales in the radial direction are expected to be
smaller because of the presence of the wall. For want of a better
procedure it was assumed that mean-square derivatives with respect to
a given direction separately satisfied the isotropic relations

3 - (- (3

2 2 2
}.(ﬁ) _ _2_<éw_> _ 1 @)
r2\09 r2\0p r2\3Q
It is not possible to estimate the accuracy of this assumption at
particular points. However, one can determine the error made in the

total energy dissipation of the pipe cross section. Integrating the
energy equation (9) across the pipe there is obtained

three in the center region, are considerably higher <especially

a a ox [®
ruv — dr = = Wr dr (12)
a2 Jg dr a2 J o

2
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which states that the total energy produced at a given section is dis-
sipated at the same section because of the homogeneity of the field in
the x-direction. Equation (12) was found to be satisfied within 10 per-
cent. It is remarked that if the isotropic relation between all terms
had been assumed and the dissipation calculated in the usual way using

2
W = 15v §E>
x
the right-hand side of equation (12) would have been smaller by approxi-

mately a factor of 2.5. It is still an open question, however, how
accurate the approximation is from point to point.

Energy-Spectrum Measurements

The amplified hot-wire signal was fed into a Hewlett-Packard wave
analyzer with a frequency range of 10 to 16,000 cycles per second. The
analyzer selectivity characteristics were obtained by calibration; two
fixed band widths were chosen, their effective values being 11 and
42 cycles per second approximately. The output of the analyzer was fed
into a thermocouple circuit. In order to make the measurements inde-
prendent of the amplifier frequency response the thermocouple output
readings of the hot-wire signal were matched by a known sine-wave
input.

The measurements are presented in figures 14, 15, and 16. Wire-

length corrections were applied only to the u'-spectra, using the method
described in reference 16.

DISCUSSION

As already pointed out in the "Introduction," the present under-
standing of the turbulence phenomenon is not complete enough to be able
to attack directly the problem concerning the nature of the turbulence
transfer mechanism that establishes a stable, nondecaying turbulence
field such as the pipe flow. The principal gim of the present work was
an attempt to obtain an over-all picture of the turbulence structure
without trying to understand the detailed mechanism responsible for this
structure. To this end the energy equations of both the mean and tur-
bulent flow serve as a useful gulide. The former in effect expresses
the relative magnitude of the mean-flow energy loss to the turbulent
field as compared with losses due to dissipation by direct molecular
action. The latter gives a relation between the different forms of
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turbulent-energy rates such as rates of production, dissipation, and
diffusion. Unfortunately it is not possible to obtain from these equa-
tions any explicit information on how these various energy changes take
place. However, it is hoped that once their relative importance in
different regions of the turbulent field is better understood one might
attack the ultimate problem of the turbulence mechanism with greater
confidence.

A different, but already well-established, method of approach was
also tried. Instead of investigating the different rates of changes of
the turbulent energy at a given point of the field, its spectral distri-
bution in the wave-number space was examined. The merits and short-
comings of this method will be discussed later.

Mean-Energy Balance

Multiplying the integrated momentum equation (6a) by the mean-
velocity gradient dU/dr, the energy equation of the mean flow is
obtained:

L U,~ — = uv — = Vv
a dr

Thus the energy available because of the pressure drop along the
pipe is partly converted into turbulent energy and is partly directly
dissipated. The two terms on the right-hand side of the equation are
compared in a nondimensional form near the wall in figure 17. There
are two points that should be noted here: (a) The bulk of the direct
viscous disgipation takes place in a very narrow region, r* < 15;

(b) the position where the laminar shearing stress is equal to the tur-
bulent shearing stress (viscous dissipation equal to ‘turbulence pro-
duction) is found to be approximately at the same point where the maxi-
mum amount of energy is produced (r¥* = 11.5). This point is usually
referred to as the edge of the laminar. sublayer. It is seen that not
only is the bulk of the energy taken from the mean flow directly dissi-
pated but a considerable portion of the total turbulence production

(20 percent) also takes place here.

It is quite apparent from this picture that, in order to obtain the
complete picture of the turbulent-energy balance, conditions near and
within the laminar sublayer have to be known. This, of course, is a
very difficult task from the experimental point of view.
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Turbulent-Energy Balance

From the measurements presented in the previous section gll the
terms of the turbulent-energy equation (eq. (9)) can be calculated with
the exception of the pressure-energy diffusion. Unfortunately, since
this term is small everywhere except near the wall, its determination
from equation (9) is very inaccurate. Nevertheless, it is possible to
obtain in a qualitative way an over-all picture of the complete
turbulent-energy balance at a cross section. Since the experimental
problems and errors are different in the two Reynolds number flows they
will be discussed separately.

Tow Reynolds number flow.- In order to be able to study the flow
conditions very close to the wgll it is necessary to produce as thick
a viscous layer as possible. This may be done by carrying out the meas-
urements at very low mean speeds. Certain compromises, however, have to
be made. TFirst it 1s much more difficult to establish good flow condi-
tions at low speeds, and second it is more difficult to carry out time-
averaging processes in the measurements of statistical quantities. On
the other hand the absolute magnitude of the dissipation terms may be
better established since problems such as wire-length effects, amplifier
frequency response, and noise are not so critical.

Figures 18 and 19 give the distribution of all the energy terms in
the low Reynolds number flow. It should be noted that in forming dimen-
sionless quantities for the coordinates, the characteristic length a
was chosen in figure 18 and v/U+ was used in figure 19 representing

conditions near the wall. The correspondence between respective coordi-
nates is indicated parenthetically in figure 19.

The following interesting conclusions may be drawn:

(1) Throughout the whole cross section, with the exception of the
center region, the rate of energy production at a point is approxi-
mately balanced by the rate of energy dissipation.

(2) All the various energy rates reach a sharp maximum near the
edge of the laminar sublayer.

(3) This edge appears to be also the region from which the turbu-
lent kinetic energy is diffusing both toward the pipe center and toward
the wall and toward which the pressure energy is transported.

There is some question gbout the direction of the pressure diffu-
sion in the center region of the pipe. It was mentioned in the previous
section that the measured triple velocity correlations are believed to
be too low in this region. Assuming that their dimensionless value is



NACA TN 295k 21

approximately the same as the values found in the high Reynolds number
flow -~ an assumption which holds approximately true for all other meas-
ured dimensionless statistical quantities - kinetic-energy diffusion is
estimated as shown with a dashed line in figure 18. It is believed that
the corresponding pressure-diffusion distribution (dashed line) comes
closer to the actual picture than that obtained from the directly meas-~
ured points (solid line). This would indicate that the direction of the
pressure diffusion is toward the laminar sublayer and its value near
the center is close to zero.

High Reynolds number flow.- As already pointed out, accurate meas-
urements of the various dissipation terms in the case of high Reynolds
number flow become much more difficult, since, because of the extent of
the energy spectrum to high frequencies, amplifier-tube noise and wire-
length effects become increasingly more critical. Although all precau-
tions were made to minimize these effects, the calculated rate of energy
dissipation is believed to be too small. From the energy-spectrum meas-
urements it was possible to infer that considerable dissipation takes
place at frequencies as high as 30,000 cycles per second where the
response of the compensated amplifier ceases to be linear. From the
information gathered in the low Reynolds number flow, an attempt was
made to estimate the dissipation. The following assumptions were made:
(1) 1In the vicinity of the wall where similarity with respect to
Reynolds number was found (this will be discussed in detail later) the
dissipation can be obtained directly from the low Reynolds number meas~
urements; (2) the errors in percentage are the same across the pipe.
This was found to be fairly closely true when the dissipation measure-
ments were repeated using various high-frequency cut-off filters. With
these assumptions and with equation (12) the estimated dissipation was
obtained. Figures 20 and 21 show the directly measured and estimated
values. The figures also indicate that the picture of the energy bal-
ance is similar to that obtained in the low Reynolds number flow.

Energy-Spectrum Considerations

In the study of isotropic turbulence the concept of the energy spec-
trum proved to be a useful and a convenient one both from an asnalytical
and a physical point of view. By considering the distribution of the
turbulent energy in the wave-number space it is possible to give in many
instances a simple picture of some basic physical processes taking place
in the field. An example is the commonly accepted picture of the energy
transfer from smaller to larger wave numbers.

The utility of the spectrum function i1s much more restricted in a
nonisotropic turbulence field where it cannot be contracted into a scalar,
as in the isotropic case, but has to be treated as a tensor quantity. A
restrictive factor in all cases, and particularly in nonisotropic tur-
bulence, is the fact that measurement is possible of only the so-called
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Taylor, or time, spectrum. This means that, even if Taylor's hypothesis
{eq. (11)) is fulfilled, only a spatial energy distribution over a
~surface kj = Constant can be measured. This, of course, prohibits

detailed knowledge of the point-by-point energy distribution in the
wave-number space. Neverthelegs, it is possible to draw some conclu-
sions from this type of measurements.

The measured u'-spectra (fig. 14) indicate that the spectral distri-
butions obtained not too close to the wall manifest similar behavior
over a wide range of wave numbers. Specifically, they vary as the
—5/3 power of the wave number k, over a considerable range. This is

clearly indicated in figure 22 where the function kl5/5Fu<kl) is shown
to be a constant over the range 1< k) < 24. The two sets of points

shown in this figure indicate the magnitude of the length corrections
applied to the directly measured values. This, of course, is the same
type of behavior as that of the equilibrium range of the energy spectrum
in an isotropic field first predicted by Kolmogoroff (ref. 17). One may
infer therefore that for sufficiently large turbulent Reynolds number
flows (u'Mv > 200 for all measurements) and for the mean-velocity gra-
dients not too large there exists a wide range of wave numbers in which
the energy represented by the u'-component is transferred from smaller
to larger wave numbers without being significantly influenced by the
turbulent-energy production mechanism or by viscous dissipation. This
apparently is true, even though local isotropy does not exist in this
range as will be seen later. It is further seen that this range varies
with r'/a and at r'/a = 0.0082, where the mean-velocity gradient is
already large, the spectrum shows a different distribution. It might

be mentioned that in this case there is a rather wide wave-number range

where the spectrum varies closely as kl"l as predicted by Tchen
(ref. 3).

The conclusions one may draw from the measurements of the v'- and
w'-spectra are significantly different. In order to clarify this dif-
ference a comparison is made between the v'-spectrum measured at the
center of the pipe and that calculated from the measured u'-spectrum
using isotropic relations (fig. 23). It is seen that there is a large
energy deficiency in the low wave-number range, while the energy content
of the higher wave numbers is much larger. Furthermore, the —5/5—pOWer-
law type of distribution is completely missing. Similar statements may
be made for the v'-spectra (and w'-spectra) at points other than the
center of the pipe. An explanation of such behavior is, of course, dif-
ficult mainly because the one-dimensional nature of the measurements
conceals the detailed spatial energy distribution. However, it is hard
to conceive that the geometry of the field alone would be responsible
for such a behavior. Figure 23 may suggest that wave numbers receive a
large portion of their v' energy not only by means of the usual trans-
fer mechanism from smaller to larger wave numbers. By considering
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the energy equations for the turbulent components separately, the term
most likely to influence the v'-spectrum in the wave-number range con-
sidered is the pressure term transferring energy from one velocity com-

ponent to the other. Its form p-%% suggests that it is associated

with wave numbers larger than those where the bulk of the turbulent
energy is produced and smaller than the ones where viscous dissipation
is important. This term therefore may very well be responsible for the
larger v' energy present in the wave-number range in question. It is
difficult to draw any conclusion about the role played by the diffusion
terms; in general they are thought of as representing a low-frequency
phenomenon and therefore would influence the v'-spectrum in the low
wave-number range only.

It should be emphasized that the above discussion is merely specu-
lative in nature and a considerable amount of experimental work espe-
cially in connection with the pressure terms is necessary to be able to
give a quantitative picture of the energy balance spectrumwise.

General Considerations

On the basis of the presented measurements the flow field in the
pipe may be divided into three regions exhibiting different behavior
from the point of view of turbulence structure.

Wall-proximity range.- Measurements near the wall indicate that the
well-known wall-proximity law of Prandtl (ref. 18) for the mean velocity
may be extended tc the fluctuating-velocity field also. Thus by using

U, and v/U. as the characteristic velocity and length parameters, the

various velocity distributions become independent of the Reynolds num-
ber in the approximate range 0O < r* < 30 (figs. 24 to 26).

The various energy rates as they appear in the equation of tur-
bulent energy are found to be of equal relative importance; their magni-
tudes are much larger than those in other regions of the turbulent field
and they therefore play a dominant role in the energy balance over the
entire field.

Center portion of pipe.- Since the direct effect of viscosity on
the turbulent field is negligible in the center portion of the pipe, it
may be expected that the distributions of the fluctuations expressed
relative to the characteristic velocity U; are independent of the

Reynolds number. Figures 5, 7, and 8 show this to be the case.

This region is further characterized by the fact that it receives
a large portion of its turbulent energy by diffusive action.
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Intermediate region.- The intermediate range extends from r* =~ 100
to r‘/a ~ 0.1. By considering the turbulent-energy balance in this
region (fig. 21) it is seen that the rate of energy diffusion is much
smaller than that of production or dissipation. This means that the
energy produced here is locally dissipated. It should be noted that
this is one of the implied assumptions of the mixing-length theories.
Another assumption, namely the existence of statistical similarity
between the velocity components, is, however, difficult to accept in
view of the discussion in the section "Energy—Spectrum Considerations.’
Thus, although the gradient type of momentum transfer involved in mixing-
length theories has more experimental support in this region than in
other portions of the field, its use is not completely justifiable.

SUMMARY OF RESULTS

Fully developed flow in a large pipe was found to provide a very
useful medium in which to study the structure of turbulence in shear -
flow. Embodied in the term "structure" are the interactions between
turbulent motions and mean flow, and the various transfers and movements
of energy from point to point and from mean flow through the spectrum of
turbulent motions.

The following are the major results:

1. The importance of a detailed knowledge of conditions in the
close proximity of the wall was demonstrated.

2. Using the similarity parameters U; and v/UT the flow field in
this region was shown to be independent of the Reynolds number.

3. The various turbulent-energy rates, such as production, dif-
fusion, and dissipation, were found to reach a sharp maximum at the
edge of the laminar sublayer (r¥ ~ 12), their magnitude being of equal
relative importance but much larger than those in other regions of the
pipe cross section.

Lk, Tt was found that there exist a strong transfer of kinetic
energy away from the edge of the laminar sublayer and an equally strong
movement of pressure energy toward it.

5. In the center region of the pipe, the characteristic length and
velocity parameters were shown to be a and Ug.

6. In the region of large mean-velocity gradients but outside of
the dissipative region (between r* ~ 100 and r'/a =~ 0.1) energy dif-
fusion was found to be small compared with the turbulent-energy production.
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7. The spectrum measurements indicated that in regions where the
mean-velocity gradients are not too large the u'—sPectra vary as the
—5/5 power of the wave number over a considerable wave-number range.

8. A considerably different distribution of the v'- and w'-spectra

was measured and an explanation of such a behavior was attempted.

National Bureau of Standards,
Washington, D. C., October 28, 1952.
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