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SEVERAL SLENDER-TATL CONFIGURATIONS
AT SUPERSONIC SPEEDS

By Percy J. Bobbitt and Frank S. Malvestuto, Jr.
SUMMARY

The velocity potentials, span loadings, and corresponding force
and moment derivatives have been theoretically evaluated for a number
of slender-tall arrangements performing a steady rolling motion at
supersonic speeds.

The method of analysis 1s based upon an application of conformal-
transformation techniques. The utilization of these techniques allows
the simple determination of the complex potentials for various types
of two-dimensional boundary-value problems.

In addition, two simple end cften-used approximations to the
rolling derlivatives have been compared with the corresponding exact
values determined by the method presented in this report.

In order to show the importance of wing-tail interference, the
effect of the flow field behind a rolling wing on the tail character-
istics has been illustrated for a simple wing-taill arrangement.

INTRODUCTION

A definite need has been indicated for additional Informatlion on
the contribution of wvarious taill configurations to the lateral dynamic
stability of airplanes and missiles et supersonic speeds. This need
is especieally acute with regard to informstion on tails which have only
one plane of symmetry. Inasmuch as taill arrangements, in general, may
be classed as nonplanar systems, the problem of estimating theoretically
the aerodynesmic loading for a prescribed motlion, such as rolling, may
entail some difficulty, particulerly if the panels comprising the tail
are broad and have subsonic leading edges.
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The difficulty of obtaining rigorous solutions for three-dimensional
nonplanar systems led to the slender-body theory. This approach con-
siderably simpllifles the enalysis of such systems by allowing the neg-
lect of compressibilility effects and, as shown in a number of papers
(refs. 1 to 5), permits a solution to be obtained by an evaluation of
the incompressible disturbance potential in crossflow planes, which
are defined ag planes normal to the direction of relative flow. The
application of slender-body theory has led to many worth-while results
for a number of practlcal wing, wing-body, and tall-body configurations
composed of polnted low-aspect-ratio lifting surfaces and slender
pointed bodies (refs. 1 to 6). The damping-in-roll derivative for a
slender-cruciform arrangement has been evaluated by Ribner in refer-
ence 6 and Adams in reference 3. A velocity-potential solution reported
by Westwater (ref. 7) is used in reference 6 to give the damping-in-
roll solution for a slender configuration consisting of an arbitrary
number of symmetrically placed triangular penels intersecting in a
common chord.

The present paper has two purposes. The first purpose is to
determine the rolling and yawing moments due to rolling for a number
of practical slender-tail arrangements. These arraengements consist of
triangular-plan-form panels which intersect 1in a common chord but are
not necesgsarily symmetrical with respect to this chord. The second
purpose 1s to present the method used in solving the problem of the .
rolling two-dimensional boundary that was reported by Bickley in refer-
ence 8. This method, in which the conformal-transformation technique is
used, allows the solution of a wide range of two-dimensional problems
and 1s especially applicable when the contours of the tall arrangements
in the crossflow planes are not symmetrical. Also included herein are
the necessary transformations and the integral form of the potentlal for
a tall arrangement consisting of slender triangular fins attached sym-
metrically to a slender cilrcular cylinder.

In order to assess properly the contribution of the tall to the
rolling and yawing moments due to rolling for a complete configuration,
the effect of the induced flow behind a rolling trlangular wing on the
contribution of the tall 1s approximately determined.

For the reader whose primasry interest 1s in the results rather
than in the method, i1llustrative variations of the rolling stability
derivatives for several series of tall arrangements, as well as gample
span loadings and pressure distributions, are included in the figures.
The formulas from which these loadings and derivatives have been
obtained are presented in the section devoted to applications.

The greater part of this investigation was carried out early in
1952.
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SYMBOLS

The posltive directions of the forces, moments, and velocities
are shown 1n figure 1.

X, 2 Cartesian coordinates (original space coordinates)
Z complex variable, =z + iy
¢ complex variable, & + iy
£, coordinates in complex {-plane
va' spanwise varisble in plane of wing
1
Yo nondimensional spanwise variable in plane of wing, %%5
Viseq nondimensional coordinates, yq = 5§§, z2q] = E;E
u,v,w perturbation velocity components in x-, y-, and z-directions,
respectively
r magnitude of vector in Z-plane
o] alr density
\Y flight wveloccity
Ap local pressure difference acrogs surface
q free-stream dynamic pressure, % pV2
Ap/q pressure coefficient
M free-stream Mach number
¢ perturbation veloclty potential
s stream function
W complex potentilal, ¢ + 1y

B angle of sideslip
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rate of rolil, radians/sec

ratio of span of vertical penel to span of horizontal tail
for inverted T-tail

function of R,

1l/2
1+ V1 + LR® / B <l + cos el>l/2

oR2 1 - cos 67

ratio of span of vertical tall to span of horilzontal tail
for cruciform taill

1/2
1+ 6
function of K, (K& + l)l/2 - K =[S0 71

1 - cos 67

root chord

spanwlse variasble along an arbitrary panel

span of an arbitrary panel

span of upper vertical panel

span of lower vertical panel

span of horizontal tail

dimensions of general cruciform tail obtained by transformation
arbitrary length

arbltrary area

bZ

agpect ratlo of horizontal taill,

Horizontal-tail area

(Vertical-tall span)2
Vertical-tall area

aspect ratio of vertical tail,

_ (Twice span of largest panel)?

Twice ares of largest panel
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ro body radius

r spanwlse circulation

31 angle between root chord and leading edge of vertlcal panel
8o angle between root chord and leading edge of horizontal panel
61,92 angles used in transformastion of general cruciform from

Z-plane to {-~plane

T angle that panel makes with x,y plane
N' normal force

Y lateral force

L' rolling moment about x-axils

N yawing moment about z-axis

Cn normal-force coefficlent

Cq rolling-moment coefficient, L'/qS1

L‘
(] =
( l>CT gb(Horizontal-tail area)

Ll
gb(Horizontal-tail area)

o

N

3
1

L(
q(Twice area of one panel)(Twice span of one panel)

3
N
<

I

Ll
C =
<Z>YT a{Twice area of largest panel)(Twice span of largest panel)

acy

P o\al
2v p—>0
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<CZP>CT ) [i%@rj]

3(C1) gy
| (CZP>TT = {(a&}

j 3(C0) v
(CIP>V‘I' Jp_»o

a%(Span of one panel

!

8@1)301‘
Crpvr = ;’ .

d%(Span of largest panel

Cy lateral-force coefficient, Y/qS
Y

Cy =

( )CT a(Vertical-tail aresa)
Y

(CY>TT =

q(Vertical-panel area)

Cvr - 3

2q(Area of one panel)
(©%)yr

Y
2q(Area of largest panel)

1
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oy = X
T, = o1

2V/p—0

T~ a(pi)CT

p (Vertical-taill span)
2 p—>0

—

(®tp)or

<

B a<¢Y>TT

ag(Vertical-panel span) p—>0

Crp)rr

—

—
(CY _ a<CY>VT
1Y
VT -a%(Span of one panel) P30
—
i a<cY>YT
(?Yp}yT - »
—V(Spa.n of largest panel) PO
Cn yawlng-moment coefficient, N/qS?
Cn = é.c_n;
1% agl
2V/p—0
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() gy

<CYB>TT B 3B B—>0

Subscripts:

N trailing edge --

IE leadlng edge

CcT cruciform tail

T inverted T-tall

VT V-tall

YT Y-tail

Z,y real and imaginary parts of a functlon, respectively

GENERAL ANALYSIS

Linearlzed three-dlmensionsl supersonic flow is governed by the
classical partial-differentisl equation

(M2 - L)fyy = Byy - Fzz = O (1)

where ¢ 1s the disturbance velocity potentisl. If the disturbance
body is slender 1n the axial directlon, the potentisl flow is, to a
satisfactory approximation (see refs. 4 and 9), controlled by the two-
dimensional Laplace equation

¢yy +¢,, =0 (2)

Briefly, the classificatlion of & body as slender means that the
production of perturbated flow in any cross plane (v,z plane) normal
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to the free-stream direction (x-axis) is dependent only upon the dis-
turbance contour in that plane and, hence, independent of the flow
action in the preceding cross planes. Such a conslderation implies
the neglect of the gradient of flow in the longitudinal dlirection and

neécessitates the removal of the (M® - 1)@yx term from equation (1).

It seems regsonable to expect that the applicatlion of slender-body
theory should give with satlsfactory accuracy the aerodynsmic loading
for slender configurations for which the boundary conditions (such as
rolling) do not depend explicitly on the longitudinal distance.

Boundary Conditions

Sketches of the tall arrangements considered in thls paper are
presented in figure 1. Figure 2 presents a cross-sectional view of
these arrangements and the prescribed boundary conditions for steady
rolling motion. In the crossflow planes represented in figure 2, the
two-dimensional potential flow satisfles the Laplace equation (eq. (2)),
and the perturbated v and w velocitlies externsl to the dlsturbance
contours must be continuous except possibly at the edges of the
contour. As infinity 1s approached, the potential and the v and
w velocities must become zero. Across the contour the normael flow
velcclty is continuous; whereas, the tangential flow velocity is
discontinuous.

Determination of Velccity-Potential Functicon

The determination of the velocity potentiel 1n the crossflow
planes for the tall arrangements shown in figure 2 can be simplified
by & conformal tremsformation of the regions external to the disturbance
contours to an upper hslf plane, the closed disturbance contours belng
transformed into the infinite real axis of the transformed plane. The
velocity potential 1s then readily obtained In this plane, and by an
inverse of the transformation, the expression for the velocity potential
is established in the originsl plane. A brief discussion of the
required conformal-transformation theory with particular emphasis on
a rotating boundary (such as a rolling tail) is presented in the
followlng section.

Conformal transformatlions and suxiliary functions.- Any one of
the crossflow planes for the tail configurations shown in figure 2 is
called the original plane and designated symbolically as the Z-plane.
The ¢-plane (¢ = ¢ + in) is designated as the complex plane in which
the real axis is the transformed contour of the original plane and
the upper half plane is the transformed region exterior to the contour
in the original plane.
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A 18 well-kmown, the transformation of an arbitrary, closed, recti-
linear polygon from the Z-plane into the upper half of the {-plane can be
expressed by the following form of the Schwarz-Christoffel transformation:

dZ _ (Complex constant)II({ - 0)7/Tr

a (62 + 1)°

(3)

where the position of the pole has been taken at { = 1i. The symbol ¥
denotes the exterior angles of the polygon and ¢ denotes the points
in the {-plane which correspond to the vertlices of the polygon in the
Z-plane. The symbol II denotes the fact that each corner of the

polygon requires a factor (¢ - c)7/It in the formuls for dZ/df. The

use of this expression requires that the numerator have no zeros and noc
branch points in the upper half of the {-plane and, consequently, none

in the lower half plane. Integration of eguation (3) yields

_g(t)
z --g-g——:: (&)

where g(f) 1s specified by the following relationship:

(Complex constent)IT(§ - C)7/It = g'(&)(ge + 1) - 2te(t)

The determination of the g(t) function may be very difficult for

some configurations. Thils transformation procedure is 1llustrated in
reference 8.

For convenlence, the points defining the boundary contour in the
Z~-plane are denoted by =z + 1y; hence, the conformal relation between
the original and transformed boundary becomes

z=z+1y=-§£-5’l- (5)

ES + 1

where ¢ represents points along the real axis (the transformed boundary)
in the f-plane. The preceding transformation may be expressed as
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g,le) + g (8)

g2 + 1 (6)

Z

or

2(¢) )
g, (¢ yzgy(é

2+ 1 £2 + 1

Note that g, (&) and (¢) are resl-valued functions of &.
z\E gyl £

The following relationships are extremely helpful in the trans-
formation of the boundary conditions from the contour in the Z-plane
to the transformed contour (the real axis) in the {-plane, particularly
when the contour in the original plane is experiencing a steady rolling

motion. On the boundary in the Z-plane, 7.7, = [ZI2 = r° where r is
the magnitude of the vector-point function from the origin to the

boundary. In the {-plane, the relation 77 = r® transforms into

_b(e) where h(t) 1is defined es
2
(g2 + 1)
2

n(e) = [e(e)] " + [ay(e)] (7)
On the boundary 7 = i(@) ; hence, from this relation and equation (%)

=+ 1

7 - 2 = 8(8)e(t) (8)
(2 + 1)°

(It should be noted that eq. (8) applies only on the boundary.)
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and

n(t) = a()e(D) = [g,(t)]° + [y (] (9)

which are the useful and necessary expressions that relate the
original and transformed boundary conditions in the Z- and {-planes,
respectively. Polnts on the boundary in the Z-plane coincident with
the z or the y coordinate axig will take on values in the {-plane

given by either E@;Z(E,Z'E or Eéy(&)__Jg-

As an 1llustration of the use of the preceding relationships, con-
gider the following example: Given a boundary in the Z-plane which is
rolling with steady angular velocity p about an axls through the
origin of the boundary and normel to the plane of the boundary. The
distribution of the prescribed normal velocity along the boundary is
equal to pr, and this distribution must be equal to the tangential
derivative of the stream function along the boundary. Hence, if the

complex potential function is W = ¢ + iy, then % pre = y elong the

boundary. Now ré = lZl2 and, from the preceding discussion, the
boundary condition for rolling in the Z-plane % plZl2 transforms by

h(e)
use of equations (8) and (9) into i»p —-rgé———— along the transformed
(82 + 1)

boundary (which is the infinite real axis) in the (-plane.

Integral expression for the potential in the (-plane.- As indi-
cated in the previous section, the contour in the original plane is
transformed into the real axls of the {-plane, and the region extermsl
to the contour is transformed into the upper half of the {-plane. In
this plene the complex velocity potential W(¢) = @(¢) + iy(t) 1is
determined so that it satisfies the prescribed distribution of normal
veloclty along the boundary of the real axis. This normal velocity
distribution, as8 shown previously, manifests ltself through the stream
function y(¢) along the boundary. The remaining problem is to deter-
mine a function of { that is finlte and single-valued in the upper
half of the {-plane with the imaginary part tending to y(t¢) as ¢
approaches the boundary of the real axis from above. Bickley (ref. 8)
presents the following integral function of { which satisfies these
requirements:

W(§)=¥f°o we)de (10)
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In the appendix this integral solution presented by Bickley 1s shown to
be a special case of the general solution of the Riemann-Hilbert problem
for the half plane which is reported by Muskhelishvili (ref. 10). TFor

h
the case of the rotating boundary, (&) becomes ._Ji_gél___ as pre-

2
o(e2 + 1)
viously noted. The following integral expression is then obtained as

the complex potentiasl in the {-plane for the case of a rotating boundary
in the original plane (see ref. 8):

h(e) dg
w(¢) (11)
Eﬂf 52 + l (E, - g)

Expressions for Pressures, Forces, and Moments

Once the velocity potential has been determined subject to the
required boundary conditions, the expressions for the 1lifting pressure
and the corresponding forces and moments are easlly obtained. The
lifting-pressure coefficient is given by

bp2f .28 % 2 %o (12)
a Vo V 0sp Ox V Jso 9%

where I', the spanwise circulation, is defined as ¢l - ¢2, the poten-

tial jump across the surface. The subscripts simply denote values on
opposite sides of a surface. Equation (12) is consistent with the
small-perturbation theory only if the magnitudes of the perturbation
velocities are equal across the lifting surface. When the magnitudes
of the perturbation velocities are not equal across the 1lifting surface,
equation (12) should contain differences in the squares of the v and
w velocities. The squared terms contribute terms which are linear
functions of p to the stability derivatives; therefore, these terms
will venish because the derivatives are to be evaluated as p—0.

The expression for the normal force acting on a panel of the taill
configuration is

So T.E.
N'=DVf f of g5 ax (13)
o JYL.E. X
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or, since Ity =0,

Nt

W

50
QVf I'/p ds
0

Reduction to coefficient form by dividing by

50
=...2_f I de
ON = 73 o TE

gS ylelds
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(1)

(15)

The integral expression for the moment of the normal force 1s readily
obtained on the basls of previously published analyses which have shown
that, for rolling triangular arrangements with pressure coefficients of
the form psof(s/sc), the longitudinel location of the center of pres-

sure is at the Ecr point. With this stipulation, the yawing moment

about the apex of the tall system may be expressed as

g
N = 2 cppV sin 7 Jﬁ ° T ds
r TR
b 0

and division by Sl gives

in T o
Cp = 2 ¢, 2 fsr ds
T2 T Tyt oy T

The rolling moment about the longitudinal axls is given by

L' "
= pV I'prps ds
0

and nondimensionally by

(16)

(18)

(19)
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For certain configurations it may be expedient, in order to
faclilitate integration operations, to determine the rolling and yawlng
moments by a consideration of the potential expression in the {-plane
instead of the origlnal Z-plane. The necessary expressions for the
moments are easlly derived as follows: The rolling moment in the
original plane can be expressed as

L' = pV#gﬁTE(z dz + y dy)

or

L' = oV §§¢TE d% r2>

Integration by parts gilves

L' = % OVgr® - %p‘\rﬁ&rEdngE (20a)

In the {-plane equation (20a) may be expressed as

Lx =]__ % ? h(&) g-g (QOb)
2@ I“(§2+l) dgdg

when the contour in the original plane is assumed to be symmetrical, at
least with respect to one of the coordinate axes. This condition of
symmetry, together with the antisymmetrical nature of the potential,
causes the disappearance of the first term on the right-hand side of
equation (20a) which expresses the rolling moment in the Z-plane.
Similarly, the moment of the normal force (referred to the apex) may
also be more easily obtained if the Integration is performed in the
t-plane as follows:

3 o ds a ds
N = 1 Vf %5 q -f %8 g o1
ForstnT e, ¢d§ £ ' ¢dg ; (21)

C



where a'b’ and c'd' are those portions of the ¢-axis corresponding to opposite sides of a
panel in the orlginal plane. The silde force, of course, 1s simply N divided by g Cpe

APPLICATTONS

The results of the preceding analysis are applled In this section to the evaluation of the
velocity potentials and assoclated force and moment derivatives for several tail arrangements.
In additlon, & brief discusslon of the effect of the wing flow field on the tall characteristics
is included.

Forces and Moments on Rolling Tails

nna nlian

o nl‘ .
L A ChAT e T LI

The +
L=}

nyrengamant { aummatrd
COOgEciiv b (SHT

arno’l o oant +
mation of the sgpace outslide a cruciform with vertical panels of dif
panels of equal spang to the upper half of the {-plane is obtalined

oo
Ll LS o)

*r
- S
erent spans and horizontal
rom reference 11 as

R0

1/2
Q[EL(l - cos 81)(1 - cos 8,) + Eggbxﬁ 6, cos 65 - 1) + (1 + cos 87)(1 + cos GEE] /
Z =1t

g2 + 1
(22)

The orlentation of the cruciform in the Z-plane and the correspondence of polnts in the Z-

and {-planes may be noted from figure 3. The dimensione of the cruciform tail (that 1s, the
penel spans H, Hl, and B/E), as transformed by equation (22), are determined by the selection
of cos 81 and cos Op in the following equatione (ref. 11):

/e

1
H= EIZl - cos 081)(1L - cos egij (23a)

9T

G633 NL VOV



3w NACA TN 2955

Hy = E[Kl + cos 01)(1 + cos ezi]l/e

= cog 81 - cos Op

Mot

17

(23b)

(23c)

In order to facllitate the selection of the cosine terms for known ratios
of H/H} end Elg, equations (23) may be written in the following form:

Hy

@auw%ﬁ“ -]

——

cos 91 = -
2
Hl J B/2 +]:‘+<HE>-1
2
ﬂ%% @ - @
2 2 2
R E ORR RO
ey T

ol Te-E e

/%/2[/2 Eo 1} Hl} EFE -

ey e ) -

-
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It 1g evident from the transformation that Z wlill be elther real
or lmaginary on the boundary. The auxiliary functlion h(g) will
therefore be given by

h(e) = *h[%u(l - cos 087)(1 - cos 85) + 2t2(cos 61 cos 8, - 1) +

(1 + cos 87)(L + cos egﬂ (25)

where the negative sign applies over the portions of the boundary from
the points (&) to ® and @ to (@) (see fig. 3(c)) and the positive

sign applies over the remaining portions of the boundary. Substituting
these h(t) functions into equation (11) and performing the indicated
integration results in the following expression for the complex potential
in the {-plane:

2¢(Fy - Fp - 1
wolp o2 o Fe o) M tan™t /F5 - F) -

" S (62 + 1)°

+ lNFB + F, + 1 Fz - Fy +1

tan™+ VFz + F) + %)

Flgthggh“gFQ-Fl (J_—TFI+ O/F5 - Ty - g)
(2 + 1)° <‘/F3 o, + §><\/F3 FE - g>
(26)

2

where

Fi = (1 - cos 687)(1 - cos 6p)

Fp = cos 87 cos Op ~ 1



Fo = 1 - cos 0y cos Ba %
¥ (L - cos 81)(1 - cos 8,) =
=

m‘

B cos 61 -~ COB 62 t%

F4 = 0

(L - cos 87)(1 - cos 95)

If, in equation (26), f 15 expressed in terms of 7 (cobtained from eq. (22)), there results
the complex potential in the original plane (the Z2-plane) for a cruciform with the dimensions H,
M, and B/2 (see eqs. 23).

The veloclty potential in the {-plane (real part of eq. (26)), together with the h(t) func-
tions (eq. (25)) and the relation in equation (20b), ylelds the rolling moment and, hence, the
damping-in-roll coeffilcient as

O~ g 4 e - )] TR R,

n(F )" + Fx + )t (14 Fs - m, )t

E - h(tan"l m - tan~l m):“:(F]_ - Fo) - lZI + 16(-——-——————-'+Fh -

1+F3+FJ+

6T

(Equation continued on next page)
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(s - By ﬂl—"~5+*u /i -F, | [ )
+ Jt—lltan'lk/F + 7, -
1+F5—F1Fr(:L+F3+F1*)5 (l+F§'Fh)5 i( 3 i

ten” \/iﬁ'F)(l*FE"5'2FD +4F1Fo-2F12\+ R r °___.,

l+F5+F1‘_E_+F +F,

— -
fFs - F /
16(Fp - Fp) + 12“ S - M [ 8 + 16(Fp - F1) + 12 [ i RELI
1

l+F3-F1(_l+F§—-F;+ +F3+Fll)2

1 .
)

!
o

m ( _ -9 - 8, + W, + 2 -2
(1+F3-F4)J U— (o T lfﬁl’ e

\/i + F 16(Fn -~ ¥y) + 12
3 ’5"'! J+- ’— 16 -+ 2 l) + LE 22 - @1}?2 + li-Fla + 16F2 + l{;-l -
*+f5+*’4[£1+1r3+m)‘3 1+ F5+T, J

CC62 NI VOVN

(Equation continued on next page)



+ONFSE - B Fp + WP 2 +

om—— Lol oY
V¥ - F | 16 16{Fp - Fp) + 12
+

1+F3'Fh(l+F5—Fh)2

JFz + F /5 - F
16F2+18} I i T T E-lt-tan—l\ﬁ§+F -

1+ F5 + Fh 1+ F5 - Fy

+

-2F12+MF1F2+8F‘1—2F22-8F2—9+ P + T, 3

tan™t [Fz - F ]
’ ! 2 1+ Fs+ By (1 + Fy + F)
L 3

)5

- P 6 B[, - 7, )° + oF 16(F, - F 12

o
4 161?‘2 - hFy< +
14+ Fz +Fy

(l+F5+Fu)2 t2 *

ME2 - 8P 4 1] yF3 - Ty [ 52 L 52(Fp - Fy) + 16
-_ l - T v
j l+F5—F41£l+F5_Fu)5 (1+F3—F4)2

; Fl)e + ﬂi‘]] ¥ 16(F, - Fp) + 12—1\111 - u(:can—l [T ¥ Ty - tant [R5 - Fu')
L

—

(¥,
L

(a7
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The variation of (ClP)CT/A (eq. (27)) with the ratio %%g- for & fixed value of H/H; of 2

is shown in figure k.

The side force regulting from the rolling motion mey be determined utilizing the velocity
potentiel and equation (21). In coefficient form this side force ig glven by

i

b‘iﬁ - Fly o
hay
<¢YP>GT 7 ﬂcﬁﬁi + V—Fi + 2Fo + %)5{{; e JC 30y e =

where

) .

=+ (6 + 1

- l\} +Fz +Fy 1 +Fz-F 241

l#g (‘/Fﬁ_“Fh _ \{F5—Fh >+EF2—F1+F1§2+
i

L ]l ( 3 + F]-I- + g)(F3 - F)_!_ - g) (Fl - FE)QZ) + (Fl - FE - l#)g
_* loge /" v
(@) (g T m e T - (2 1) etk s a2 -y e

§

¢C6e NI VOYN
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The veriation of <?Yp>CT/AV with the ratio %{3 for a fixed value

of H/Hl of 2 has been determined by a numerical Integration in the

origingl plane and 1s presented in figure 5. With the lateral force
known, the stabillty derivative Cnp of the cruciform tall is easily

obtained as pointed out in the section degling with the pressures,
forces, and moments.

Of specisl interest are the limiting expressions of equation (22)
which represent the transformations to the {-plane of: (a) the cross-
flow plane of a palr of mutually bilsecting, perpendicular surfaces and
(b) the crossflow plene of an inverted T-tail.

Cruciform composed of two mutually bisecting, perpendicular,
triangular surfaces.- In treating the cruciform with equal-span verti-
cal panels, the cross section may be considered as having the same
orientation in the complex plane as in the real plane; that is, H; 1is
set equal to H and the horizontal tall has a span of 2H in both
planes. 1In order that Hy; be equal to H, cos 8o must be set equal
to -cos 81 Iin equations (25) with the result that

H=H =2f1 - cos?8;

and

=2 cos 81

RO jtd

If the same substitution is made in equation (22) and the local span
of the horizontal panel is denoted as b/2, the transformation (eq. 22)
may be written in the more useful form

2

+ g_véu } 2(1 + co; 01) 241

7 = 1 ; cos=07 (29)
=+ 1

The values of ¢ at points (2) and ® (fig. 3(c)) are obtained from

1/2 /2

1+ cos 6 1 -~ cos 6

equatj_on (29) as _____l and —_._]_-. s respectj_vely.
1 - cos 07 1+ cos 671
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1/2

1 + cos 81
Let the paremeter [ —e8 = be defined as e. Equation (29)
1l - cos el

may then be simply expressed in the form

tgﬁ“-<e2+§>g2+l

§2 + 1

If the vertical panels are now glven a span of K g, then

e = Vgéi:—z - K (51)

and

82+

1 _
’;‘“KE” (32)

The veloclty potentlal for thls case may be determined from
equation (26) as

g = (b/2)°p|L(2 - 1) (€2 + 1)2(2 tan-le - TE) N
T (gg + l) 62 E

(33)

- <62 i fe‘)gz tl (L +et)(e - t)
2 loge
(QE + 1) (1 -et)e+ ¢)

Substituting for ¢ in equation (33) the equivalent in terms of Z
(determined from eqg. (30)) yields the potential in the original plane
for & cruciform of arbitrary dimersions. In the limiting cases where
K=0 or K =1, this expression for the veloclty potential reduces
to that for the potentials glven in references 2 and 3 for the rolling
triangular wing and rolling equi-panel-span cruciform, respectively.

From equation (33) the pressure distributions and span loadings
for K wvalues of 0, 0.5, 0.75, and 1 have been determined and are
presented in figures 6 and 7.
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The demping-in-roll coefficient for this group of talls, which is
obtained from equation (27) by making the proper substitutions for the
cosine terms in terms of e, is found to be

+

2 b g2
<?ZP>CT - %%[Z(%an'le - tan~l % + E>(e l)(665 es + 1)

N
ten—le - tan-1 L)1+ e2) 2
( e E>< . (e2 - 1) (54)

4e4 e?

The variation of (?ZP>CT/A with K 1is plotted in figure 8.

Tnverted T-tail.- By setting cos 8o = -1, the dimension H; of
equation (23b) vanishes and the cruciform in the complex plane (fig. 3(b}))
degenerates into the inverted T-tail. If the value of f at polnt Cj
for this case is designated as s, equation (22) reduces to

Y S

i Vi + a2 §2 + 1

7 (35)

The proportions of the inverted T-tail will then be governed by the
gelection of a 1in the following equations:

2g2

B

B. B (362)

2 1+ a2

P (560)
1+ a2

_ VLt e? (36¢)



26 NACA TN 2955
Equation {36c) may also be written as

1/2

1+ ¢l + LR -

8 = (364)
oR2

to allow for the selection of a for a desired vslue of R.

The velocity potential for an inverted T~tall of dimensions H

and B/2 is found by a reduction of equation (26) and may be expressed
a8

g - 22 (2 - 8%) o, bt
(1 + a%)n (€2 + 1)2 £ -a

+

[?(3 +af) + 1 - a?]/ﬁ - tan” ) P

(37)
(2 +1)° G v

A more general potentisl expression which will be wvalid for tails of
dimensions h and b/2 mey be evolved by multiplying the right-hend

side of equation (37) by (h/H)2 or (b/B)2 and by altering the
transformation formula so that on the vertical panel

Y 1/2

2(%)2 + a2 + Vé” + A(%)e(ag + 1)

=t > (38a)
7 \2
2[‘(1‘5)] |
and on the horizontal tail
. 1/2
<%-y/5 r2x2(1 -

(= |2 i (38b)

—5 * a2a+ 1<5§5) B
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The spanwise pressure distribution may be determined from equa-
tion (12) together with the potential for the rolling inverted T-tail
of dimensions h and b/2. The pressure distributions for various

values of R are plotted in figure 9; spanwlise loadings are presented
for these same values of R in figure 10.

The following expression for (?YQ>TT is obtained from equa-
tion (28) when cos 92 = -1:

a(582 2, 1)i/2 -
(?Yé> - 4, (5= + 3) N (a2 + 1)/ “(x - k& ten~1a) (39)

5(&2 + 1)5/2 N

Figure 11 represents the variation of A, with the parameter R
prT/ Vv

The damping-in-roll coefficlent nondimenslonalized with respect to
the horizontal-tall area is glven by

. _ -A(L + a2)2 (a% + 282 + 9)(x - k4 tan‘la)2
<ZQTT *

oxal 16
a(s? - 9)(k tan e - x) L (e + e? + 9)a2
2

(ko)
(a2 + 1)2

The variation of <CZP>TT/A with R has been shown in figure 12 to

depict the effect the addition of a vertical panel to a slender tri-
angular tail has on the rolling characteristics of the tall.

Rolling V-taills.- The expression necessary to transform a V-tail
and the reglon exterior to it to the infinite stralght-line plane can
be obtalned from reference 11 and is

1l-o

_t2) 2
g - )

S (1)
= + 1
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where o defines the "dihedrel” angle + (see fig. 13) as

_ %O

o (k2)

T

and the span of the tail panels as

N

a/2
=2(1 - 02)1/2<l * G) (43)

1 -0

The positioning of the V-tall in the complex plane, as well as the
correspondence of points in the Z- and {-planes, may be seen in figure 13.

Tn order to note the effect on the forces and moments of changing
the dihedral angle, tails with dihedral angles of 22.5°, 45°, and 67.5°,
in addition to the two limiting cases of 0° and 900, have been investi-

gated. The auxiliary function h(¢) and the velocity potentiel in the
{-plene are listed in the following table for each of the five talls:

don h(t) ¢/9(2—>2

o 162 t(1 - t8)
(2 + 1)
22.5 16g3/2 V2 t(-tB -3t +3) +1
(2.06L)2 (2 4+ 1)°
L5 16¢ o 1- P

3/3 (t2 + 1)2

67.5 16 1/2 /2 . St 2) +3
(2.74k) (¢ +1)

-¢(E2 + 3)
90 16 e
4(@2 + 1)
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In order to show the various end-plate effects, tralllng-edge
potentials, as well as span loadings, have been plotted 1n figure 1h.
For comparative purposes the span loadlng for the equl-panel-span

cruciform hag also been included. The variation of <91£>VT/AX and

(CYP>VT/A' with T is plotted in figure 15. This figure shows that,

theoretically, V-tails with dihedral angles in the immediate vicinity
of MSO yield more damping than a cruciform tail which has twice the
damping-surface area.

Rolling ¥-tail.- The velocity potential for & rolling Y-tail with
any desired ratio of the span of the arms to the span of the stem
(vertical panel) may be readily determined by the method presented in
this report. The Y-tall considered in the following analysis has an
angle of 90° between the two arms and en angle of 1550 between the
arms end the stem (fig. 16(a)).

The expression required to transform the Y-tail and the region
exterior to it to the infinite straight-line plane can be cobtained
from reference 10 as

iy
E(l - COs el)j:il/ (Cg - e2>3/l{'(2g)l/2 ()-IJ-I-)
7 =
2

S

+ 1

1/2
1 + cos el
where e, as before, 1s defined as —_— . The orientation
1 - cos 8y
of the Y-tall in the Z-plane snd the correspondence of the points in
the Z- and {-planes are shown in figure 16. The dimensions of the
Y-tail ere obtained by the selection of cos 87 in the following

equations:

1/%
SEZ%——— (1 + cos 87) (458)

il

oo

1/4
EE(l ~ cos 91)5:’ / (45b)

e
i
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The required h(t) functions are

3 /2
L y2(1 - cos el)Bg(e2 - gg) /

and

4 vg(l - cos Gl)jg(gg - e2)3/2

on the arms and stem, respectively. Substituting these functioms into
equation (20b) and Integrating over the proper portions of the boundary
(see fig. 16) yield the complex potential in the {-plane as

(/L + e2(362 + 1 - 262)
+

2(t2 + 1)2

W=2 Vé(l - cos Gl)3p

1. VI + e 62k + e2) + &2 - 2 % it(e? - §2)5/2 .
§ (2 +1)° (2 + 1)°

. 2
(2 - 2)% (46)
(2 +1)°
The nondimensional velocity-potential parameter on the arms is
¢ _\8%&(1 - cos el)5 V1 + €@ Ek5g2 + 1 - 2e2) . 1 .
h 2 =
P(b/E)E 2/3(1 + cos 61)2 L_E(CE + 1) 1+ e
P4+ @) + 2 - 2 t(e® - @2)5/2

+ (&7)

2(2 4 1)° K s (2 4 1)°
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and on the stem or vertical panel is

¢ L+ el §(5§2 + 1 - 2e2) 1
532 >
2(¢2 + 1) 1+e

~tPh + e®) v -2 (2 - (32)3/2 -1

2(¢2 + 1)° /1 + 2(e2 + 1)2_J

In the limiting cases cos 61 = 1 and -1 the potentials are obtained
for the rolling V-tall with a dihedral angle of h5o and for a trisngular
panel rolling about one edge, respectively. Sample trailing-edge
potentiels and span loadings are presented in figures 17 and 18.

(L8)

For convenience, only numerical integrations were made of the span
loadings to obtaln the side force and rolling moment due to rolling.
These results have been nondimensionalized and are presented as the

parameters <?YP>YT/A' and (?ZP>YT/AY in figure 19.

Figure 20 has been prepared to illustrate the relative damping
qualities of the various tall arrangements of panels of the same span
and area considered in this paper. The relative merit of the Y-tail
as shown 1n this figure may be of particular interest.

Cruciform tail-body arrangement.- The method presented herein can
easily be applied to a cruciform tail-body arrangement to determine the
integral solution of the complex potential in the f-plane. No effort
was made to evaluate the integrals; therefore, the analytical expression
for the potential and, hence, the associated pressures and span loadings
are not pregsented for this case. Nevertheless, the development of the
integral form of the complex potential in the {-plane was considered of
sufficient interest to warrant presentation herein.

The contour of the cruciform tail-body configuration shown in
figure 21(a) may be transformed to a pair of mutually bisecting, per-
pendicular, triangular surfaces by an application of the Joukowski
transformation (fig. 21(b)) and then to the infinite straight line
(fig. 21(c)) by use of a transformation similar to the one used in



the previous illustrations. Thie procedure results in the following relation between Z and f:

)

(b/2)° + =2 /gu e S L
2v/e 0y2 . 27
K iKE [(6/2)% + 22] )

ge + 1
1/e
e 2 o P
l—Eb/z) ’ rOF{I A QE@(b/EE) rO]e P 1p 2+ 1] - b P(b/2)2(E2 4+ 1)7
!_ h(bj2)? \ IS Eb/E) + rgﬂ / | o)

CQ + 1

On the verticel and horizontal panels both terms will be real or both imsginery; whereas, on
the body the first term will be real and the second imaginary.

As noted previously, in order to determine the complex potentiel, the h(g) function must
be substituted into equation (11) and integrated over the boundary. The h(g) functions over
the portions of the boundary corregponding to the horizontal and vertical pamels (Bee fig. 21)

will be plus and minus [?1(5) + fe(gj]g, respectively, where fl(é) is the numerator of the
first term of equation (49) and fo(g) is the numerator of the second term. The h(g) fune-
tion over the portions of the boundary corresponding to the body is [%l(nge - [?2(55]2- The
integral equation for the complex potential 1s then - ) |

¢Gée NI VOVN
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Wzlg@[@m+m@%+f@ @&f-@ﬁﬁﬁﬂ

N0 s 1Pe-o @ (2 + 1% - t)

O B s sl O EXCINT0 W S
Q 2+1%¢c-8 ‘O (2 + )%t - ¢)

® Fute) « seln (O {B01°- EONCE
® 2+1G:-0 "®  (+1%E-0

f@ [Fle) + ()]s f® {Efl(iﬂa - [fe(i)ja} & |
6 @+1)E-0 @ (2 + 1)%(¢ - ¢)

f® [£1(e) + Zz(&ﬂedé (50)
@ (2+1)7(E -0



where the values of &
(fig. 21(c)) are given by

as determined from equation (49) at the points @@ , @&, ©, and @)

r‘
o KR2(m/e)? - r2|° 2\2
l“:'02"“ [(/) ro:l + 1 (P-‘Lr_o—)
B2 [(0/2)% + r2}” 2 v/
g = % < +
L ’I'OE)g 2
L (2 + _E'/'E - JJ(-I'O
e 1/2
4 2 2 2 2
(]-3- + r02> EE{E(b/E) _ 1‘02] +1 - 1)+ 16p 2(2 N r02)2 E@(b/e) - rOE]
2 Q
v2) \ g2 [(o/2)? + £ 2]7 L R [(b/2)2 + r?]”
2
(9 ﬁ) 2
2 bf2, ? i
1
at the points (3) and @ by (53)
. o 1/2
K2(b/2)" - r,2 2 _ o
. 200/ 02| L e o)
Kaﬁb/e)2 + 1*02]2 K|(b/2)° + ro{l
mm A mde dlam o Tamdom AN e (TN L v a - - T f e
4 au one poinnh (A U 1)) by LNC reciprocal 0 equatlion (D).

1/2
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Approximation of the Rolling Stability Derivatives

For many arrangements, because of the Inherent difficulties

involved in meking a rigorous estimate of the stablility derivative CYP

<and hence, CZP and Cnp), an approximation to this derivative based

on a knowledge of the aerodynamic loading due to sideslip becomes
necessary. In the simplest of these approximations, B is assumed to
be equal to the average sngle of attack due to rolling ph/2V. In a
second and more accurate approximation B 1s assumed to be equal to
the spanwlse digtance to the center of pressure of the sldeslipping
tail multiplied by p/V. If Cyp, 1is expressed in the form

Cy, = —= > (53)
P op a(I’_h)
vV
the first approximation is
1
C ==0C
v, =5 OYp (54)
and the second approximation is
z
C ==0C
Y, T q YB (55)

where 7z 1s the spanwise distance to the center of pressure.

An indication of the accuracy of these approximations may be
obtained by a consideration of the inverted T-tall. A theoretical
estimate of CYB for an inverted T-tail may be determined from refer-

ence 12 and can be expressed as

T 1+ 28.2
Crgeg =B (56)

1+ 4

This expression together with equation (59) provides an Interesting
theoretical check on the accuracy of the preceding approximations when
epplied to a slender inverted T-tall.
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The correction factor given by the ratio of equation (39) to
equation (56) is

(Crglrr _ ba(5? + 3) + 5(a2 + 1)°(x - 4 tan-le)

7z (57)

<pY6>TT 6n(a® + 1) (1 + 2a2)

This ratio is compared in figure 22 with the spproximations given by
equations (54) and (55). The values of (CYp>TT obtained from equa-

tions (54) and (55) are presented in figure 11. It may be noted that
equation (55) gives excellent agreement (within 5 percent) with the
exact values of (?Yp>TT for values of R greater than 2. For values

of R 1less than 2 an estimation of <?Y5>TT based on the approxima-
tlon obtained by equation (55) mey not be advisable.

As a point of interest, the variation of (CYB>TT/AV and <PZB>TT/A

(determined from ref. 12) with R 1s presented in figures 23 and 2L.
The expression for <915>TT is

2, 201+ a2)= [2a(1 - a2)

5a2 a6 (1 + a2)2 1+ a? e

(Cre)rr = &

(58)

Effect of the Wing Flow Field on the Tail Characteristics

In order to make an accurate estimate of the derivatives Czp
and Cnp for a complete wing-tail-body configuration similar to

present-day missiles, the effect of the wing flow field on the tail
must be considered. The importance of these effects for a rolling
wing-tail combination is simply illustrated by an spproximate deter-
mination of the downwash and sidewash velocities induced on a slender
inverted T-tail by a slender, rolling, triangular wing (see fig. 25).

The perturbated downwash and sidewash velocities were obtained in
& Pplane perpendicular to the free stream at an infinite distance down-
stream of the wing. Although the wing is of low aspect ratio, the
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tralling vortex sheet has been assumed to remain flat. Even though

the vortex sheet may actually roll up, no theoretical or experimental
evidence is avallseble to Indicate the aspect ratios or rotational speeds
at which this rolling up will occur. A further assumption is that, for
the usual velues of pb/2V encountered and for tall lengths of prac-
tical magnitude, the rotatlion of the vortex sheet at the tail location
can be neglected.

Based upon the preceding assumptlons, the downwash and sidewash
determined from the Biot-Savart equation are formulated as follows:

1
wog,0) = 2L [l _Te (59)

1 dy.

21 1 ar 2
o(o0,y) =k 2 [T R (60)
b/2 -1 d—}’g Zl + y2

For a slender triangular wing (ref. 5), the rate of change of the
circulation with respect to yp 1is

ar 1 - 2y,2
_=V*23P_b—y2 (61)

dyp 2 TR

Substituting equation (61) into equations (59) and (60), performing the
integration, and taking the partial derivative with respect to pb/2V
give

oul
- (il <) (62)
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and
a% 1/1 + 22,2
._b=_——-_1—- 271 (21 >0) (63)
agv 2\ + z12

The induced downwash (eq. (62)) will equal both in magnitude and direc-
tlon the downwash due to rolling of the horizontal tail which is

= py = - P2y ¥
W = -py > v o (64)

From equation (64) it follows that

X
d_;-_,B.- = —yl (65)
2V

The damping force resulting from the difference of these two perturbated
velocities (eq. (65) minus eq. (62)) will therefore be zero. The induced
sidewash from the wing exerts a side force on the vertical panel of the
tall in opposition to the side force produced by the isolated tail;
hence, the effect of the wing sidewash is to decrease the amount of

tall damping. This decrease will be rather large for most wing-tail
arrangements and it is possible for the induced force to be greater

than the damping force of the isolated tail with the result that the
vertical tall contributes an antidamping force to the system. For the
1llustrative example the induced side force on the vertical panel is
approximately 82 percent as large as the side force due to rolling.

The demping in roll of the tall immersed in the flow field behind the
wing is of the order of 15 percent of the value predicted for the tall
alone. The induced angle of attack on the vertical panel, the angle

of attack due to rolling, and the resultant effective angle of attack
are plotted in figure 25.

CONCLUDING REMARKS

A method, based on conformal-transformstion techniques, for solving
two-dimensional boundary-value problems has bheen used to evaluate the
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velocity potentials, span loadings, pressure distributions, and asso-
cilated stability derivatives for several slender-tail arrangements.
I1lustrative variations of the rolling stability derivatives for
several series of tail shapes, as well as sample span loadings and
pressure distributions, are included.

Two simple approximations of the rolling stability derivatives
have been examined 1n view of the exact values determined by the method
presented in this report. In addition, the importance of wing-tail

interference has been shown with the aid of some elementary flow-field
calculations.

Langley Aeronauticél Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 17, 1953.
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APPENDIX
DERIVATION OF THE EQUATION FOR THE COMPLEX POTENTIAL

The purpose of this analysis is to derive the equation (eq. (10) in
the body of the paper)

. L T u(e)ae
(§) =g+ 1y = e

from a knowledge of the general solution of the Riemann-Hilbert problem
for the half plane. The Riemann-Hlilbert problem 1s formulated as
follows: A function W(¢) = @(§) + 1y(¢) must be found which is
regular in the upper half plane (n > 0), bounded at infinity, and
satisfies, on the infinite real axis L, the boundary condition

1(e)@(e) - m(e)y(e) = n(e) (A1)

where 1(t), m{(t), and n(t) are real continuous functions of &
given on L. The functions are assumed to satisfy the Holder comndition
on L (see refs. 10 and 13) and the additional condition that

12 4+ m? # 0 for all values of ¢ including ¢ = «. In regard to the
Holder condition, a function, say m(t), will satisfy this condition

on L 1if, for any two points, &1, E&p on L,

|m(zp) - m(e) | S8l - 6]

where A and p are posiltive coqstants. The constant A 1is called
the Holder constant and p the Holder index. This definition of the
Holder condition has been obtained from reference 10.

The general solution of the Riemann-Hilbert problem under the
conditions stipulated has been presented by N. I. Muskhelishvili in
the following form (see ref. 10):

w(e) = Xif)fw n(e)dg + (Constant)x(t) (22)
= xr(e)[1le) + im(e)] (g - ¢)
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- vwhere X(t) is the fundamental solution of the associate homogeneous
problem and

xt(e) = lim  X(t)
n——>0+

The fundamental solution x(g) in terms of the boundary conditions is

given by
r
x(¢) = e &)
where
-
r(¢) = = A
2mn -0 £ - EO
) and

§0= lim g
n—0%

Now, for the boundary conditions considered in thls paper, it is

necessary to set 1(¢) =0 and m(g¢) = -1; hence, n(g) = y(&). It
follows that

X(t) = -1

X(E) = -1

end the general solution expressed by equation (A2) resolves into

w(e) = %fw ‘:(%)Zg + 1(Constant) (A3)

which is the Bickley relation (except for constent term) that is presented

. as equation (10) in the body of the paper. The constant term of equa-
tion (A3), however, is zero for the boundary conditions congidered herein,
since the imaginary part of W(f) as {-»f must equal w(g).
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Figure 1.~ Typical tail arrangements considered

1n the anslysis.
system of axes used and the positive
woments, and lateral force.

tall errangement illustirates the
direction of the velocities,
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Figure 2.- Boundery conditions on tall arrangements for steady rolling

motion.
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Real plane

(a) Cross section of cruciform in physicel plane.
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(b) Cruciform oriented for two-dimensional analysis.
?in Complex {-plane

3

B

“4/////// LTI T T T T7 72T 77 ia /I"fl/’//flf"/ff//f///////‘///II'
mer o (1) ® @""E ® "0 @D

{c) Points in the {-plane corresponding to the vertices in the Z-plane.

Figure 3.- Physical and transformed planes used in analysis of rolling
tails.
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Figure .- The damping in roll of a slender cruciform tail for verious

values of EHE and a fixed velue of 2 for the ratlio H/Hl. As
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Figure 5.- The effect on the side force due to rolling of a slender cruci-
form tail of incressing the horizontal-tall span while maintaining the
ratlo of the upper-verticsl-panel span to the lower-vertical-panel span
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(2) Horizontal panels.

Figure 6.- Pressure distributions on the horizontal and vertical panels
of four cruciform configurations with ratios of vertical-tall span

to horizontel-tail span of O, 0.5, 0.75, and 1.
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(b) Vertical panels.

Figure 6.- Concluded.
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Figure T7.- The span loading in roll on the verticsl and horizontal panels
of four cruciform configurations with values of K of 0, 0.5, 0.75,
and 1. Negative loading indicates damping forces directed in negative
y-direction on upper vertical panel and in the positive y-direction
on lower verticel panel,
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(b} Vertical panels.

Figure T7.- Concluded.
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Figure 8.- The effect on the damping in roll of a slender cruciform tail
of varying the ratio of the spans of the two mutwally bisecting perpen-
dicular wings.
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(a) Horizontal penels.

Flgure 9.- Pressure distributions on the verticel and horizontal panels
of a serles of inverted T-talls.
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(b) Vertical panels.

Flgure 9.- Concluded.
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(a) Horizontal panels.

Figure 10.- The span loadings 1n roll on the vertical panel and horizontal
tall of a seriles of inverted T-tails.
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(b) Vertical panels.

Figure 10.- Concluded.
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Figure 11.- The variation of the stabllity-derivative perameter "
v
with R for a rolling inverted T-tail.

(oYp} T

S Ay



NACA TN 2955 . 59

P4
=l.0 -

L
./

-3.5
Y
-3.0 L
CI'

-1.5

G

-1.0

Flgure 12.- Effect on demping in roll of edding & vertical panel to a
slender triangular tail.
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(a) Cross section of the V-tail in the physical plane.
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(b) V-tail oriented for two-dimensional analysis.
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(c) Points in the {-plane corresponding to the vertices in
the Z-plane.

Figure 13.- Physical and transformed plenes used in analysis of
rolling V-tail.
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Figure 14.- The span load dlstributions and tralllng-edge potentials on
the rightihand panel of a seriles of V-talls in steady rolling. The
span loading on & panel of an equi-panel-span cruciform 1s inecluded
for comparative purposes.
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Real plane
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(a) Cross section of Y-taill in physical plane.
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Y-tall orilented for two-dimensional anslysis.

Complex (-plane

~o - Q

S W W W W W U W W W W W U W VA W W WV, 0 W W L W 4 W W W N WL WA WA W W W W
® ® @

®

-

“‘E‘!"’

(c) Points in the {-plane corresponding to the vertices in
the Z-plane.

Figure 16.- Physical eand transformed planes used in analysis of
rolling Y-tail.
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Figure 17.- The span load distributiong and trailing-edge potentials on
the inclined right-hand panels of a series of Y-tails 1n steady
rolling. It should be noted that the small sketches on each graph

are intended only to depict the ratio of the panel spans 4%—.
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Figure 18.- The span loading in roll on the vertical panel of a series
of Y-tails.
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Figure 19.- The effect on the stebility-derivative parameters (CYp)YT
and <Clp>YT of changing the span of the vertical panel on & slender
Y-tail. The derivetives are nondimensionalized with respect 1o the

diemeter of the swept-out circle and twice the area of the largest
penel,
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Figure 20.- Varietion of CZP with aspect ratio for five slender conflg-
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(a) Croseflow plene of cruciform-tail~~body combination
oriented for two-dimensional analysis.
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(b) Cruciform-tail-~-body combination transformed by Joukowskdi

transformation.
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(c) Points in the {-plane corresponding to the vertices in the Z-plane.

Figure 21.- Physical and transformed planes used in analysils of rolling

tall-bedy combinstion.
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Figure 22.- The variation of the ratio (GYP)TT/zFYB>TT with R for

the Inverted T-tail as determined by exact and epproximate methods.
At R = « &all equations give ratlo equal to 0.5,
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T L Angle of attack due to roll
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Figure 25.- The effect of sidewash from a slender rolling wing on the
angle~-of-attack distribution along the vertical panel of a T-tail.
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