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TECHNICAL NOTE 3212

A NONLINEAR THEORY OF BENDING AND BUCKLING OF THIN
ELASTIC SHALLOW SPHERICAL SHELLS

By A. Kaplan and Y. C. Fung
SUMMARY

A shallow spherical dome subjected to lateral pressure is a structure
for which the deformation departs appreciably from the linear theory at
relatively small values of the deflection amplitude. It is also one for
which the buckling process is characterized by a rapid decrease in the
equilibrium load once the buckling load has been surpassed. For struc-
tures having this type of buckling characteristics the question arises
as to whether the proper buckling criterion to apply is the classical
criterion, which considers equilibrium with respect to infinitesimal
displacements, or the finite-displacement "energy criterion" proposed by
Tsien.

In this paper the problem of the finite displacement and buckling
of a shallow spherical dome is investigated both theoretically and exper-
imentally. In the theoretical approach the nonlinear equations are con-
verted into a sequence of linear equations by expanding all of the vari-
ables in powers of the center deflection and then equating the coefficients
of equal powers. The basic parameter for the shallow dome A is propor-
tional to the ratio of the central height of the dome h to its thick-
ness t. For small values of this ratio the expansions converge rapidly
and enough terms are computed to determine the buckling load according
to the classical criterion. For higher values of h/t, convergence
deteriorates rapidly and it was not possible to determine the buckling
load with the number of terms which were computed. However even for
these higher values of h/t the deflection shapes are determined for
deflection amplitudes below the amplitude at which buckling occurs. These
deflection shapes are characterized by their rapid change as h/t
increases and by the fact that, over most of the range of h/t studied,
the maximum deflection does not occur at the center of the dome.

Experimental results seem to indicate that the classical criterion
of buckling is applicable to very shallow spherical domes for which the
theoretical calculation was made. A transition to energy criterion for
higher domes is also indicated.
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INTRODUCTION

The development of the theory of bending of thin-walled spherical
shells has a long record. A survey of the problem can be found in refer-
ences 1 and 2. The fundamental equations are developed by Hans Reissnert
(1912) who shows that, for a thin-walled spherical dome that is not shal- ¥
low, the membrane stresses in the shell maintain equilibrium with the
external pressure, while the bending of the shell has relatively little
effect except near the edge of the shell where the shell adjusts itself
quickly to the prescribed boundary conditions. Bending in the shell is
therefore essentially an "edge effect" or "boundary layer" phenomenon.
Asymptotic solutions of the bending problem have been obtained by
Blumenthal (1912), Havers (1935), Jacobsen (1937), and othersl on the
basis that the parameter (R/t)2 is very large, where R is the radius
of the spherical shell and t, its wall thickness. Both symmetrical
and nonsymmetrical loading and edge conditions have been treated,
including the case of a dome supported on columns.

The asymptotic solutions are, however, not valid for shallow spheri-

cal shells,2 for which the effect of edge conditions is no longer limited

to a thin layer near the edge and the interaction of bending and membrane
stresses is strong. In 1946 Eric Reissner (ref. 3) developed the gov-

erning equations for shallow spherical shells on the explicit assumption

that the ratio h/a is so small that (h/a)2 is negligible in compari- 3
son with h/a, h being the height of the dome and a 1its radius (see

fig. 1). A few special cases are solved in reference D

Reissner's solutions are based on linearized equations. Since the
effect of bending on the membrane stresses is strong in the case of a
shallow dome, one naturally asks the question: To what extent is the
process of linearization valid? Expressed in terms of the ratio of the
vertical deflection at the center of the dome to the wall thickness wo/p.
the question is: How soon does the solution deviate from linearity as
wO/t increases?

To answer this question the nonlinear problem is treated in the
present paper. The particular problem of & shallow spherical shell with
a clamped edge carrying a uniform pressure is chosen so that a convenient
experimental comparison can be made. It is shown that the nonlinear
character depends upon a parameter A which is defined as

A2 = \fle(l 2 p2>:—§ Ly

lsee Timoshenko's book, reference 1, for references to original papers.

2By shallow is meant a spherical segment for which the ratio of . the
height to the base radius is small, say, less than 148,
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where p 18 the Poisson's retio and ' t, a, and R are as previously
defined (see fig. 1). The range of wo/t in which the linear solution
is valid is small indeed. For example, at A = 4, the equilibrium pres-
sure given by the linear solution is, respectively, 9, 23, and 50 percent
too high when wy/t 1is 0.1, 0.25, and 0.5.

Consider now the problem of buckling of thin-walled spherical shells.
For a complete sphere under uniform pressure, the classical solution, on
the basis of linearized equations, is obtained by Zoelly (1915), Schwerin
(1922), and Van der Neut (1932). (See ref. 2, p. 491.) The buckling
stress 0, 1s given by

Ooy = ———— (Gcr ) g% qcr) (2)

ey

where q,, 1is the critical value of external pressure. This stress has

the same magnitude as the critical stress for an axially compressed
cylindrical shell of radius R and of thickness t. It is relatively
high in comparison with experimental results. The corresponding buckling
mode predicted by the theory is also at variance with laboratory experi-
ence. To reconcile the differences between theory and experiment Von
Karmin and Tsien in 1939 (ref. 4) introduced a new concept into the
theory of elasticity: the "lower buckling load." They discovered that
for values of pressure q considerably below that given by equation (2)
quite different stable states of equilibrium exist, which could be
revealed only by abandoning the classical linearization of the problem.
The minimum of such values of g 1is the lower buckling load Q- e

g exceeds s the chances are great that buckling will occur. In
reference 4 the lower buckling load is computed (subject to a number of
simplifying assumptions) with respect to a special class of buckling
modes. Friedrichs in reference 5 avoids some of the arbitrary assump-
tions by applying asymptotic integration in the manner of a boundary-
layer theory. Application of Friedrichs' equations, however, yields no
minimum buckling load, and it is pointed out (ref. 6) that the minimum
obtained in reference 4 is due to the special form of displacements
assumed in that investigation.

The final "energy criterion" of buckling is formulated by Tsien in
reference 6. It is stated that under average laboratory and actual serv-
ice conditions the most probable equilibrium state is the state with the
lowest possible energy level. 1In other words it is assumed that there
are disturbances of sufficient magnitude so that the transitions from
higher energy levels to lower energy levels are always possible. Two
conditions must be satisfied in defining the "possible energy levels":
(1) the corresponding external forces and internal stresses must be in
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equilibrium; (2) the geometric restraint and loading conditions, if any,
must be satisfied. Tsien points out that these necessary conditions for
possible energy levels are not checked in references 4 and 5. When the
check is applied (ref. 6), a lower buckling load is obtained for spheri-
cal shells on the basis of Friedrichs' equations. The agreement with
experiments is good.

It appears that these arguments apply equally well to spherical
domes and to the complete sphere. Therefore, the first theoretical ques-
tion to be settled is whether the "classical criterion" of buckling or
the "energy criterion" should be used in calculating the critical buckling
load. The classical buckling criterion is based on the assumption that a
given state of equilibrium of a shell becomes unstable when there are
equilibrium positions infinitesimally near to that state of equilibrium
under the same external load. Thus in applying the classical criterion
an equilibrium state is compared with its neighboring equilibrium states
and the incipient buckling is revealed by a negative slope of the load-
deflection curve, that is, when an increase of deflection corresponds to
a decrease in the corresponding applied load. The important contrast
between the classical criterion and the energy criterion is that in the
former only a continuous load-deflection process is considered, while in
the latter a jump to the state of lower energy level is permitted even
though the intervening states involve higher energy levels. The linear-
ization of the governing equations, ordinarily made purely for mathemati-
cal simplicity, should not be regarded as a part of the classical
criterion.

Although the energy criterion seems plausible, nevertheless it can
be verified only by comparison with experiments. The energy criterion
necessarily yields a buckling load which is never greater than that given
by the classical criterion. If there is a wide difference between the
two buckling loads the problem becomes simply to choose the criterion
that gives closer agreement with the experiments.

For shallow spherical domes the buckling load calculated on the
basis of the classical criterion, but without linearizing the governing
equations, is known only in very few cases. In the comparison with
experiments presented in figure 20 of referer-:e 6, the curve labeled
"elassical theory" is really the one given by equation (2), which is
applicable to a complete sphere and is calculated from linearized equa-
tions. When the nonlinear equations applicable to a shallow spherical
dome are used the buckling load is lower than that given by equation (2).
For example, when A\ = 4 the calculation of the present report gives a
buckling load which is about one-half that given by equation (2). Thus
the wide difference between the classical theory and experiments exhibited
in the figure cited above may be entirely caused by an improper mathemati-
cal process.
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To clarify the argument further, consider the case of a flat arch,
as a two-dimensional analog of the spherical dome. For such an arch two
buckling modes are possible. If the arch rise is high, it buckles in the
mode shown in figure 2: the center line of the arch remains essentially
"inextensional." If the arch rise is small, it may buckle downward with
a sudden reversal of curvature, as shown in figure 3: a phenomenon some-
times described as "oil-canning" or "durchschlag." The axial compressive
strain plays a dominant role in the latter case and linearization of the
governing equations is not permissible. A detailed study made in refer-
ence 7 shows that in practice the classical criterion agrees better with
experiments, except for very low arches (arches whose rise is of the order
of the wall thickness) for which the energy hump tends to vanish and the
gap between the two criteria tends to be closed.

For shallow spherical domes the prevailing buckling mode is of the
oil-canning type, in which the membrane stress plays an important part,
and is basically a nonlinear phenomenon.

There exists only one paper on the oil-canning of shallow spherical
domes based on the classical criterion. This is Biezeno's work (ref. 8)
which treats a shallow dome whose edge is free to expand so that the mem-
brane stress in the radial direction vanishes on the edge; and the dome
is subjected to a concentrated load acting at the center. The following
equations (which are equivalent to those of the present paper) are
obtained:

a2y dv 2
2 o O .= o ) 2 e 5
rdr2+rdr vo+r<R+‘¥ + (2 UL)R‘lI
bl e R 8 (T
2 2~ Bt \R dr (3)
2d% _ay r| P r
rS—+1r — -V =2|—+ N (= + ¢> (%)
472 ar D|2x R
g [ 19+(£+iw)w (5)
l_“2dr r R 2
where P 1is the central load, V.= aw is the slope of the deflection

i
surface in a meridional section, w being the radial displacement normal
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to the original spherical shell, and Vo, 1s the component of displace-
ment normal to the axis of symmetry, that is (see fig. 1),

vV, =ucos 6 - wsin 6 (6)

Other symbols are defined in the list which follows this section.

Biezeno makes the following simplifying assumptions to obtain a solution:

(1) that the term on the right-hand side of equation (3) may be neglected;
(2) that in equations (3), (5), and on the right-hand side of equation (4)
the slope of the radial displacements V can be written as

where Cl and Co, are two undetermined constants. Equation (4) is then

solved with proper boundary conditions. Let the solution be denoted by
Wg: which, of course, is different in form from equation (7). Biezeno

then determines the constants C, and Cp by requiring that VY3 and Vo

yield the same values of vertical displacement at the edge of the plate
(r = a) and at the center (r = 0). The load-deflection curve can then be
calculated from equation (7) and the buckling load determined.

The influence of Biezeno's simplifying assumptions on the buckling
load is not easy to assess; and there exist no experimental results to
compare with the theory.

The case considered in the present paper is that of a shell clamped
at the edge and subjected to uniform lateral pressure. The equations of
equilibrium (equivalent to egs. (3), (4), and (5)) are solved as pertur-
bation series expressed in powers of the parameter wb/t, that is, the
ratio of the deflection on the axis of symmetry and the wall thickness
of the shell. The load-deflection curve so determined is used to obtain
the buckling load.

Relatively few assumptions are made in the present calculation.
Unfortunately the perturbation series seems to deteriorate rapidly for
large values of A, so the result is satisfactory only for A of order 5
or smaller. In this range of A the buckling loads computed on the
basis of the classical criterion agree quite well with experiments.

On the other hand the calculation of the buckling load on the basis
of Tsien's energy criterion also offers considerable difficulty. = If the
formulas of reference 6 are extended to cover the shallow shells studied
in the present paper it is found that the so-called "lower buckling load"
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has an equal or higher value than that given in equation (2) when NS 10,
This unreasonable result is obtained because the energy expressions and
the mode shape assumed are not sufficiently accurate. It is not clear
how to improve the results. Theoretical deflection curves derived from
the bending theory do not permit a very simple representation. In any
case, the refinement of Tsien's calculation would have been a major
endeavor. For the same reason the calculation of the buckling load on
the basis of classical criterion using the Rayleigh-Ritz method is not
pursued. Therefore the most convenient theoretical determination of the
critical buckling load remains an open question.

In order to do justice to either the classical criterion or the
energy criterion, further theoretical study must be made for A\ in the
range, say, from 5 to 15. A study of all available experimental data on
the subject seems to show that the classical criterion of buckling holds
for very shallow spherical domes, while a transition to energy criterion
takes place at some intermediate values of A\ of order 6.

One more point should be mentioned before the presentation of the
main analysis. In reference 5, Friedrichs suggests that it may be possi-
ble that a boundary layer occurs at the edge of a certain segment, the
width of which in its turn shrinks to zero with the thickness of the
shell. This suggestion seems plausible because as the shell becomes
thinner and thinner the bending of the shell becomes less and less impor-
tant. In the 1limit t-—9 0 the deflected surface must be an "applicable"
surface of the original.5 In the upper part of figure 4 the shell repre-
sented by the dotted line is applicable to that represented by the solid
line; in other words, a deformation of the solid line into the dotted
line involves no strain energy due to the membrane stresses. To account
for the small but finite bending energy of the shell the deflection sur-
face may take the form represented by the lower part of figure 4. A
boundary layer may be developed at the segment angle a. This conjecture,
however, turns out to be improbable for a shell subjected to uniform
external pressure; since it can be shown that the segment angle a tends
to zero at a higher order in t (the shell thickness) than does the
boundary-layer thickness. Therefore the boundary layer can be developed
only at a pole o = O which is the case presented in reference Die

The investigation presented in the present paper was conducted at
the California Institute of Technology under the sponsorship and with
the financial assistance of the National Advisory Committee for Aeronautics.

JPwo surfaces are called "applicable" to each other in differential
geometry if one can deform into the other by continuous bending without
stretching or tearing the surface.



8 NACA TN 3212

SYMBOLS

An,B,,CnyDp,En  integration constants

a base radius of shell

an,bn,Cn coefficients in power-series expansion of Fp in terms

of Ax; see equation (A5)

b)
D _ EZ
12(1 - u2)
d,,8nshy coefficients in power-series expansion of Fo, 1in terms
of A\X; see equation (AT)
E Young's modulus
By functions of f, and wp; see equation (28)
fn coefficient of expansion for Sr in powers of W,
h central height of shell above base plane
K constant; see equation (41)
k = Y12(1 - .2)
M. radial bending moment per unit length
My circumferential bending moment per unit length
N, radial membrane force per unit length
Nt circumferential membrane force per unit length
o L
1l - KL=sa

P = 2

E <t) &
D, coefficient of expansion for P in powers of W,
Q shear force per unit length perpendicular to middle sur-

face of shell

q pressure on surface of shell; positive when directed

downward
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R
r
e Bl
T
2
a
o il
Et
)
u
W=w/t
WO = Wo/t
W
5]
w, = w(r = 0)
x = rfa
%5
a
G’n;Bnﬂn
B
o)
€
r

initial radius of curvature of shell

horizontal distance from axis of symmetry of shell

thickness of shell
radial displacement of middle surface of shell measured

tangential to initial surface and positive in outward
direction

vertical displacement of middle surface of shell meas-
ured perpendicular to initial surface and positive in
downward direction

coefficient of expansion for W 1in powers of W,

initial distance of point on middle surface of shell
above base plane

segment angle of a possible deflected surface

functions of 6, and @,; see equations (35)

semi-included angle of shell
finite-difference interval
radial strain

circumferential strain
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n = x2/k
gh= sin’l(r/R) *
o particular integral of equations (26) for f,
'
2 _ ka® _ 2) h
"2 - B2 a5 -40) 3
vl Poisson's ratio

o = bei A\ ber'A + (1 - ber A) ber'A

) circumferential position angle

Pn integrals of wp; see equations (29)
Subscript:

(e critical

THEORETICAL ANALYSIS

Derivation of Equations

Consider the spherical shell segment of radius R, base diameter 2a,
height h, and constant thickness t shown in figure 1. The initial
position of a point in the central surface is given by the cylindrical
coordinates r, @, and z,, where r 1is the radial distance from the
center, measured parallel to the base, @ 1is the circumferential angle,
and z, 1is the vertical distance, measured upward, from the base plane.

Tt is assumed that h/a is small enough that

-
2
z =h+\R® -r® -R~h - 1L
o 2 R
. } (8)
20 . T
ir R
</

The deformation of the middle surface is assumed to be radially
symmetric and is therefore specified by u, measured tangential to the -
middle surface in the outward radial direction, and w, measured perpen-
dicular to the middle surface in the downward direction. The deflections
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2
are considered to be finite, but small enough so that (§E> can be
7

neglected with respect to unity.

Since, under these conditions, the magnitudes of vectors tangential
to the middle plane are‘equal to their components parallel to the base
plane, the equations for forces and moments in the middle plane are
identical with those for a flat plate. That is,

%(mr> M -rQ=0 (9)
() - W = 0 (10)

where N. and Ny are, respectively, the radial and circumferential

membrane stresses, M, and My are the corresponding bending moments,
and Q 1is the shear stress in the direction perpendicular to the deformed
middle surface. Vertical equilibrium of a central cylindrical section of
radius r (fig. 5) requires that

13
b il dzo aw
Q= - ;l/; rq dr + Nf(&F— - E;) {11)

where g 1is the applied pressure. Substituting equation (11) into equa-
tion (9) and using the approximation equations (8) result in

%(er) - M +f

0

T
dw

rqdr + tN.[£ + — )= 0 1.2

- r(R dr) (12)

The bending moments are expressed in terms of the deflections using
the strain-deflection relations

(13)
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where €, and ¢ are the longitudinal strains of the middle surface

in the radial and circumferential directions, respectively. Then ki

S (14)
My = -D (ﬁ O dw)
dré T dr
1 dw a2w
= -p[x a=w
J
5
where D = ———Eﬁ—————n

12(1 - p2)

Using these expressions for Mr and Mg, equation (12) becomes

"
afl a N
DrEFEEG" % = l‘Nr(§+%> +fo qr dr (15)

This is the first basic equation. Now from equations (13)

u W S _ W
S=Eer b =i __(N N ) ot AL
so that

du 1 a wr

These values are substituted in the first of equations (14) to obtain
a second relation between Nt and Np.: 3
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i Eit_ i(rNt - prNy + Bt wr) < > Et N, - UNr> (1

Combining this equation with equation (lO), the second basic equation
is obtained:

>
4 14 (2y > + 1 Bt ) + B LW -9 1
T & r(h?éj r)* 3 *\ar R ar (18)

Knowing w and N,, Ny can be obtained from equation {10 In
the problem to be studied q is a constant so that equation (15) becomes

PR LEE)-n(e L) b o9

These equations are transformed into nondimensional form by the use
of the following variagbles:

’\
X=£
a
gt -
W=ip
k2 = 12(1 - p?)
2
T S
e f (20)
2
a
o= = N
Et
1 Rt
P = __TTE_(%> q
2 _ ka?
N = "



14 NACA TN 3212

The parameter 22 can also be expressed as (see fig. 1)

5 ~
. R
N = k.% sin®p ~ k —%—
or L (21)
)\E—kgLneB-—kh(lq-cosB)Ngkh
t 1 - cos B a t

Thus for the assumed range of 8, A" 1s proportional to the ratio
of the central height of the dome to its thickness and can therefore be
interpreted as representing the ratio of the compression stiffness to
the bending stiffness.

Upon substituting these new variables, equations (18), (19), and (10)
become

2 2
alir ay/e 1 dW) X aw _
lil.@.(xﬂ>_k<?\2+5ﬂs - 6p (23)
X dx|x ax\  dx X dx/0F
a
5, = EEZ(XSr) (24)

With A =0 (R = ») these are Karman's equations for the finite
deflection of a flat plate, expressed in polar coordinates. Their deri-
vation is exactly analogous to Chien's derivation of the equations for
the finite deflection of a flat circular plate (ref. 9).

Expansion in Terms of Wg(=wo/t)

As in Chien's paper (ref. 9) the procedure used for solving equa-
tions (22), (23), and (24) is to consider the center deflection
ratio W(0) = W, as a parameter and to expand all of the variables in
powers of W,. Thus
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q
P = plwo e p2w02 + p5w03 e
2 b
W = wy(x)Wo + wo(x)W," + WB(X)WO et oo e LI (25)
S, = £3(x)W f()w2 (w5
r = F1(x)Wy + £2(x)Wo~ + £3(x)Wo” + . . e

These expansions are valid for small enough values of the deflection
ratio W,, but their exact range of convergence is unknown. For the
case of the flat circular plate Chien obtained good convergence for values
of W, as high as k4.

Substitution of these series in equations (22) and (23) and the
equating of equal powers of W, result in a sequence of pairs of simul-

taneous equations for fn and w,. Each of these pairs of equations

can then be combined to obtain an equation for f, alone

af
WIS L AR _d_(;_n) HE e (262)
¥J dx |x dx dx\x dx k
or
dufn 6 a’t 3 d2fn 5 4 L 6 e
=+ 2 __.___n+')\fn_-—pn7\ ~ By (26b)
dx = de x° dx2 x2 dx
plus an equation for Wy in terms of £,
e = -« (X?Efn> » ¢, + E, (1)
A2x dx e

where E, is a constant and F, and ¢ are the following functions:
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F, =0 A
2 'S
dw dw
2 dx X dx|¥ dx 2\dx
239 dwy dwp 1 41 a/dw dw2>
Fz = kN~ =(fs —=+ 1 —= |+ = — |7 —(—
5 X(de 1 ax X ax |¥X ax\dx ax
> (28)
3 2.1 dW5 dW2 dWl
Fu—k}\ X<fld_x—+f2§_-+f5&— +
X dx |¥ dx|dx dx 2\dx
J
cpl=0 T
~ dewl2d_x
P2 o 2\ax X
(29)
_ [ G G ax i
P35 = dx dx x
0
dw2 dwl dw5 ax
i f T XX
<

Upon making the substitution hn = x2 equation (26&) becomes

2 2
deo (5 S ¢ V& atne R (30)

=l
an2\  an2 - “ 8k 16

which can be recognized as the equation for the lateral deflection of a
linearly tapered beam on an elastic support whose spring constant is a

linear function of position along the span. This interpretation is use-

ful in the numerical work which follows. o
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The solution of the homogeneous part of equation (26a) or (26b), that
is, the complementary function, is

fy =

o] |

(An ber'Ax + By bei'hx + Cp ker'Ax + Dy kei'7\x)
where

bertz = fL ber z
dz

and the ber and bei functions are defined in terms of J,, the zero-
order Bessel function of the first kind, by

Jo(zi5/2> =ber z + 1 bel 2

2
with an analogous relation between ker z, kei z, and Kb(ziB/ )

Boundary Conditions

The boundary conditions for a clamped-edge shell subjected to a
radially symmetric distributed load are

at x=0, fw

=i=o, 8, s Einite

(31)

sho i SR

\J

To satisfy the first two conditions it is necessary that

Ch =Dy =0

In terms of the expansion coefficients, equations (25), the remaining
boundary conditions become
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EZE =0 Uy =1 (32a)
dx

dfn
(1 - wf, +x - 0

<)

Because of the nature of the expansion there is the additional con-
dition that

w,(0) = (32b)

®

-
B

(hv]
o

The constant Ep in ejuation (27) can be eliminated by combining

equations (§2a) and (jEp) so that the boundary condition on w, becomes

|
[

1Ly n =

wy(0) - wp(1) = (32¢)

(o]
nv
N

Let 6, be the particular solution corresponding to F,, on the

right-hand side of eguation (26a); then the complete solution for £y
becomes

£y :.%Qﬁlber'%x + By bei'%x) + 6p - %-B% (33)
A
while
_k : _ __k 402 k
Wp = 7\(An bei Ax - Bp ber %x) -)\?x- dx(x 9n> Y- Pn *+ En

Substitution of these values into boundary conditions (32) and their

solution for A,, Bp, and p, result in

A %{%n ber'\ + Bn(1 - ber XH (3k4a)
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B, = 2 (o bei'\ - By bei y (34D)

kA2 e Lok
pnz—m {(l+p)[(oer NS+ (b 7\)]+

A(ber'A bei A - bei'\ ber A) ah}+

{(1 + W) [(1 - ber A) ber'A - bei A bei'?\:l +

A bei x} By |+ 7y (She)
where

p = bei A ber'A + (1 - ber A) ber'\ (35a)

x=1 )

M S Y X~
% = Y% dx(x Gn) o i Y q)n(l) (35b)

2 Jjdalr dfo )
£ i e 2 el g

Pn 20 d‘XE dx(x n:l id (35¢)
_02fy , 1 %) ;
’n 6(n+l-pdx s (354)

First-Order Solution

The particular solution 67 of the first-order equation is zero
and the equations for A;, Bj, and p; reduce to
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A ber'A 4
A = —
kp
A bei'A
B, = ————
i) e
p; = ——— (1 + p)|(ber'A) + (vei'A)7| +
6(1 - p)p
A(ber'\ bei A - bei'\ ber A)
./

The values of Ay, Bj, and p; are given in table l, while the

values of wy and f; are given in tables 2 and 3 and are plotted in
figures 6 and 7, respectively. This first-order solution is identical
with the linear solution previously found by Reissner (ref. 3).

For the higher order equations no solution was found in terms of
known functions and so it was necessary to resort to power-series expan-
sion and numerical methods.

Power-Series Solutions

Judging from the work of Chien (ref. 9) it was felt that calculation
of the first two terms, p; and pp, of the expansion for the pres-

sure P would permit at least an approximate determination of the
buckling load. Therefore a power-series solution for 6, was obtained

even though it was realized that the succeeding solutions could not be
obtained by this method because of the involved form of the functions F,.
The procedure and formulas used are shown in appendix A. Since the
expansions are all in terms of Ax it was recessary to restrict the
calculations to values of A S 8. The values of Po obtained are shown

in table 4 and plotted in figure 8. These values are negative for small
values of A, but become positive at A = 6.5 and are rapidly increasing
at A = 8. Since buckling can occur only when some of the p,'s are nega-

tive it was clearly necessary to obtain the higher order terms of p,.
These additional values of p, were obtained numerically.

Numerical Solutions

The differential equations (26) contain the unknown parameter p,
and also have the unwieldy boundary condition that S, is finite at

x = 0. As a result a complete numerical solution would be very difficult.
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Therefore only the particular solution is determined numerically, using
arbitrary boundary conditions. The required boundary conditions are
then satisfied using the known solution of the homogeneous equation.

In terms of the finite-difference approximations

£1(x) = 515 F(x + 5) - £(x - aﬂ
P x). = jé f(x +93) - 2f(x) + f(x - Bﬂ
5
> (37)

!I!X=_L X - X i - S
e 3 285’}"( + 28) - 2f(x + B8) + 2¢( 5) - £( 26{]

fiv(x) = gln f(x + 28) - Lf(x + 8) + 6£(x) - 4f(x - 8) + £(x - 2ﬁﬂJ

where © 1is the difference interval; ejuation (26a) (with the constant
2

A
term - g_Pn omitted)‘uecomes

6 . B b 5 3 ;! 3
<{‘>I 3 er i )en(X) : <%‘>—4 e P al e

L 6 5) R 5 : d 3 >
( 5%  83x 522 26x3) n( ) (64 83x) n( )
- b} o
(-TI 3 )Sn(x 25) 16F, (x) (38)

The desirable boundary conditions for 8, are the ones which give
a smooth solution. For the tapered-beam analogy of equation (30) the
obvious boundary conditions meeting these requirements are those repre-
senting unsupported ends. When these boundary conditions are transformed
in terms of the variable x they become
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at: x = 0, ’7
ae, _ a0y
SRR T
N Y F (39)
aPey Py _
dx2  ax? I

A first attempt to solve the finite-difference equations (39) by
relaxation was unsuccessful because of slow and erratic convergence.
Instead, Crout's method of solving simultaneous equations (ref. 10) was
used to determine the values of 6, at 1l points (3 = 0.10) at once.
This could be done rapidly, but unfortunately 11 points were not enough
to determine accurately the end values and derivatives which were
required. Instead of decreasing the spacing to 0.05 throughout, it was
decided to add two end sections from O to 0.3 and from O.7 to 1.0 with
0.05 spacing. The solutions in these end sections were joined with the
original solution at the 0.30 and 0.70 stations where the function and
its first derivative were matched. Since the higher derivatives were
small at the junction points (especially for A = 4 and T) this method
was adequate, but did cause some trouble when higher derivatives were
required for the succeeding calculations.

Calculations of 6, were made for A =4, 7, 10, and 13, while
for A =4 and 7 the calculations were continued to determine 83

and 94. As A\ 1increases convergence of the series for P deteriorates
rapidly and the function 6, has increasingly large oscillations. It

was decided therefore not to continue the calculations for A = 10 and 15
The values of p, obtained are shown in table 4, while the values of wp

and f, are shown in tables 2 and 3 and plotted in figures 9 and 10.

For AN = 4 the convergence of the series for p, was very satis-

factory, the contribution of the fourth-order term still being small at
the critical buckling load. In figure 11 is shown a plot of load iz
versus the center deflection ratio W, and in figure 12 are shown the

deflection modes for several values of the center deflection ratio Wg.

These deflection modes have their maximum at the center, and as W, grows
they become increasingly peaked toward the center.

For A = 7, however, the convergence is poor and the coefficients P,

all being positive, no buckling can be determined using Jjust four terms.
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The convergence is good enough to determine the deflection shapes W

for small values of W, and these are plotted in figure 12. These
deflection shapes give an explanation of why P> 1is positive (which
implies increasing stiffness with respect to the center deflection as
the load increases) since they show that the maximum deflection is no
longer at the center and that with increasing load the center deflection
becomes a progressively small portion of the maximum deflection. This
characteristic is corroborated by the experimental measurements.

The deflection modes for A\ = 10, which are also shown in figure 12,
exhibit the same characteristic, but with the position of the maximum
deflection moved cutward toward the edge. However, since these curves
are calculated using only two terms of the expansion for W, these curves
should not be taken as indicating accurately what happens at the larger
values of Wg.

The rapid change which must occur at buckling from a shape in which
the maximum deflection occurs near the edge to one in which the maximum
deflection occurs at the center is probably also an explanation for the
poor convergence. Since the experimental results show that at A = 10
the maximum deflection is again at the center it may be that for these
higher values of A the convergence is actually improved. However, to
obtain accurate values of By for these higher values of A it would
be necessary to start with a smaller finite-difference interval than was
used here.

Since the influence of the Pz and p) terms at the buckling load
for A=4 was small, it was felt that for N <5 an adequate approxi-
mation to the buckling load could be obtained using just the first two
terms P; and pp. The critical conditions occur when $— = 0 so

dWgs
that for
2
2= plWO <+ pgwo
the critical conditions are
o
il
cr 2p2
T (ko)
_p12
P o
(60 upg
J
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This value of P, 1is plotted in figure 15 where it is compared
with the experimental results. The minimum value of A for which Pgp

exists is that for which the critical deflection equals the initial

height of the dome, that is, for W, = h/t.
er

EXPERTMENTAL PROGRAM

Equipment

An experimental program was carried out on a series of shallow domes
having a base diameter of 8 inches, nominal radii of curvature of 20
and 30 inches, and nominal thicknesses varying from 0.032 to 0.102 inch.
The edges of the specimens were held between two rings which were bolted
to a circular plate (figs. 1% and 15) thus providing a rigid built-in edge
support and a closed pressure chamber. A separate set of clamping rings
was used for each of the two radii of curvature. The specimens were
subjected to a uniform normal load using both oil and air pressure; the
oil provided an approximation to a constant volume characteristic during
buckling while the air provided a constant pressure characteristic.

The specimens were made by spinning from flat sheet. After unsuccess-
ful attempts to heat-treat aluminum spinnings, magnesium alloy QQ-M-44 was
selected because of its favorable ratio of yield stress to Young's modulus
compared with other non-heat-treated metals. Magnesium also has the
advantage that since it 1s spun while hot most of the residual stresses
are eliminated. This is evidenced by the small separation when a radial
cut is made in a magnesium spinning. Because of the difficulty of
spinning such shallow shells the preliminary specimens were very dis-
appointing, but by a combination of spinning on concave and convex molds
the quality was greatly improved. Unfortunately it is still not so good
as would be desired.

Pressure measurements were made using a Bourdon tube for pressure
over 20 psi and a mercury manometer for pressures under 20 psi. Excep-
tions were two of the early specimens having low buckling loads which
were tested using the Bourdon gage. This gage of course gives a closer
approximation to a constant volume characteristic than does the manometer.

Deflection measurements were taken with a 0.00l-inch-scale dial gage
riding on a channel beam fastened at its ends to a.circular ring which
rotated in a groove cut in the upper clamping ring. Readings were made
to the nearest 0.0005 inch. Traverses were made on two or more diameters
to determine the initial shape of the shell and were repeated at intervals
during the loading. Intermediate measurements were also made of the cen-
ter deflection. Because of the variations of the specimens from a true
spherical form the question arose as to what should be taken as the
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radius R from which the parameter A was calculated. It was decided
to assume that the central rise h would determine the radius since A
can be simply expressed in terms of h (egs. (21)) and because experi-
ence with the buckling of shallow arches showed that for arches having
the same central height small symmetrical variations in shape have only
a small effect on the buckling load. In figure 16 the variations from
the assumed radii are shown for typical examples of each of the six com-
binations of the two nominal radii, 20 and 30 inches, and each nominal
initial sheet thickness 0.032, 0.054, and 0.102. It is seen that the
variations increased markedly with the thinness of the sheet and the
flatness of the dome.

0il Tests

The oil pressure tests were made first, and two or more tests of
each combination of thickness and radius were made. The early preliminary
tests made on aluminum samples all showed a very distinct unsymmetrical
buckling mode. This is believed due to the high residual stresses
resulting from the spinning operation since the majority of the magnesium
specimens buckled symmetrically. In the cases in which unsymmetrical
buckle did occur in the magnesium specimens the mode was not of the over-
all unsymmetrical form such as the unsymmetrical mode of vibration of a
flat circular plate. Rather it appeared that the buckles themselves were
inherently symmetrical but were displaced from a central position on the
shell, probably because of initial asymmetries of the shell.

The unsymmetrical buckling occurred only in the range of A between
6.0 and 8.6 and was associated with a prebuckling deflection mode in
which the displacement at about half the radius from the center was
greater than that at the center.

In figure 16 are shown the deflection curves of the specimens.
There is a distinect change in the deflection modes as A increases.
For A near 4 the deflection is peaked at the center and decreases
steadily toward the edge. As 2\ increases, the peak gradually flattens
out, until at A = 5.45 the maximum deflection no longer occurs at the
center. Instead, at large deflections there are two peaks symmetrically
placed at about a half radius from the center. With s further increase
in A the peaks move outward until finally when A\ = 8.98 a third peak
appears in the center. This gradually becomes the predominant peak.
These trends agree very well with the theoretical deflection curves for
A =14, 7, and 10 shown in figure 12.

In figures 11 and 17 are plotted the curves of pressure versus cen-
ter deflection of the specimens. For low values of p Sl o 5); the
Specimens buckled in a continuous manner. As more oil was pumped into
the chamber the pressure increased more slowly, reached a maximum, and
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then decreased. But for A > 5, the process was discontinuous. Usually
there would be a slight movement of the shell without the addition of oil
followed by a sudden jump to a lower pressure and a greater displacement.
There was no regular trend in the ratio of the pressure after buckling

(Pcr> to the buckling pressure P, as A increased and also sur-
2

prisingly no significant difference in this ratio between the tests made

using the Bourdon tube and those using the manometer.

Air Pressure Tests

For the air pressure tests an accumulator tank was connected to the
air line close to the testing fixture so that the buckling process was
practically a constant pressure process. Buckling occurred very suddenly
and with a sharp report. The final buckled shapes were symmetrical with
deflections very much larger than those of the oil tests. Deflection
traverses were made during loading, but it was inadvisable to make them
at loads approaching the expected buckling load. Two examples of these
deflection traverses are shown in figures 16(g) and 16(h).

The specimens remained in their buckled position after the pressure
was released. An approximate determination of the pressure required to
unbuckle them was made by unbolting the clamping rings, inverting the
rings with the specimens still placed between them, and then bolting the
inverted assembly to the base plate. The pressures required to unbuckle
the specimens were considerable and are included in table 5.

DISCUSSION

The physical parameters and buckling loads of all the specimens are
shown in table 5. In figure 18 are plotted the buckling loads as a func-
tion of . The oil pressure tests are shown with black dots, while the
air tests are shown with open circles. For the oil tests the points at
the lower ends of the dashed lines indicate the value to which the pres-
sure Jjumped during the buckling process, whil: a wing on the left of a
lower circle indicates an unsymmetrical buckling mode. When plotted on
logarithmic paper the results tended to follow two intersecting lines.

In figure 18 the corresponding power-law curves are shown.

In figure 13 the experimental buckling loads are compared with the
theoretical loads calculated using two terms of the series for A < 5,
and the one point calculated using four terms for A\ = 4. In figure 11
the corresponding curves of load versus center deflection are also com-
pared. Although the experimental results are low compared with the
theory, thel difference (approximately 15 percent at A\ = 4) is not great
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considering the variations of the initial shapes from a true spherical
surface. Part of the difference can be attributed to yielding which
occurred at the higher loads, especially for the specimens having values
of A near 5. It is felt that the results are close enough to corrobo-
rate the theory proposed and establish the applicability of the classical
criterion for buckling for the lower range of A (A< 5).

From figure 18 it is clear that the type of loading, air or oil, has
little if any effect on the buckling load. This is expected to be the
case if the classical buckling criterion holds, but would be rather
unexpected if Tsien's "energy criterion" applied. For in Tsien's theory
when the buckled and unbuckled energy levels are compared the loss in
potential energy of the load during buckling must be included. Since
the loss in potential energy is a maximum when the pressure remains con-
stant, the buckling in a constant-pressure system should occur at a lower
load than for any system in which the pressure decreases during buckling.
Rather large differences in the buckling loads between a "rigid testing
machine" (approximated by oil loading) and a "dead-weight loading"
(approximated by air pressure loading) are predicted by Tsien in refer-
ence 6, according to the energy criterion, for complete spheres and also
for spherical domes of fairly large values of A. As remarked before,
however, the calculations as given in reference 6 are probably inappli-
cable to domes as shallow as those tested here, and a more accurate energy
expression and deflection mode should be used. Although it is impertinent
to reject the energy criterion on the basis of the disappearance of the
difference in buckling loads between the rigid testing machine and dead-
weight loading, the fact that the buckling loads given by the classical
criterion are reasonably close to the experimental values for A < 5
seems to indicate that, at such small values of A, a refinement of the
energy-criterion calculations is unwarranted.

The buckling stress for spherical shells is usually expressed in
the form

" t IR
Osp L bl R (Ucr s §£'qcr> (41)

where K 1is a numerical constant. The classical theory for the buckling
of complete spheres gives a value of K of order 0.606 with p = 0.3

(see eq. (2)). Tsien's theory in reference 6 gives a K of order about
half of that given by the classical theory. The calculation based on

the classical criterion given in this paper, for very shallow domes, also
gives a value of K ranging from 0.2 to 0.4. Both reference 6 and the
present paper predict K as a function of the parameter . A composite
picture showing the results of all available theoretical and experimental
data is given in figure 19, where K 1is plotted against the parameter A.
It is to be remarked again that all the curves labeled "Theory" should
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be read with caution. On the extreme left, the theoretical result
according to equation (40) does not converge for values of A > 5, and
extrapolation to larger A values is dangerous. On the other hand,

the curve showing theoretical results of reference 6 probably is good
only toward the right-hand end; the left-hand end of that curve probably
should be more carefully computed. In other words, to do justice to
either the classical criterion of buckling or the energy criterion of
buckling, both theoretical curves shown in figure 19 should be recalcu-
lated to higher accuracy. The curve showing the "classical linear
theory" applies only to complete spheres and is shown here for reference.

Even though not proved rigorously, a trend of shifting from the
classical criterion to the energy criterion at A of order 6 seems to
be indicated by the experimental results. This transitional value of
A 1is probably low on account of the imperfections of the test specimens.

A comparison of the above results with the case of low arches as
given in reference T reveals a fundamental difference, with respect to
the stability criteria, between the buckling under lateral forces of a
spherical dome and an arch. In the arch case the classical criterion
holds for larger values of A (i.e., higher arches), and a transition
to the energy criterion occurs as the arch becomes very low. In the
dome case the classical criterion holds for smaller values of A (i.e.,
very shallow domes), and a transition to the energy criterion occurs as
the dome becomes higher.

SUMMARY OF RESUITS

In this paper an attack upon the problem of the finite deflection
of a shallow spherical shell has been made. The results may be sum-
marized as follows:

1. The theoretical approach has been to transform the nonlinear
equations into a sequence of linear equations by expanding all the
unknown functions in powers of the nondimensional center deflection Wy
and equating coefficients of equal powers of Wy. The initial linear

equation can be solved exactly in terms of the ber and bei functions,
but the succeeding equations have had to be solved either by power series
or numerical methods. For small values of the parameter A the resulting
series converges rapidly enough so that a determination of the buckling
load can be made using only four terms of the series. For higher values
of A the convergence deteriorates rapidly, so that for A greater than
5 no determination of the buckling load can be made. However, for deflec-
tions smaller than the critical buckling deflection, the deflection modes
can be determined for a much wider range of A. These deflection modes
change rapidly with A and for values of A near T have the surprising
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characteristic that the maximum deflection occurs approximately halfway
between the center and the edge of the shell.

2. For small values of A the results of the experimental program
agreed substantially with those of the theoretical analysis. The buekling
load near N = L4 was only about 15 percent below the theoretical value
while the trend of the buckling loads as A increased was approximately
the same as predicted by the theory. The deflection modes also showed
the same characteristics as predicted by the theory. The experimental
buckling mode was inherently symmetrical as assumed in the theory; the

few exceptions can be attributed to large initial asymmetries in the
specimens.

5. Tests were made with both air and oil pressure, which approached
the extremes of constant pressure and constant volume buckling character-
istics, respectively. The buckling loads obtained by the two methods

showed no significant difference; thus a feature of the "energy criterion"
did not appear.

L. Experimental results seem to indicate that the classical criterion
of buckling is applicable to very shallow spherical domes and that a tran-
sition to energy criterion occurs for higher domes.

California Institute of Technology,
Pasadena, Calif., August 13, 1953.
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APPENDIX A
INFINITE-SERIES EXPANSION

After substituting the expressions for f, and w,, equation (55),
into the second of equations (28) for Fy, 1t becomes
5 p1k kN2

Fo == _i_(Al bei'Ax - B} ber'ix) -

o

l6x2

2
(ber'%x):} + (A12 - B12>ber'%x bei Ax =

k2 a2 1 4 s
e Al bei Ax - By ber'Ax (A1)
30x2\dx

The particular integral of egquation (26a) corresponding to the first
term of equation (Al) is .

Plk

8! = - % XB_--(Albei'%x - By ber'XX) (A2) 1

The particular integral for the remaining terms of Fp (all quad-

ratic in ber' and bei') is obtained by expanding in series. The series
expansions for ber'Ax and bei'Ax are

bn- ¥
ber'ax = Z (= (%)\X) i
n=1 (2n =" (2a)t
L (a3)
hn+1
bei'\x = EZ: (= (%%X)
n=0 (en)t(2n + 1)

In terms of the above series the expansion of the quadratic terms

of F2 becomes )
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Fo'' = - 5-2; {\pl[a + by + 2(n + 1)(2n + 1)cn+l]<x2—x>4n +
[(Alg - B12>Cn + n(en + 1)(A12an 2 Blgbn)]<)\2_x)l+n—2 (Ak)
where
m T (—)n m=0 (2n - 2m)!(2n - 2ml+ 1)t(em)!(om + 1) y
o, = (=) 3 - L A gy

m=1 (2n - 2m + 1)'(2n - 2m + 2)!(2m - 1)'(2m)!

e -
mgl(Qn—Qm)!(En-m+l)!(m-l)lm! i

The corresponding particular integral of equation (26a) is

S A s

=0
where
’\
d = L [%n(2n = 1)C;, = g s b =l _é]
n lmg(im2 0 l) n n n n i >l
N -1

gy = = 5 (n - 1)(on - l)a,_; +

(20 & 1) &2n Bt RS

P A
¢n-1 t gn—l:] HeE i

1
(2n - 1)° an S Sl

T hn-]} B J

go=ho=0

(=g
|

n = {n - 1)(2n - 1)b, 1 +

nv
no
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The values of do, g1, and hy are arbitrary with respect to the

recursion formula of the differential equation, but when equation (A6) is
combined with eqguation (A2) it is required that

=l
dg = =
(28)
1
hl = —2-
in order that 92 = 92' + 92" have the proper limiting value as

N — 0.

The coefficient g, is completely arbitrary and for convenience

was taken as equaling unity.

The infinite-series expansion for ¢, 1is

2 2 hnt+2 c kn
g = (LT X) - agmy 2{0) (89)
n=0 kn + 2 \Nz 171 2n\2

Then 85 and its derivatives and ¢, are substituted in equa-
tions (55) to determine «, and B, which are in turn substituted into
the boundary conditions, equations (5&), to obtain Ap, Bp, and po.
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TABLE 1

NACA TN 3212

VALUES OF Ay, By, AND pj
A Al B, P1
0.5 | -4.875 155.9 D535
T | -3.481 56.78 5.361

1.0 | =2:4358 19.39 5.441
(0 e i) 5.61k4 5« OTT
2.0 | -1.194 2.200 7.061
540 -.7298 4093 14 .35
k.o SRU2TS -.06698 55 O
50 SaleE s -.2078 89L55
6.0 -.005114 -.1892 206.2
7.0 .07882 -.09905 426.1
8.0 .07857 o il 8L.7
9.0 o1k - .02332 Li51E
10.0 .009895 02615 2,043
11.0 -.005344 01498 5,031
12.0 -.007743 004468 4,343
13.0 -.004895 -.0009003% 6,048
14.0 -.0017%6 -.002132 8,219
15.0 -.00003355 -.001506 10,952




TABLE 2
VALUES OF w, FOR A = L4, 7, 10, AND 13

A=L4 s A = 10 =13

X

wl W2 w§ W)+ Wl W2 W5 Wu Wl W2 Wl
0 .0000 | O 0 o) 1.000 0 0 1:000 10 .0000
.05 [ .9%5 | -.0021 | -.0018 | -.0008| 1.0011 | .0080| .020| .052|1.0002 |-.001k{ .9999
.10 | .9859 | -.0082 | -.0072 | -.00%2| 1.004k4 | .032 L0791 2061 1.0080 | -.00551 .9955
JJ50F 9G8R - 0181 | -1016 -.0068 | 1.0093 | .070 173 4531 1.0025 [ -.0091 | .9988
2000 GHBE - 0312 | -.027 -<00L | 1.0052 | .121 300f 782§ 1.005%.} ~.011 .9979
251 9116 | -.070 | -.039 -.0015" | 1.0811 | .382 Ao | 1,173} 1.0099 | -.018 .9970
FO} B2k | 065 e ~J00g b 1.025% | «250 614 | 1.604 | 1.0168 | .o17 .9964
MDY LTI - 001 - <073 =025 ol 1.0214 | .386 G358 12751 1.0581 | 112 .9993
501 6455 | -.150 -.081 =019 298251 AT 11.ahf2.952) 10625 1 %00 .0148
ool Y 1 -.07T4 -.0092] .8832| .480 | 1.129] 2.903| 1.0608 | .517 L0438
LT 5580 | 196 -.053 .0006| .7016 [ .366 865 | 2.187| .9708 } .61k 0437
il <2555 1 - 110 -.039 003k} 5787 | .289 BBl 1.717] 8672 581 .9955
L0 1769 -.087 -.025 00571 4391 1 .191 A 1.2kl Jcpabo) L63 .8851
&3] 2085 | -.059 -.013 L0511 2920 ) 106 2801 .40 .5169 % .306 L6945
90| 0525 | -.052 -.0048 0018F 1528 | .0LoO 2271 3481 2938 § .139 4290
L0 1 Jailtsf -.0087 | ~.001% .0052] .o448 | .0087| .032| .089| .0931 | .03k .2960
1.00 0 0 0 0 0 0 0 0
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TABLE 3

VALUES OF f, FOR A =4, 7, 10, AND 13

AN=4 A= A=10 | A = 13

X

£y £ f3 ) £ o f3 ), i £

0 .2kl | 1.355 | 0.180 | 0.0788 | -16.246 | -2.038 -T.04 | =17.56 | -37.21 | -65.43
.05 | -k.240 | 1.354 .180 L0781 | -16.250 | -2.069 =T:11 | =17.T7 | =37.21 | =65.l3
10 | =4.227 | 1.358 .183 0760 | -16.262 | -2.159 -T.34 | -18.38 | -37.22 | -65.42
15 | -4.206 | 1.364 .186 0724 | -16.282 | -2.305 =T.TL | =19.58 | -37.23 | -65.41
20 | -b.176 | 1:372 .191 0675 | =16.306 | -2.504 -8.21 | -20.72 | -37.25 | -65.40
25 | -4.137 | 1.381 .196 0612 | -16.334 | -2.749 -8,82 | -22.36 | -37.27 | -65.39
.30 | -4.089 | 1.391 .200 .0538 | =16.360 | -3.030 =9.52 | 24,25 | =37.52 | -65.370
40 | -3.968 | 1.409 <207 0361 | -16.392 | -3.670 | -11.08 | -28.39 | -37.45 | -65.37
50 | =3.811 | 1.418 .207 0169 | -16.553 | -4.295 | -12:54 | -32.25 | -37.64 | -65.k4
60 | =3.623 | 1.410 .198 | -.0002 | -16.178 | -k.760 | -13.58 | -34.92 | -37.82 | -65.67
<70 | =3.409 | 1.377 84k | -.0127 | -15.795 | -4.952 | -13.92 | -35.80 | -37.76 | -65.95
.| =3.294 | 1.350 176 | -.0163 | -15.507 | -4.929 | -13.83 | -35.57 | -37.54 | -65.96
ol =5 d7r | 7,317 167 | -.0179 | -15.153 | -4.837 | -13.58 | -34.94% | -37.12 | -65.73
.85 | -3.060 | 1.278 159 | -.0182 | -14.737 | -4.697 | -13.22 | -34.02 | -36.46 | -65.09
<90 | ~2.945 | 1.236 152 | -.0180 | -1k.271 | -4.530 | -12.79 | -32.91 | -35.56 | -63.92
95 | =2.837 1 1.195 A6 | -.0175 | -13.780 | -L.560 | -12.33 | -31.75 | -37.k6 | -62,18
1.00 | =2.737 | 1.155 Al | -.0170 | -13.304 | -4.206 | -11.90 | -30.65 | =33.30 | =60.12
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TABLE 4

VALUES OF p, (n 2 2) CALCULATED

Py
A P3 pL
Power
serlen Numerical
1.0 -1.120
105 -2.726
250) -4.919
.00 42,30
k.0 | -26.47 =26.5 BT 1.08
B O RESyS 1D
6.0 ] <38.1
o 55 el 56.6 314 801
8.0 | 219
100 392
15.0 237
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TABLE 5

NACA TN 3212

EXPERIMENTAL DATA

0.32, E = 6.5 x 109 ps{]

(a) Hydraulic pressure tests

Method of pressure
Specimen F; b; 5% qc?’ Ser measurement (Pcr)2
in. in. psi
(2)
i 0.101 | 0.251 | L.ok | 36.2 12.5 B - esisEd
2 099 [ 255 | L.08 | 52.5 11.8 B L e
3 101 | .25 | 4.16] 35.8 12,1 B . bas=sad
4 100 | .365 | 4.80| 60.5 21.0 B 0 fsmatE
5 0 Lo RN IR (G B0 I (R o2 5 24.8 B ek
6 053 | .240 | 5.45| 14.0 6iL.3 M 255
7 0551 .251 | 5.57| 12.1 Bl .3 M 25
8 052 | ' 297 | 6.08 | 15.2 TS B 48.3
9 L0955 | 380 | eLTe | Al 122.4 B 60.0
10 051 | 410 | T.22| 27.5 | 147 B 85. 1
11 .051 | .k22 | T7.40| 25.2 | 136 B 60.9
12 .031] .%303| 8.04| L.2 | 165 B 106
15 .032 | .361 ]| 8.59| 6.02| 201 M 124
14 .031| .353 | 8.69| L4.59] 185 M 137
15 .033 | .394 | 8.82] T7.33| 213 M 1001
16 .03%3 | 410 | 8.98| 8.9% | 255 M 179
17 .029 | .4k 110.1 6.7 | 354 B 201
(b) Air pressure tests
% h Pressure required
Specimen 14 "y A qc?’ Per to unbuckle specimen,
in. in. psi :
psi
18 0.101 | 0.382 k.98 | 5.5 2k.9 1615
19 S L 426 5.26 | 99.5 55.5 55
20 2655 <265 5.62 .1 16.85 65.2 Sea.
21 054 <435 7.10.1 35.6 143 1946
22 .0%2 LT 8,45 5.67 | 190 1.8
25 .033 2099 8.91 Fil.q5 | 250 33
8B, Bourdon gage; M, manometer.
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Figure 2.- Buckling mode for a high arch.

Figure 3.- Possible buckling
mode of low arch.

Figure 4.- "Applicable" and approx-
imately "applicable" surfaces.
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Figure 5.- Equilibrium of a central cylindrical section.
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Figure T.- Variation of linear membrane stress fl Wil IR EAT
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Figure 8.- Variation of p; and p, with A.
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Figure 9.- First four terms of wn for A=k ang 7.
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curves with theoretical results.
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P=I3.7 (@A=4,
P=14.3 Pcr=14.56.
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Figure 12.- Deflection modes for N = 4, 7, and 10. For A =4 and 7,
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Figure 15.- Comparison of experimental buckling loads with theoretical
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Figure 16.- Experimental deflection shapes.
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Figure 16.- Continued.
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Figure 17.- Experimental pressure - center-deflection curves.
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