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SUMMARY 

Various weighting methods are applied t o  t y p i c a l  nonuniform duct  
flow p r o f i l e s  t o  determine average flow propert ies .  
a range of subsonic duct Mach numbers, but i s  confined t o  flows having 
uniform s ta t ic  pressure and t o t a l  temperature. 

The analysis covers 

An averaging method i s  developed which y ie lds  uniform propert ies  
t h a t  reproduce t h e  mass and momentum of t h e  nonuniform flow. I n  con- 
trast, it i s  shown t h a t  t h e  use of conventional weighting methods may 
r e s u l t  i n  la rge  e r r o r s  i n  these properties.  These e r r o r s  a re  shown t o  
have varying s ignif icance depending on the appl icat ions t o  which t h e  d a t a  
are applied. 

It  is  a l s o  shown t h a t  nonuniform flows through variable-area duct 
passages w i l l  cause changes i n  average flow proper t ies  t h a t  are not as- 
sociated with t h e  r e a l  thermodynamic flow path. 

INTRODUCTION 

I n  most calculat ions involving duct air-flow propert ies ,  it is  not 
convenient t o  consider l o c a l  flow variations within t h e  duct. 
t h e  proper t ies  of the  flow are t rea ted  as though they were uniformly 
d is t r ibu ted ,  and one-dLmensiona1 equations are applied t o  t h i s  uniform 
flow. 
of i n t e r e s t ,  the  equivalent uniform flow must be determined by some 
method of averaging the  proper t ies  of t h e  r e a l  flow. 

Therefore, 

Inasmuch as the r e a l  flow seldom approaches uniformity a t  planes 

This repor t  presents  the r e s u l t s  of an a n a l y t i c a l  study made t o  de- 
termine t h e  accuracy with which several  commonly used averaging or 
weighting methods reproduce t h e  real flow propert ies .  
of inherent e r r o r s  is i l l u s t r a t e d  f o r  severa l  common applications of 
duct flow data.  
dimensional r e l a t i o n s  t o  the uniform flow are b r i e f l y  examined. 

The s ignif icance 

Errors introduced through t h e  appl icat ion of one- 
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The study considers several t y p i c a l  ve loc i ty  grad ien ts  bu t  i s  con- 
f ined  t o  subsonic compressible flows with uniform s t a t i c  pressures  and 
stagnation temperatures. 

(Since the  present  ana lys i s  was completed, it has been found t h a t  a 
more generalized, qua l i t a t ive  ana lys i s  of t h e  same problem i s  contained 
i n  r e f .  1.) 

ANALYSIS 

A uniform flow representing the  f l o w  proper t ies  of a nonuniform 
duct f l o w  should s a t i s f y  t h e  t o t a l  energy, mass, and momentum of t h e  
r e a l  flow. For the  spec ia l  case considered here in  i n  which the  flow i s  
assumed t o  a r i s e  from a uniform temperature source and t o  f l o w  adia-  
b a t i c a l l y  t o  t h e  measuring s t a t i o n ,  the  t o t a l  energy of t he  r e a l  flow 
can be reproduced by t h e  assumption of constant t o t a l  temperature i n  
the uniform flow a t  the source value. The determination of a uniform 
flow tha t  w i l l  simultaneously s a t i s f y  the  mass flow and t h e  momentum i n  
t he  r e a l  f l o w  i s  more d i f f i c u l t .  

Mass-Momentum Method 

For the  spec ia l  case i n  which the  s t a t i c  pressure and t o t a l  tem- 
perature  a re  constant across  t h e  duct ,  t he  mass flow i s  given by t h e  
equation 

n 1 

where M i s  t h e  a x i a l  component of the  l o c a l  duct Mach number. ( A l l  
symbols are defined i n  appendix A . )  

I n  order f o r  t h e  mass flow i n  t h e  representa t ion  t o  equal t h i s  i n -  
tegra ted  mass flow, the  uniform f l o w  must s a t i s f y  t h e  r e l a t i o n  

1 

where pe and M, are  the  e f f ec t ive  s t a t i c  pressure and Mach number, 
respect ively.  

The integrated momentum of t h e  r e a l  flow can be expressed by 

U I  cn 
K )  
M 
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Thus, the e f f e c t i v e  s t a t i c  pressure and Mach number m u s t  a l s o  satisfy 
t h e  r e l a t i o n  

B y  combining equations (1) t o  (4), t h e  expression f o r  the  e f f e c t i v e  I 
Mach number required t o  s a t i s f y  the  t o t a l  energy, mass flow, and momen- 
tum of t h e  real  flow becomes 

cp 1 + yMg 
(5) 

where m and CP a re  in tegra ted  values determined from equations (1) 
and (3). 

Although f o r  th is  ana lys i s  t he  s t a t i c  pressure i s  assumed t o  be 
constant across  t h e  real  duct f l o w ,  t h i s  measured value of pressure 
cannot be used i n  conjunction with the e f f e c t i v e  Mach number determined 
from equation (5) t o  satisfy t h e  real flow proper t ies .  
e f f e c t i v e  s t a t i c  pressure m u s t  be determined from e i t h e r  t he  momentum 
or t he  mass-flow equations as 

Instead,  a new 

n 1 

This e f f e c t i v e  s t a t i c  pressure i s  never i d e n t i c a l  t o  t h e  measured pres-  
su re  if  ve loc i ty  gradients  a re  present i n  t h e  r e a l  flow. 

To complete the  d e f i n i t i o n  of the equivalent uniform flow, an ef- 
f e c t i v e  t o t a l  pressure can be determined from t h e  expression 

Y 

The flow quan t i t i e s  defined by t h i s  method of averaging would be 
those obtained by mixing the  measured p r o f i l e  t o  a uniform flow i n  a 
constant-area duct without wal l  f r i c t i o n .  Mixing lo s ses  a re  inherent ly  
contained i n  t h e  average flow quant i t ies .  
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Conventional Weighting Methods 

The weighting or averaging methods commonly used t o  obtain uniform 
flow representations of nonuniform duct flows require  e i t h e r  l e s s  com- 
p l ica ted  data-col lect ion methods or  less tedious ca lcu la t ion  techniques 
than does the exact weighting procedure. 
herent errors  i n  the  representat ion of one or more of t h e  b a s i c  proper- 
t i e s  of the real  flow. The required assumptions and applicable equa- 
t.i,ocs for three  of t h e  more commonly u t i l i z e d  methods fol$ow. 

Such methods r e s u l t  i n  in -  

Mass-derived method. - When t h e  mass flow i n  the  duct i s  known from 
some independent measurement, t h e  measured s t a t i c  pressure a t  a s t a t i o n  
can be used i n  conjunction with the  geometrical flow area A t o  def ine 
a uniform duct Mach number Mc 
equation 

t h a t  s a t i s f i e s  the  m a s s  flow by the  

From t h i s  average Mach number and the  measured s t a t i c  pressure,  an 
average t o t a l  pressure Pc can be calculated as 

Y - 
PC 

The momentum calculated 
average Mach number becomes 

(9) 

from the measured s t a t i c  pressure and the  

It is evident t h a t  t h e  mass flow and t o t a l  energy of t h e  r e a l  duct 
flow a r e  inherent ly  s a t i s f i e d  by t h e  mass-derived method of determining 
an average flow. 
f y  t h e  momentum of the  r e a l  flow. 

There i s  no attempt i n  t h i s  method, however, t o  satis- 

Mass-flow-weighting method. - A p i t o t - s t a t i c  survey of the  flow a t  
the  desired duct s t a t i o n  i s  frequent ly  employed t o  determine an average 
uniform flow. If it i s  assumed t h a t  t h e  measured nonuniform f low can 
be brought t o  r e s t  without mixing losses ,  t h e  r e s u l t a n t  pressure can be 
determined from the  equation 
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For t h e  spec ia l  case i n  which t h e  s t a t i c  pressure and t o t a l  temperature 
are constant across  t h e  duct,  t h e  compressible form of equation ( l l a )  
becomes 

A 

w 
w a cn 

The mass flow and momentum of t h e  uniform f l o w  having a t o t a l  pres-  
sure  defined by equations (11) a r e  not unique values. 
depend upon t h e  nature of addi t iona l  assumptions about t h e  proper t ies  
of t h e  uniform flow. 

Their magnitudes 

The measured s t a t i c  pressure a t  the duct s t a t i o n  i s  of ten  assumed 
t o  be t h e  s t a t i c  pressure of t h e  average flow. With t h i s  assumption, a 
uniform duct Mach number can be defined by the  r e l a t i o n  

1 

The momentum for t h i s  uniform flow i s  given by equation (10). The 
ca lcu la ted  mass flow becomes 

1 

The mass flow determined f rom equation 
in tegra ted  mss flow which was used t o  
sure  i n  equation ( l l a ) .  

(13) w i l l  not correspond t o  t h e  
determine t h e  average t o t a l  p res -  

This anomaly between the  integrated and ca lcu la ted  mass flows can 
be avoided by def ining an average s t a t i c  pressure 
with t h e  average t o t a l  pressure from equations (ll), w i l l  s a t i s f y  t h e  
in tegra ted  m a s s  flow. 
mass flow under these  conditions i s  given by  

pc which, when used 

The average Mach number required t o  s a t i s f y  the  
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and the r e s u l t a n t  s t a t i c  pressure becomes 

pC 

l- P, = - 
(1 + 9 

The momentum calculated from equation (10) with e i t h e r  t h e  measured 
or calculated values of s t a t i c  pressure and corresponding Mach number 
w i l l  not equal the  integrated momentum. 
(15) can be determined which would y i e l d  a s t a t i c  pressure and Mach num- 
ber  f o r  t h e  uniform flow t h a t  would s a t i s f y  t h e  real  flow momentum. 
These flow proper t ies  would not s a t i s f y  t h e  m a s s  flow, however, and are 
not conventionally employed. 

Equations similar t o  (14) and 

Area-weighting method. - When P i t o t - s t a t i c  flow surveys are em- 
ployed, the  complications of t h e  ca lcu la t ion  procedure can be reduced 
by using an area-weighted average t o t a l  pressure determined f r o m t h e  
e quat ion 

n 7 

In cn 
M 
M 

The remaining proper t ies  of t h e  uniform flow are calculated by t h e  
equations used with the mass-flow-weighting method. A s  i n  t h e  former 
method, severa l  solut ions f o r  these proper t ies  a r e  possible.  
t h e  s t a t i c  pressure is  assumed equal t o  t h e  measured value. If inde- 
pendent mass measurements a r e  avai lable ,  a s t a t i c  pressure may be c a l -  
culated t o  s a t i s f y  t h e  mass flow. 
tegrated momentum w i l l  not be s a t i s f i e d  with e i t h e r  assumption. (For 
t h e  incompressible case, a uniform flow defined by t h e  t o t a l  pressure 
from eq. (16) and t h e  measured s t a t i c  pressure w i l l  dupl icate  t h e  real 
flow momentum. ) 

Generally, 

With compressible duct flow, t h e  in-  

NUMERICAL CALCULATIONS 

The uniform flow proper t ies  of t h r e e  a r b i t r a r y  duct p r o f i l e s  were 
calculated by t h e  mass-momentum weighting procedure and by t h e  conven- 
t i o n a l  weighting methods discussed i n  ANALYSIS. For s implici ty ,  t h e  
ducts  were assumed square with symmetrical two-dimensional p r o f i l e s .  
The p r o f i l e s  considered were: 

(a) A power p r o f i l e  described by 

1 
M = Kx7 

- 
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(b) A discontinuous, separation p r o f i l e  represented by 

( c )  A l i n e a r  p r o f i l e  of the  form 

M = K(0.2~ t 0.8) 

Each p r o f i l e  w a s  evaluated f o r  a range of values of K (correspond- 
ing t o  t h e  maximum Mach number a t  t h e  duct cen ter l ine)  from 0 t o  1.0. 

Mass-momentum method. - Equation (1) w a s  in tegra ted  f o r  each of t h e  
The p r o f i l e s  t o  determine t h e  mass flow a c t u a l l y  contained i n  t h e  duct. 

i n t e g r a l s  f o r  t h e  power and l i n e a r  p r o f i l e s  were approximated by s e r i e s  
expansion. 
K < 1.0) were 

The r e s u l t a n t  expressions for  t h e  mass flow (val id  f o r  

?!/? = 0.875K + 0.070K3 - 0.00292K5 + 0.00025K7 - . . . (Power p r o f i l e )  
PA 

( 2 0 4  

1 

= 0.9K(l + $7 (Separation p r o f i l e )  (20b) 

= 0.9K + 0.0738K3 - 0.003074K5 + 0.00026K7 - ... (Linear p r o f i l e )  

(zoc 1 
The a c t u a l  momentum with t h e  assumed p r o f i l e s  was obtained by i n t e -  

gra t ing  equation (3) with t h e  resu l tan t  expressions 

(Power p r o f i l e )  ( z m  

= 1 + 1.26Kz (Separation p r o f i l e )  (21b 1 

= 1 + 1.1387K2 (Linear p r o f i l e )  (21c) 

- -  ' - 1 + 1.08889K2 
PA 

Effect ive values of duct Mach number, s t a t i c  pressure,  and t o t a l  
pressure were determined from equations ( 5 ) ,  ( 6 ) ,  and (7), respect ively.  

Mass-derived method. - By using the values of mass flow from equa- 
t i o n s  ( Z O ) ,  the  proper t ies  of t h e  uniform flow were determined from 
equations (8) t o  (10). 
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Mass-flow-weighting method. - The product of t h e  average t o t a l p r e s -  
sure  and the mass flow w a s  obtained from equation ( l l b )  and modified t o  
the  form 

Equation (22) ,  when integrated,  yielded the  following expressions : 

P m $ 3  
= 0.87% + 0.56K3 + 0,146 + 0.016K7 + 0.0007K9 (Power p r o f i l e )  

P PA 
( 2 3 4  

4 
= 0.9Kk + $) (Separation p r o f i l e )  (2%) 

= 0.9K+ 0.5904K3 +0.1476K5 +0.01665K7 + 0.00071K9 (Linear p r o f i l e )  

(23c 1 
The values of integrated mass flow from equations (20) were then used t o  
obtain the  average t o t a l  pressure. Equations (12) t o  (15) were used, as  
appropriate, t o  determine the  calculated average proper t ies  of t he  flow. 

from 
Area-weighting mthod. - The average t o t a l  pressure was obtained 
equation (16), which becomes 

The resu l tan t  expressions, after in tegra t ion ,  were 

P C  - = 1 +0.5444K2 +0.1114fi +O.O0942K6 +O.O00204K8 - . . . (Parer p r o f i l e )  
P 

( 2 5 4  
7 

= 0.1 + 0 . 9 k  + g (Separation p r o f i l e )  

= 1+0.5693K2 +0.1177@ +0.00988K6 +0.0002& - . . . (Linear p r o f i l e )  

( 2% 1 
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w u 
(0 cn 

N 

u & 

The average proper t ies  o f .  the f l o w  were calculated from equations 
(12)  t o  (15). 

RESULTS 

The p r o f i l e s  assumed f o r  t h e  numerical ana lys i s  were chosen t o  
represent  conservative flow nonuniformities as compared with those of ten  
experimentally observed. Typical p r o f i l e s  are presented i n  f i g u r e  1. 
Each p r o f i l e  i n  t h i s  f i g u r e  corresponds t o  an e f f e c t i v e  duct Mach number 
of 0.2 as determined by the mass-momentum method. In  addi t ion t o  t h e  
Mach number prof i les ,  the  accompanying to ta l -pressure  var ia t ions  ( f o r  a 
constant duct s t a t i c  pressure) are presented i n  t h e  form of the l o c a l  
incremental deviation i n  t o t a l  pressure from t h e  mean e f f e c t i v e  value 
determined by t h e  mass-momentum method. 

A t  the  duct cen ter l ine  (x = 1.0), the  maximum total-pressure devia- 
t i o n  occurred with the  power p r o f i l e .  I n  t h i s  case t h e  l o c a l  t o t a l  
pressure exceeded t h e  e f f e c t i v e  average value by about 1 percent. With 
the w a l l  pressure (at 
treme i n  total-pressure deviation, the separated p r o f i l e  gave a maximum 

deviat ion of less than 3 percent below t h e  e f f e c t i v e  value. 
poses of q u a l i t a t i v e  comparison, the  w a l l  s t a t i c  pressure t h a t  would be 
observed f o r  a uniform duct Mach number of 0.2 is  indicated i n  t h e  f i g -  
ure. It can be concluded, therefore ,  t h a t  a l l  t h e  assumed p r o f i l e s  
represent  moderate flow d is tor t ions .  A s  a consequence, t h e  e r r o r s  t h a t  
w i l l  be shown t o  accompany the  various weighting techniques a r e  l e s s  
than m i g h t  be expected f o r  p r a c t i c a l  flow problems. 

x = 0) used as an ind ica t ion  of t h e  other ex- 

1 For pur- 

Figure 2 compares the  s t a t i c  pressures t h a t  would be measured f o r  
each of the  assumed p r o f i l e s  w i t h  the corresponding e f f e c t i v e  s t a t i c  
pressures determined by t h e  mass-momentum method. It i s  seen that the 
measured s t a t i c  pressure i n  a duct having nonuniform v e l o c i t i e s  w i l l  
always be less than t h e  e f f e c t i v e  s t a t i c  pressure required t o  describe 
t h e  integrated flow proper t ies  i n  the duct. 

The deviat ion between measured and e f f e c t i v e  s t a t i c  pressures in-  
creases  as the  e f f e c t i v e  duct Mach number increases  f o r  t h e  assumed 
p r o f i l e s .  This results from t h e  inherent nature  of t h e  p r o f i l e  assump- 
t i o n s ,  wherein t h e  magnitude of the total-pressure var ia t ion  across t h e  
duct increases as the  maximum duct Mach rider K, and hence the  e f fec-  
t i v e  Mach number, increases.  The curves terminate a t  a value of K = 1 
f o r  each p r o f i l e .  It i s  in te res t ing  t o  note that an e f f e c t i v e  duct Mach 
number of unity,  as defined by t h e  mass-momentum method, cannot be 
achieved with any nonuniform duct flow, regardless  of t h e  value of K. 
This  r e s t r i c t i o n  a r i s e s  from the  f a c t  t h a t  t h e  mass flow with uniform 
sonic ve loc i ty  i s  greater than t h e  mass flow i n  a nonuniform stream of 
t h e  same area ,  whether subsonic or supersonic. 
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The average t o t a l  pressure determined by each of t h e  weighting 
methods f o r  t h e  assumed p r o f i l e s  is  compared w i t h  t h e  e f f e c t i v e  value 
of t o t a l  pressure from t h e  mass-momentum method i n  f i g u r e  3. 
t a l  pressures are independent of any further assumptions regarding the  
average s t a t i c  pressure i n  t h e  duct. 

These t o -  

Mixing losses  are inherent ly  included i n  determining the  e f f e c t i v e  
t o t a l  pressure by the  mass-momentum method. 
weighting method assumed no mixing losses ,  t h i s  method always y ie lds  an 
average t o t a l  pressure t h a t  i s  grea te r  than  t h e  e f f e c t i v e  value. 
other hand, t h e  mass-derived and area-weighting methods y i e l d  average 
t o t a l  pressures t h a t  are lower than t h e  e f f e c t i v e  value. 
with a l l  methods of averaging increase as the  sever i ty  of t h e  p r o f i l e  
increases whether through an increase i n  t h e  value of K, and hence of 
4, or from t h e  nature of the  bas ic  p r o f i l e  shape. 

Since t h e  mass-flow- 

On the 

The e r r o r s  

Lo 
(r, 
M 
M 

For weighting methods i n  which t h e  uniform Mach number i n  t h e  duct 
i s  determined from t h e  calculated t o t a l  pressure and t h e  measured s t a t i c  
pressure,  the  combined e r r o r s  i n  s t a t i c  pressure ( f i g .  2 )  and calculated 
t o t a l  pressure ( f i g .  3) might be expected t o  produce s i g n i f i c a n t  e r r o r s  
i n  Mach number. This e q e c t a t i o n  i s  confirmed by t h e  curves of f i g u r e  
4, which show t h a t  a l l  the  weighting methods yielded calculated Mach 
numbers t h a t  were grea te r  than t h e  corresponding e f f e c t i v e  Mach numbers 
determined by the mass-momentum method. 

Any e r r o r s  i n  t h e  determination of s t a t i c  pressure and Mach nuniber 
f o r  t h e  uniform flow w i l l  r e f l e c t  as e r r o r s  i n  t h e  calculated mass flow 
and momentum. The magnitude of these e r r o r s  i s  i l l u s t r a t e d  i n  f i g u r e s  
5 and 6 f o r  the  p r o f i l e s  and weighting methods considered. 

Inasmuch as a l l  the averaging methods used t h e  measured s t a t i c  
pressure i n  the  calculat ion of mass flow i n  f i g u r e  5 and of momentum i n  
f i g u r e  6,  t h e  r a t i o  of measured t o  e f f e c t i v e  s t a t i c  pressure was iden- 
t i c a l .  The differences i n  t h e  calculated values therefore  arise from 
t h e  differences i n  Mach nuuiber computed by t h e  various methods. With 
t h e  mass-derived method, t h e  calculated Mach number exac t ly  s a t i s f i e d  
the  measured mass flow when used with t h e  measured s t a t i c  pressure.  
The Mach number r a t i o s  indicated i n  f i g u r e  4 f o r  t h e  mass-derived neth- 
od a r e ,  therefore,  t h e  r a t i o s  giving zero mass-flow e r r o r .  For any 
given p r o f i l e  and ef fec t ive  duct Mach number, the.Mach number r a t i o s  
were higher f o r  t h e  area-weighting and mass-flow-weighting methods than 
f o r  t h e  mass-derived method, which explains t h e  excessive mass flows 
computed by these  methods. 

I n  the case of the  momentum computations, none of t h e  averaging 
methods gives t h e  base value of the  Mach number r a t i o  t h a t  is  required 
t o  exactly compensate f o r  the  s ta t ic -pressure  e r r o r  and reduce t h e  mom- 
entum er ror  t o  zero. It i s  possible  t o  determine t h e  necessary Mach 
number ra t io ,  however, by equating equations (4) and (10). With the  
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separat ion p r o f i l e  a t  an e f f ec t ive  duct Mach number of 0 . 7 1  (K = l), f o r  
example, t h e  r a t i o  of measured t o  e f fec t ive  s t a t i c  pressure i s  0.753 f o r  
a l l  averaging methods ( f i g .  2 ) .  In order t o  compute the  cor rec t  t h rus t ,  
t h e  ca lcu la ted  average Mach number should be 1.34 times t h e  e f f ec t ive  
value.  From figure 4, t h e  ac tua l  Mach number r a t i o  is less than t h i s  
value f o r  t he  mass-derived method, and more f o r  t h e  o ther  methods. 

It i s  shown i n  the sec t ion  ANALYSIS t h a t  t h e  mass-flow e r r o r s  in -  

The Mach numbers required t o  ac- 
d ica ted  i n  f i g u r e  5 can be eliminated by redef in ing  t h e  Mach number and 
s t a t i c  pressure of t h e  uniform f l o w .  
complish t h i s  are presented i n  f igu re  7. 

The Mach number e r r o r s  f o r  both the  mass-flow-weighting and area- 

I n  t h e  case of t he  area-weighting method, t h e  
weighting methods are g r e a t l y  reduced as compared with t h e  o r i g i n a l  er- 
r o r s  shown i n  f igu re  4. 
ca lcu la ted  Mach numbers a r e  s t i l l  larger  than t h e  e f f ec t ive  values. 
However, t h e  ca lcu la ted  Mach numbers are  now lower than t h e  e f f ec t ive  
values f o r  t h e  mass-flow-weighting method. 
with t h e  calculated-to-effect ive to ta l -pressure  r a t i o s  shown i n  f igu re  
3. It can be deduced from equation (14) t h a t  t h e  Mach number r a t i o s  of 
f i g u r e  7 w i l l  be inverse ly  proportional t o  these  to ta l -pressure  r a t i o s .  

These r e s u l t s  are cons is ten t  

The values of s t a t i c  pressure required t o  s a t i s f y  t h e  mass flow are 
compared with t h e  e f f ec t ive  values determined from t h e  exact weighting 
procedure i n  figure 8. The e r r o r s  i n  to ta l -pressure  ca lcu la t ion  ( f i g .  
3) and Mach number ca lcu la t ion  ( f ig .  7 )  tend t o  compensate (eq. (15)), 
so t h a t  t h e  s ta t ic -pressure  e r ro r  i s  g r e a t l y  reduced as compared with 
the measured pressure shown i n  f igure 2. The ca lcu la ted  s t a t i c  pres-  
sures  f o r  t h e  area-weighting method were less than t h e  e f f ec t ive  value. 
For t h e  mass-flow-weighting method, t he  ca lcu la ted  pressures  exceeded 
t h e  e f f e c t i v e  value. These t rends  a r i s e  from t h e  predominant e f f e c t  of 
t o t a l  pressure,  as compared with Mach number, i n  t h e  s ta t ic -pressure  
calculat ion.  

The momentums calculated with the s t a t i c  pressures  and Mach numbers 
that s a t i s f i e d  t h e  integrated mass flow a r e  shown i n  f igu re  9. I n  gen- 
eral, these  values are l e s s  i n  e r ror  than t h e  values computed from t h e  
measured s t a t i c  pressure ( f i g .  6) .  An exception occurred with the  a rea  
weighting of t h e  separat ion p r o f i l e .  I n  t h i s  case, t he  calculated mo- 
mentum obtained with the  assumption of measured s t a t i c  pressure w a s  
s l i g h t l y '  g rea t e r  than t h e  integrated value, whereas t h a t  obtained for 
conditions s a t i s f y i n g  t h e  mass flow was l e s s  than the  in tegra ted  value.  

The seriousness of t he  e r ro r s  introduced by  the  various weighting 
methods depends on t h e  use t o  which t h e  averaged flow quan t i t i e s  are 
applied.  The simple determination of d i f fuse r  to ta l -pressure  recovery, 
f o r  example, is  only subject  t o  the e r r o r s  ind ica ted  i n  f igu re  3. I n  
t h e  usual  range of duct Mach number f o r  which such da ta  are evaluated 
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(Mach numbers less than 0.4), t h e  e r r o r s  associated with any of the  
weighting methods are small f o r  t h e  p r o f i l e s  examined. 
quant i t ies  are t o  be u t i l i z e d  i n  broader appl icat ions,  however, t h e  e r -  
r o r s  a r i s i n g  from the various weighting methods may become more 
s igni f icant .  

When t h e  averaged 

Diffuser charac te r i s t ics .  - The diffuser pressure-recovery - air- 
flow charac te r i s t ics  t h a t  would be predicted by t h e  various weighting 
methods for the  separation p r o f i l e  a re  indicated i n  f i g u r e  10. I n  t h e  
calculat ion of t h i s  figure, t h e  average s t a t i c  pressure w a s  assumed t o  
correspond t o  the measured value. It w a s  f u r t h e r  assumed t h a t  t h e  ef-  
f e c t i v e  total-pressure recovery was 0.90 a t  an e f fec t ive  duct Mach nun- 

c r i t i c a l  flow region of the  i n 1 e t . l  

I 

I ber  of 0.3, corresponding t o  c r i t i c a l  f low, and w a s  constant i n  t h e  sub- 

Inasmuch as the  mass-derived method of averaging has  no mass-flow 
e r r o r ,  the only difference between the d i f f u s e r  c h a r a c t e r i s t i c  pre- 
d ic ted  by t h i s  method and t h e  mass-momentum Character is t ic  occurs i n  
t h e  l e v e l  of the  c r i t i c a l  and s u b c r i t i c a l  pressure recoveries .  
flow er rors  introduced by t h e  mass-flow-weighting and area-weighting 
methods combine with the  total-pressure e r r o r s  associated with these 
averaging methods t o  cause marked s h i f t s  i n  t h e  predicted d i f fuser  char- 
a c t e r i s t i c  as compared with t h e  mass-momentum c h a r a c t e r i s t i c .  I n  t h e  
s u p e r c r i t i c a l  flow region the  corrected a i r  flows predicted by t h e  ap- 
proximate averaging methods a t  a given l e v e l  of pressure recovery a r e  
i n  e r r o r  in  t h e  same proportion as the mass-flow e r r o r  indicated i n  
f i g u r e  4. Conversely, a t  a given value of corrected a i r  flow, la rge  
apparent differences i n  total-pressure recovery result with the various 
averaging methods. The choice of averaging method would thus have a 
la rge  influence on t h e  se lec t ion  of i n l e t  s i z e  t o  match a desired en- 
gine air-flow r a t e  or on t h e  predict ion of the operating pressure- 
recovery l e v e l  of an engine-inlet  combination. 

The mass- 

The s h i f t  i n  apparent diffuser c h a r a c t e r i s t i c  i l l u s t r a t e d  by f i g -  
ure  10 would be l e s s  marked w i t h  t h e  other p r o f i l e s  considered i n  t h i s  
ana lys i s ,  inasmuch as t h e  to ta l -pressure  and mass-flow e r r o r s  are 
smaller than f o r  the  separated p r o f i l e .  For weighting methods i n  which 
t h e  mass flow is  s a t i s f i e d ,  t h e  e r r o r  i n  d i f f u s e r  c h a r a c t e r i s t i c  would 

I 
I 

be confined t o  the s u b c r i t i c a l  pressure-recovery l e v e l ,  regardless  of 
I t h e  p r o f i l e .  

I 'Subcritical flow i s  defined as t h e  regime where t h e  absolute mass 
flow varies  with changes i n  discharge pressure.  
dependent of back-pressure changes, t h e  i n l e t  flow i s  s a i d  t o  be super- 
c r i t i c a l .  This i s  t h e  hyperbolic region of t h e  curves i n  f i g u r e  10. 
The in te rsec t ion  of these two flow regimes i s  termed t h e  c r i t i c a l  flow 
condition. 

When mass flow i s  in- 

I 
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Diffuser drag calculat ions.  - Figure 11 schematically i l l u s t r a t e s  
t h e  type of research model i n s t a l l a t i o n  frequently used t o  evaluate 
combined i n t e r n a l  and ex terna l  flow problems of engine-inlet i n s t a l l a -  
t i o n s .  Although shown as a nose o r  nacelle i n l e t ,  t h e  same type of in- 
s t a l l a t i o n  and support system can be u s e d t o  s tudy fuselage i n l e t s .  
The model i s  supported from a s t i n g  by a balance which measures t h e  sum 
of t h e  t h r u s t  and drag forces  exerted on the model. I n t e r n a l  air-flow 
conditions are regulated by a plug i n  t h e  discharge duct which i s  sup- 
ported from the  s t ing.  
vary the air-flow conditions.) I n t e r n a l  flow conditions a r e  evaluated 
b y  measurements at  a flow measuring s t a t i o n  i n  a region corresponding t o  
t h e  compressor i n l e t  i n  t h e  model prototype. 

(This plug i s  generally remotely actuated t o  

Since t h e  duct i s  c y l i n d r i c a l  downstream of t h e  flow measuring sta- 
t i o n ,  t h e  only a x i a l  force  on t h i s  section is  a s m a l l  viscous shear 
force  which is general ly  neglected. The momentum evaluated at the  meas- 
uring s t a t i o n  can therefore  be used t o  determine t h e  t h r u s t  force  on t h e  
model. By subtract ing t h e  t h r u s t  force from t h e  balance force,  t h e  ex- 
t e r n a l  drag of t h e  model can be determined. 

It is  shown i n  equation (B6) of appendix B t h a t  e r r o r s  i n  momentum 
or mass-flow calculat ion a t  t h e  measuring s t a t i o n  cause e r r o r s  i n  a 
drag-coeff i c i e n t  parameter according t o  the r e l a t i o n  

The magnitudes of these  e r r o r s  f o r  a free-stream Mach number of 2.0 a r e  
indicated i n  figure 1 2  f o r  t h e  v a r i o u s  p r o f i l e s  and f o r  weighting meth- 
ods i n  which t h e  measured s t a t i c  pressure i s  s a t i s f i e d .  The s ign  con- 
vention i s  such t h a t  pos i t ive  e r rors  correspond t o  calculated drag coef- 
f i c i e n t s  t h a t  are less than t h e  correct  values. 

With each of t h e  weighting methods, t h e  e r r o r  increased with in- 
creases  i n  the  duct Mach number i n  accordance with t h e  increasing e r r o r s  
i n  mass-flow and momentum shown i n  f igures  5 and 6. I n  general ,  t h e  
mass-derived method, i n  which the  mass flow as wel l  as t h e  measured 
s t a t i c  pressure i s  s a t i s f i e d ,  gave the  lowest drag e r rors .  

The importance of t h e  e r r o r s  indicated i n  f i g u r e  1 2  depends upon 
t h e  r e l a t i v e  importance of t h e  induction system t o  the  over -a l l  model. 
If ,  f o r  example, t h e  model representedby these e r r o r  curves i s  a 
nacel le  i n  which t h e  duct area i s  90 percent of t h e  f r o n t a l  area and 
t h e  pressure recovery i s  0.8, then t h e  absolute e r r o r  i n  drag coef f i -  
c i e n t  based on t h e  f r o n t a l  area would be 72 percent of t h e  indicated 
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parameter e r ror .  
be on t h e  order of 0.1 t o  0.15 f o r  an e f f e c t i v e  duct Mach number of 0.2. 
The indicated e r r o r s  may thus become a la rge  f r a c t i o n  of t h e  desired 
value. I f ,  on t h e  other hand, t he  e r r o r  curves of f i g u r e  1 2  apply t o  
an i n l e t  mounted on a fuselage i n  which t h e  duct area is  a smaller f r ac -  
t i o n  of the  fuselage f r o n t a l  area, t h e  r e l a t i v e  importance of t h e  ind i -  
cated e r ro r s  is  g r e a t l y  reduced. 

A t  Mach number 2.0, t h e  nace l le  drag coef f ic ien t  may 

The magnitude of t h e  drag-coeff ic ient  e r r o r s  due t o  e r r o r s  i n  t h e  
weighting method i s  g r e a t l y  reduced f o r  weighting methods i n  which the 

Lo 
03 
M 
M integrated mass flow is s a t i s f i e d ,  as shown i n  f i g u r e  13. The e r r o r  

curves f o r  the mass-derived method a re  reproduced from f igu re  12.  
t h e  mass-flow-weighting method and the  area-weighting method produce 
l e s s  error  than t h e  mass-derived method with t h i s  c r i t e r i o n .  A s  com- 
pared with the  method i n  which the  measured s t a t i c  pressure was used 
( f i g .  E),  t h e  e r ro r s  introduced by t h e  mass-flow-weighting method a re  
reduced about 90 percent.  For t h e  area-weighting method, t h e  e r r o r s  
with the mass flow s a t i s f i e d  a re  only on t h e  order of one- f i f th  t h e  e r -  
rors when t h e  measured s t a t i c  pressure was used. "he s ign of t h e  e r r o r s  
obtained from the  a rea  weighting method i s  genera l ly  reversed between 
f igures  1 2  and 13. This corresponds t o  t h e  s h i f t  i n  value of t h e  ca l -  
culated momentum r e l a t i v e  t o  t h e  t r u e  momentum shown between figures 6 
and 9. Except f o r  t h e  separat ion p r o f i l e ,  t h e  lowest drag-coeff ic ient  
e r ro r s  a re  obtained with the  area-weighting method when the  mass flow 
is  s a t i s f i e d .  

Both 

Figures 1 2  and 13 i l l u s t r a t e  possible  drag-coeff ic ient  errors a t  a 
free-stream Mach number of 2.0. The e f f e c t  of free-streamMach number 
i s  i l l u s t r a t e d  i n  f igu re  14. The p r o f i l e s  evaluated i n  t h i s  f i g u r e  a l l  
have a maximum duct Mach number of 0.4, which corresponds t o  an effec-  
t i v e  Mach nuniber of about 0.35 i n  each case. These ca lcu la t ions  a r e  
f o r  the weighting methods i n  which t h e  uniform-flaw s t a t i c  pressure is 
assumed equal t o  t h e  measured value; hence, t h e  mass-flow e r r o r s  ind i -  
cated i n  f igu re  5 a re  included. Similar t rends  would be observed f o r  
t h e  weighting methods i n  which t h e  in tegra ted  mass flow w a s  s a t i s f i e d .  
The magnitude of t h e  drag-parameter e r r o r s  would be decreased i n  t h e  
la t ter  case, however. 

The increasing e r r o r  i n  drag parameter with increasing supersonic 
Mach number does not necessar i ly  imply an increase i n  t h e  absolute 
drag-coeff i c i e n t  e r ro r  of t h e  same proportion. The to ta l -pressure-  
recovery term i n  the  denominator of t h e  drag parameter w i l l  genera l ly  
decrease with increasing Mach number. This w i l l  compensate i n  p a r t  f o r  
t he  increase i n  parameter e r r o r .  For such cases ,  t he  an t ic ipa ted  e r r o r  
i n  drag coef f ic ien t  may remain r e l a t i v e l y  constant throughout t h e  super- 
sonic Mach number range. I f ,  on the  other hand, h ighly  e f f i c i e n t  in-  
l e t s  are being considered a t  high Mach numbers, t h e  drag-coeff ic ient  
error w i l l  increase f o r  a given l e v e l  of flow d i s t o r t i o n  as compared 
with the e r r o r s  r e su l t i ng  a t  lower Mach numbers. 
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I n l e t  pressure recoveries  m a y  be expected t o  remain a t  a genera l ly  
high l e v e l  throughout t h e  subsonic Mach number range. 
ipa ted  that t h e  p o t e n t i a l  e r r o r  i n  drag coe f f i c i en t  would therefore  in-  
crease as Mach number is  reduced unless there  w a s  a concomitant improve- 
ment i n  t h e  duct p r o f i l e .  

It would be an t i c -  

Variable-area-duct calculat ions.  - In many duct flow appl ica t ions ,  
uniform-flow p rope r t i e s  a re  calculated a t  a flow measuring s t a t i o n  by 
one of t he  weighting methods. 
used t o  compute flow proper t ies  a t  other  s t a t i o n s  i n  t h e  duct by the 
assumption of appropriate  to ta l -pressure  losses .  These r e su l t an t  prop- 
ert ies are a f f ec t ed  by the  e r r o r s  previously demonstrated t o  be associ-  
a t e d  with t h e  various weighting methods. Additional e r r o r s  are in t ro -  
duced if  t he re  a re  a rea  changes i n  the  duct. 

34 

D n 

One-dimensional flow equations a r e  then 
34 

The nature  of t h e  e r r o r s  introduced i n  variable-area-duct calcula-  
t i o n s  can be illustrated by t h e  flow shown i n  f igu re  15. It has been 
assumed i n  t h i s  flow t h a t  a uniform s t a t i c  pressure e x i s t s  a t  each sta- 
t i o n  and t h a t  each f i lament  of t he  flow expands i s e n t r o p i c a l l y  between 
t h e  two s t a t ions .  

Each fi lament d i f fuses  t o  a higher s t a t i c  pressure as the flow pas- 
sage area increases .  The s ta t ic-pressure r i se  is constant across  a l l  
f i laments;  consequently, the  f i laments  having low i n i t i a l  ve loc i ty  under- 
go a g rea t e r  decelerat ion than those with high veloci ty .  The expansion 
rate var ies  as a result, and the  low-velocity f i laments  occupy a l a r g e r  
f r a c t i o n  of t h e  f i n a l  duct a rea  than of the i n i t i a l  duct area. 

A s  previously shown, t h e  mass, momentum, and energy of the nonuni- 
form flow at  each s t a t i o n  can be duplicated by a uniform flow determined 
by t h e  mass-momentum method. The r e su l t an t  average t o t a l  pressure a t  
each s t a t i o n  includes t h e  mixing losses  t ha t  would be incurred i f  t h e  
nonuniform flow were allowed t o  mix ful ly  i n  a constant-area sect ion.  
The magnitude of t h e  mixing lo s ses  depends on t h e  ve loc i ty  differences 
between f l u i d  f i laments  i n  the  nonuniform flow. These differences a re  
grea te r  after d i f fus ion  than i n  the  i n i t i a l  flow. Thus, t h e  uni form 
flow s a t i s f y i n g  t h e  mass, momentum, and energy of t h e  real  flow must 
undergo an apparent to ta l -pressure  loss  i n  t h e  d i f fus ion  process ,  even 
though t h e  real  flow expands isentropical ly .  A f i n a l  flow calculated 
from the  average i n i t i a l  flow by isentropic  one-dimensional equations 
w i l l  therefore  be i n  e r ro r .  

The magnitude of t h e  e r r o r s  introduced through t h e  assumption of 
one-dimensional average flow propert ies  i s  i l l u s t r a t e d  i n  f i g u r e  16.  
For t h i s  example, t he  i n i t i a l  p r o f i l e  was assumed l i n e a r  with K = 1.0 
(eq. (19)) .  
mined f o r  a range of s ta t ic -pressure  r a t i o  f o r  assumed i sen t ropic  ex- 
pansion of t h e  nonuniform flow by t h e  method out l ined  i n  appendix C.  

The f i n a l  p ro f i l e s  and duct a reas  were a n a l y t i c a l l y  de te r -  



16 NACA TN 3400 

Average flow proper t ies  were determined at each s t a t i o n  by t h e  conven- 
t i o n a l  weighting methods as w e l l  as by t h e  mass-momentum method. 
f igure presents t h e  r a t i o  between the average weighted proper t ies  a t  
each s t a t i o n  and those calculated by applying i sen t ropic  one-dimensional 
r e l a t i o n s  t o  t h e  i n i t i a l  weighted flow. 

The 

A s  previously indicated,  t h e r e  i s  an e f f e c t i v e  l o s s  i n  t o t a l  pres- 
sure i n  the expansion process when evaluated b y  t h e  mass-momentum method. 
Similar losses  a r e  calculated by the area-weighting and mass-derived 
methods. I n  addi t ion t o  t h e  l o s s  i n  t o t a l  pressure,  t h e  average values 
of Mach number and t h e  calculated momentum and mass flow are lower at 
each s t a t i o n  i n  the duct than would be predicted by t h e  one-dimensional 
calculation. 

If the average flow proper t ies  a t  each duct s t a t i o n  a r e  determined 
by the mass-flow-weighting method, t h e  one-dimensional equations may be 
applied without e r r o r .  
nonuniform flow exer t s  a weight i n  t h e  average total-pressure determi- 
nation t h a t  i s  proportional t o  i t s  increment of mass flow and t o t a l  
pressure. These quant i t ies  remain invariant  i n  t h e  expanded fi lament;  
consequently, the calculated average t o t a l  pressure remains constant. 

With t h i s  weighting method, each fi lament of t h e  

The e r r o r  shown i n  f igure  1 6  f o r  each weighting method i s  a rela- 
t i v e  e r r o r  f o r  the  given expansion r a t i o .  It represents  t h e  difference 
between the  value of t h e  flow property as computed from one-dimensional 
r e l a t i o n s  and the value determined from a weighting of the l o c a l  f lar .  
The previously discussed inherent e r r o r  between t h e  weighted flow prop- 
e r t i e s  and t h e  integrated flow proper t ies  must a l s o  be considered be- 
f o r e  the absolute e r r o r  associated w i t h  t h e  appl ica t ion  of one- 
dimensional r e l a t i o n s  t o  variable-area duct flows can be determined. 

CONCLUDING REMARKS 

It has been shown t h a t  conventional weighting methods used t o  ob- 
t a i n  uniform flow representat ions of nonuniform duct flows can cause 
la rge  e r r o r s  i n  t h e  calculated uniform-flow proper t ies .  These e r r o r s  
are predominantly associated w i t h  t h e  conventional assumption that t h e  
measured s t a t i c  pressure can be used i n  conjunction with a weighted 
t o t a l  pressure t o  define t h e  uniform flow. 

An averaging method has been developed which y ie lds  uniform-flow 
propert ies  t h a t  reproduce t h e  mass, momentum, and t o t a l  energy of t h e  
nonuniform flow without e r r o r  f o r  spec ia l  cases i n  which the  t o t a l  tem- 
perature and s t a t i c  pressure are constant across t h e  duct. The magni- 
tude of t h e  e r r o r s  introduced by conventional weighting procedures may 
often warrant the addi t iona l  complications required t o  apply t h i s  method. - 
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It  has a l s o  been shown t h a t  nonuniform flows through variable-area 
duct passages r e s u l t  i n  changes i n  average flow proper t ies  t h a t  a r e  not 
associated with t h e  r e a l  thermodynamic flow path.  
t i o n a l  e r r o r s  a re  introduced i n t o  nonuniform duct flow calculat ions when 
one-dimensional equations a r e  applied t o  t h e  averaged flow a t  one s t a t i o n  
i n  order t o  pred ic t  t h e  averaged quant i t ies  a t  another s t a t i o n .  

Consequently, addi- 

These f indings indicate  t h a t  care should be exercised i n  the  se lec-  
t i o n  of a method of averaging nonuniform duct flows and t h a t  calcula- 
t i o n s  based upon the  weighted flow should be in te rpre ted  with caution. 

Lewis  F l i g h t  Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, December 13, 1954 
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SYMBOLS 

The following synibols are used i n  t h i s  report :  

flow area  

reference a rea  f o r  drag coe f f i c i en t  

stagnation speed of sound 

drag coe f f i c i en t ,  Drag/&ef 

net thrust  

maximum duct Mach number 

Mach number 

mass-flow r a t e  

t o t a l  pres  sure 

s t a t i c  pressure 

dynamic pressure,  q = $V2 = r 2  pM 

gas constant 

absolute t o t a l  temperature 

veloci ty  

w e i g h t  -f low rate 

f r a c t i o n a l  dis tance from w a l l  t o  duct cen ter l ine  

r a t i o  of spec i f i c  hea ts ,  1.4 f o r  air 

mass dens i ty  

t o t a l  pressure,  corrected t o  NACA standard sea- leve l  conditions,  
P/2116 
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e t o t a l  temperature, corrected t o  NACA standard sea-level conditions,  
T/519 

cp momentum, q = mv + AP = p~(1 + Y M ~ )  

Subscripts : 

C calculated 

e e f fec t ive  

i 

i s  isentropic  

i n i t i a l  s t a t i o n  i n  an expanding duct 

0 f r e e  stream 



20 

~ ~~ 

NACA TN 3400 

APPENDIX B 

CALCULATION OF DRAG EXROFS I N  DUCTED-BODY INVESTIGATIONS 

The ne t  i n t e r n a l  force ac t ing  on a ducted body i s  t h e  difference 
between t h e  o u t l e t  and free-stream momentum. If t h e  model i s  s imilar  
t o  tha t  shown i n  f igu re  11, in which the  duct i s  cy l ind r i ca l  downstream 
of t h e  fo rce  measuring s t a t ion ,  t h e  only a x i a l  fo rce  on th i s  sect ion 
w i l l  be a small viscous shear force .  This shear fo rce  i s  general ly  
neglected, and the  momentum evaluated at the measuring s t a t i o n  i s  as- 
sumed equal t o  the  o u t l e t  momentum. The net  i n t e r n a l  force  therefore  
becomes 

The absolute  e r r o r  i n  net thrust a r i s ing  from e r r o r s  i n  the  de te r -  
mination of t h e  momentum and mass flow in  t h e  duct becomes 

where cp and m are the integrated values of momentum and mass flow, 
respect ively,  and 9, and % a re  calculated values based upon in- 
exact averaging methods. 

The absolute quan t i t i e s  i n  the  terms on t h e  r i g h t  side of equation 
(B2) can be reduced t o  funct ions of the equivalent duct Mach number by 
introducing t h e  measured duct static pressure and the t o t a l  temperature, 
which gives  

Since t h e  balance measures the  sum of the t h r u s t  and drag forces  
on t h e  model, the  e r r o r  i n  calculated ex te rna l  drag w i l l  be numerically 
equal  t o  t h e  error  i n  calculated thrus t  from equation (B3) .  
su l t an t  e r r o r  i n  drag coef f ic ien t  based on any arbi t rary reference area 
i s  

The re- 

In aa 
M 
M 
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By using equations (B3) and (B4) and the r e l a t i o n  

P = P - - -  Pe PO 'e 
PO Pe 'e P O P O  

t h e  following drag-coeff ic ien t -e r ror  parameter can be determined, which 
i s  a funct ion of free-stream and measuring-station flow conditions only: 
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APPENDIX C 

DETERMINATION OF NONUNIFO'RM-FLOW PROFILE AFTER ISEITFROPIC DIFFUSION 

The cont inui ty  equation may be wr i t t en  i n  d i f f e r e n t i a l  form as 

1 - 
dm = & pM(1 + 

Thus, 

1 ( y-1 2)F M i  1 + -  2 Mi Ui 

1 dA= 

where the  subscr ipt  i r e f e r s  t o  t h e  i n i t i a l  duct s t a t i o n  before 
diffusion.  

For i sen t ropic  flow, 

Combining equations ( C Z )  and ( C 3 )  gives 

For two-dimensional flow, dAi/Ai = hi. The required flow area 

a f t e r  diffusion therefore  becomes 
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(c5) 

The Mach number of any fi lament a f t e r  d i f fus ion  is, from equation 
w (c3) J 
w a 
m 

The coordinate x of t h e  fi lament a f t e r  d i f fus ion  i s  

x =  r l  M; dx: 

I n  t h e  example considered herein,  t h e  i n i t i a l  p r o f i l e  w a s  assumed 
t o  follow t h e  l i n e a r  equation 
required f l a w  area d t e r  diffusion becomes 

Mi = 0.2xi + 0.8. From equation ( C 5 )  the 

The f l o w  coordinate f o r  a given filament of t h e  flow becomes 
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Upon subs t i tu t ion  f o r  from equation ( C 3 ) ,  equation (C9)  may 
be simplified t o  

M =  4m-J- x +  

The p r o f i l e  after d i f fus ion  i s  therefore  also l i n e a r ,  and the  
weighting equations may be solved d i r e c t l y  f o r  t h e  uniform-flow 
propert ies .  

REFERENCE 

1. McLafferty, G. H.: A Generalized Approach t o  t h e  Def in i t ion  of 
Average Flow Quant i t ies  i n  Nonuniform Streams. 
Res. Dept., United A i r c r a f t  Corp., July 20, 1954. 

Rep. No. R-13534-9, 
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Figure 1. - Typical profiles considered in analysis. Effective 
duct Mach number, 0.2. 



26 NACA TN 3400 

w w 
CD 
UI 

0 .2 . 4  .6 .8 1.0 
Effective duct Mach number, Me 

Figure 2. - Ratio of measured to effective static pressure for 
assumed profiles. 
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(a) Mass-derived method. ! 
1.04 

1.00 

(b) Mass-flow-weighting method. 
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0 .2 .4 .6 .a 1.0 
Effective duct Mach number, Me 

(c) Area-weighting method. 

Figure 3. - Total pressures calculated by three weighting methods. 
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Figure 4. - Duct Mach numbers calculated by three weighting 
methods. Static pressure equal to measured value. 
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Figure 5. - Mass flow calculated by two weighting methods. 
Static pressure equal to measured value. 



30 

I 

NACA TN 3400 

1.00 

.96 

.92 

1.08 

1.04 

1.00 

(b) Mass-flow-weighting method. 
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(c) Area-weighting method. 

Figure 6. - Momentum calculated by three weighting methc, 
Static pressure equal to measured value. 
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(b) Area-weighting method. 

Figure 7. - Duct Mach numbers calculated by two weighting 
methods; integrated mass flows satisfied. 
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Figure 8. - Static pressures calculated by two weighting methods 
to satisfy integrated mass flow. 
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(b) Area-weighting method. 

Figure 9. - Momentum calculated by two weighting methods; integr-.ued 
mass flows satisfied. 
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Figure 12. - Drag-coefficient errors introduced by various 
weighting methods. 
free-stream Mach number, 2.0. 

Static pressure equal to measured value; 
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Figure 13. - Drag-coefficient errors introduced by various 
weighting methods. 
stream Mach number, 2 . 0 .  

Integrated mass flows satisfied; free- 
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Figure 14. - Variation of drag-,oeffizient error with Mach number. 
Static p r e s s u r e  e q u a l  to measured value; maximum duct b c h  number, 
0.4 (effe:tive du- t  Ma-h number, approx. 0.35). 
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Figure 16. - Comparison of l o - a l l y  weighted acd isentropically calculated flow 
properties in an expardirg du-t. 
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