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TECHNICAL NOTE 3390

SECOND-ORDER SUBSONIC ATRFOIL-SECTION THEORY
AND ITS PRACTICAT. APPLICATION

By Milton D. Van Dyke
SUMMARY

Several recent advances in plane subsonic flow theory are combined
into & unified second-order theory for airfoils of arbitrary shape. The
solution is reached in three steps: The incompressible result is found
by integration, it is converted into the corresponding subsonic com-
pressible result by means of the second-order compressibility rule, and
it is rendered uniformly valid near stagnation points by further simple
rules. Solutlons for a number of airfoils sre given and are compared
with the results of other theories and of experiment. A straightforward
computing scheme is outlined for calculating the pressures on any airfoil
at any angle of attack.

INTRODUCTION

Thin-airfoil theory provides a useful first approximation to the
incompressible flow past two-dimensional airfoils, and the results can
be Iimmediately extended to subsonic compressible flow by the Prandtl-
Glauert rule. It is natural to attempt to improve this simple theory by
successive approximations so ag to increase its accuracy for thicker air-
Toils and higher subsonic Mach numbers. There results a series expansion
of the flow quantities in powers (supplemented in some cases by logarithms)
of the airfoll thickness ratio, camber ratio, and angle of attack.

For incompressible flow, the higher-order theory has been studied by
various writers, in particular Riegels and Wittich (refs. 1 and 2) and
Keune {ref. 3). A less straightforward series of approximations was
developed by Goldstein (ref. k). Perhaps the most concise exposition of
higher-order incompressible thin-asirfoil theory is given by Lighthill

(ref. 5).

For subsonic compressible flow, the corresponding analysis was first
undertaken by Gortler (ref. 6), followed by Hantzsche and Wendt (refs. 7
and 8), Schmieden and Kawalki fref. 9), Kaplan (refs. 10 and 11), and
Imai and Oyama (refs. 12 and 13).l These investigastors treated only spe-
cific simple shapes by rather laborious analysis. Later, i1t was discovered

IThese historical references are intended to be representative rather
than exhaustive.
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that particular integrals of the second-order iteratlon equation can be
expressed in terms of the first approximation (refs. 14 and 15). This
permits the second-order subsonic solutlon for any profile to be glven

in terms of integrals (refs. 15 and 16). However, the resulting solutions
are lncorrect everywhere for sirfoils with stagnation points, for reasons
%o be discussed later.

Recently Hayes (ref. 17), improving on a result of Imai (ref. 18),
has given a second-order simlilarity rule for surface pressure that implies
a second-order extension of the Prandtl-Glauert rule (ref. 19). This
remarkable result was overlooked by earlier Ilnvestigators because they
did not calculate surface pressures, but were content with finding surface
speeds, for which the second-order compressibllity rule 1s more compli-
cated., These rules reduce the second-order problem of subsonic compress-
ible flow past alrfolls to the corresponding incompressible problen.

However, the solution by successive approximations breaks down near
leading and treiling edges if there are stagnatlion polnts. The result is
therefore merely a formal series expension, which faills to converge near
the edges. TIh first-order theory spurious singularities arise at stagna-
tlon edges, but 1t is known how they can be taken into account, since
they are integrable. In the second approximation, however, these singu-
larities are Intensified, so that at round edges they are no longer inte-
grable. In any case, the calculated speeds and pressures are incorrect
near such edges; and more so in the second approximation than the first.
Moreover, in subsonic compressible flow the second spproximetion may be
incorrect everywhere as a consequence of the defects in the first approx-
imation.

For round edges in incompressible flow, previous lnvestigators have
shown how these defects can be corrected. Riegels (ref. 2) gave a gimple
rule that renders the first-order thin-airfoll solution valid near the
edge. Lighthill (ref. 5) gave an equivalent rule for the second approx-
imation. Recently, corresponding rules have been developed for higher
approximations, for sherp as well as round edges, and for subsonic com=-
presaible flow (ref. 20).

It is the alm of this paper to combine these recent advances into a
unliflied theory. There results a uniform second epproximation to subsonic
flow past any profile at angle of attack, expressed in terms of integrals
that cen, 1f necessary, be evalusted numerically. It may be noted that
the resulting solution is now generally belleved to be valid only below
the critical Mach number - that is, for purely subsonic flows. Although
only flow quantlities at the alrfoll surface are considered here in detaill,
the entire flow field can be treated in the same way.

For numerical computation, the method initiated by Germain (ref. 21),
and extended by Wetson (ref. 22), Thwaltes (ref. 23), and Weber (ref. 2k)
appears ‘to be the most useful. It requires a knowledge only of the air-
foil ordinstes at a specified set of points. A straightforward scheme,
based on this method, is given for computing the second-order subsonic
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solution for any alrfoil. The reader Iinterested only 1n calculating a
specific case, without necessearily understending the theory, can turn
directly to the section "PRACTICAT, NUMERICAT, COMPUTATION" on page 19.

THEORY

From the preceding remerks it is clear that the solution 1s reached
in three steps. First, the formal second-order incompressible solution
1s found by integration. Second, this 1s converted into the correspond-
ing subsonic compressible solution by means of the second-order compress-
ibility rule. Third, this 1s modified near stagnation points by the
appropriate rules for round or sharp edges. These three steps will be
considered successively. .

Formal Incompressible Solution

The expansion of the veloclity components In a& formal series of powers
of the airfoil thickness ratio, camber ratio, and angle of attack has been
discussed in detail by Lighthill (ref. 5). It will suffice here to sum-
marize his results for the second epproximation. We mainly follow his
notation except to make it more mnemonic, and to suppress his parameter
€ characteristic of the airfoll thickness, which is only convenlent in
the detalled analysis.

Accordingly, consider an airfoil of moderate thickness snd camber at
a moderate angle of attack to a uniform subsonic stream (sketeh (a)). It
is essentlal that the x axis be q

chosen to pass through both the lead- LS
ing and tralling edges. ILet the upper p K‘\e
and lower surfaces of the airfoll be . \\\_____’,,,————* ~X

described by Y

y = ¥(x) =c(x) £ ™{x) (1) - Sketch (a)

where C(x) describes the mean camber line and T{x) the thickness. The
airfoil extends over the interval A<x<B, which is usually conveniently
taken to be either -1<x<1 or 0£x<1. All symbols are defined in
Appendix A,

First-order solution.- In the first approximation of thin-airfoil
theory, the condition of tangent flow at the airfoil surface is imposed
on the two slides of the chord line ¥ = O rather than at the surface, and
requires that

Y1 =¥ (x) = c'(x) £ T'(x) (2)
¥y=0
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The corresponding horizontal veloclty disturbance on the chord line, which -
is required for calculating the surface pressure, consisits of = term
aggoclated with the alrfoil thickness, and another associated with its
camber and angle of attack. TFor the thickness

wy 1 fB 2(e) a¢ " (3)

U n X - &

A :

and for the camber and angle of attack .
Uic _ [B - x\/2 1 [P [t - AN/2cr(e) at (4
T “\x - & rad, \B-E — )

The latter result is due to Munk (ref. 25) and the former was apparently
first given by Squire in a paper that is still not generally available.
Cauchy principal velues are indicated in each integral.

The surface speed is then given to a first approximation by

dr _ uit | Wc
T=l+5 5 _ (5)

Second-order solution.- In the second approximation, the tangency
condition is transferred from the airfoll surface to the chord line by
Taylor series expension. The condition on the second-order increment in
vertical veloclity is thus found to be

-%2 = C'E(X) + T'Z(X) (68)
y=0 T -
where
u .
Colx) = —Ilji C o+ l—lll}—c s
(6b)
To(x) = % T 4 -u—[lIE c

(We depart here from Lighthill's notation in order to emphasize that the
functions Cp and T, are effectively the camber and thickness for some _ -
fictitious airfoil.) The problem is identical with that in first-order
theory except for the condition at iInfinity, which is readily disposed
of. Thus, corresponding to Ty 1s the increment in horizontal veloclty

‘i,
T TR J, Tx-t "2 o



NACA TN 3390 5

and corresponding to Cyo

Use _ 1 (B _ x\l/z ;7['3 G - A\ 2 co(e) de (8)
i) kLt J A B -t

X = x - ¢

The velocity components on the surface of the airfoil include also
terms arising from the transfer from the chord line to the surface, which
is again effected by Taylor series expansion. Hence the surface speed is
given to a second approximation by

Uyt Uie Ust Uoc
= + +
w=l+wgr*v+rtv g

+ (¢ = T)(c" £ TV) + % (cr = T)2 (9)

Airfoill integrals.- The incompressible solution to second order (or,
indeed, to any order) is thus reduced to a succession of "airfoil inte-
grals" typified by equations (3), (L), (7), and (8). Goldstein (ref. 26)
emphasgizes that in first-order theory these integrals can be evaluated
anglytically for practically every profile for which formulas have ever
been proposed. In second-order theory this appears to be true to & some-
what lesger extent, although the lebor of calculation becomes great except
for simple shapes. Often the integrals are most readily evealuated by
guessing (u - iv) as a function of the complex varilsble (x + 1iy) that has
the required behavior on the chord line. A short table of airfoil inte-
grals useful for finding second-order solutions is given in Appendix B.
Others can be found in references 26 and 27.

For complicated profiles, exact analytic evaluation of the integrals
may be impossible or excessively laborious. Then numerical integration
may be resorted to, or the profile can be approximated by a simpler shape
that can be treated analytically. The most useful numerlecal procedure is
apparently that originated by Germain and simplifled and extended by
Watson, Thwaites, and Weber. 1In this method the airfoil ordinates are
epproximated by the trigonometric polynomial

N-1
Y = co + E: (cyrcos r6 + tysin re) +

r=j

cycos NO (10)

wvhere 6 1is the angle indicated in

sketch (b). The coefficients cyr (for
caember) and tr (for thickness) are
chosen to give the actual ordinates at the
2N points for which 6 = mx/N. In this Sketch (b)
way it 1s found that the sirfoil integrals

can be expressed approximately as sums of
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the alrfoill ordinates at certain pivotal points miltiplied by standard
influence coefficients. The details of this method, as adapted to thin-
airfoll theory, are given in Appendix C. The numerical computing pro-
cedure is outlined in the last section of this paper. ’

Second-Qrder Compressibility Rule

The second-order counterpart of the Prafidtl-Glauert compressibility
rule is implicit in an extension of transonic similitude that was initi-
ated by Imai (ref. 18) and carried to completion by Hayes (ref. 17).
Imai sought to iImprove the transonic similarity rule by retaining in its
derivation all terms proportional to the square of the airfoll thickness
except one appearing in the condition of tangent flow at the surface.
The correlation of experimental dsta weas not appreciebly improved, which
led him to suggest that the neglected second-power term should also be
included. This probably cannot be done. However, in attempting merely
to reproduce Imai's result as announced before publication, Hayes actually
included that term in a second-order rule for surface pressure.

Hayes'! result is that for two-dilmensgional subsonic or supersonic f£low

the ratio of the second-order to first-order pregsure term on the surface

is proportional to the parameter

01 - 1;2!)3/2 [7 ; 'S +2(1 - Mz):' (11)

where <+  1is some measure of the thickness, camber, or angle of attack.
Now at subsonic speeds the first-order pressure term is related to its
value In incompreseible flow by the Prandtl-Glauert rule. Combining
these two results ylelds the second-order compressibility rule (ref. 19).

In incompressible flow the second-order surface-pressure coefficient
has the form

Cpo(x) = Cpy (%) + ACp,(x) (12a)

where the first-order term Cp, contains linear terms in thickness, cam-
ber, and angle of attack, eand the second-order increment ACp, contains
their squares and products. Then for the same alrfoil in subsonic com-
pressible flow, according to the compressibility rule, the pressure coef-
Picient is

Cpy = KaCpy + Ka2(ACp,) (12p)

where
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Ky = ——t— = & A
i,l - M2 B
& (12¢)
K, = {2+ 1)M* 4 4p2
4 p* J

It has been pointed out that the formal thin-airfoll series requires
modification near stagnation edges. The modification must in general be
performed on the speed rather than the pressure. Hence the compressibil-
ity rule for surface speed is required. It 1s readily found from the
above rule for pressure by considering the small-disturbance series form
of Bernoulli's equation for compressible flow. Thus it is found that if
the surface speed ratioc in incompressible flow is

9% _ 1 50 , Mo (13a)
U U U
then at subsonic speeds
ay AqQa Age . Kz =1 (Aq:\?
F=l+K S +K2_9'2U +—2——-2 5 (13b)
with
Ko - 1 (y + 1)M= + 4p2
22 -1 _y2
5 M B8t (13c)

This rule is seen to lack the fundamental simplicity of the rule for pres-
sure.

Modification for Stagnation Edges

Thin-airfoil theory is known to fail near leading and trailing edges
if there is a stagnation point. The flow is actually brought to rest, but
thin-airfoil theory predictes infinite speeds instead, If r 1is the dis-
tance from the edge, the velocity contains powers of r~1/2 for a round
edge and for any leading edge with.flow around it (associated with angle
of attack), and powers of 1ln r for a sharp edge. First-order theory
contains first powers of these singularities, second-order theory their
squares, and so on, so that the formal thin-ailrfoil series diverges in
gome neighborhood of the edge. Not only are the velocities and pressure
incorrect near stagnation edges, but nonintegrable singulsrities appear
in the higher-order expreasions for aerodynamic forees.
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False subsonic solutions.- Even more serious difficulties may arise
In subsonic compressible flow, where ‘the infection spreads in some cases
so that the formal second-order solution is incorrect not only near the
edges but over the entire airfoil surface. Thus, using the particular
integral of reference 1L, Harder and Klunker gave sn expreassion for the
second~order solution for any symmetric airfoll at zero asngle of attack
(ref. 16). However, they noted that thelr expression does not apply to
round-edged airfolls, for which it contains divergent integrals. A more
deceptive defect appears if their expression is applied to a sharp-edged
airfoll such as a biconvex section; then the predicted surface speeds are
finite (except near the edges) but incorrect everywhere by a term propor-
tional to M2, This defect arises from the fact that near the edges the
first-order source_distribution is not approximately the alrfoil slope,
as 1s assumed in thin-ailrfoill theory. The second-order solution involves
the derivative of the source strength which, as indicated in sketch (c),
has sharp peaks that are missed by

Source N\\\\\ thin-airfoll theory. It is enough to
strength take account of this shortcoming in
\\\\\J ‘\\\\\N even the crudest fashion. Thus, 1f
@ o the region of integration is extended
an infinitesimal distance beyond the
edges to include the pulses (Dirac
dyﬂzme delta functions) of the thin-airfoil
approximation, Herder and Klunker's
expression yields s solution that is
\ ] correct to second order except 1n the
vicinity of the edges. T
Thin-airfor!
Actval valugs approximation Keune has discovered an alterna-
Sketch (c) tlive particuler integral containing

the stream function rather than the
veloclty potentlal, and so has obtained another expression for the second-
order solution (ref. 15). Because the tangency condition 1s one degree
gsmoother for the stream function than the ¥elocity potential, his expres-
sion yields the correct result (except near stagnation edges) for sharp-
edged shapes. It fails, however, for round-edged shapes, so that his
gsolution for subsonic flow past an ellipse is incorrect everywhere.

Both these expressions can be manipulasted by partiasl integration so
as to be correct except near stagnation edges. However, the result is
gimply that obtalned by applying the second-order compressibility rule to
the expressions for second-order incompressible flow. Hence these more
gerious difficulties are of no further concern here. They do serve, how-
ever, to warn of the danger of false secohd-order solutions in more com-
pliceted probleus. ’ -

Modification for incompresgible flow.- For round edges in incompress-
ible Flow, Riegels (ref. 2) and Lignthill (ref. 5) have given simple rules
that render the formal thin-sirfoil solution uniformly wvalid. The result

q f

| e
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is at least a first approximation to the flow disturbances near the edge.
Riegels found & rule for first-order theory by considering the conformal
mapping, and Lighthill found a rule for second-order theory by considering
a8 contraction of abscissas that shifts the thin-airfoil solution by healf
the radius of the edge.

In reference 20 corresponding rules have been developed for higher
epproximations, sharp edges, and subsonlc compressible flows. The tech-
nique used there is to consider the exact solution for some simple shape
that approximetes the airfoil in the viecinity of ite edge. The ratio of
the exact solution for the simple shape to its formal thin-airfoil series
expangion serves as a multiplicative factor that corrects the series
expansion for the actual alrfoill. The result should then be simplified
insofar as posslble. The relevant rules will be summarized here; the
details are given in reference 20.

A round-nosed airfoll can be closely spproximated by a parabola whose
axis coilncides with the initial camber line (sketch (d)). The exact solu-
tion for incompressible flow past the
perabola (resolved into streaming and
circulatory components) leads to the
following rule that converts the formal
second-order solution "q% for surface
speed into a uniformly vealid epproxima-

tion gu:

Sz - (_Xo* MfPoxq N2 (Taz, 0
u Xo + /2 £ N\ 0% U *o

(1k)

Here xo 18 the abscissa measured from
the edge into the airfoil, p 1is the edge
radius, A is the initial angle of cam-~
ber, and the = . signs refer, as usual,
to the upper and lower surfaces. Sketch (d)

This rule ylelds & uniform second approximation to the disturbances
everywhere (except at the other edge, where additional modification may
be required) if the rate of change of curvature of the profile is con-
tinucus, which means that near the edge the thickness has the form

T(x) = by X5 + baxo®¥2 + . . . (15)

However, airfoils of the NACA four- and five-digit series violate this
requirement, thelr leading edges having the initial form
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Hence the rule ylelds only a first approximation near the edge (while .
leaving a second approximation elsevwhere) and can therefore be replaced
by the simpler form -

— 1/ 2 u "
%2 = (X.o -+ p/2> ( L(.xo . (lT)

which 1s Lighthill's rule.

The rule for first-order theory is obtained by dropplng the term
po/4xo from equation (17). However, it is then adventageous to use the
alternative form due to Riegels {ref. 2), which is correct to the same.
order but a great deal more sccurate (see ref. 20). It is simply

= (cos 7) —ﬂl (18)

where 1 1s the angle of the airfoll surfsce. Analogous alternative
rules can be found for the second-order theory, but thelr shortcomings
probably outwelgh thelr slight advantages of accuracy and eimplicity, so
they will not be considered here.

The modification for a sharp edge is found by considering incompress-
ible flow in an angle, If the edge is a traillng edge with Kutta condi-
tion enforced, or a leading edge at the 1desl angle of attack, g0 that
there is no flow arocund it, the second-order rule 1s

=] .
%2 - xR0 | taz {" 2 _'_'.S-!I_:_ 1n xo - é(ln Xo -~ -323 1n2xo>:‘ (19)

where ® 1s the semivertex angle, and "qf is the first-order solution.

Otherwise, the circulatory peart of the formal second-order solution, which
congists of the terms singular llke xg 1/2, must first be corrected sep-
arately by the rule

-%a 2 J'[-S (u n u || ln x0> (20)

after which the remainder is corrected by equation (19).

Alrfolls with two stagnation edges can be treated either by applying
the appropriate correction sepsraetely at each edge, or by combining the
rules. The combined rule for two round edges is given in equation (2b)
of reference 20. Similerly, for a round edge at x = -1l and a sharp edge
(with Kutta condition) at x = 1, the combined rule is
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B =1i/2

G2 (1.0 | 1rx* A0+ x) {_'19,252_% -
U '(1 x) 1+ x+ p/22%A2(T + x) U g U In (1 -x) +

il

e e ), @)

For two sharp edges of equal angle, both with Kutta condition (as for a
biconvex airfoil at zero angle of attack), and located at x = %1, the
Eombined rule has the form of equation (19) with x, replaced by

1 - x2).

If the pressure is required, it must be calculated from the speed
uging the full Bernoulli equation because the disturbances are no longer
asgumed to be small.

Modification for subsonic flow.- For round noses, these rules are
extended to subsonic speeds by consgidering compressible flow past a parab-
ola. Thus the counterpart of equation (14) is found to be?

= xoi}\Jgp_ a nn a "g¥
- (1, 2 ) [ 2 T

1 Ko - 1) a2
tre £+ (0? - Bapd) ] (22)

Here, as indicated in sketch (e),

Q 1s the speed ratio on the sur-

face of a parabola in a uniform
subsonic stream of Mach number M,

with circulatory flow proportional

to a. The combinatlion

Xo = Xo * A PpXp appears in the

first argument of Q, as it does M
in equation (14), because of the -
connection indicated in sketch (e)
between absclissas of & surface

point measured aslong the x axis

and slong the axis of the parabola. //////”"_———_———
(See also eq. (9) of ref. 20.) The

factor a is proportional to the Sketch (e)

274 should be noted that as M -> O this rule reduces not to the
incompressible rule of equation (14), but to an alternative that is
entirely equivalent up to terms of second order. See footnote 7 of ref-
erence 20.
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engle of attack of the actual alrfoll measured from the ldeal angle at
which the stagnetion point coincides with the vertex. It must be found
as the coefficient of xo~1/2 in the first-order solution "qi/U.

The function @ 1s not known exactly, but a satisfactory approxima-~
tion is given by the Janzen-Rayleigh solution in powers of M2, TFor the

special cage of @ —53 0, M> corresponding to the ideal angle of attack
where a = 0, the solution has been calculated to order M* by Tmai
(ref. 28). It is tabulated briefly in reference 20 for ¥ = 7/5, where
it ig denoted by Q(x/p, M). TFor other angles of attack, the function
Q to order M2 can be extracted by a limiting process from Kaplen's
solution for an inclined ellipse (ref. 239), which gives, with xo/p = @,

&m:

a(o,¥,M) =Jl_——}—5 J?ap?w-ml‘f—aﬂ{(l-w)«/efp-w(mw% +
(oo

2
1 + # [ J5 - —-W N ¢¢>?h1

eWE) ten™t JEE] } | (23)

The rule for sharp noses in subsonic flow cen be found by considering
compressible flow in an angle. However, this basic solution is not yet
avallable. For practical purposes the correction is probsbly negligible
gince it is appreclable over a much smaller neighborhood of & sharp edge
than a round one. Moreover, sharp edges are ususlly trailing edges, in
which case the detalls of the flow are altered by viscous effects.

EXAMPLES: COMPARISON WITH EXPERIMENT
AND OTHER THEORIES

Incompressible Flow

Tt has been seen that the solution for subsonic flow depends on that
for incompressible flow. It is therefore pertinent to test the second-
order theory in the case of incompressible flow, where it can be checked

against the exact results of conformal mapping.
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Ellipse.- Congider an ellipse of thickness ratic T wlth the inter-
val -1 € x € 1 as chord line. It is described by

y=%7 - x2, -1<xg1 (2k)

Suppose that the Kutta condition 1s satisfied - the rear stagnation point
coincides with the end of the major axis. Then the first-order solution
for surface speed is found, from equations (3), (4), and (5), together
with Appendix B, to be

1l -x
—%i =l+ Tt T = (252)

Proceeding with equations (6) to (9) gives the formal second-order result

"ol 1-x 1 x2 -x%x 1
d2 + - X _ 2 —2Z 4 ar - =2
5= = l1+Tt*a T 3 T2 3 et /T 5 O (25b)

This can be checked by expanding the exact result, which 1s

d-(1+ T)aJl - x2cogsat (1 -x) sina (26)
v J1 - x2 + 722

The formal second-order solution clearly breaks down hear the ends of the
ellipse. It is converted into a uniformly vaelid second approximation by
applying equation (1h4) twice in succession, or using the combined rule of
equation (24) of reference 20, which gives :

%2 = %l}l + ) (1 + “’./12%_%) +% (v2 - ou2)] (25c)

These approximations are compared in figure 1 with the exact solution
for an 18-percent-thick ellipse (which has nearly the same nose radius as
an NACA 0012 airfoil) at zero angle of attack. The precipitate descent
of the formal second-order solution toward negative infinity is Jjust dis-
cernible near the nose end is eliminated in the modified theory. It
should be mentioned that the first-order theory modified according to
Riegels' rule (eq. (18)) happens to give the exact result for an ellipse.
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Symmetrical Joukowskl airfoil.- To secard as well as first order a
symmetrical Joukowskl airfoll of thickness ratio T is described by

\
y =% T1(1 - x) J/T - x5, -1<x<1
> (27)
n
Ty = — T = 0.7698T
33
/

By the foregoing procedure, the formal second-order solution is found to
be

I+

"qd l-x 1 _-1-x 2 -
=1+ mll -2 tefyig-gnEiTy (Le2xEF

/l_'_JE 1.2 y
2riax 1T = 5 a : (283) .

where the first three terms give the first-order solution. Modifying this
according to equation (14) with xo =1 + X and p = 4712 (and A = 0)
gives the unlformly valid second approximation

Q@ [ 1*Xx [1 + 11(1 - 2x§m+-% T,2(1 - 2x)2 &

U "J1+x+ 21,2

L-x_L1ge : 28b

ol - 211%) e J (28b)
In figure 2 these approximations are compared with the exact solutlon

(ref. 30) for a 12-percent~thick section at zero angle of attack. The =

effect of the modification on the second-order result is not discernible

to this scale. ’

Biconvex airfoil.- To second order a symmetrical biconvex airfoll of
thicknegs ratio T Dbounded by either circular or parabclic arcs is -
described by ’

y =% (1 - x3), -1<x<1 (29)

The formal second-order solution is found to be
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|1q!! o /_— ) 1+ x\2
‘ﬁa 1+ = T<% - x 1n [ <é - x'1n T— x> -
L qp2 ﬁ_ - (1 - / X _plolge
= 1n T (1 XZ)J [(1 + 2x) 1n 1 x h} > a

(30a)

In deducing from this a uniformly velid second spproximation, the terms
independent of a are treated by the rule for combined equally sharp
edges that was described just after equation (21), with & = 2r. The
terms in o are modified according to equation (20) with xo = 1 + x.
(Notice that no modification of these terms is reqpired at the trailing
edge.) The result is

=27 _
%F = (1 - x2)" 727 {# + % T[2-(1+x) In (L +x) -(L-x)1In(1l-x)]+

<§T>2[3-—(1-x2)-3(1+x)1n(1+x)-3(1-x)1n(1-x)+
FA+30Q+x) W2 (@ +x) +1(1-30(1-% W2 (1 -x) +

%(l-xz)ln(l+x)ln(1-x)]-—a2} /+x(l+x)“2"'{-
,-}[2(1+x)1n(1+x)-(1+2x)1n(1-x)-h]} (30b)

Thege approximations are compared in figure 3 with the exact solution
(ref. 31) for a circular-asrc airfoil 18 percent thick at zero angle of
attack. Although the vertex sngles are large in this example, the modifil-
cation of the second-order solution is appreciasble in such a small neigh-
borhood of the edge that it would be invisible even on a much larger plot.

NACA OOXX airfolls.- Symmetrical airfolls of the NACA O0XX family
(such as the NACA 0012) are naturaslly defined for the interval 0 < x < 1.
The airfoil of thickness ratio T+ 1s described by (ref. 32)

¥y =+ T(x) = T(bs s + box + byx2 + box® + bgx?), 0<x<1 (31)
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where _
by = 1.18450
bo = -0.63000
b, = -1.25800
bg = 1.42150
bg = =-0.50750

With the ald of Appendix B the first-order solution is found to be

i w1} -b 1+J- 3 )+
= 1 —1 - - - - -
5 1+ﬂ{'r(x)1n +ﬁln 2by - 3 be 3‘08

(3bg + 2ba)x - hbaxZ] /i (32a)

in sgreement with the result glven by Goldstein (ref. 26). Applying
Riegels' rule (eq. (18)) renders this a uniformly valid first approxima-
tion except very near the trailing edge.

The second-order terms in thickness, in additlon to belng very com-
plicated, involve integrals that apparently cannot be evaluated in terms
of tabulated functions. Accordingly, the second-order terms have been
calculated using the Germain-Watson-Thwaites-Weber numerical method dis-
cussed in Appendix C, with N = 16. The sccuracy of this approximation
is assured by the fact that cruder approximations modify the numericel
results only slightly, as will be seen in & later example.

The formal second-order solution for surface speed therefore has the
form. .

18 s nay s A E 12, ¢ el - 5 a2 (320)

where values of Qy from equation (32a) and approximete numerical values
of Qrr and Qq, s&re

X Qr | Qrr [ X Qr Qrr | Qra

0.025]1.943}«9.00 {8.80 1 0.50{0.900 {-0.135|0.32
.05 |1.836}-3.35 {5.55|| .60} .697| -.220] .11
.10 |1.714]-1.00 |3.25 1 .70} .4B5| -.315|-.08
.20 |1.510] -.090§1.65 || .80] .238| -.410}-.23
.30 11.309f .010{1.00 | .90|-.124 | -.420}|~.33
4o j1.106] -.060 58ﬂ .95} - 440 | -.360}-.3k
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Applying equation (14) with p = 1.10187 72, 8 = 1.16925 T (and
A = 0) yields a uniformly vaelid approximation. However, as discussed
previocusly, the curvature of the profile does not vary continuously near
1ts nose, so the result is only a first approximation there, though a
second gpproximation elsewhere.

The various approximations are compared in Ffigure 4 with the result
of a "long and elsborate calculation" by conformal mapping for the
NACA 0012 airfoil thet is given by Goldstein (ref. 33). Again the effect
of modifying the second-order solution is indiscernible. Also shown is
the "exact" solution tebulasted in reference 34. The agreement between the
first-order solution with Riegels' rule, the second-order solutions, and
Goldstein's calculation leaves little doubt that his i1s the more accurate
of the two "exact" solutions.

Compressible Flow

When extended to subsonic compressible flow, the preceding examples
can all be compared with other theories or with experiment. As before,
the comparisons will, for simplicity, be made only for zero angle of
attack.

Ellipse.- Applying the second-order compressibility rule of equa-
tions (13) to the incompressible solution of equation (25b) gives as the
formal second-order solution for the speed on an elliptic c¢ylinder

Ta(2Kp - 1) % — i -a2l +2%§Kf ;)1)x (33)

For zero angle of attack the maximum speed, occurring at midchord, is
glven by

1

—3‘2> =14 KT+ L (Ko - 1) (34)
mex '

in agreement with the result of Hantzsche and Wendt (ref. 7). Hantzsche
has also calculated the third-order solution for the maximum speed at zero
angle of attack (ref. 8). Values of the maximum speed ratio calculated
from these and other approximations for a 1lO0-percent-thick ellipse at zero
angle of sttack are
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M=0.T0| M= 0.75]| M = 0.80

First-order theory (or Prandtl-

Glauert rule epplied to exact

incompressible value of 1.100)} 1.140 1.151 1.167
Kérmén-Teien rule 1.148 1.166 1.184
Second-order theory 1.151 1.166 1.189
Third-order theory 1.151 1.172 1.198

Here the Kédrmén-Tsien rule has been applied to the exact incompressible
value of. the pressure coefficient, and the speed ratio then calculated
from Bernoulll's egquation. It is to be anticipated that second-order
theory is more accurate than any of the coumpressibility correction for-
mulas such as the Karmén-Tsien rule, because it allows for a dependence

on the particular airfoil shape and on the value of ¥. This is seen to
be true for the ellipse. ' -

In the same way the second-order solutions are readlly calculated
for the Joukowskl and the biconvex alrfolls, and are found to agree with
the results that Hantzsche and Wendt obtalned by laborious analysis.

NACA 0012 airfoil.- The formsl flrst- and second-order sclutions for
NACA OOXX alrfoils in subsonic flow are easily obtalned from equations (13)
and (32). The second-order solution can then be rendered uniformly valid
near the nose using equation (22), although again the modification is sig-
nificant in only a very small region of the nose.

For the NACA 0012 ailrfoll at zero angle of attack, Emmons has calcu-
lated the flow field at Mach numbers of 0, 0.70, and 0.75 using the numer-
ical relexation method (ref. 35). The last of these Mach numbers is super-
eritical, so that the flow contalns shock waves, and is beyond the scope
of the present theory. The pressure distribution calculated by the relax-
ation method for M = 0.70 is compared in figure 5 with the results of
first- and second-order theory and various other approximations. The
relaxation solution for incompressible flow is also shown in comparison
with Goldstein's "exact" solution, and is seen to be inaccurate near the
noge. The solution for M = 0.70 probably contains simlilar inaccuracies,
however, Just as for the elllpse the pressure coefficlents calculated by
second-order theory may be slightly less negative than the true values
near thelr minimum.

Experiments on NACA 0015 airfoll.- Experimental pressure distribu-
tione in two-dimensional fiow over the NACA 0015 airfoil at high subsonic
speeds are reported in reference 36. ' For zero angle of attack, the criti-
cal Mach number 1s spproximately 0.70. The measurements at this Mach num-
ber are compared in figure 6 with the results of first- and second-order
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theory and of the two common compressibility correction formulas applied
to the incompressible flow values tabulated in reference 3L4. Unfortu-
nately, the model was imperfectly constructed, and the ordinates were
inaccurete near the nose and midchord. Otherwise, the measured pressures
are in agtiefactory accord with either second-order theory or the results
of the Karman-Tsien rule.

PRACTICAY. NUMERICAL COMPUTATION

The following computing procedure yields the formal second-order
subsonic solution for the surface speed or pressure on any airfoil at any
angle of attack. It requires a knowledge only of the alrfoil ordinates
at seven points along the chord. It is based on the foregoing theory
together with the numerical method of Germain, Watson, Thwaltes, and Weber
that is discussed in Appendix C.

Computing Procedure (N = 8)

(1) Tabulete the ordinates Yy and Y; of the upper and lower sur-
faces at the seven pivotal poilnts xn listed in table I. (The x axis
must pass through the leading end trailing edges.)

(2) Calculate the corresponding values of
1 _1
T = 5 (Yu - Y3), Cc = s (Yu + Y1) (35)

(3) Using the influence coefficients of tables IT and IIT, calculate

7 7 T
urt uye* E:
—— = C T = d. C
= }; nsTs 5 nsCs
B=1 8=1
T = E; engls c' = fnels > (36)
8=1 8=1

T“

!
[~
g
X
[+4]
Q
H
>~
g
2
0n
—
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4. Using table I (with « 1in radiamns), celculate

Uic Uyc¥ 1l -x
U = U + o X (37)
5. Calculate
Uit Uie Uit ¢
Te = =2 T + ¢ Co=—xr 0+ 25T 8
= T T 2 i i (38)

6. Using the influence coefficients of.tables II and III, celculate

7 7
Uzt R R Uge _
— = Y +4 T - = Q — A aC
T Z nstes - 5 %% 5 Z ngCes (39)
= ©og=1

7. Using the compressibllity factors of table IV, calculate

m.n
g2 .1+ 2, K2<—3§+cc" + Tt +-;-c'2+—12-fr'2)+

i i T
2 [ ) oG
e 4 C'T‘) + (Kp - 1) % %—c:] (%0)

or

Uit | Uie Uzt Uze )
"CPy = —2Kl< A ——) - Kz[e - te—gF + o(c £ T)(c" =-T%)

(cr xT4)2 - (% x ul—gc)a] (k1)

The + signs refer to the upper and lower surfaces of the airfoil.
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Remarks

1. The summations of steps (3) and (6) are conveniently carried out
by tabulating C and T in columns thet can be matched with successive
columns of tables II and III while cumulative multiplication is carried
out on a desk calculating machine.

2. If the alirfoll slope and second derivative can be found more
directly, step (3) can be simplified by omitting the calculation of T!,
c', T", and C".

3. The results near the nose cen be rendered valid by the use of
the modification of equation (22), but the effect is often insignificant.

4. Seven pilvotal points yield sufficient accuracy for most purposes.
If conditions near the nose of a thin airfoll are of interest it may be
necessary to repeat the computation using 15 pivotal points. (The values
of T and C already calculated can be used again.) Teble I gives the
additional pivotal points and angle-of-attack solution, and teble V glves
the influence coefficients for calculating u/U; additionel tables can be
prepared for calculating the airfoll slope and curvature 1f they are not
Imown otherwise.

5. The above scheme is designed for calculating & single case. If
the same airfoil is to be calculated at more than two angles of attack,
it is economical to subdivide the computing scheme to separate terms in
a end o2. Similarly, the scheme should be subdivided if more than two
thickness or camber ratios are to be calculated for the same family of
alrfoils.,

6. For NACA eirfoils T is the basic thickness and C +the camber
line. To second order it 1s immaterial that the thickness 1ls added normal
to the camber line rather than to the chord line.

Example

The following teble glves the complete computing sheet for calculat-
ing the flrst- and second-order increments in surface speed for an
NACA OOXX airfoil (of unit thickness ratio) at zero angle of attack and
zero Mach number:



NACA TN 3390

u 1"
1]0.03806}0.26316] 1.8936 | 3.091k4}-5%.721}0.49832|%.8040 |-L.8180
21 Jdb6hs5) Ahh236| 1.6158 8652 ~8.928] .71478(3.1601} -.k062
3| .30866| .49990| 1.2906 | ~.0235) ~-3.636] .64517|1.8200f .0028
L1 .50000] .hhos5L .9053 | ~.5445] -1,939] .39879} .5719] -.1340
51 69134} .30843 4909 | ~.8063f -1.048] .15142]~.3081| ~.3063
6] .85355| .16199 L0824 |-1.0163} =1.5T4| .01335({~.6913| ~.4298
7| 96194} .04kgol -.5951 |=-1.0879| 1.643]-.026T77]-.9888]| ~.3230

The accurecy of this solution with

only seven pivotel poiunts is

x |uat  Ada] Age

u _— U U
0.1h6h5] 1.6166 {~0.4009
.50000 .9003 | -.1348
.85355 0725 4239

Indiceted by comparison with the following values, which were obtained
analytically for Aqy/U and with 15 pivotal points for Agy/U:

It is seen that the solution using seven pivotal polnts yields ample
aceuracy.

Ames Aeronautical Laboratory -
National Advisory Commlttee for Aeronsutics
Moffett Field, Calif., Dec. 1, 195k
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APPENDIX A
NOTATION
A,B absclssas of leading end trailing edges, respectively
a factor proportional to angle of attack measured from ideal
angle
by coefficient of xB/2 in series for airfoil ordinate
c(x) camber of airfoil
Co(x) cember of fictitious airfoil in second-order solution
Cp surface-préssure coefficient
Gpl first-=order surface=-pressure coefficlent
ACP2 second~order increment in surface-pressure coefficient
Cns,dns,ens,}_ influence coefficients for celculating velocity, slope,
fnes;8nssbne, and second derivative of airfoil ordinate
Cr co:ffigient in trigonometric polynomial spproximatilion
o
f£(z) analytic function of complex variable
I imeginery part of f£(z) on unit circle
Ky first=order compressibility factor, %
Ko second~order compressibllity factor, (7 + l%g: + 4p®
M free=-stresm Mach number
N number of subdivisions of chord line in numerical integra-
tion
Q surface speed ratio on parsbole in subsonlc flow
QryQrrsQrg, (See eq. (32b}.)
q . flow speed on surface of airfoil

Agy ,AQy first- and second=-order increments in ¢
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T(x)

To(x)
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reel part of F(z) on unit ecircle
thicknese of airfoil

coefficlent in trigonometric polynomial epproximation
to B -

free-stream speed

veloelty perturbation parallel to chord line
velocity perturbation normal to chord line
gbscilssa

abscigsa measured from edge into alrfoil

distance from round edge measured along initial tengent
to camber line s . _ *

ordinate of alrfoil

ordinates of upper and lower surfaces of ailrfoil, respec~
tively :

ordinate

complex variable

angle of attack

J1 -1

coefficient in numerical calculation of u
adiabatic exponent of gas

coefficient in numerical calculation of Y?
semivertex angle of sharp edge

polar sngle

angle of alrfoil surface to chord line
terminal engle of camber line to chord line

coefficient in numerical caslculetion of ¥"
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T1

(g
( )y
(),
(),
(),
()
o ym
")
()
()
()
()
()
()
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factor that is 1 or % (See eq. (C12).)

radius of round edge

alrfoil thickness ratio

T for Joukowski airfoll

L
3/3

’ also (in Appendix C) perturbation veloecity potential

o|&?

g
:7:73’ also (in Appendix C) perturbation stream function

value at zero Mach number

value at Mach number M

first-order approximation

second-order approximation

component assoclated with thickness

component associated with camber and angle of attack
formal series approximation

uniformly valid approximation

part not involving angle of attack

derivative

value at mth pivotal polnt counted from trailing edge
value at nth pivotal point counted from leading edge
index of summation, counted from trailing edge

index of summation, counted from leading edge
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APPENDIX B
ATRFOIL, INTEGRALS

The following are the Cauchy principal values for x2 < 1:

1
1 - l+x
1. f ﬁ d_E, 1n l—

1
- L1+
2. f ¥ =xlnF=-2
-1
* Ll4x
3 fl = "G‘ n Ix - 2)
L __E: 2 1+x 2
£X_§d§=x xln-_—i 2)--3—
1 n 1 n-=1 1_(_1)
2 fig?dgfxf g % -3
-1 -1
1
6 f L a-=o0
'~ l-§2 (X-E)
L
T 4 dt¢ = -xn
-1 J1-£% (x-t)
i 2
8 £ dt = -mx

1 4
10. -5 dt = -xx (xz + i)
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n
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APPENDIX C
THE GERMATN-WATSON-THWAITES-WEBER METHOD

The numerical procedure introduced by Germain (ref. 21) cen be
adapted to give approximately the thin-airfoil velocities on any profile
in terms of its ordinates at certain fixed points. In the same way the
airfoll slope and second derlvative can be calculated., Thwaltes has
applied Germain's procedure to thin-airfoll theory (ref. 23), and Weber
has systematized the calculation of the slope and surface velocity for
uncambered airfoils (ref. 24). Here we must treat also cambered airfoils
and find the second derivative. It is convenlent to derive all these
regults from Watson's analysis (ref. 22).

Let #£(z) be regular within the unit circle, and on the unit circle
have the form

£(el0) = R(9) + 1I(0) (c1)

(Our R ahd I are Watson's 1V and e.) Then following Germain, Watson
approximates to R Dy the trigonometric polynomial

N-1
_R(e) Beco + Z (cpcos 6 + tysin re) + cycos Ne (c2)

r=1

which can be made to coincide with R at the 2N equally spaced pivotal
points @ = 6p = mm/N. Thus he derives approximaste formulas for I (aside
from & constant), R', I', fR, and [I 1in terms of the values of R at
the pivotal points times fixed influence coefficlents.

In thin-asirfoil theory the complex perturbation potential ¢ + 1v
1s regular outside the unit circle in the absence of clrculation. Inver-
sion shows that this involves a change 1n sign of either the real or lmag-
inary pert, since £(e-19) =R - iI. Hence (¢,-¥) or (V¥,p) may be iden-
tified with (R,I).

In thin-airfoil theory the tangency condition on the perturbation
gtream function. ¥ ies ¥ = -Y, where Y 18 the ailrfoll ordinate. There-
fore, in order to cobtain a solution in teyms of the airfoll ordinates we

identify (Y,-¢) with (R,I).
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Streamwise Velocity Increment

ILet x run from O at the leading edge of the airfoll to 1 at the
trailing edge, and

X = % (1 + cos 8) (c3)

Then the streamwise perturbation velocity on the airfoil is given by

u 3¢/ 2 J
U= g% = dx/de = " sin 6 5% (Ch)

Now according to Watson's equations (10), (24), and (27), in the absence
of circulation the values of Op/d0 at the points 0Oy are

1
= =0
2N-1 2 N, P
- %) = Z BpYnH.p, BP = O, P = even, not O (05)
o 1
p=0 : - , p = odd
N(1 - cos 8p)
Now since BoN.p = Bp,
2N-1 N-1 N-1
E: BpYm+p = BmYo + E: Bp-mY¥p + }: Bp+mY2N-p .* BN-m¥N (cé)
p=0 ' P=1 pP=1
Symmetric sirfoils.- For a symmetric airfoil Yoy-p = -Yp eand

Yo = Yy = O. Then according to equations (Ch), (C5), and (C6

N-1
um = T = ————2 - - C
T~ /. CmpYps Cmp = —— o (Bp-m - Bp+m) (cT)

P=1

This form is convenient for calculating the cmp. It is also easily
shown, using trigonometric identities, that
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[ N )
Sinem p-m=0
emp = O, , P -'m = even, not 0) (c8)
"W 4 sin 0p =5 P -m= 0dd
L cos 6m - cos Op) J

which 1s Weber's result.

Antisymmetric airfoils.- For & cambered airfoil of zero thickness
Y2N-p = Y,. The ordinates Y, and Yy of the leading and trailing edges
do not vanish in general, although In the present second-order theory the
axis is chosen so that they do. Equation (C6) gives

2N-1 N-1
}: Bme+p BmYo + }: (Bp-m + bp+m)Yp + BN-m¥N (c9)
p=0 p=1 o

This expression represents the velocity on the unit cirele into which
the airfoil 1s mapped. The Kutta condition will be violated at the trail-
ing edge of the alrfoll unless the expression happens to vanigh for m = Q.
Adding a component of circulatory flow changes the velocity on the cirele
by a constant. Hence the Kutta condition is enforced by subtracting from
the expression of equation (c9) its value at m = 0, so that

2N-1 _ N-2

Z ﬁme.'.p é(Bm - BO)YO + Z (Bp.m + Bp+m - QBP)YP + (BN-m - BN)YN -

=0 ' p=1 (c10)

Hence, according to equations (C4) and (C5)

n
o

N (Bm - Bo), P
u - 2 N
=2 = ;z AmpYps dmp = in om (Bp-m + Bpim - 28p), p £ 0, N)(C11)

p=0 (By-m - BN), p

]
=

The expression for dpp can be written more concisely in a form sultable
for computation as
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EV ']_-, P = O’ N
dmp = oTm 5o (Bp-m + Bp+m - 28p), v=¢2 (c12)
. m 1 otherwise
Slope of Airfoil
The airfoll slope is given by
ay 2 ay ’
t = 2 L e =
1= dx sin 6 46 <Cl3)
Now according to Watson's equations (29), (31), and (3L)
2N-1
ay © p=0
—> = Z 7pYm+ps 7p = (c1d)
. 48/ : 1 P sin 8y
p=0 -3 (-1 T = cos 65’ D#£O
or, sgince YeN-p = = 7p
N-1
g_g) = ) 7oy - Z Fpsm¥eN-p (c15)
m
p=0 P=1

Symmetric alrfoils.- Using the symmetry conditions egein gives for
symmetric airfoils

-1
2
p=1

Antisymmetric airfolls.- Similarly, for camber lines

N
2v
Yh = 2 fmpYps fmp = Sin 6m {yptm - yp-m) (ci7)
- pgo
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Second Derivetive -

The second derivaetive of the alrfoll ordinate is given by

2 O S i ¢ ax

An approximation for dZY/dsz, which 1s required here, 1s found by extend-
ing Watson's analysis for the first derivative, as he suggests. TFollowing
closely his section 2.4 gives, after some computation,

N1 _(N-l)(62N-1) ,
%§§> = E; LpYmip, Wp = ' (c19)
m
p=0

)P (L
(-1) <é N -1 T%s 6;)’ P #0

o]
1}
O

Symmetric airfoils.- By the foregoing procedure, it is found that
for symmetric airfoils

N -
4
Yy = zz: gmpYip; Emp = in%on ((up-m - wpsm) - cot Om(yp-m + 7p+m) ]
=1 (020)
Antisymmetric airfolls.- Similarly, for camber lines
N _
)it
Ty = }: hmpYp, hmp = — [(bp-m + wp+m) -~ cot 6n(ypem - 7p+m)!}
8in26my
p=0 (cev)

Tables

The six sets of Influence coefficlents required for calculating
u/U, ¥', and Y" for both symmetric snd entisymmetric sirfoils are tabu-
lated in tables IT and IITI for N = 8. In addition, the coefficients
required for calculating u/U are given in table V for N = 16. These
values have been checked by applying them to a number of simple shapes -
flat plate, ellipse, etc., - for which the approximation of the airfoll by
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a trigonometric polynomial is exact. The values are believed to be accu-
rate to within one unit in the last place.

For convenilence of computation, the coefficients have been renumbered
so that the pivotal points are counted from the leading to the trailing
edge. This renumbering is indicated by using indices (n,s) rather than
(m,P) .
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TABLE

T.- PIVOTAL POINTS AND ANGLE-OF-ATTACK SOLUTION

N=28 N =16
1-x l-x
n Xn -EEE n Xn xnn
0lo o 0olo oo
1} .038060{5.027339| 1| .009607{10.15318
2| .1k6hh7l2. k21| 2] 038060} 5.027339
3| .308658|1.hg966061 3| .08k265| 3.296558
k| .500000{1.000000{ 4| .1M6LLT| 2.k1k21k
5 .691342| .668179} 5| -222215| 1.870868
6| .853553] .hikorl| 6] .308658| 1.496606
7| .9619h0| .198912| 7| .k02455] 1.21850h
8 11..000000 {0 8 .500000{ 1.000000
9| «597545{ .820679
10| .6913k2| .668179
11} 777785 .532511
12| .853553| .hikeilh
13| .915735| .303347
14} .9619k0} .198912
15| .990393| 098491
1611.000000| ©

‘EQQS::?’
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TABLE II,- INFLUENCE COEFFICIENTS FOR THICKNESS, N = 8,

Cng .
sn 1 2 3 L 5 6 T
1| 20.90501f -L4.07193] O ~0.22417] © -0.07193] .0
2{ =7.52395] 11.31371l} =3.35916{ O - .29769 0 =.13291
3 0 -L4.38896| 8.65914] =-3.15432} © -.38896 0
L -.58579 o} ~3.41k21)  8.00000] -3.41k21 0 -.58578
5 0 -.38896] © -3.15432] 8.6591h4} -4,38896 0
61 =-.132911 o© -.29769} © -3.35916| 11.31371} -7.52395
7 0 -.07193] © -.22417} © ~4,07193} 20.90501
€ng —_
N 1 2 3 in 5 6 T
1{ -6.30865f =4.99321| 1.53073| -0.82843] 0.63405] ~-0.6636k4 1.08239
2| 17.047891 -~l.41k2l} ~4.71832f 2.00000f ~1.LOL61 1.h1lh21] -2.26582
3t =8.92177 8.05468) ~.uh83L] -4,82842] 2.61313| ~2.39782 3.69552
i 5.65685] =4.00000| 5.65685f O© ~5.65685 4,00000| =5.65685
5| =3.69552 2.39782| ~2.61313] 4.82842 L83k | -8,05468 8.92177
6 2.265821 -1.4lb2l} 1.h0461] -2.00000| Lk.71832 L.h1k21 | -17.04789
71 =-1.08239 66364 -.63L05 828431 =1.53073 4.99321 6.30865
€ns
N 1 2 3 4 5 6 7
1 |-41h,3920 | 106.2602 |~12.6863 3.5867 | =-1.3726 -0.2495 11.3137
2] 99.4783 [~160.0000 | 62.4057 |=11.3137 3.8960 0 -23,0316
3] 46.6274 76.5287 |~97.6081 | 50.4692 {~11.3137 2.0190 35.3137
L | -46.8824 | -11,3137 | 54.0559 {-84.0000 | 54.0559 | -11.3137 | -46.8824
5] 35.3137 2.,0190 }11.3137 | 50.4692 |~97.608L T76.5287 46,6274
6 | =23.0316 0 3.8960 |=11.3137 | 62.4057 [160.0000 99.4783
7] 11.3137 -.2495 | =1.3726 3.3867 |=12.6863 [ 106.2602 Lik,3920

UARS
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TABLE III.- INFLUENCE COEFFICIENTS FOR CAMBER, K = 8

k1

dns
n
A 1 2 3 L 5 6 7
0 -8.58221] © -0.43835| © -0.19570f © ~0.33956
1 21.58414 -h.84984 .28130] =~.32589 .28130f -.07193 67913
2 ~g.64046 11,31371( -3.75057| © ~.57900{ © -.8120k
3 Ohkkost -4.388661 9.05055| -3.05260 391k1]  -.24509 .9Lhg5
L ~1.53073] © -3.69552| 8.00000| -3.69552] O -1.53073
5 2.11652 .38896 87669 -2.60426] 9.53583] -3.75490 2.11652
6 -.8120 © -.57900}] © -3.75057] 11.31371] =~9.6L0L6
T 17.1644311 8.84984| 7.10973} 5.98275( 7T7.10973F L4.07193] 38.069hk2
8 | ~21.24457] -11.31371| -8.85484| -8.00000{ =-9.09748| -11.31371| -29.48721
fns
. 11
AN 1 2 3 4 5 6 7
0 | -13.13707] 3.41k21} -1.61991] 1.00000] =-0.72323] 0.58579f =0.51978
1 6.30865] =9.22625]| 3.69552} ~2.16478] 1.53073] =-1l.22625 1.08239
21 g.22624 1.h1ke1| -6.16478] 2.82843| -1.83522] l.hlkeif -1.22625
3 -3.69552) 6.16478 Jh83L| -5.22625) 2,61313 —1.8352% 1.53073
L 2.16478f -2.82843| 5.226251 © -5.22625| 2.82843F -2.16478
5 ~1.53073 1.83522( -2.61313| 5.22625| =.44834 -6.16478 3.69552
é 1.22625 -1.h1421]| 1.83522| =-2.82843] 6.16478] -1.h1k21] -9.22624
7 -1,08239 1.22625]| ~1.53073] 2.16478| =3.69552] 9.22625| ~6.30865
8 51978  -.58579 .72323| -1.00000{ 1.61991] =-3.k1k21} 13.13707
hns
ni
o 1 3 Y 5 6 7
O 415.321% | -L.9706 | ~9.7012 | 12.0000 |~16.004k | 28.9706 | -101.6159
1 |-541.5880 | 80,1516 { 13.4903 |-22.6274 { 31.4315 | -57.52k2 | 202.5097
2 68.1481 |-120.0000 | 32.9909 | 16.0000 |-29.1087 | 56.0000 | ~200.0304
3 | 14k.5686 | 29.4458 |-66.h121 | 22.6274 | 21.4903 | -52.0732 | 194.5097
4 {-181.823Lk | L40.0000 | 21.823k {-56.0000 | 21.823k | 40,0000 | -181.823k
5 | 194,5097 | =52.0732 | 21.4903 | 22.627h | -66.4121 | 29.4458 | 144,5686
6 |~200.030L | 56.0000 [-29.1087 | 16.0000 | 32.9909 }-120,0000 68.1481
7 | 202.5097 | =57.52k2 | 31.4315 |-R2.627% | 13.k903 | 80.1516 | -541.5880
8 [-101.6159 | 28,9706 {-16.00kk | 12,0000 | =9.7012 | -4.9706 | Lk15.321k
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TABLE IV.- COMPRESSIBILITY FACTORS (y = 7/5)

M Ky Ko Kol Eéfl
0 -|1.00000{ 1.00000{ © 0

.10 |1.00504] 1.01016f .010162| .005081
.20 [1.02062 1.04271} .Ok2708{ 021354
.25 [1.03280| 1.06933] -.069333] .034667
030 [1.04828} 1.10477] .10LT7O| .052385
¢35 j1.06752] 1.15129{ .151204] .0O756h47
40 [1.09109 1.2122 .212245) 106122
U5 11.11978 1.29260} .292603] .146302
050 |1.15470) 1.40000] .400000{ 200000
«55 J1.19737| 1.54654 .546545] .273272
60 [1.25000] 1.75234f .752344] .376172
.65 |1.31590| 2.05275] 1.05275 526373
.70 11.40028] 2.51465] 1.51L65 .T57324
75 11.51186] 3.27755) 2.27755 | 1.13878

.80 |1.66667| L.67h07| 3.67LOT | 1.83704
.85 [1.89832] 7.67085| 6.67085 | 3.33543

.90 |2.20416]16.1679 |15.1679 7.58393
.95 }13.20256{61.6651 [|60.6651 [30.3325
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TABLE V,- INFLUENCE COEFFICIENTS, N = 16.

[
n
w
=
i+ ]
o
-3
w@
-
(5]
E
B

W 0= M\ Ry

82,03.330) ~13. 0613‘5
-§9.5839L) *L.51002

0 -0.0262h| 0 =0.0171L2
Jd0013] € -~ 0708l © -~ 04371 ©
o -.09k22) o -.05867
. 0 "
2h30k| -6.954h6] ~67386| © ~.23613] o ~.13038
2738 0 0 . 0
w6, 16.71346) -5.54233| © T3] o -.3012h
. 0 0
-.93529
. 0 . 27 0
-. 23613} O -.6T3h6] © =6.95846 | 19.24304 -9.05216
0 -.11088]1 © ~2718; 0 -.6Th11| © ~7.60823| 22.60742
-.05867{ © -.09k22] 0 -.20090] © -~.68960| © —Bgﬂohj
0 . 0 . 0

3
013kk| O =.01712| © -.02628 0 -.0%070] © -.1363k| O -.65117

~0.65117
¥

-8 .00045

-g.oms
- 93529
0
~.3012%
0

L
A
e
B

P Ot O-I O.l OLLOFB'::O

ob

%
géés
B

B

Ey

&

1 I-'_I:

_
&
=]

O L1 O\ o1 O
o1 ohabo)
' &

2 ga
8 yo]
2ep 8
B 3
5
E
-

E2ER

0
-.02637]

1 2 3 4 5 6 7 8 9 10 1 12

EhEERBEBvovousrwnre |V

-66,69154 © -2.67007| © -0.67654 -0.31668| o© -0.21329] o -0.19329]| ©
8m.66025| -18.60789 | .2emB| -l.26820{ 15179 -.33%61 .12868| -.13368| .12865| -.06338] .151T9| -.03167
-37.14763] hl.B1002[-12,21! 0 -1.07882 ~.393kL| © -,20027] 0 ~.20788| @

69965| =1T7.37T19 29.0133 -3 .22666 64T W13618|  -.22511 \13918]  -.09kep JA6kT7E -.0ba

5.8 -11.98000 | 2,627k | ~7.gh500 .
% aean| - = bl 3 -,6hg2h|  .16386| -.196T8 .19329 -.081%%
. 0 LVICAT] !

2.823‘7'9 -é.gahoa 1;.292.38 -8.12071 13%23

«2.23TT. -1.523 T .

l.o1ee7| -.hé1ss| L3753 -.866T3| .BWLS9 16.5867h| <6.35935] 21329 -.6hbT0|  .emsp| -.198hk
=1.33216] © 65089 0 =973 ~6.65T231 16.00000 -6.697213 0 ~97h13| o
10803 19983 23905 w0900k L37355) ~.530l  .31668| -6.25T95) 16.6300L -6.77912) .373D5| =.TR333
-.94803| o 238 O -Jamé| o -.g20581 o ~5.70247( 17.31827| ~7.92067| ©
2.88338| 1.01826| 1.ou=51| LhAGGS|  .676sh| 23613 .5TSSL| -.el7hh) 5TIBL -5.5;951. 19.91958] -B.552kT
-.761TH © ~.3085| o -.26267] © -.35636) 0 -.83817 -7.9h98e] 22.607li2
7.60372] 3.5016| 2.67007| 1.86070| 1.78%08| 1.36367 1.512k7| 1.12180}1 1.51eky 68960 1.78k08] ~7.3218%
sl 1.6 e | 18.10099 | 15:00ma] 19.08.67] 13-285Tr] 10.75008 il 1 g0m] 15 6kk0s| 16.95
601! 33.63973 1 23. . 15 51 13 Tl 13- 12, . . .

-164.67355] -83.62003 (-57.B4I18 [=b5. 23483 |-38 .67937 | -3h. 6363113284020 | ~32.00000 ) -32. 94359 -32 364k |-39,16262 -h5.a5236
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e Second-order Itheory,
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Fraction of chord

Figure 2.- -Speed on [2-percent-thick symmelrical Joukowski airfoil af zero

angle of affack in incompressible flow.
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Figure 3.- Speed on [18-percent-thick bicorvex airfoif at zero angke
of dffack in incompiessible fow.
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L3
”E\'UC f” (re f 33} -
- —-"Exact” (ref 34)
o Second-order Iheory
A First-order theory, Riegels' rule
\ —~—— Formal firsf-order fheory
N\
N\
AN
L2 ¢
o \
7 A
o M N
N\
N
\
W
N\
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% 5 = <w Lo

Froction of chord

Figure 4.~ Speed on NAGA OO2 airfoil af zero angle of affack in incompressible flow.



NACA TN 3390
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--------- Formal first-order rtheory
——~—- Formal second -order rtheory
—-— Relaxation (ref 35)

—--— Prand! - Glauert  rule

—---— Karman -7sen rufe

Exact, incompressible fef 33)

\H=7
A

N

)

Fraction of chord

Figure 5.- Pressure coefficient on NACA OOI2 airfoil af zero angle
of affack in subsomc flow.
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------ FOrmal first-order rheory
———Formal second-order heory
e Prandl/ - Glauert rule
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-8 // Experiment (ref 36)
,/-'\\},\ e  upper surface
CFIe_ 3 B lower surface
/ ,": o \‘N
if) ° ‘-“‘ ~ o\‘
1 . N
r’ " ~'>‘\\i\\‘
[ ":K\\E\
' ‘\\
B RN
I 'g&\\\
cp - 4 || N \\:\\\
o I
| TN,
i B N\
I' o}
L)
i
#
0 i
.' :
: .
A}
}
4 5 10

Fraction of chord

Figure 6.- Comnparison of theorefical and experimental pressure distribufions
on NACA OOI5 airfoif af M=0.70, zero angle of affack.
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