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SUMMARY 

Stewartson's transformation is applied to the laminar compressible 
boundary-layer equations and the requirement of similarity is introduced, 
resulting in a set of ordinary nonlinear differential equations pre
viously quoted by Stewartson, but unsolved. The requirements of the 
system are: Prandtl number of 1.0, linear viscosity-temperature rela
tion across the boundary layer, an isothermal surface, and'the particular 
distributions of free-stream velocity consistent with similar solutions. 
This system admits axial pressure gradients of arbitrary magnitude, heat 
flux normal to the surface, and arbitrary Mach numbers. 

The system of differential equations is transformed to an integral 
system, with the velocity ratio as the independent variable. For this 
system, solutions are found for pressure gradients varying from that 
causing separation to the infinitely favorable gradient and for wall 
temperatures from absolute zero to twice the free-stream stagnation tem
perature. Some solutions for separated flows are also presented. 

For favorable pressure gradients, the solutions are unique. For 
adverse pressure gradients, where the solutions are not unique, two 
solutions of the infinite family of possible solutions are identified as 
essentially viscid at the outer ~dge of the boundary layer and t~e re
mainder essentially inviscid. For the case of favorable pressure gradients 
with heated walls, the velocity within a portion of the boundary layer ill 
shown to exceed the local external velocity. The variation of a Reynolds 
analogy parameter, which indicates the ratio of skin friction to heat 
transfer, is from zero to 7.4 for a surface of temperature twice the 
free-stream stagnation temperature, and from zero to 2.8 for a surface 
held at absolute zero where the value 2 applies to a flat plate. 
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INTRODUCTION 1 

Factors that affect the development of laminar.boundary layers are 
pressure gradient, Mach number, and heat transfer, plus the properties 
of the fluid under consider~tion. Since mathematical complexities pre
clude solutions of this problem in a completely general fashion, the 
literature consists largely of solutions treating particular combinations 
of these factors. F~r the flow of an ideal gas over a surface without 
pressure gradient, the remaining factors have been taken into account 
very completely by Crocco (ref. 2) and Chapman and Rubesin (ref. 3). For 
smalf pressure gradients, Low (ref. 4) has, by a perturbation analYSiS, 
treated the general prob lem of the isothermal surface. Wi th the intro- . 
duction of pressure gradients of arbitrary magnitude, other restrictions 
become necessary. The assumption of constant fluid ·properties (denSity, 
Viscosity, etc.), for example, leads to the greatest simplification -
the separation of the momentum and energy equations. With this assumption, 
for a special case of a decelerating stream, Howarth (ref. 5) has obtained 
a series solution to the momentum equation. The introduction of a simi
larity concept (that the velocity or temperature profiles may always be \ 
expressed in terms of a single parameter) leads to a power-law free-stream 
velocity distribution. The momentum equation of this problem was first 
solved by Falkner and Skan (ref. 6), whose calculations were then im
proved by Hattree (ref. 7); the energy equation was later treated by 
Eckert (ref. 8) and others (refs. 9 and 10). For the same problem the 
restriction of constant fluid properties may be removed by alternatively 
requiring that the Mach number be essentially zero (ref. 11) or that the 
Mach number and the heat transfer be limited to small values (ref. 12). 

Illingworth (ref. 13) and Stewartson (ref. 14) have demonstrated 
that, for an insulated surface in a fluid with a Prandtl number of 1. 0, 
any compressible boundary-layer problem may be transformed to a corre
sponding problem in an incompressible fluid; the earlier solutions thus 
become applicable to certain compressible problems. For the case of 
heat flux across the surface, the transformation of Stewartson (ref. 14) 
with the concept of similarity introduced leads to a set of nonlinear 
ordinary differential equations previously quoted (ref. 14), but unsolved. 
Solutions to this set of equations, which are presented herein, 

~e principal developments of this paper, wh~ch is part of the Doc
toral Dissertation of the senior author (ref. 1), were carri~d out under 
the stimulus and guidance of Professor Luigi Crocco and the sponsorship 
of the Daniel and Florence Guggenheim Foundation. The final analysis 
and the computations were completed at the NACA Lewis laboratory during 
the Spring of 1954. 
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are applicable to flows at arbitrary Mach number, pressure gradients of 
arbitrary magnitude (but of a form consistent with the re~uirements of 
similarity), and arbitrary but constant wall temperature. 

Since free-stream velocity distributions of the form required by 
similarity are not generally encountered in practice, the utility of 
these solutions is principally as follows: (1) the effects of pressure 
gradient, wall temperature, and Mach number may be viewed qualitatively; 
(2) the results may be used as a check on any approximate method (such 
as a ~-Pohlhausen method) for reliability; (3) the flow to be solved 
may be divided intuitively into segments and the solution for each 
segment may be matched by some arbitrary technique; or (4) the results 
may be used to construct a new simple method (of the integral type) for 
the calculation of the laminar compressible boundary layer with heat 
transfer. This latter analysis has been carried out, utilizing the 
solutions herein given, and is presented in reference 1. 

STEWARTSON'S EQUATIONS 

Boundary-Layer Equations 

The equations of the steady two-dimensional compressible laminar 
boundary layer for perfect fluids are: 

Continuity: 

d. d 
dOC (Pu) + dY (pv) = 0 (1) 

Momentum:· 

. ill du 
Pu dOC + pv dy = -

(2 ) 

~ = 0 .y 

2 Since this writing, further calculations, which are closely re-
lated to the present investigation, have been published by Levy (ref. 
15). Solutions to the equations treated herein were obtained in that 
report. The present investigation includes ranges of variables not 
treated in ref. 15: for example, favorable pressure gradients applicable 
to supersonic nozzles and values of adverse pressure gradients including 
that causing separation. For adverse pressure gradients, the problems of 
uniqueness and multiple solutions are also considered in some detail. 
The solutions of ref. 15 were obtained by means of a differential analyzer, 
whereas the present solutions were obtained by digital calculation and 
are presented in tabular form. 
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Energy: 

pu ~ + pv ~ = u ~ + ¥fr ~) + ~~)2 (3) 

All symbols are defined in appendix A. 

The viscosity law to be assumed is 

(4) 

Equation (4) is 0f the form taken by Chapman and Rubesin (ref. 3), ex
cept that the reference conditions (~o,tO) are free-stream stagnation 
values, since in the presence of pressure gradient the local "external" 
values are not constant along the outer edge of the boundary layer. The 
constant ~ is used to match the viscosity with the Sutherland value 
at a desired station. If this station is taken to be the surface, 
assumed to be at constant temperature, the result is 

(5) 

where ksu = Sutherland's constant (for air, ksu = 216 0 R). The vis
cosity law of equations (4) and (5) was demonstrated to be adequate for 
a flat plate (ref. 3) by comparison with the more exact calculations of 
reference 2. In the present case no such comparison is available. 

Stewartson's Transformation 

A slight modification of Stewartson's transformation may be 
written 

ae Pe 
dX = ~ - - dx 

aO PO 

p a 
dY = - ~ dy 

Po aO (6) 

a: 
r-

" ~ 
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where the stream fUnction is defined by 

,I, _ pu 
'fy -Po 

'" = _ pv 
x . Po 

5 

The transformed quantities are now represented by upper-case letters 
(X,Y,U,V), and the subscript e refers to local conditions at the outer 
edge of the boundary layer (external). The subscript 0 refers to 
free-stream stagnation values. From the preceding transformation, a 
useful relation between the transformed and physical velocities is 

aO 
U - - u - a

e 
. 

If equations (4) and (6) are applied to the boundary-layer equations 
(1), (2), and (3), and if Pr and cp are taken to be constant (but 
it is not yet required that Pr = 1), there result 

Ux + Vy = 0 

UUx + VUy = UeUex (1 + s) + '\IOUyy 

(7) 

(8 ) 

USx + VSy = v{~ -1 ~ Pr ~ : ~ ; :!MV[ (gs]yy} (9) 

where the enthalpy function S is defined for convenience as 

(10) 

and hs is the local stagnation enthalpy. 
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The boundary conditions applicable to the system (7) to (9) 
are: 

U(X,o) = ° 
V(X,O) = ° 

S(X,O) ~ or ~ (X,O) = (~lJ 
(11) 

lim S = ° Y-+co 

lim U = Ue(X) 
y-+co 

The solution S = ° and the resultant continuity and momentum equations 
(7) and (8) make up the extremely useful correlation developed by 
Stewartson between compressible and incompressible boundary layers on 
insulated surfaces with Pr = 1. Another special case is that of 

Uex = 0. Then, if Pr = 1, the relation S = SW(l - ~e) satisfies 

e<luation (9); this is Crocco's integral of the energy e<luation for the 
flat plate (ref. 2). 

Similarity Re<luirements 

When a pressure gradient exists and the surface is not insulated, 
it is necessary to find a means of solving the system (7) to (9) subject 
to the boundary conditions (11). To this end, the <luestion will be 
asked: Under what conditions can this system be reduced to a system of 
ordinary differential e<luations by the assumption that the boundary
layer profiles are functions of a similarity variable ~ and that the 
wall temperature is constant? This question may be resolved by inserting 
the following assumed relations into the system (7) to (9) and observing 
the conditions re<luired for obtaining ordinary differential e<luations: 

t = ~~ f(~) 

Y = BXbu~~ 

S = S(~) 

(12) 

where A,B,a,b,p, and q are undetermined constants. This procedure 
has been carried out by Li and Nagamatsu (ref. 16) for Pr = 1. In 
that analysis it was concluded that four classes of similar solutions 
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are possible. It has been P9inted out (ref. 17) that three of these 
four classes can be reduced identically to the case requiring that 

while the remaining case requires that 

Ue = Cl exp~2xJ 
When equations (12) are used in the form 

the system of ordinary differential equations corresponding to the 
power-law velocity distribution of equation (13) may be written 

f'" + ff" = l3(f,2 - 1 - 8) 

Pr)[ (1 ~ ~)~~ J(f'f'" 
1 + L..:....:!:. M2 

2 e . 

8" + Prf8' = (1 -

(13) 

(14) 

(15) 

(16) 

7 

The pressure-gradient parameter 13 is defined as 13 = m !m
l

, and the 

velocity ratio is Ujue = U/Ue = f', where primes denote differentiation 
with respect to ~. 

The boundary conditions are: 

f(O) = f'(O) = 0 

S(O) = Bw 
lim f' = 1 
~-+CD 

lim S = 0 
Tj-+CD 

(17) 

Since Me may, in general, be a function of x, the right member of 
the energy equation is not yet dimensionally consistent with the left 
member for arbitrary Me and Pre 
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It was shown in reference 17 that, for the exponential case 
(eq. (14)) with C2 > 0, the system (7) to (9) can be reduced to the 
ordinary differential equations (16), but with 13 = 2. For C2<0, the 
f '" term in equations (16) is replaced by -f "'. In this case, with 
S = 0, it can be shown that, because of the Sign of the fll' term, no 
solution is possible in which the velocity ratio approaches its boundary 
condition smoothly. A question is thus raised as to the validity of 
any possible solu,tion for C2 < ° regardless of the value of S. For 
the remainder of this paper this class will be omitted from 
consideration. 

Corresponding analyses for incompressible flow, including condi
tions for similarity and the case of the exponential free-stream veloc
ity, have been made by Mangler (ref. 18) and Goldstein (ref. 19), 
respectively. As previously mentioned, the right member of the energy 
equation (16) must be ze,ro or a function of Tj to be consistent with 
the left member. This may be achieved in the following ways: (1) the 
external Mach number may be a constant other than zero, (2) the external 

;:::o:um[be(r~y~~~zerJO~ ~3)c:::e:::::~n::b:~:::a:::a~1~' <:: ~:; 
1 + .L..:..-:!:. M2 

2 e 
the ratio ,of specific heats r may equal 1. 

The case of constant external Mach number is the flat-plate problem 
(13 0) and, the solution to the momentum equation being known, the 
energy could be integrated directly. The flat-p~ate problem has already 
been solved with great accuracy and completeness by Crocco (ref. 2). 
If the pressure gradient is small enough, it may be reasonable to con
sider Me constant in the energy equation in spite of the gradient, 
but to retain the pressure-gradient parameter in the momentum equation. 
However, this problem is treated more completely by the analysis of 
reference 4. 

The case Me = ° (with arbitrary 13) produces the equations of 
Levy and Seban (ref. 20). In that analysis approximate solutions were 
obtained by the assumption of simple forms for the velocity and tempera
ture profiies which contained undetermined coefficients. These coeffi
cients were then evaluated by u'se of the boundary conditions. Because 
the actual profiles cannot'be simply represented, this method is hot 
reliable in some ranges e~en if the Mach number is nearly zero. Brown 
and Donoughe (ref. 11) also considered the low Mach number problem with 
variable fluid properties and Prw = 0.7. The system of equations 
encountered in that analysis is much more complicated than the present 
system because of the power-law viSCOSity, conductivity, and specific
heat relations use'd. These refinements do not alter the effects of 
omitting the viscous-dissipation and compressive-work terms, vhich may 
be significant at higher Mach numbers. 
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The case of hypersonic flow requires the introduction of the effects 
of displacement thickness upon pressure gradient, such as have been 
evaluated by Lees and Probstein (ref. 21), for example. This case will 
not be treated herein. 

The possibility of assuming 1 = l does not simplify the equations 
beyond the assumption of Mach number zero. For most gases, the assump
tion of 1 = 1 is physically unreasonable. Therefore, thisC8se does 
not appear to warrant further consideration. 

If strong pressure gradients and reasonably high Mach numbers are 
.to be conSidered, it thus appears desirable to restrict the similarity 
system to Pr = 1, with the result that 

fIll + ffl! _ ~(f,2 - 1 - s) 

8" + f8 ' = 0 

(18a) 

(18b) 

with the boundary conditions (17). Equations (18) were derived by 
8tewartson by assigning similarity relations corresponding to (15) to 

. the system (7) to (9) with Pr = 1; however, no solution was indicated. 

The comparison betweeri assuming that ·Me = 0 (case (2») or that 
Pr = 1 (case (3» may perhaps be indicated by examination of the 
solutions to the insulated flat-plate problem, which include effects 
of both Prandtl number and Mach number (ref. 2). If Me = 0, the 
viscous-dissipation and compressive-work terms are omitted in equation 
(3). Then the predicted temperature profile is a constant, rather than 
the correct variation from free-stream static to recovery temperature 
at the wall. However, if Pr = 1 is assumed, a constant stagnation 
temperature is predicted, rather than the actual slight variation in this 
quantity. The latter discrepancy is small compared with the former. 

METHOD OF 80I1JTION 

Equations (18) with boundary conditions (17) comprise the system 
to be solved for the dependent variables f(~) and s(~). Because of 
the nonlineari-ty of the system, its high order (fifth), and its classi
fication as a "two-point boundary-value problem," no standard integration 
methods will yield results expressible in closed form. Methods appli
cable to equations of this type may be classified as either (1) forward 
integrations or (2) integrations by methods of successive approximations. 

By "forward integration" is meant the progressive integration of 
the equations from one (initial) boundary to the other. For this 
purpose several sets of initial values of the derivatives are assumed. 
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Then the final boundary values obtained are compared with those speci
fied and, after interpolation of the initial values, this trial-and
error process is repeated until the final ,boundary conditions are sati~ 
fied. The integrations may be carried out by the use of either an 
analog computer (mechanical or electrical) giving continuous integrals 
or by digital computation's involving finite-difference integration. 
Although generally applicable, a disadvantage associated with forward 
integration of no~linear equations is the ~ack of any inherent conver
gencemechanism. Thus, the approach to the correct initial values' 
depends almost entirely on the intuition and experience 'of the one 
performing the calculations. This method is particularly troublesome 
for a problem with more than one dependent 'variable since evidence for 
the fitness of a given initial value may be obscured by a poor selection 
of the corresponding initial value of another dependent variable. 
Furthermore, when an analog computer is employed the accuracy is general- ' 
ly limited, particularly for nonlinear equations where in certain regions 
the results tend to be highly sensitive to the chosen initial values. 
If digital computation is utilized to obtain a desired degree of accuracy, 
the procedure may become excessively tedious. 

Successive approximation methods generally assume an entire 
function for the dependent variables (satisfying as many of the boundary 
conditions as possible) rather than only the initial derivatives. Then, 
by use of the differential equations, a procedure is developed for 
estimating the error as a function of the independent variable(s). This 
error is applied to the original choice and the process is repeated 
until satisfactory convergence occurs. An example of a method of 
successive approximation is Picard's method. 

A difficulty shared by both these methods arises when the range of 
integration is infinite. Then it is necessary to decide upon a finite 
value of the independent variable at which the boundary conditions may 
be approximately satisfied and the degree to which they may be ~atisfied. 
This suggests the desirability of changing to an independent variable 
so that only a finite range of integration is required. In the present 
problem this change of variables can be achieved by fol+owing a method 
used by Crocco for the solution of the compressible flat-plate boundary 
layer (ref. 2). The concept is advanced that the velocity is a more 
suitable independent variable since it is bounded. This concept leads 
to a set of equations conveniently handled by a method of successive 
approximations. 

Transformation to Velocity Plane 

To accomplish 'the transformation to the velocity ratio f' as the 
independent variable, the following identity may be used: 

(19) 
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This identity may be applied to f" and f as follows: 

f "' = f" df" 
df' 

11 

(20) 

f' = fT} f'dT} = r f
' 

o JO 

f'df' 
~-

f' 

;:~ 
where the dummy variable of integration is ~,and f" (~) represents 
the functional relationship between f" and f', that is, f" (f') . 
The primes continue to denote differentiation with respect to T}. 

Inserting equations (20) into the momentum equation (18a-) results 
in 

f' 
df" 1 ~ f,2 - 1 
df ' = - 0 f If (U + j3 f II 

- S 

which satisfies the following condition at f' = 0 required by the 
momentum equation: 

f';''' = - 13(1 + Sw) 

(21) 

(22) 

Now, if equation (21) is integrated once with respect to f' and if 
the limits of integration are chosen so that (fll)f'=l = 0, the result 
is 

1 

f" = I. d~ 
f' 1 

(23) 

By inverting the order of integration (or by integrating by parts) 
the double integral may be reduced to two single integrals, resulting 
in: 

f" (f') j+l 

Equation (24) is the form of the momentum equation as it will be used 
in this report. The subscript j is the iteration number in the 
method of successive approximations. 

A corresponding form of the energy equation is obtained by writing 
equation (18b) as 

s" 8' = - f 
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and integrating with respect to T}, to get 

In S' = - J f dT} + constant 

Equation (18a) may be written 

fit' (f·,2 - 1 - S) 
f dT} = - fi' dT} + 13 fIt dT} 

df" A ( f ,2 - 1 - S) df' 
fi' + ~ 2 

(f It) 

Substitution of this' expression into equation (25) results in . 

- 1 - S(~) d~ + constant 
[f"(~) ]2 

m S' "f ~~" - ~ J If 
or the equivalent expression 

where 

J( ~) 

(25) 

(26) 

If this expression is integrated once again and the boundary con
ditions S(O) = Sw' (S)f'=l = 0 are required, the result is 

{'l Jj(~)d~ 
Sj+l _ J f , 

Sw - -1~~1~-----
o Jj(~)d~. 

(27) 

Inspection of equations (24) and (27) indicates that the integrals 
to be evaluated are singular, or indeterminate, at· the upper limit. To 
evaluate these integrals, closed-form expressions must be obtained for 
the integrands in this range. This requires knowledge of the solution 
of the system (18) for large T} (near f' = 1). This "asymptotic solu
tion" and its development are given in appendix B. The results show 
that equation (24) can be used in its present form, but that equation 
(27) must be modified to 

(28) 
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where e is an arbitrary small quantity (t « 1). In this form the 
singularity has been removed. Equations (24) and (28) comprise the 
system used in the present investigation. The convergence of this sys·· 
tern is discussed in appendix C, and the method of calculation in appen
dix D. 

PROPERTIES OF SOLUTIONS 

In the following sections the solutions obtained in this study are 
presented and their prope~ies are discussed. The two parameters de
fining a case are Bw and B. The enthalpy function evaluated at the 
wall Sw determines the wall temperature through the relation 

(29) 

Thus, Bw = -1 corresponds to a wall temperature of absolute zero, 
and Bw = 1 corresponds to a wall at twice the free~Btream stagnation 
temperature. The case Sw = 0 corresponds to a wall at the free-stream 
stagnation temperature, which for Pr = 1 is the case of an insulated 
surface. 

The pressure-gradient parameter ~ is related to the exponent m 
of the velocity distribution in the transformed plane Ue = ctm through 
the relation 

For a velOCity distribution of this form, m can be represented as 

It is apparent that ~ < 0 (m < 0) corresponds to an unfavorable 
gradient; ~ = 0 (m = 0) corresponds to flat-plate flow; and ~ = 2 

(30) 

(m = m) corresponds to an infinitely favorable pressure gradient. 
Stewartson (ref. 14) has shown that ~ = 1 (m = 1) corresponds to flow 
in the immediate vicinity of a stagnation point for two-dimensional flow, 
as in the incompressible case. It can be shown that the case of a stag
nation point in axisymmetric flow can be transformed to the solution 
for ~ = 1/2 (ref. 22). An approximate method for relating ~. to more 
general physical flows is given in reference 1. Values of ~ of the 
order of magnitude ±0.3 correspond to flows over supersonic wings, and 
a typical nozzle with an exit Mach number of about 2.5 might produce a 
value of B of about 1.5. In the present investigation, solutions are 
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found for pressure gradients. ranging from that causing separation to the 
infinitely favorable gradient and for wall temperatures from absolute 
zero to twice free-stream stagnation temperature. 3 

All solutions are presented in tabular and graphic form. Table I 
shows the values of f, f', fll, S J and S' tabulated against 11. From 
these values and equations (18) the quantities f"' and S" can be easily 
calculated. Table II presentb a summary of the values of f; (related 
to wall shear) and .~ (related to heat transfer) from table I, as well 
as the Reynolds analogy parameter CfRew/Nu, which represents the ratio 
of skin-friction to heat-transfer effects. Certain other quantities of 
interest cannot be tabulated in general, but can be easily calcuLated 
from the following formulas: 

Static-temperature ratio: 

~ = (1 + 1 - 1 M2)(l + S) _ 1 - 1 M~ f,2 
te 2 e 2 

(31) 

or, with the static temperature t referred to the free-stream stagna
tion temperature to' 

Flux density: 

..i. - (1 + S) -
to -. 

Uniqueness 

(32) 

(33) 

For ~ < 0, Bw = 0, Hartree (ref. 7) first observed that the bound
ary conditions (17) are not sufficient to determine a unique solution. 

3rt should be noted that all but one of the presented solutions for 
Sw = 0 are thuse first obtained by Hartree (ref. 7) for the problem of 
Falkner and Skan (ref. 6). As a further check on the present method, 
the solutions for ~ = 1.6 and 2.0 with Sw = 0 were obtained independ
ently in the present investigation; these values agree very well with 
those of Rartree. 
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Thus, there is not a unique value of f; for a given ~. In studying 
the uniqueness, it is useful to consider the following expression for 
velocity ratio (for any 'Sw) valid for large ~: 

f' = 1 + ["'l(~ - X)-(2~+1) + '; (~ - x)-~ex{ (n ; X)2] + "2(~ _ x)2~ 
(34) 

where o.lJ~'~' and x are integratioh--constants (see appendix B). 
In case of Sw = 0, ~ is also equal to zero; however, this does not 
change the uniqueness problem, which is independent of wall temperature. 
For ~ > 0, az is necessarily zero in order to satisfy the boundary , 
condition lim f' = 1. For continuity in ~, Hartree then selected the 

fj~ 

asymptotic solution with ~ = ° for ~ < 0. 

Another important result of the asymptotic solution is 'that the 

integral 1'= (1 -~) d~, related to the displacement thickness, J O Peue 
can be shown to become infinite for ~ f 0. This result is contrary to 
the concept of a thin layer outside of which the viscous effe'cts may be 
neglected. A further effect of the ~ term on the solution can be 
observed by examination of the dimensionless quantity f '" Iff" (sug
gested by Professors L. Crocco and L. Lees), in which f "' represents 
the net viscous forces acting on the fluid element and f" is propor
tional to the velocity gradient (shearing flow). It can be shown that 
for ~ = 0 

( f''') lim - - = 1 
~-+(J) ff" 

while for ~ f 0 

Solutions with ~ = ° retain the numerator and the denominator of the 
ratio -r '" Iff" to the same order of magnitude, while if ~ is dif
ferent from zero a solution results wherein the magnitude of the net 
viscous forces in the asymptotic region is small compared with the mag
nitude of the shearing flow set up by their action. Thus, in order to 
retain both effects of viscosity to the same order of magnitude, ~ 
must be taken equal to zero, as was done by Hartree. The solution thus 
obtained will be termed the "viscid" solution. 
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Another feature of solutions with ~ different from zero is the 
analytical result that the velocity ratio in the outer portion of the 
boundary layer may exceed unity. For example, if ~ is not zero, equa
tion (34) shows that for large ~ the ?2 term of the velocity ratio 
expression is dominant, and thus (f' - 1) is necessarily of the same 
sign as ~. That is, for positive ~,the velocity ratio approaches 
unity from above; this phenomenon will be termed "velocity overshoot." 
Since, for a given ~ and Bw in this range, each of these various 
solutions has associated with it a different set of values of f; and 
SW, one of these parameters, say f;, can be conveniently used in place 
of ~ to identify the various solutions. This infinite set of solutions 
can be represented as in sketch (a) for a typical (cold wall) case. 

1.10 

f~ax 

1.00 

S' w 

~~ > 0 - ..... -~ < O'--.... -~ > ~ 

(a) 
f" w 

It is seen that there are a maximum and a minimum shear (represented by 
f;) and heat transfer (represented by SW) that can satisfy the equations 
without incurring velocity overshoot. These distinct solutions (circled 
points in sketch (a)) correspond to ~ = 0,4 the viscid solutions; that 

, 4In the evaluation of the singularities of the integrals required 
for the method of successive approximations, ~ was taken to be zero. 
Hence, solutions for ~ f 0 were obtained by forward integration 
(appendix D), although the numerical values of az were not determined. 
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with the lower shear is designated the "lower-branch" solution. The 
behavior of the calculated family of solutions is presented in figure 1 
for Bw = -0.8 and ~ = -0.325, -0.3285, and -0.336. For a given value 
of Sw, as ~ is decreased the two viscid solutions approach each other. 
At a value of ~ to be designated ~in' these two solutions become 
identical and for ~ < ~in' no viscid solution exists. For negative ~, 
only the viscid solutions will be considered in the remainder of this 
report. 

With regard to the physical significance of the double solution, it 
may be noted that for adverse pressure gradients (~ < 0) a real flow 
cannot completely reproduce the similar solution because Ue{O) = ~ would 
be involved. However, a pressure field can, in principle, be applied to 
~ developing boundary layer so that, after a phase of adjustment, the 
boundary layer would approach one of the similar solutions with ~ < 0 
and stay quite close to it thereafter. It seems reasonable to believe 
that, depending on the way the pressure field is applied, one solution 
or the other corresponding to the same ~ could be approached after 
different adjustment phases. This result is exactly what Clauser (ref. 
23) has, found ,in his experimental work on similar turbulent boundary
layer flows. 

Velocity and Temperature Profiles 

The velocity and enthalpy-function profiles obtained from the tabu
lated solutions are presented as functions of ~ in figures 2 and 3, 
respectively. The distance y normal to the surface in the physical 
plane is related to the similarity variable ~ through equations (6) 
and (15), and may be expressed 8S 

(35) 

where t/to is given by equation (32) .. 

Velocity overshoot. - The velocity profiles shown in figure 2 indi
cate that for a given wall temperature the initial slope decreases as 
the pressure gradient becomes less favorable. For adverse pressure 
gradients an inflection point occurs within the boundary layer·and moves 
outward as the gradient becomes more adverse. The velocity ratio varies 
m'oilotonically from zero to the final value of 1.0 except for the cases of 
favorable pressure gradients with heated walls. Then the velocity 
ratio in the outer portion of the boundary layer reaches a maximum value 
greater than 1.0 before returning to its final value of 1.0 This type 
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of velocity overshoot was also obtained in the investigation of reference 
11 for favorable pressure gradients with heated walls and is to be dis
tinguished from that associated with the nonunique inviscid solutions 
which occur only for adverse pressure gradients. When the wall is 
heated in a favorable pressure-gradient flow, the density within certain 
layers of the boundary layer is lowered so that, in spite of the viscous 
retardation, the flow is accelerated more than the external flow by the 
external pressure forces. Thus, a velocity greater than the external 
velocity may be obtaihed. 

This phenomenon can be established by examination of equation (34) 
and the corresponding asymptotic expression for the enthalpy function 
(appendix B) : 

(36) 

For favorable pressure gradients, Uz = 0 as previously mentioned. Then, 
the ~ term in equation (34) is dominant for large ~. Thus, (f' - 1) 
and ~ are of the same sign. Hence, for a heated wall (~ positive, 
eq. (36)), the velocity ratio must approach 1.0 from above. 

Stagnation-temperature profiles. - Figure 3 shows that for Pr = 1, 
the stagnation temperature varies monotonically across the boundary 
layer from the wall value to the free-stream value. For favorable pres
sure gradients with a cold wall, there is small variation with ~ of 
this distribution. The variation becomes more pronounced with an in
crease in wall. temperature. 

Boundary-layer thickness. - The velocity profiles (fig. 2) indicate 
that the boundary layer thickens as the wall shear stress diminishes. 
Also, for a given value of the pressure-gradient parameter ~,the boun
dary layer, when considered in terms of ~,thickens as the wall tempera
ture is lowered. However, in the physical plane (in terms of y) be
cause of the relation between y and ~ (eq. (35)) the trend is Just 
the opposite. This emphasizes the necessity for careful consideration 
of the relation between the transformed quantities and their physical 
counterparts. 

The thermal boundary layer also thickens as separation is approached. 
The relative thicknesses of the dynamic and thermal boundary layers may 
be conveniently observed from a plot of S against :t:' (figr 4). Then 
if a fixed fraction of Bw, say 0.99, is chosen to define the thermal
layer thickness and if the same value of velocity ratio is taken to de
fine the dynamic layer, it can be seen that, regardless of wall tempera
ture, the thermal layer is thicker than the dynamic layer for favorable 
gradients and thinner for adverse gradients. 
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For Pr < 1 the relative magnitude of the dynamic thickness to 
the thermal thickness will be decreased, since the Prandtl number re
presents the ratio of viscous to thermal effects in the fluid. 

Shear and Skin Friction 

The shear distribution in the boundary layer is presented in 
figure 5, where f" is plotted as a function of Tj. The shear function 
f" is related to the shear stress '1: through the expression 

For ~ > 0 the maximum shear is at the wall, whereas for ~ < 0 the 
point of maximum shear moves increasingly outward as the pressure 
gradient becomes more adverse. 

.. t 
The quantity that is of primary interest in boundary-layer calcula-

tions is the shear stress at the wall '1: w' which. can be made-dimension
less through the definition of a local skin-friction coefficient, 
producing the relation 

m + 1 Vo -----
2 UeX 

(38 ) 

The factor (1 + Sw) appears in equation (38) because of the use of Pw 
in the definition of Cf . Although this factor can be easily avoided, 

uex 
it is used later in evaluating a Reynolds number Rew = -V- suitable 

w 
for use in determining the heat transfer. An alternate form for 
equation (38) is 

Cf~ _ f" Vm + 1 d In X - (38a) 2 - w 2 d In x 

It should be noted that, in equation (38a), fluid properties are evalu
ated at the wall temperature. If the skin-friction coefficient and 
the Reynolds number were to be based on local free-stream fluid 
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propert iee, rather than on waH values, a factor of A{"" t e would 
I-le "tw 

appear in the right member of e~uation (38a). When this factor is 

evaluated using Sutherland'e viecosity law, it variee from (::)1/4 to 

(t

tw

e

,!\1/4 , 
) depending on the temperature involved. 

The ~uantity f; is presented as a function of ~ and Sw in 
figure 6. It can be seen that heating the surface increases the sensi
tivity of the wall shear to pressure gradient, while cooling the wall 
has the opposite effect. A suggested physical interpretation for this 
trend 1's related to the effect of wall temperature on the mean density 
of the fluid with~ the boundary layer. For the heated wall, the 
boundary-layer density is less than the free-stream density, rendering 
the boundary-layer fluid more susceptible to free-stream acceleration 
forces than for the cold wall. Figure 6 shows further that a linear 
extension of the slope of the curve, f; against ~ from ~ = 0 to 
large positive ~. would grossly overemphasize the effects of favorable 
pressure gradient; while the same linear extension toward negative ~ 

would underemphasize the effects of adverse gradient. 

In figure 6(b), the two viscid solutions, which occur for adverse 
pressure gradients for a given ~ and Sw, are plotted. It is seen 
that two solutions are given for even the insulated surface (Sw = 0), 
although Hartree reported only one. In this case the lower-branch 
solution corresponds to negative wall shear stress (separated flow), 
which was not consid~red in reference 7 .. For heated walls (Bw > 0) 
both solutions may be separated near ~in' while for cooled walls 
both solutions may be unseparated in this region. The physical inter
pretation of these double solutions has been discussed in the section 
UNIQUENESS. 

Heat Transfer 

The variation of heat transfer across the boundary layer is plot
ted in figure 7 in terms of the derivative of the enthalpy func~ion 

S; = dS. This ~uantity is related to the stagnation enthalpy deriva
dll 

tive in the physical plane by the expression 

(39) 

• 
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These curves again indicate the thickening of the thermal layer as 
separation is approached. Furthermore, as separation is neared, the 
zone adjacent to the s~face where S' is essentially constant'spreads 
rapidly. This is a zone where the heat transfer is primarily by con
duction because of the near zero velocities in the neighborhood of 
the surface. 

The values of S' at the surface (~) are shown plotted as a 
function of pressure-gradient parameter 13 in figure 8 for constant 
wall temperatures. Two facts are noteworthy: (1) In the region of 
favorable pressure gradient, SW is n~arly constant; (2) the heat 
transfer varies sharply near separation. From these facts the addi
tional conclusion may ~e drawn that, if a linear extension of these 
curves is made with the slope at 13 = 0, the result will seriously 
overemphasize the effects of a favorable pressure gradient or heat 
transfer and underestimate the effects for adverse pressure gradients. 
A similar influence of pressure gradient on skin friction has already 
been noted. A comparison of figures 6 and 8 indicates that the effect 
of pressure gradient on heat transfer is smaller than the corresponding 
effect upon wall shear. 

As with the skin friction, it is convenient to define a dimension
less number from which the heat transfer may be determined. The Nusselt 
number is 

(40) 

The quantity (-S~/Sw) is plotted in figure 9 for constant wall tempera
tures as a function of the pressure-gradient parameter 13. The Reynolds 
number Rew is again defined in terms of wall properties. 

Reynolds analogy. - From expressions (38a) and (40), a simple 
modifed Reynolds analogy parameter is evaluated by 

(41) 

This quantity is the reciprocal of the usual Reynolds analogy quantity 
in order to avoid infinite values as separation is approached. It 
is plotted in figure 10 as a function of the. pressure-gradient parameter 
13. These curves resemble the f';; curves (fig. 6) because of the rela
tively small variation in magnitude of ~/Sw compared with that of 
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f;. The variation of CfRew/Nu is from zero to 7.4 for a surface of 
temperature twice the free-stream stagnation value and from zero to 
2.8 for a surface held at a temperature of absolute zero, as shown in 
figure 10.' This indicates the inadequacy of utilizing the flat-plate 
value of 2.0, as has often been done for estimates of heat transfer. 
Figure 10 is of particular use in evaluating the heat transfer for a 
problem when used in conjunction with simple methods for determining 
Cf; as proposed, for example, in reference 1. 

SUMMARY OF RESULTS 

From an analysis of the laminar compressible boundary layer based 
on Stewartson's transformation and including effects of heat transfer 
and pressure gradient, the following results were obtained: 

1. If the condition of similarity is required and the Prandtl 
number is constant but different from 1.0, the external Mach number 
must be either zsro, constant, or very large. If the Prandtl number 
is taken as 1.0, the Mach number may be arbitrary. The free-stream 
velocity distributions consistent with the similarity concept are 
either power-law or exponential distributions in the transformed coor
dinates. Since the exponential distribution appears to be limited to 
favorable gradients and in this range the problem may be reduced to a 
special case of the power-law distribution, the calculations have been 
based on the latter class. 

2. For flows with favorable pressure gradients, unique solutions 
were obtained. For flows with adverse pressure gradients, two types 
of solution were obtained which have been identified as either essen
tially viscid or inviscid in the outer portions of the boundary layer. 
The inviscidsolution sometimes involved velocity overshoot within the 
boundary layer. For favorable pressure gradients, the viscid solution 
is required by the boundary conditions. For adverse pressure gradients 
there are two viscid, solutions; these correspond to the maximum and 
minimum wall shear, which exclude velocity overshoot. 

3, For heated surfaces with favorable pressure gradients a veloc
ity overshoot, which increases with increasingly favorable gradient, 
results within the boundary layer. This excess velocity is associated 
with the acceleration of a layer of fluid in the outer portion of the 
boundary layer, with density less than the external density. Since 
this layer is subject to the external pressure field and is restrained 
only slightly by the viscous forces acting on it, it is accelerated 
more than the ext'ernal flow. 

4. For a Prandtl number of 1.0, when the thicknesses of the dy
namic and thermal boundary layers are defined by a fixed fraction 



NACA TN 3325 23 

(say 0.99) of the velocity ratio or stagnation-temperature-difference 
ratio, the thermal boundary layer is thicker than the dynamic layer 
for favorable pressure gradients and thinner for adverse gradients. 

5. The variation of a Reynolds' analogy parameter is from zero to 
7.4 for a surface of temperature twice the free-stream stagnation value 
and from zero to 2.8 for a surface held at a temperature of absolute 
zero, with the value 2.0 for the flat plate. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, October 15, 1954 



24 NACA TN 3325 

APPENDIX A 

SYMBOLS 

The following symbols are used in this report: 

a 

C,CV C2' etc. 

Cf 

cp 

f 

g 

h 

k 

ksu 

Me 

m 

Nu 

Pr 

p 

Rew 

S 

t 

U 

sonic velocity 

arbitrary constants 

local skin-friction coefficient, Cf 
Crw ---

specific he~t at constant pressure 

function related to stream function by f 

asymptotic function, g 

enthalpy 

thermal conductivity 

Sutherland's constant 

.. 
f' 

2 

local external Mach number, Me 

exponent from Ue = crn 

Nusselt number, Nu 
X(~)w 

to - tw 

Prandtl number, Pr ~ 
k 

static pressure 

Reynolds number, Rew Pwuex 
=---

flw 

enthalpy function, S 
hs 

1 --
hO 

static temperature 

transformed longitudinal velocity component, 
uao 

U = 
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u 

v 

v 

x 

,x 

y 

y 

a.lJ~' etc. 

J3 

J3min 

r 

e 

TJ 

x 

v 

p 

longitudinal velocity component 

transformed normal velocity component, V = - Vx 

normal velocity component 

transformed longitudinal coordinate, X 

longitudinal coordinate 

transformed normal coordinate, Y 

normal coord ina te 

integration constants in asymptotic solution 

pressure gradient parameter, J3 = 2m 
m + 1 

25 

minimum value of J3 corresponding to a viscid solution 
for a given wall temperature 

ratio of specific heats 

arbitrary small quantity 

similarity variable, TJ -- _Y o/m + 1 U eX 
X 2 Vo 

dynamic viscosity 

kinematic viscosity, v 

mass density 

dU shear stress, ~ = ~ dY 

stream function: Vy = U, "'X - V 
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w 

Subscripts: 

e 

j 

s 

w 

o 

other notations: 

oscillation coefficient, eq. (C2) 

damping coefficient, eq. (C3) 

NACA TN 3325 

local flow outside boundary layer (external) 

result of jth iteration 

stagnation value 

wall or surface value 

free-stream stagnation value 

asymptotic quantity 

primes denote differentiation with respect to ~ 

• 
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APPENDIX B 

ASYMPTOTIC 80LUTION 

To evaluate the integrals in e~uations (24) and (27), it is nec
essary to have closed-form expressions for the integrands concerned", in 
the range of large ~. This re~uires a solution of the system 

f "' + ff" :::: 13 (f ' 2 - 1 - 8) 

8" + f8' :::: 0 

for large ~, which is the asymptotic solution. 

(18a) 

(18b) 

The asymptotic solution for f (designated 1) is assumed to con
sist of a sum of terms, each smaller than the preceding. Only the 
first two terms will be discussed herein. The corresponding solution 
for the enthalpy term S is also obtained. 

Let 
... ... ... 
f = fl + f2 (Bl) 

where 

... ... 
f2 « fl 

1" « 2 l' 1 

Now, since lim(f' ) = 1, let 
1]-+00 

... 
fl 1] - x (B2) 

... 
where x is an undetermined constant. If f 1 is inserted into (18), 
the corresponding enthalpy term 8 must be identically zero. In
serting e~uations (Bl) and (B2) into e~uations (18) and dropping 
higher-order terms result in 

f '" 2 

The energy e~uation can be integrated directly to 

... 
8' = Ce 2 

_ (TJ-x)2 
2 

(B3) 

give 
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which integrates once again to the complementary error function (de
noted cerf) 

d1] 

or 

(B4) 

If equation (B4) is now substituted into the momentum equation of equa
tions (B3), with the notation 

there results 

gil + (1] - x)g' - 2~g 

A particular integral to equation (B5) is 

~ ,g (n - x.4 
g = 2'V2 cerf\ -J2) 

(B5) 

(B6 ) 

The complementary function can be found by noting that the homogeneous 
part of equation (B5) is Weber's eqnation. Hartree (ref. 7) gives the 
general solution for large values of the argument (~ - x) which can be 
written 

) -(2~+1) [(1] - X)2J (_ ~)2~ g = ~ (1] - x . exp - 2 - + ~ 1] ,.. 

where nl and ~ are undetermined constants. 

For ~ ~O it'is clearly necessary to take 
boundary condition lim g = 0 is to be applied. 

1]-+00 

~ = 0 if the 
For ~ < 0 the 

(B7) 

boundary condition does not require ~ = 0; this introduces a lack of 
uniqueness in this range. The significance of ~ = 0 was more fully 
discussed in the section UNIQUENESS. 
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Using the first term of the expansion for the complementary error 
function 

.and combining the preceding equations result in the following 
expressions: 

and 

N -If (11 2- x)2] s = ~ (1) - x) t xp - .......... -=---'-J (36) 
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APPENDIX C 

CONVERGENCE AND EXTRAPOLATION 

The method of successive approximations used in solving e~uations 
(24) and (28) is as follows: Two functions fj(f') and Sj(f') are 

assumed and inserted into the right sides of e~uations (24) and (28). 
This produces two new functions, fj+l(f') and Sj+l(f') on the left. 
The ~uestion of convergence is the first 
to consider. In reference 2, Crocco 
treated a momentum e~uation which was 
essentially e~uation (24) with ~ = O. 
There it was shown that the result might 
converge to a pair of functions between 
which it would oscillate and of which 
the geometric mean was the proper solu
tion. In practice, the use of the arith
metic mean was demonstrated to be ade~uate. 
In the same way in the present case, the 
property of oscillation cannot be developed 
analytically; however, it has been found 

f" + f" 
by trial that, if j j+l is used in 

2 

Place of f" to obtain f" the os-j+l j+2' 
cillation is reduced and a convergence 
takes·place. A typical result is shown 
in sketch (b). 

When the value for ~ for which a 
solution was sought was sufficiently posi
tive, the enthalpy fUnction S ~lso showed 

fll 

o 

S 

a tendency to oscillate. In these cases, 
applying the same averaging procedure to S 
again improved the convergence. It was also 0 
found that convergence was improved if, in 
the intial assumed function for f"(f'), the 

Iteration 
1 

Iteration 
1 

f' 

(b) 

1 

(
df') slope df' w was taken so that it satisfied e~uation (18a); that is, 

( df
ll

) = 
df' w 

When an iterative method is used to determine a function, it is 
always desirable to develop a method of extrapolating the result to 
correspond to a larger number of ite~ations than have actually been 
carried out. This cannot be done in an exact fashion unless a definite 
law o~ convergence is established. Recently, an extrapolation method was 
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devised (ref. 24) which required four successive iterants for an arbi
trary iterative computing scheme. The development assumed that the 
remaining error after any iteration consisted essentially of two terms, 
both of which damped by a factor w with each iteration. The sign of 
one of these terms was assumed to change with each iteration. This 
method extrapolated a function by breaking it into n-l parts and 
treating it somewhat like an n-dimensional vector. The method has 
been demonstrated for Laplace's equation fo~ which it was quite adequate. 
For nonlinear equations, however, the method is not as suitable. 

In refere~ce 1, a method requiring five successive iterants was 
developed which combined the method of reference 24 and the geometric 
mean rule. The function to be extrapolated is considered to be made 
up of a set of numbers Fi , where the subscript i identifies the 
particular component of the set. Then, the resulting relations for the 
ith component of the extrapolated function F in terms of the pre
ceding five iterants, (Fi)j ... (Fi )j+4' where j is the iteration 
number, are: 

where the oscillation coefficient Q. is given by 
1 

(F. ) 
1. j+4 

(F. ) 
1 j+3 

and the damping coefficient w is 

2 
w = 

n 

Z~Fi) jt4 - (Fi) j+~ 
i=l 

(Cl) 

(C2) 

(C3) 
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Application of this system was extremely effective. It generally 
reduced the oscillation remaining after five iterations by a factor of 
10. A typical plot of the oscillation of f; is indicated in 
sketch (c) . 
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APPENDIX D 

CALCULATION PROCEDURE 

The successive approximation calculations. were carried out by 
means of IBM Type 604 Calculating Punch machines. The program was 
coded for fixed-point calculation, with the standard Function
Generating control panel used, plus a control panel especially wired 

33 .. 

for rapid integration of quotients by a trapezoidal rule. The step size 
(in fl) varied from a maximum value of 0.050 or 0.025 at fl = 0 to 
0.00001 at f I = 0.9999, the total number of intervals being 122 ,in 
the former case and 236 in the latter. By doubling and halving the 
step size for a critical case, the results are judged to contain a 
maximum error of 0.0002. Comparison With solutions obtained by for
ward integration, for the same case, confirms this accuracy. A given 
iteration (utilizing the 0.050 step size) could be carried out in 

approximately l~ hours by an experienced machine operator. If the 

averaging and extrapolation techniques described in appendix C are used, 
10 iterations generally would suffice for the accuracy desired. In 
contrast With forward integration, this number of iterations is not a 
function of the experience of the person carrying out the calculations •. 

In the derivation of the integral relations (eqs. (24) and (27», 
it was assumed that the velocity ratio varied smoothly and monotoni
cally from zero at the wall to 1.0 at infinity. However, in the range 
~ > 0 and Sw > 0 (favorable pressure gradient and hot wall), the 
Bolution involves an increasing velocity ratio to a value greater than 
1.0, followed by a smooth decrease to 1.0. Under these unusual cir
cumstances, the method of successive approximation derived herein must 
be considerably modified if it is to be used at all. For these cases, 
forward integrations were' performed by Dr. Lynn U. Albers. 

Equations (18), together with the boundary conditions (17), consti
tute a nonlinear two-point boundary-value problem. Cases of this 
boundary-value problem were solved by forward integration, with the 
IBM Card-Programmed Electronic Calculator (CPC) used to integrate with 
five-point integration formulas. 

For the cases where.the solutions are not unique (~ < 0), the 
solutions were obtained in two patterns: In one pattern., ~ and Sw 
were fixed and, for a set of values of f';';, the quantity ~ was 
altered until boundary conditions at infinity were apparently satis
fied. In the other pattern., f';'; and Bw were fixed and, for a set 
of values of negative ~,the quantity SW was altered until boundary 
conditions at infinity were apparently satisfied. An attempt was made 
with both patterns to include the solution with the minimum value 
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of the maximum velocity ratio fmax within the boundary layer. Ex
cept for those cases where no solution existed w~thout velocity over
shoot, this minimum value was 1.0. 

The details of the integration method used are described very 
completely by Lynn U. Albers in an appendix to reference 25. The 
possible error contained in the results is indicated in the footnote 
to table I. Each trial rWl" of a case required approximately 30 minutes. 
A person considerably experienced with the method of obtaining solu- . 
tions by forward integration generally achieved convergence within 12 
trials; however, tests indicate that this number is insufficient by a 
factor of the order of 2 if the person lacks experience. 
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TABLE 1. • SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY -LAYER EQUATIONS. 1 

~ a -0.326, Sw = ·1.0 ~ - -0.3657, Sw - -1.0 

T/ f f' f" S S' T/ f f' f" S S' 
0 0 0 0 -1.0000 0.2 4 7 7 

.2 .0000 .0001 .0016 - .9 505 .2477 

.4 .0001 .0009 .0065 - .9009 .2477 

0 0 0 0.0500 - 1.0 000 0.2958 
.2 .0010 .0101 .0522 -.9408 .2958 
.4 .0041 .0211 .0586 -.8817 .2956 

.6 .0004 .0 029 .0 145 - ,8514 .2 4 7 6 .6 .0096 .0339 .0693 -.8226 .2 9 5 2 

.8 .0014 .0069 .0 2 58 ·.8019 .2 4 7 6 .8 .0178 .0491 .0841 -.7636 .2 9 4 4 

1.0 .0034 .0135 .0403 - .7524 .2 4 7 5 
1.2 .0070 .0232 .0580 - .7029 .2 4 7 2 
1.4 .0129 .0369 .0788 - .6 535 .2 4 6 8 
1.6 .0220 .0 5 5 0 .1026 -.6042 .2 4 5 9 
1.8 .0352 .0781 ,1290 - ~5 552 .2445 

1.0 .0295 .0678 .1028 -.7049 .2 9 3 1 
1.2 .0452 .0905 .1252 -.6465 .2909 
1.4. .0660 .1180 .1509 -.5886 .2877 
1.6 .0928 .1510 .179.1 -.5314 .2832 
1.8 .1268 .1898 .2091 -.4754 .2 7 7 1 

2.0 .0'536 .1067 .1578 - .5064 .2424 
2.2 .0783 .1413 .1882 - .4 582 .2392 
2.4 .1105 .1821 .2196 - .4 108 .2343, 
2.6 .1516 .2 291 .2 5 0 6 - .3645 .2288

1 

2.8 .2026 .2 8 2 2 .2799 - .3195 .2 2 0 8 

2.0 .1691 .2347 .2 3 9 5 -.4208 .2690 
2.2 .2211 .2856 .2 6 9 0 -.3679 .2588 
2.4 .2837 .3421 .2956 -.3174 .2 4 6 1 
2.6 .3582 .4035 .3174 -.2697 .2308 
2.8 .4454 .4686 .3 3 2 4 -.2252 .2131 

3.0 .264 e .3409 .3056 • .2763 .2108 
3.2 .3393 .4 0 4 2 .3260 - .2353 .1985 
3.4 .4 2 6 7 .4708 .3:3 9 2 - .19 'f 0 .1 8 3 9 
3.6 .5277 .5392 .3434 • .161 9 .1 6 7 2 
3.8 ,6424 .6075 .3377 - '.1 303 .1 4 8 8 
4.0 .7706 .fJ737 .3220 • .1025 .1292 

3.0 .5458 .5359 .3 3 8 8 - .1846 .1930 
3.2 .6598 .6035 .3 3 5 4 . -.1482 .1711 
'3.4 .7871 .6694 .3216 - .1162 .1481 
3.6 .9273 .7315 .2983 -.0889 .1 2 4 8 
3.8. 1.0793 .7881 .2668 -.0663 .1022 

4.2 .9 1 1 6 .7357 .2969 - .0786 .1092 
4,4 1.0645 .7919 .2642 - .0588 .0897 
4.6 1.2279 .8410 .2265 - .0427 .0 7 1 3 
4.8 . 1.4004 .8824 .1667 - .03'01 .0548 
5.0 1.5803 .9158 .1 4 7 6 - .0206 .0407 

4.0 1.2421 .8379 .2299 -.0480 .0 8 1 0 
4.2 1.4140 .8799 .1904 -.0337 .0621 
4.4 1.5 935 .9140 .1513 -.0229 .0 4 6 0 
4.6 1.7791 .9406 .1154 -.0151 .0328 
4.8 1.9693 .9605 .0 843 -.0096 .0225 

5.2 1.7662 .9417 .1123 -.0137 .0 2 9 1 
5.4 1.9566 .9610 .0818 - .0 088 .0201 
5.6 2.1 5 0 2 .9748 .0571 - .0 055 .0133 
5.8 2.3462 .9843 .0383 - .0033 .• 0085 
6.0 2.54:5 7 .9905 .0245 - .0020 .0052 

5.0 2.1629 .9747 .0589 - .0 059 .0149 
5.2 2.3 5 8 9 .9845 .0395 -.0035 .0095 
5.4 2.5565 .9909 .0253 -.0020 .0058 
5.6 2.7 5 5 1 .9949 .0155 - .0011 .0034 
5.8 2.9543 .9 9 7 3 .0092 -.0006 .0019 

6.2 2.7422 .9 9 4 4 .0152 - .0 012 .0031 

6.4 2.9 4 1 4 .9967 .0088 ·.0007 .0 0 1 6 
6.6 3.1409 .9980 .0050 -.0005 .0009 

6.0 3.1539 .9987 .0 0 5 :2 -.0003 .0011 
6.2 3.3538 .9995 .0028 -.0001 .0006 
6.4 3.5537 .9 9 9 9 .0014 -.0001 .0003 

6.8 3.3 4 0 5 .9988 .0028 - .0 0 0 4 .0005 
-

IThe accuracy of solutions obtained by the method of Successive approximations is believed to be %0.0002. Solutions by forward 
integration were obtained in two patterns (appendix D). Where ~ and Sw were initially fixed, the eigenvalues are believed 
tc be' correct to ±0.0002. Where f~ and Sw were initially fixed, ~ and S~ are believed to be correct to %0.0002 (except 
in ~he case of ~ .. 0.2460, Sw" -0.4, where ~ and S.;, are,believed to be correct to %0.002). The values in the tables 
are of comparable accuracy except at large n, where the entries may oontain errors as large as twice the above amounts. 
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UI 
UI 
N 
U1 

UI 
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o 
T) 

.2 

.4 

.6 

.8 

1.0 
1.2 
1.4 
1.6 
1.& 

2.0 
2.2 
2.4 
2.6 
2.E 

3.0 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.4 
4.6 
4.8 

5.0 
5.2 
5.4 
5.6 
5.8 

6.0 
6.2 

f 

o 
.0028 
.0113 
.0259 
.0470 

.0754 

.1118 

.1571 

.. 2125 

.2767 

.3569 

.4476 

.5513 

.6 (-) E 3 

.7964 

.9409 
1.0~)50 

1.2593 
1.4325 
1.6130 

1.7993 
1.9900 
2.18::; 9 
2.3 8 0 1 
2.5 7 7 8 

2.7'76 5 
2.9758 
3.175 4 
3.3752 
3.5752 

3.7751 
3.9751 

TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAXER EQUATIONS. 

~ -0.3884, Sw -1.0 

o 
f' 

.02 G;2 

.0574 

.088 ',' 

.1 ;-~::; 0 

.161 

.203 
0 250 
.303 
.:3 G (I 

.4215 

.485 "9 

.5519 

.61130 

.6821 

.7423 

.7971 

.0 Ii SO 

.885 b 

.9182 

.9436 

.9625 

.9761 

.9 f~. :, 3 

.9913 

.9951 

.997 " 

.9987 

.9994 

.9998 

1.0000 
1.0000 

f" 

0.1 '. () 0 .1 ,+ ~; 7 
.15 C 6 
.16:3 :3 
.1 i.' () 3 

.2010 

.22",3 

.24 <) 1 
2738 :2 9 6 3 

.3149 

.3273 

.3::; 18 

.3270 

.3125 

.2 a e 8 

.2576 
.G 2 13 
.1 U ~~ 7 
.1 4 4 e 

.1101 

.08 () 2 

.0559 

.0373 

.023'.' 

,0146 
.0 0 8 6 
.00',8 
.002.6 
.0013 

.0006 

.00·03 

S 
- 1.0 000 

-.9294 
-.~·l589 

-.7886 
-.7166 

-.6493 
-.5811 
-.S 1 4 3 
-.44 S 6 
-.3876 

-.3291 
- .2 7 4 5 
- .2 246 
- .1 [·00 
-.1409 

- .1 076 
- .0 799 
- .0 577 
- .0 405 
-.0275 

-.0181 
-.0 11 5 
-.0071 
-.0043 
:".0025 

-.0014 
-.000 G 
- .0 COS 
-.0003 
-.0002 

-.0002 
-.0001 

S' T) 

0.3527 0 
.3527 .80::; :1 
.3583 .40" 4 
.3 S 1 0 • ~ ~} Ij :~ 

.34 H 5 .77 'f 6 

.3443 .9 S 2 4'~ 

.3379 1·11 OJ ) 

.3:2 9 0 1.;3'(9~ 

.3171 1.4 .~) 4 Ii 

.302 () 1.·') c; t>:) 

.2834 1.7 j 4 G 
,2616 1.8 d 2 4 
.236 {3 2.03 i b 

.2 () >' 6 2.184 '7 

.1 fi 11 2.::> 4 39 

.1:; 2 2 2.5134 

.1242 2.6 9 9 5 

.0982 ~3.9 1 2 9 

.0750 

.0:;:; 3 3.1766. 
::>.239 'r 

.0393 3.3678 

.02 fi 9 3.382 :, 

.0177 ::>.4654 

.0112 

.006 f: 3.5!:J 9 6 
3.6 1 2 3 

.0 0 4 0 3.6 6 9 7 

.0023 3.733" 

.0012 3.80" 4 

.00 C· 6 3.88" 9 

.00 C' 3 3.9 e 2 2 
4.101" 

.0002 

.0000 4.2604 
4.3003 
4.3443 
4.3 9 3 j 

4.4489 

4.5 1 3 4 
4.5905 
4.6 e 7;;; 
4.811:3 7 
5.0327. 

6.18 X 7 

~ = -0.36, Sw = -1.0 

f f' f" 

0 0 0.2448 
.0050 ·050 .2476 
.0199 .100 .2552 
.0 4 3 8 .150 .2663 
.075 S- .200 .2793 

.1151 .250 .2929 

.1610 .300 .3061 

.2t 3 0 .350 .3 1 7 8 

.2711 .400 .3274 

.3353 .450 .::> 341 

,4060 .500 .3375 
,4838 .550 .336 [J 
:;697 .600 .3317 
.6653 .050 .3215 
.7728 .700 .3057 

.8957 .750 .2833 
1.0400 .800 .2535 
1.2162 .850 .2 ~ 4 6 

1.4473 .900 ,1646 
1.5 0 4 3 .910 .1529 
1.5 6 6 7 .920 .1406 
1.6 3 5 8 .930 .1275 
1.7133 .940 .1136 

1.8023 .950 .0988 
1.852 5 .955 .0911 
1.9075 .960 .0830 
1.9686 .965 .0746 

. 2.0375 .970 .0659 
2.1168 .975 .0568 
2.2110 .980 .0472 
2.3279 .985 .0370 

2.485 1 .990 .0262 
2.5247 .991 .0239 
2.5662 .9 9 2 .0216 
2.6169 .9 9 3 .0192 
2.6722 .9 9 4 .0167 

2.7363 .995 .0142 
2.8130 .996 .0117 
2.9094 .997 .0090 
3.0406 .998 .0062 
3.2543 .999 .0033 

4.3446 1 . .0 00 .0 000 

S 
-1.0000 
-.9 1 8 6 
-.8391 
-.7628 
-.6905 

-.6 <: 2 5 
_.55[; 8 
_.4 Y 9 3 
-.4436 
-.3915 

-.3 4 2 8 
-.2970 
-.2541 
-.2138 
-.1760 
-
-.1405 
-.1074 
-.0765 

-.0479 
-.0425 
-.0372 
-.Q 320 
-.0270 

-.0220 
-.0196 
-.0172 
-.0148 
-.0125 
-.0103 
-.0080 
_.0059 

-.0038 
-.0034 
-.0030 
-.0026 
-.0022 

-·0018 
-.0014 
-·0010 
-.0006 
-.0 003 

.0000 

S' 
0.0400 
.0399 
.039 (,3 
.039 b 
.0::> 9 2 

.0::> t) 5 

.0::; 7 6 

.0365 

.0:; 52 

.03::> 6 

.0318 

.0298 

.0275 

.02 S 1 

.0223 

.0194 

.0162 

.01:3 7 

.0089 

.0081 

.0 0 7 3 

.0065 

.00 S 7 

.0048 

.0043 

.0039 

.0034 

.00 j 0 

.0025 

.0020 

.0015 

.0010 

.0009 

.0008 

.0007 

.0006 

.0005 

.0004 

.0003 

.0002 

.0001 

.0000 

(N 
Ol 

~ 
~ 
(N 
~ 
[\) 
CJ1 

r 



TABLE 1. - Cont·1nued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ = -0.3, Sw = -1.0 ~ = -0.14, Sw = -1.0 

T) f f' f' , S S' T) f f' . fll 

0 0 0 0.3181 -1 DO 0 0 0·4262 
.1568 .0039 .050 .3196 -.9331' .4261 
.3123 .0155 .100 ,3236 -.8669 .4255 
.4 655 .0347 .150 .3292 -.8018 .4239 
.6159 .0609 .200 .3359 -.738.3 .4209 

0 0 0 0.4 165 
.1199 .0029 .050 .4170 
.2397 .0119 .100 .4179 
.3591 .0269 .150 .4190 
.4783 .0477 .200 .4199 

.7632 .0941 .250 .3427 -.6766 .41 6 3 

.9077 .1338 .300 .3491 - .6169 .4095 
i.O 4 98 .1800 .350 .3543 - .5593 .4005 
1.1 902 .2326 .400 .3579 -.5039 .3892 
1.3296 .2918 .450 .3591 -.4506 .37 52 

.5973 .0745 .250 .4202 

.7164 .1072 .300 .4194 

.8359 .1461 .350 .4173 

.9563 .1912 .400 .4133 
1.0782 .• 2431 .450 .4 0 7 2 

1.4 690 .3581 .500 .3575 -.3994 .3586 1.2023 .3020 .500 .3986 
1.6098 .4320 .550 .3525 -.3502 .3393 1.3296 .36.89 .550 .3869 
1.7533 .5146 .600 .3436 . -.3031 .3170 1.4 615 .4 448 .600 .3717 
1.9016 .6072 .650 .3302 -.2580 .2918 1.5995 .5311 .650 .3525 
2.0572 .7123 '.700 .3117 - .2148 .2633 1.7462 .6302 .700 .3287 

2.2240 .8333 .750 .2871 -.1735 .2315 
2.4 080 .9761 .800 .2555 -.1342 .1960 

1.9053 .7457 .750 .2995 
2.0829 .8834 .8') 0 .2639 

2.6202 1.1513 ~8 50 .2155 -.0968 .1565 2.2897 1.0543 .850 .2204 

2.8835 1.38 19 .900 .1646 -.0616 .1122 2.5484 1.2809 .900 .1669 
2.9465 1.4389 .910 .1528 -.0549 .1026 2.6106 1.3373 .910 .1547 
3.0147 1.5014 .920 .1404 -.0482 .0928 2.6781 1.3991 .920 .1419 
3.0895 1.5705 .930 .1273 -.0417 .0828 2.7523 1.4677 .930 .1284 
3.1 726 1.6483 .940 .1134 -.0352 .0724 2.8348 1.5448 .940 .1142 

3.2670 1.7375 .950 .0986 -.0289 .0617 2.9287 1.6336 .950 .0991 
3.3199 1.7878 .955 .0908 -.0258 .0562 2.9813 1.6837 .955 .0912 
3.3 7 7 5 1.8430 .960 .0827 -.0227 .0506 3.0387 1.7387 .960 .0831 
3.4412 1.9043 .965 .0744 -.0197 ·0449 3.1023 1.7999 .965 .0746 
3.5127 1.9735 .970 .0657 -.0167 .0391 3.1738 1.8691 .970 .0658 
3.5945 2.0531 .975 .0565 -.0137 ·0332 3.2555 1.9486 .975 .0566 
3.6912 2.1477 .980 .0470 -.0108 ·0271 3.3521 2.0430 .980 .0470 
3.8108 2.2652 .985 .0369 -.0080 .0208

1 

3.4 71 7 2.1605 .985 .0369 

3.9708 2.4 232 .990 .0260 -.0052 .0143 3.6319 2.3187 .990 .0260 
4.0109 2.4 629 .991 .0238 -.0046 .0129 3.6721 2.3585 .991 .0237 
4.0551 2.5067 .992 .0214 -.0041 .0116 3.7163 2.4024 .992 .0214 
4.1044 2.5556 .993 .0191 -.0035 .0103 3.7657 2.4514 .993 .0190 
4.1603 2.6112 .994 .0167 -.0030 .0089 3.8217 2.5071 .994 .0166 

, 
4.2251 2.6756 .995 .0142 -.0025 .0075 3.8867 2.5717 .995 .0142 
4.3026 2.7528 ·996 .0116 -.0020 .0061 39643 2.6490 .996 .0116 
4.399'( 2.8495 ·997 .0090 -.0015 .0046 4.0616 2.7459 .997 .0090 . 
4.531,9 2.9814 .998 .0062 -.0009 .0031 4.1939 2.8778 .998 .0062 
4.747 t 3.1963 .999 .0033 -.0004 .0016 4.4088 3.0924 999 .0033 

5.8542 4.3031 1·000 .0000 -.0000 .0000 5.4938 4.1772 1.0 0 0 .0000 

S 
0 
-.9453 
-.8908 
-.8365 
-.7825 

-.7288 
-.6756 
-.6229 
-.5708 
-.5192 

-.4682 
-.4178 
-.3681 
-.3191 
-.2707 

-.2232 
-.1764 
-.1304 

-.0855 
-.0766 
-.0678 
-.0591 
-.0504 

-.0417 
-.0374 
-.0331 
-.0289 
-.0247 
-.0204 
-.0163 
-.0121 

-.0080 
-.0072 
-.0063 
-.0055 
-.0047 

-.Q039 
-.Q 0 31 
-.0023 
-.0015 
-.0007 

.0000 

S' 
0.4554 
.4554 
.4551 
.4541 
.4522 

.4490 

.4443 

.4377 

.4290 

.4179 

.4040 
•3872

1 

.36711 

.3433 

.3153 

.2827 

.2447 

.2005 

.1483 

.1367 

.1247 

.1121 

.0990 

.0853 

.0782 

.0709 

.0634 

.0556 

.0476 

.0392 

.0305 

.0213 

.0194 

.0174 
,0155 
.0135 

.0114 

.0093 

.0071 

.0049 

.0026 

.0000 

~ 
&;. 

~ 
'CJ.l 

CJ.l 
t\) 
U1 

CJ.l 
<.0 



TABLE 1. _ Continued. SIMILAR SOLUTIONS OP LAMINAR COMPREssmLE BOUNDARY-LAYER EQUATIONS. 

~ = 0.5, Sw c -1.0 ~ = 2.0, Sw = -1.0 

n f fl fll S SI 

0 0 0 0.5806 -1.0000 0.4948 
.0861 .0021 .0 SO .5797 -.9574 .4948 
.1726 .0086 .100 .5770 -.9147 .4946 
• 2596 .0195 . .150 .5724 -.8718 .4940 
.3474 .0349 .200 .5659 -.8285 .4929 

n f fl fll 

0 0 0 0.7381 
.0678 .0016 .050 .7359 
.1360 .0068 .100 .7293 
.2051 .0154 .150 .7188 
.2754 .0277 .200 .7045 

.4364 .0549 .250 .5574 -.7848 .4910 

.5270 .0798 '.300 .5468 -.7406 .4881 

.6195 .1099 .350 .5340 -.6957 .4839 

.7145 .1456 .400 .5188 -.6501 .4781 

.8126 .1873 .450 .5011 -.6037 .4704 

.3472 .0439 .2.50 .6869 

.4212 .0643 .300 .6660 

.4976 .0892 .350 .6420 

.5772 .1191 .400 .6150 

.6606 .1545 .450 .5652 

.9145 .2358 .500 .4808 -.5564 .4605 
1.0211 .2918 .550 .4576 -.5081 .4479 
1.1337 .3566 .600 .4310 -.4587 .4319 
1.2539 A31fl .650 .4008 -.4081 .4120 
1.3842 .51'99 .700 .3666 -.3561 .3873 

.7485 .1.964 :500 .5525 

.8421 .2456 .550 .5170 

.9427 .3035 .6,00 .4786 
1.0520 .3719 .650 .4372 
1.1726 .4534 .700 .3925 

1.5283 .6244 .750 .3277 -.3026 .3567 
1.6922 .7516 .8 ci 0 .2,834 -.2474 .3189 
1.8866 .9.122 .850 .2324 -.1903 .2715 

1.3085 .5520 .750 .3444 
1.4659 .6742 .800 .2924 
1.6 562 .13.314 .85.0 .2.3 55 

2.1.3 4 4 1.1293 .900 .1727 -.1307 .2110 
2.1947 1.1839 .910 .1595 -.1185 .1968 
2.2603 1.2440 .920 .1457 -.1061 .1817 
2.3327 1.3109 .930 .1313 -.0936 .1658 
2.4135 1.3865 .940 .1163 -.0809 ;1486 

1.9030 1.0477 .900. .1720 
1.9 6 3 6 1.1026 .910 .1683 
2.0 2 99 1.16.3 2 .920 .1442 
2.1 0 31 1.2310 .930 .1296 
2.1852 1.3076 .940 .1144 

2.5059 1.4738 .950 .1005 -.0681 .130 .3 
2.5578 1.5233 .955 .0923 -.0616 .1205 
2.6146 1.5777 .960 .0839 -.0551 .0719 
2.6776 1.6384 .9 65 .0752 -.0485 .0998 
2.7486 1.7071 .970 .0662 -.0418 .0887 
2.8300 1.7862 .975 .0568 -.0351 .0769 
2.9265 1.8805 .980 .0470 -.0283 .0644 
3.0462 1.9981 .985 .0368 -.0215 .0511 

2.279.3 1.3967 .950 .0986 
2.3322 1.4471 .955 .0904 
2.390.3 1.5027 .960 .0821 
2.4548 1.5648 .965 .0735 
2.5275 1.6351 .970 .0646 
2.6109 1.7163 .975 .0554 
2.7099 1.8130 .980 .0458 
2.8327 1.9 3.3 8 .985 .0358 

3.2069 2.1568 .990 '.0259 -.0145 .0366 
3.2473 2.1969 .9 9 1 .0236 -.0131 .0335 
3.2918 2.2410 ,992 .0213 -.0117 .0.3 03 
.3.3415 2.2904 ,993 .0189 -.0102 .0271 
3.3980 2.3464 ,994 .0165 -.0088 .02.3 8 

2.9977 2.0967 .990 .0252 
3.0392 2.1378 .991 .0230 
3.0849 2.1831 .992 .0207 
3.1.3 5 9 2.2338 .993 .0184 
3.1939 2.2913 .9 9 4 .0161 

3.4635 2.4116 ,995 .0140 -.0074 .0203 
3.5418 2.4895 ,996 .0115 -.0059 .0168 
.3.6400 2.587' 4 ,997 .0089 -.0044 .0131 
3.7738 2.7209 ,998 .0061 -.0030 .0092 
3.9916 ::l.9 384 ,999 .0032 -.0015 .0049 

3.2 611 2.3581 .995 .0137 
3.3 4 1 4 2.4 .3 81 .996 .0112 
3.4421 2.5385 .997 .0087 
3.5792 2.6753 .998 .0060 
3.8023 2.8980 .999 .0032 

5.1056 4.0521 lDOO .0000 -.0000 .0000 4.9 .3 4 4 4.0298 1.0 0 0 .0000 

S 
-1.0000 

-.9647 
-.9292 
-.8933 
-.8567 

-.8196 
-.7814 
-.7421 
-.7012 
-.6593 

-.6155 -..s 696 
-..s :illS 
-.4707 
-.4172 

-.3603 
-.2996 
-.2.3 44 

- .1639 
-.1490 
-.1339 
- .1185 
-.1028 

-.0868 
-.0786 
-.0704 
-.0620 
-.0536 
-.0450 
-.0364 
-.0275 

-.0186 
-.0167 
-.0149 
-.0131 
-.0113 

-.0094 
-.0075 
-.0057 
-.00.38 
-.0019 

-.0000 

SI 
0.520.3 
.520.3 
.5201 
.5198 
.5190 

.5177 

.5157 

.5128 

.5086 

.5029 

.4953 

.4852 

.4721 

.4551 

.4330 

.4045 

.3674 

.3187 

.2528 

.2369 

.2198 

.2014 

.1814 

.1596 

.1482 

.1360 

.1232 

.1097 

.0954 

.0801 

.0636 

.0456 

.0418 

.0379 

.0338 

.0297 
1 

.02 54
1 

•0209
1 

.0163 

.0114 

.0061: 

.00001 

~ o 

~ 
~ 
~ 
til 
til 

~ 

AI 



TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ - -0.10, Sw - -0.8 ~ = -0.2685, Sw = -0.8 

7) f f' f S S' 
I 

7) f f' f" 

0 0 0 -0.0686 - 0.8 000 0.0447 i 

.- - .0 () .5 3 -.0258 - ,060:5 -.7821 .0448 I 

" -.0 G () 2 -.0482 -.0515 -.7642 .0450 ." 
1.~; -.CJ 4:> 3 -.0670 -.0425 -·.7 46 1 .0455 . 
1.':) -.0733 -.0021 -.0:5 3 0 -.7277 •

0466
1 

';,.0 -.10(", 5 -.0 Y 33 -.0231 -.7087 .0483 

0 0 0 -0.0500 
.2 -.0009 -.0089 - .0383 
.4 -.0034 -.0152 -.0246 
.6 -.0068 -.0186 -.0090 
.8 -.0106 -.0187 .0086 

1.0 -.0140 -.0150 .0282 

~~.4 -.1474 -.1005 -.0123 -.6889 .0509 
;~.n - .1813 2 -.1030 -.0003 -.6679 .0544 
3.~·~ - .;:: ~ 91 -.1004 .0136 -.6452 .0591 
3.6 -.2 (, 78 -.0918 .0301 -.6204 .0653 

1.2 -.0163 -.0072 .0499 
1.4 -.0166 .0051 .0737 
1.6 -.0139 .0224 .0994 
1.(3 -.0073 .0450 .1272 

4.0 -.3016 -.0759 .0501 -.5928 .0732 
2.0 .0044 .0'733 .1566 

4.4 -.3" 7 3 -.0011 .0'146 -.5616 .08:5 0 
4.li -.3410 -.0154 .1048 -.5260 .0950 
;>.2 -.3379 .0:5 3 6 .1413 -.48.'53 .1088 
S.Q -.3121 .0984 .1837 -.4388 .1 241 

2.2 .0224 .1077 .1872 
2.4 .0479 .1483 .2184 
2.6 .0822 .1951 .2493 
2.8 .1264 .2479 .2786 

0.0 -.2568 .1811 .2301 -.3861 .1392 
3.0 .1817 .3063 .3049 

6.,j -.1647 .2823 .2752 -.3278 .1516 
0.8 -.0 <:: 87 .3999 .3103 -.2656 .1578 
7.'2 .1566 .5278 .3245 -.2029 .1541 
7.6 .3935 .6556 .3091 -.1440 .1383 

3.2 .2492 .3695 .3264 
3.4 .3297 .4364 .3413 
3.6 .4239 .5055 .3481 
3.8 .5320 .5750 .3455 

E.:.O .6 '7 9 4 .7709 .2629 -.0937 .1118 
4.0 .6538 .6430 .3330 

8.4 1.0071 .8632 .1964 -.0553 .0799 
8.[-.: 1.3662 .9276 .1270 -.0295 .0497 
9.;-~ 1.7457 .966 "::J .0703 -.0145 .0267 
9.6 1J.13() 9 .9866 .0332 -.0070 :0 1 2 3 

4.2 .7890 .7076 .3109 
4.4 .9365 .7669 .2807 
4.6 1.0953 .8195 .2446 
4.8 1.2638 .8644 .2052 

10.0 2.53::; 5 .9954 .0133 -.0038 .0048 
5.0 1.4405 .9015 .1656 

10.4 ;3.Y 324 $987 .0045 -.0026 .0016 
10.8 3.3 3 2 1 3997 .0013 -.0022 .0005 
11.2 3.7321 1.0 000 .0003 -.0021 .0001 

-_.-

5.2 1.6239 .9309 .1283 
5.4 1.8124 .9532 .0954 
5.6 2.0047 .9694 .0681 
5.8 2.1998 .9808 .0465 

6.0 2.3968 .9884 .0305 
6.2 2.5950 .9933 .0192 
6.4 2.7940 .9963 .0116 
6.6 2.9935 .9981 .0067 
6.8 3.1932 .9991 .0037 

7.0 3.393.1 .9997 .0020 
7.2 3.5931 1.0000 .0010 

S 
- 0.8 000 
-.7634 
- .7268 
-.6902 
-.6.'535 

-.6168 
-.5799 
_.5430 
_.5059 
_.4687 

-.4315 
_.3943 
_ .. 3572 
_.3206 
_.2845 

_.2493 
_.2154 
_.1832 
_.1530 
_.1 25 3 

_.1003 
_.0784 
_.0598 
_.0442 
_.0318 

_.0221 
-.0148 
-.0096 
-.0059 
.-.0035 

-.0019 
-.0009 
-.0003 
.0000 
.0002 

.0003 

.0003 

S' 
0.1829 
.1829 
.1830 
.1832 
.18:5 5 

.1840 

.1845 

.1851 

.1857 

.1861 

.1862 

.1857 

.1844 

.1821 

.1783 

.1730 

.1657 

.1564 

.1451 

.1319 

.1172 i 

.1015 

.
0854

1 .0697 
.0551 

.0420 

.0309 

.0219 

.0150 

.0098 

.0062 

.0038 

.0022 

.0012 

.0007 

.0003 

.0002 

s;:. 
&; 

~ 
(A 

.(A 
[\) 
01 

"'" t--' 



T) f 
0 0 

.2 .0001 , 
.0007 .'" 

.0 .0026 

.6 .• 0065 

1.0 .0132 
loG .0238 
1.4 .0393 
1.6 .0610 
1.8 .0900 

2.0 .1276 
2.2 .1750 
2.4 .2 j 3 5 
2.6 .3041 
2.8 .3 (377 

3.0 .4lJ48 
3.2 .59 S 7 
3.4 .7203 
3.6 .8580 
3.b 1.0079 

4.0 1.1687 
4.2 1.3391 
4.4 1.5173 
4.6 1.7018 
4.0 1.8912 

5.0 2.0 [J 42 
c ;-) 
':;.r:", 2.2793 
5.4 2.4 7 7 1 
5.6 2.6754 
5.8 2.8746 

6.0 3.0741 
6.2 3.2 7 3 fl 
6.4 3.4 7 3 7 
6.6 3.6737 
6.8 3.8 7 3 7 

TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ = -0.3088, Sw = -0.8 ~ = -0.325, Sw = -0.8 

f' f" S S' T) f f' f" 

0 0 - 0.8 000 0.2261 
.00 i 3 .0137 - :7 5 4 8 .2260 
.0057 .0303 - .70 9 6 .2260 

0 0 0 0.0 493 
.2 .0011 .0113 .06<10 
.4 .0047 .0250 .0819 

.0136 .0496 -.6644 .2260 .6 .0117 .0442 .1029 

.0257 .0716 -.6192 .2258 .8 .0227 .0672 .1269 

.0425 .0963 -.5741 .2253 

.0644 .1234 -.5209 .2245 

.0920 .1 S 2 7 -.4843 .2231 

.1256 .1835 -.4399 .2209 

.1654 .2151 -.3960 .2176 

loO .0389 .0952 .1535 
1.2 .0611 .1287 .1821 
1.4 .0907 .1681 .2121 
1.6 .1288 .2135 .2 4 2 3 
1.8 .1765 .2649 .2714 

.2116 .2465 -.3529 .2130 

.263 ~ .2 764 -.3109 .2067 

.3219 .3031 -.2704 .1984 

.3846 .3247 -.2317 .1881 

.4514 .33') 5 -.1953 .1756 

2.0 .2351 .3219 .2978 
2.2 .3056 .3837 .3196 
2.4 .3889 .4493 .3349 
2.6 .4855 .5172 .3420 
2.8 .5958 .5855 .3396 

.5201 .345 e -.1616 .1609 

.5 (3 90 .3423 -.1311 .1445 

.6 5 6 3 .3286 -.1039 .1267 

.7199 .3055 -.0 fl 0 4 .1082 

.7779 .2742 -.0606 .0898 

3.0 .7196 .6523 .3272 
3.2 .8565 .7157 .3052 
3.4 1.0055 .7736 .2749 
3.6 1.1656 .8253 .238(3 
3.8 1.3352 .8691 .19') 6 

.8291 .2372 -.0444 .0723 

.8727 .1975 -.0316 .0563 

.9082 .1580 -.0218 .0423 

.9 3 6 0 .1 2 1. 3 -.0145 .0306 

.9570 .0 8 9 3 -.0094 .0214 

4.0 1.5127 .905", .1 6 0 <1 
4.2 1.6967 .9335 .1236 
4.4 1.8857 .954,) .0914 
4.6 2.078 3 .9705 .0648 
4.8 2.2 7 3 5 .9812 .0440 

.9722 .0630 -.0058 .0144, 

.9827 ;0426 -.0035 .0093 

.9896 .0276 -.0020 .0058 

.9940 .0172 -.0011 .0034 

.9967 .0103 -.000 6 .0020 

5.0 2.4 7 0 5 ;9884 .0287 
5.2 2.6687 .9930 .0 1 7 9 
5.4 2.8676 .9959 .0108 
5.6 3.0670 .9975 .0062 
5.8 3.2666 .9984 .0030 

.9983 .0059 -.0 0 0 3 .0011 6.0 3.4664 .9991 .0024 

.9992 .0032 -.000 1 .0006 

.9996 .0017 -.0000 .0003 

.9999 .0009 .0000 .0001 
1.0000 .0004 .0000 .0000 

-

S 
- 0.3250 
-.7491 
-.69(32 
-.6474 
-.5966 

-.5462 
-.4961 
-.4466 
-.3980 
-.,3507 

-.3050 
-.2614 
-.2204 
-.1825 
-.1481 

- .1176 
-.0911 
-.0688 
-.0506, 
-.0361 

-oO 250 
-.0168 
-.0110 
-.0070 
-.0043 

-o0027 
-'.0 016 
-.0010 
-.0007 
-.0005 

-.0004 

S' 
0.2 5 4 5 
.2545 
.2544 
.2 5 4 0 
.2531 

.2516 

.2491 

.2454 

.2401 

.2 3 2 9 

.2236 

.2118 

.1977 

.1812 

.1626 

.1426 

.1218 

.1012 

.0815 

.0 6 3 5 

.0477 

.0346 

.0242 

.0163 

.0105 

.0065 

.0039 

.0023 

.0013 

.0006 

.0005 

.... 
N 

~ 
&; 

~ 
()I 
()I 

rn 



11 f 
0 0 
.2 .0015 
.4 .0063 
,6 .0153 
~8 .0292 

1.0 .0491 
1.2 .0760 
1.4 .1110 
1.6 .1553 
1.8 .2 1 0 1 

2.0 .2765 
2.2 .3554 
2.4 .4474 
2.6 .5530 
2.8 .6722 

3.0 .8047 
3.2 .9497 
3.4 1.1061 
3.6 1.2727 
3.8 1.4 477 

4.0 1.6297 
4.2 1.8172 
4.4 2.0088. 
4.6 2.2033 
4.8 2.3 9 99 

5.0 2.5978 
5.2 2.7967 
5.4 2.9960 
5.6 3.1956 
5.8 3.3954 

6,0 3.5 9 5 4 
6.2 3.7953 
6,4 3.9953 
6.6 4.1 9 5 ·3 
6.8 4.3953 

7.0 4.5953 
7.2 4.7953 

TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSmLE BOUNDARY-LAYER EQUATIONS. 

~ - -0.3285, Sw - -0.8 ~ - -0.3285, Sw - -0.8 

f' f' S S' 11 f f' f" 

0 0.0693 - 0.8 000 0.2644 
.0153 .0842 -.7471 .2644 
.0339 .1024 -.6943 .2642 
.0565 .1238 -.6415 .2636 
.0836 .1482 -.5888 .2625 

0 0 0 0.1100 
.2 .0023 .0234 .1250 
.4 .0096 .0502 .1.434 
.6 .0226 .0810 .1650 
.8 .0423 .1164 .1893 

.1159 .1 7 5 0 -.5365 .2605 

.1538 .2036 -.4847 .2573 

.1 9 7 4 .2331 -.4337 .2525 

.2470 .2621 -.3838 .2459 

.3021 .2 8 9 2 -.3355 .2371 

1.0 .0696 .1569 .2156 
1.2 .1 0 5 4 .2027 .2428 
1.4 .1510 .2540 .2698 
1.6 .2074 .3105 .2948 
1.8 .2755 .3716 .3162 

.3624 .3125 -.2892 .2259 2.0 .3563 .4366 .3319 

.4267 .3301 -.2453 .2121 2.2 .4503 .5039 .3401 

.4 9 3 9 ,3401 -~2 045 .1958 2.4 .5579 .5720 .3395 

.5622 .3 4 1 2 -.1671 .1772 

.6297 .3324 -.1337 .1568 
2.6 .6791 .6391 .3292 
2.8 .8134 .7031 .3 0 9 3 

.6945 .3138 -.104 5 .1353 I 

.7 5 4 6 .2 8 6 3 -.0796 .1136· 

.8085 .2 5 2 0 -.0590 .0925 

3.0 .9600 .7622 .2810 
3.2 1.1178 .8151 .2463 
3.4 1.2855 .8605 .2079 

.8 5 5 2 .2136 -.0425 .0729 

.8939 .1741 -.0297 .0556 
3.6 1.4 615 .8981 .1687 
3.8 1.6443 .9281 .1314 

.9 2 4 9 .1362 -.0201 .0408 

.9487 .1022 -.0131 .0289 

.9662 .0735 -.0083 .0197 

4.0 1.8323 .9510 .0982 
4.2 2.0242 .9678 .0704 
4.4 2.2190 .9795 .0483 

.9785 .0507 -.0051 .0129 4.6 2.4158 .9875 .0318 

.9868 .0335 -.0030 .0082 4.8 2.6 1 3 8 .9926 .0201 

.9922 .0212 -.0017 .0050 5.0 2.8127 .9957 .0121 

.9956 .0129 -.0010 .0029 

.9976 .0075 -.0005 .0016 

.9987 ,0042 -.0003 .0009 

5.2 3.0121 .9976 .0071 
5.4 3.2117 .9987 .0039 
5.6 3.4115 .9993 .0021 

,9994 .0023 -.00.01 ,0005 5.8 3.6114 .9996 .0011 

.9997 .0012 -.0001 .0002 6.0 3.8113 .9998 .0006 

.9999 .0006 .0000 .0001 6.2 4.0113 .9999 .0002 

.9999 .0003 .0000 .0000 
1.0000 .0001 .0000 .0000 
1.0000 ,0001 .0000 .000.0 

1.0 000 ,0000 .0000 .0000 
1.0 000 .0000 .0000 .0000 

S 
- 0.8000 
-.7436 
-.6873 
-.6311 
-.5751 

-.5196 
_.4649 
-.4114 
-.3594 
-.3096 

-.2624 
-.2185 
-.1784 
-.1425 
- .1111 

-.0845 
-.0625 
-.0449 
-.0313 
-.0211 

-.0138 
-.0087 
-.0053 
-.0032 
-.0018 

-.0010 
-.0005 
-.0003 
-.0002 
-.0001 

-.0001 
.0000 

S 
0.2818 
.2818 
.2815 
.2806 
.2788 

.2758 

.2710 

.2642 

.2549 

.2430 

.2281 

.2 1 0 5 

.1904 

.1683 

.1450 

.1 2 1 5 

.0987 

.0776 

.0590 

.0432 

.0305 

.0207 

.0136 

.0085 

.0052 

.0030 

.0017 

.0009 

.0005 

.0002 

.0001 

.0000 

~ 
~ 

~ 
(iii 
(iii 
N c.n 

..,.. 
(iii 



TABLE 1. - Continued. SIMILAR SOLUTI9NS 01> LAMINAR COMPRESSIBLE BOUNDARY -LAYER EQUATIONS. 

~ = -0.325, Sw = -0.8 ~ = -0.3, Sw = -0.8 

7) f f' fll S S' n' f f' f" .-
0 0 0 0.1353 -0.8000 0.2913 
.33.79 .0080 .050 .1623 -.7015 .2911 
.6210 .0289 .100 .1922 - .619 2 .2897 
.8632 .0590 .150 .2214 - . .5 49 4 .2866 

1.0761 .0961 .200 .2487 -.4888 .2819 

0 O. 0 0.2086 
.2310 .0 0 5 6 .050 .2248 
.4447 .0215 .100 .2435 
.6423 .0461 .150 .2629 
.8259 .0782 .200 .2819 

1.2677 .1391 .250 .2732 -.4353 .2757 
1.4439 .1875 .300 .2944 -.3874 .2679 
1.6087 .2410 .350 .3120 -.3440 .2587 
1.7654 .2997 .400 .3258 -.3042 .2479 
1.9165 .3639 .450 .3354 -.2677 .2359 

.9979 .1168 .250 .2995 
1.1605 .1615 .300 .3151 
1.3159 .2120 .350 .3280 
1.4660 .2682 .400 .3380 
1.6124 .3304 .450 .3445 

2.0643 .4341 .500 .3406 -.2338 .2224 
2.2108 .5110 .550 .3412 -.2023 .2075 
2.3582 .5958 .600 .3366 -.1729 .1913 
2.5088 .6899 .650 .3265 -.1 454 .1737 
2.6656 .7958 .700 .3103 -.1197 .1545 

1.7568 .3990 .500 .3472 
1.9010 .4747 .550 .3457 
2.0468 .5586 .600 .3395 
2.1964 .6521 .650 .3282 
2.3526 .7576 .700 .3111 

2.8327 .9170 .750 .2874 -.0956 .1339 
3.0161 1.0592 .800 .2569 -.0731 .1118 
3.2268 1.2332 .850 .2172 -.0521 .0878 

2.5194 .8786 .750 .2875 
2.7030 1.0210 .800 .2565 
2.9142 1.1954 .850 .2166 

3.4 8 76 1.4618 .900 .1663 -.0328 .0618 
3.5500 1.5182 .910 .1544 -.0291 .0563 
3.6175 1.5800 .920 .1419 -.0255 .0507 
3.6915 1.6484 .930 .1286 -.0219 .0450. 
3.7737 1.7253 .940 .1146 -.0185 .0392 

3.1759 1.4246 .900 .1657 
3.2385 1.4813 .910 .1538 
3.3063 1.5433 .920 .1413 
3.3806 1.6120 .930 .1281 
3.4631 1.6892 .940 .1141 

3.8672 1.8136 .950 .0996 -.0151 .0332 
3.9194 1.8634 .955 ,0918 -.0134 .0302 
3.9 7 64 1.9180 .960 .0836 -.0118 ,(l271 
4.0394 1.9786 .965 .0752 -.0102 ,(l'239 
4.1101 2.0470 .970 .0664 -.0086 .0 208 
4.1 911 2.1258 .975 .0572 -.0071 .0176 
4.2867 2.2192 .980 .0475 -.0056 .0143 
4.4050 2.3354 .985 .0373 -.0041 .0109 

3.5569 1.7779 .950 .0992 
3.6094 1.8279 .955 .0914 
3.6667 1.8827 .960 .0833 
3.7299 1.9436 .965 .0749 
3.8010 2.0123 .970 .0661 
3.8823 2.0915 .975 .0569 
3.9784 2.1854 .980 .0473 
4.0972 2.3022 .985 .0371 

4.563'2 2.4917 .990 .0263 -.0026 .0074 
4.6029 2.5310 .991 .0240 -.0024 .0067 
4.6466 2.5743 ~9 92 .0217 -.0021 .006.0 
4.6953 2.6228 .993 .0193 -.0018 .0053 
4.7507 2.6777 .994 .0168 -.0015 .0046 

4.2562 2.4592 .990 .0262 
4.2961 2.4986 .991 .0239 
4.3400 2.5422 .992 .0216 
4.3890 2.5908 .993 .0192 
4.4446 2.6460 .994 .0167 

4.8148 2.7415 .995 .0143 -.0013 .0038 
4.8915 2.8178 .996 .0117 -.0010 .0031 
4.9876 2.9136 .997 .0091 -.0007 .0024 
5.1186 3.0443 .998 .0063 -.0005 .0016 
5.3'19 3.2573 .999 ,(l 033 -.0002 .0008 

4.5090 2.710'1 .995 .0142 
4.5860 2.7868 .996 .0117 
4.6827 2.8831 .997 .0090 
4.8143 3.0144 .998 .0062 
5.0287 3,2285 .999 .0033 

6.4255 4.3506 1.000 .0000 -.0000 .0000 6.1270 4.3 265 1.0 0 0 .0000 

S 

- 0.8 000 
-.7271 
-.6597 
-.5978 
-.5407 

-.4879 
-.4390 
-.3934 
-.3507 
-.3108 

-.2732 
-.2378 
-.2044 
-.1729 
-.1431 

- .1149 
-.0883 
-.0633 

-.0400 
-.0356 
-.0312 
-.0269 
-.0227 

-.0186 
-.0166 
-.0146 
-;0126 
-.0107 
-.0088 
-.0069 
-.0051 

-.0033 
-.0029 
-.0026 
-.0022 
-.0019 

-.0016 
-.0012 
-.0 009 
-.0006 
-.0003 

-.0000 

S' 
0.3154 
.3154 
.3146 
.3126 
.3091 

.3040 

.2973 

.2888 

.2786 

.2667 

.2530 

.2376 

.2204 

.2013 

.1804 

.1574 

.1322 . 

.1046 

.0743 

.0678 
·.0612 
.0545 
.0475 

.0404 

.0367 

.0330 

.0293 

.0254 

.0215 

.0175 

.0134 

.0092 

.0083 

.0074 

.00·65 

.0056 

.0047 

.0038 

.0029 

.0020 

.0010 

.0000 

""" """ 

~ 
~ 

~ 
CJ.l 
CJ.l 
I:\) 
UT 

.. 



TABLE 1. :- Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ = -0.14, Sw = -0.8 ~ = 0.5, Sw = -0.8 

T1 f f' f" S S' T1 f f' fll 

0 0 0 0.3841 - 0.8 0 0 0 0.3590 
.1294 .0032 .050 .3882 -.7535 .3590 
.2575 .0128 .100 .3926 -.7075 .3590 
.3841 .0286 .150 .3970 -.6622 .3580 
.5094 .0505 .200 .4009 -.6174 .3560 

0 0 0 0.6546 
.0768 .0019 .050 .6464 
.1547 .0077 .100 .6368 
.2339 .0177 .150 .6258 
.3147 .0 3 1 8 .200 .6133 

.6337 .0784 .250 .4039 -.5734 .3530 .3971 .0504 .250 .5993 

.7572 .1124 .300 .4057 -.5300 .3490 .4817 .0737 .300 .5835 

.8804 .1524 .350 .4058 -.4873 .3440 .5687 .1020 .350 .5659 
1.0039 .1987 .400 .4039 -.4453 .3360 .6586 .1357 .400 .5463 
1.1283 .2516 .450 .3996 -.4040 .3270 .7520 .1755 .450 .5246 

1.2546 .3116 .500 .3925 -.3634 .3160 
1.3837 .3795 .550 .3822 -.3235 .3020 
1.5170 .4562 .600 .3682 -.2843 .2860 

.8496 .2219 .500 .5004 

.9524 .2759 .550 .4737 
1.0614 .3387 .600 .4441 

1.6561 .5432 .650 .3500 -.2459 .2670 1.1 784 .4119 .650 .4111 
1.8038 .6429 .700 .3269 -.2081 .2440 1.3058 .4979 .700 .3743 

1.9636 .7589 .750 .2984 -.171 1 .2190 
2.1417 .8971 .800 .2633 -.1349 .1890 
2.3489 1.0682 .850 .2202 -.0995 .1540 

1.4472 .6006 .750 .3333 
1.6086 .7258 .8 0 0 .2870 
1.A 010 .8848 .850 .2345 

2.6077 1.2950 .900 .1669 -.0650 .1140 2.0469 1.1003 .900 .1737 
2.6699 1.3513 .910 .1547 -.0582 .1050 
2.7375 1.4131 .920 .1419 -.0515 .0950 

2.1069 1.1546 .910 :1603 
2.1723 1.2144 .920 .1463 

2.8116 1.4817 .930 .1285 -.0448 .0860 2.2444 1.2811 .930 .1318 
2.8941 1.0588 .940 .1143 -.0381 .0760 2.3 250 1.3565 .940 .1166 

2.9 879 1.6475 .950 .0992 -.0316 .0650 
3.0 4 0 5 1.6976 .955 .0913 -.0283 .0600 
3.0979 1.7526 .960 .0831 -.0250 .0540 
3.1614 1.8138 .965 .0747 -~O 21 8 .0480 
3.2 3 2 8 1.8828 .970 .0659 -.0186 .0420 
3.3145' 1.9623 .975 .0567 -.0.154 .0360 
3.4 11 0 2.0566 .980 .0471 -.0122 .0300 
3.5 3 0 5 2.1741 .985 .0369 -.0091 .0230 

2.4171 1.4436 .950 .1007 
2.4 690 1.4930 .955 .0925 
2.5 257 1.5473 .960 .0840 
2.5 8 8 7 1.6079 .965 .0752 
2.6596 1.6766 .970 .0662 
2.7410 1.7557 .975 .0568 
213 3 75 1.8501 .980 .0470 
2~ 573 1.9.678 .985 .0367 

3.6 905 2.3320 .990 .0260 -.0060 .0160 
3.7306 2.3718 .991 .0237 -.0054 .0150 
3.7.749 2.4 158 .992 .0214 -.0047 .0130 
3.8 2 43 2.4647 .993 .0191 -.0041 .0120 
3.8803 2.5204 .9 94 • 0166 -.0035 .0100 

3.1183 2.1268 .990 .0258 
3 . .1588 2.1669 .991 .0235 
32034 2.2111 .992 .0212 
32532 2.2606 .993 .0189 
3.3098 2.3168 .994 .0165 

3.9452 2.5849 .995 .0142 -.0029 .0090 
4.0228 2.66.22 .996 .0116 -.0023 .0070 
4.:1.201 2.7591 .997 .0090 -.0017 .0050 
4.2524 2.8912 .998 .0062 -.0011 .0040 
4.4678 3.1062 .999 .0033 -.00'05 .0020 

3.3 755 2.3821 .995 .0140 
3.4 540 2.4603 .996 .0115 
35526 2.5586 .997 .0088 
3.15 869 2.6925 .998 .0061 
3.9056 2.9109 .999 ·0032 

55574 4-1955 l'oO~ .0000 .0000 .0000 
-

5.0257 4.0307 1.000 '-----_.0 000 

S 
-0.8000 
-.7690 
-.7375 
-.7056 
-.6731 

-.6400 
-.6063 
-.5717 
-.5363 
-.5000 

-.4627 
-.4243 
-.3848 
-.3439 
-.3016 

-.2577 
-.2119 
-.1641 

- .1137 
-.1 032 
-.0926 
-.0819 
-.0710 

-.0599 
-.0543 
-.0486 
-.0429 
-.0371 
-.0312 
-.0252 
-.0192 

-.0130 
-.0117 
-.0105 
-.0092 . 
-.0079 

-.0066 
-.0053 
-.0040 
-.0027 
-.0013 

.0 000 

S' 
0.403 
.403 
.403 
.403 
.402 

.401 

.399 

.396 

.391 

.386 

.379 

.369 

.357 

.342 

.323 

.298 

.268 

.230 

.180 

.169 

.156 

.143 

.128 

.11 3 

.104 

.096 

.087 

.077 

.067 

.057 

.045 

.032 

.030 

.027 

.024 

.021 

.018 

.015 

.012 

.008 

.004 

.000 

~ 
~ 
~ 
~ 
N 
U1 

~ 
U1 



TABLE 1. _ Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ = 1.5, Sw = -0.8 ~ = 2.0, Sw = -0.8 

n f fl fll S S' 

b 0 0 0.8689 -0.8000 0.4 2 61 
.0581 .0014 .050 .8504 -.7752 -42 61 
.1176 .0059 .100 .8296 - .7 4 98 .4 260 
.1788 .0136 ,150 .8065 -.7238 .4 2 58 
.2418 .0246 .200 .7812 -.6970 .4 253 

n f fl fll 

0 0 0 0.9480 
.0533 ~O 01. 3 .050 .9255 
.1081 .0054 .100 .9003 
.1 645 .0125 .150 .8724 
.2229 .0227 .200 .8421 

.3069 .0393 .250 .7537 -.6693 .4 2 45 

.3746 .0580 .300 .7240 -.6406 .4 231 

.4453 .0810 .350 .6922 -.6108 .421;1 

.5194 .1088 -400 .6582 -.5797 .4182 

.5975 .1421 .450 .6221 -.5471 .4 142 

.2834 .0364 .250 .8094 

.3466 .0538 .300 .7743 

.4128 .0754 .350 .7370 

.4826 .1016 .400 .6975 

.5565 .13·31 .450 .6558 

.6805 .1815 .500 .5838 - .5130 .4088 

.7694 .2283 .550 .5432 -.4770 .4015 
,8653 .2836 .6 0 0 .5003 -A 389 .3919 
.9701 .3491 .650 .4547 -.3985 .3792 

1.0864 .4277 .700 .4064 -.3554 .3625 

.6355 .1706 .500 .6121 

.7205 .2153 .550 .5662 

.8129 .2686 .600 .5181 

.9144 .3321 .650 .4678 
1.0278 .4087 .700 .4152 

1.?179 .5232 .750 .3549 -.3092 .3406 
1.3711 .6420 .800 .2998 -.2592 .3117 
1.5572 .7958 .850 .2402 -.2049 .2729 

1.1570 .5025 .750 .3600 
1.3086 .6202 .800 .3019 
1.4 9 4 1 .7735 .850 .2401 

1.7999 1.0085 900 .1744 -.1452 .2195 
1.8597 1.0627 .910 .1603 -.1 324 .2063 
1.9252 1.1226 .920 .1458 -.1194 .1921 
1.9977 1.1897 .930 .1308 -.1061 .1767 
2.0790 1.2657 .940 .1154 -.0924 .1599 

1.7377 .9870 .9 00 .1732 
1.7980 1.0415 .910 .1590 
1.8 640 1.1020 .920 .1445 
1.9372 1.1697 .930 .1296 
2.0193 1.2465 .940 .1142 

2.1724 1.3540 .950 .0993 -.0784 .1416 
2.2250 1.4 0 41 .955 .0910 -.0712 .1317 
2.2827 1.4 594 .960 .0825 -.0639 ,1213 
2.3469 1.5212 .965 .0738 -.0565 .1103 
2.4 193 1.5912 .970 .0648 -.0489 .09 86 
2.5025 1.6721 .975 .0555 -.0413 .0861 
2.6013 1.7687 .980 .0459 -.0335 .0726 
2.7240 1.8893 .985 .0358 -~O 2 55 .0580 

2.1137 1.3357 .950 .0982 
2.1 670 1.3864 .955 .0900 
2.2 254 1.4424 .9 r: 0 .0815 
2.2903 1.5048 .965 .0729 
2.3 636 1.5758 .970 .0640 
2.4 4 77 1.6576 .975 .0549 
2.5 4 76 1.7553 .980 .0454 
2/5 7 1 8 1.8773 .9 85 .0354 

2.8891 2.0524 .990 .0252 -.0173 .0419 
2.9307 2.0935 .991 .0229 -.0156 .0385 
2.9764 2.1389 .992 .0207 -.0139 .0349 
3.0276 2.1897 .993 .0184 -.0122 .0313 
3.0856 2.2473 .994 .01.60 -.0105 .0275 

2.8 387 2.0421 .990 .0249 
2.8 806 2.0837 .9 9 1 .0227 
2.9 2 69 2.1295 .992 .0205 
2.9 7 8 5 2.1808 .993 .0182 
3.0371 2.2390 .994 .0159 

3.1530 2.3144 .995 .0136 -.0088 .0236 
3.2336 2.3946 .996 .0112 -.0071 .0195 
3.3347 2.4953 .997 .0086 -.0054 .0152 
3.4 724 2.6327 .998 .0060 -.0036 .0107 
3.6 9 64 2.8564 .999 .0032 -.0018 .0058 

3.1 051 2.3066 .9 9 5 .0135 
3.1 8 6 4 2.3875 .996 -.0111 
32883 2.4891 .997 .0086 
3.4270 2.6274 .998 .0059 
3/5 5 26 2.8527 .999 .0031 

4.8 3 62 3.9959 1.000 .0000 .0000 .0000 4:7958 3.9956 1.000 .0000 

S 
-0.8 000 
-.7768 
-.7531 
-.7287 
-.7035 

-/5773 
-/5501 
-/5216 
-.5918 
-.5604 

-.5273 
-.4921 
-.4546 
-.4144 
<3711 

-.3242 
-.2729 
-.2166 

-.1539 
-.1405 
-.1267 
-.1. 12 5 
-.0980 

-.0831 
-.0754 
-.0677 
-.0598 
-.0518 
-.0437 
-.0353 
-.0269 

-.0182 
-.0164 
-.0146 
-.0129 
-.0111 

-.0093 
-.0074 
-.0056 
-.0037 
-.0019 

.0 000 

S' 
0.43 31 
.4331 
.4330 
.4329 
.4324 

.4317 

.4305 

.4287 

.4261 . 

.4225 

.4175 

.4108 

.4019 

.3898 

.3738 

.3525 

.3239 

.2848 

.2299 

.2163 

.2016 

.18 56 

.1680 

.1488 

.1384 

.1274 

.1158 

.1035 

.0904 

.0762 

.0608 

.0438 

.0402 

.0365 

.0326 

.0288 

.0246 

.0203 

.0158 

.0111 

.0060 

.0000 ._-

.,.. 
(J) 

~ 
~ 
~ 
UI 
UI 
N 
U1 



n f 
0 0 

.r. -.0008 

.4 -.0025 

.6 -.0038 
'" .0 -.0035 

-
1.0 -.0004 
1.2 .0069 
1.4 .0197 
1.6 .0393 
1.S .0673 

2.0 .104 S 
2.2 .1533 
8.4 .2138 
2.6 .• 2 S 73 
2.8 .3745. 

3.0 .4757 
3.2 .5912 
3.4 .7203 
3.6 .8625 
3.8 .1.0165 

4.0 1.1809 
4.2 1.3543 
4.4 1.5350 
4.6 1.7214 
4.8 1.9122 

5.0 2.1 0 6 2 
5.2 2.3024 
5.4 ~;.5 0 0 0 
5.6 2.69 B 6 
5.8 2.8978 

6.0 3.097 3 
6 " .G 3.29'70 
6.4 3.4':) 69 
6.6 3.6968 
6.8 3.8967 

TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ = -0.2350, Sw ~ -0.4 ~ = -0.2460, Sw'= -0.4 

f' f" S S' n f f' f" 

0 -0.0500 - 0.4000 0.1107 
-.0071 -.0213 -.3779 .1107 
-.0084 .00 B 5 -.3557 .1107 
-.0037 .0393 -.3336 .1108 
-.0073 .0712 -.3114 .1108 

0 0 0 0 
.2 .0002 .0030 .0301 
.4 .0016 .0121 .0615 
.6 .0055 .0277 .0940 
.8 .0131 .0495 .1276 

.0249 .1041 -.2893 .1109 

.0490 .1379 -.2671 .1108 

.0800 .1722 -.2449 .1 1 0 6 

.1179 .2067 -.2229 .1099 

.1627 .2404 -.2010 .1 0 8 8 

1.0 .0259 .0787 .1618 
1.2 .0451 .114 (i .1964 
1.4 .0721 .1573 .2305 
1.6 .1084 .2067 .2631 
1.8 .1552 .2623 .2929 

.2140 .2724 -.1794 .1069 

.G 7 14 .3013 -.1583 .1042 

.3342 .3256 -.1378 .1005 
.4 0 12 .3434 - .1182 .0 9 5 6 
.4 7 1 0 .3533 -.0996 .0895 

2.0 .2137 .3235 .3184 
2.2 .2849 .3893 .3379 
2.4 .3696 .4 582 .3497 
2.6 .4683 .5285 .3524 
2.8 .5810 .5985 .3452 

.5419 .3539 -.0825 .0822 

.6119 .3445 -.0668 .0739 

.6791 .3252 -.0529 .0649 

.7414 .2970 -.0409 .0554; 

.7974 .2621 -.0308 .0459, 

3.0 .7075 .6660 .3280 
3.2 .8471 .7291 .3017 
3.4 .9988 .7861 .268'1 
3.6 1.1611 .8360 .2298 
3·8 1.3326 .8780 .1 8 9 6 

.8459 .2229 -.0 225 .0369 

.8865 .1825 -.0160 .0286 

.9190 .1 436 -.0 110 .0214 

4.0 1.5118 .9119 .1504 
4.2 1.6969 .9384 .1146 
4.4 1.8867 .9581 .0839 

.944;:; .1085 -.0073 .0155 4.6 2.0798 .9723 .0589 

.9628 .0786 -.0048 .0107 4·8 2.2753 .9821 .0397 

.9760 .0547 -.0030 .0072 5.0 2.4724 ~9 8 8 5 .0257 

.9850 .0365 -.0018 .0046 

.9910 .0234 -.0011 .0029 

.9947 .0144 -.0006' .0017 

.9969 .0085 -.0003 .0010 

5·2 2.6705 .9926 .0160 
5.4 2.8693 .9952 .0096 
5.6 3.0685 .9967 .0056 
5.8 3.2679 .9975 .0032 

.9952 .0048 -.0002 .0005 

.9989 .0027 -.0001 .0003 
~ 3.4675 .9980 .0018 

-

.9993 .0014 -.0001 .0001 

.9995 .0007 -.0001 .0001 

.9997 .0003 .0000 .0000 

S 
- 0.4000 

- .3 750 
-.3500 
- .3 251 
-.3001 

-.2:7 5 2 
-.2504 
-.2260 
-.2018 
-.1782 

-.1552 
-.1333 
- .1126 
-.0 \/ 3 3 
-.0758 

-.0602 
-.0466 
-·0352 
-.0258 
-.0184 

-.0127 
-.0084 
-.0054 
-.0034 
-.0020 

-.0011 
'-.0006 
-.0003 
-.0001 
.0000 

0000 

S' 
0.1249 
.1249 
.1245' 
.1248 
.1246 

.1 2 4 1 

.1233 

.121 e 

.1197 

.1166 

.1124 

.1069 

.1002 

.0922 

.0 8 3 0 

.0730 

.0625 

.0520 

.0419 

.0327 

.0 2 4 6 

.0178 

.0124 

.0084 

.0054 

.0034 

.0020 

.0012 

.0006 

.0003 

0002 
------- -

~ 
~ 

~ 
<.N 
<.N 
N_ 
Ul 

~ 
-.J 



TABLE 1. _ Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS . 

. ~ = -0~2483, Sw = -0.4 ~ = -0.24, Sw = -0.4 

TJ f fl f" S S' 
0 0 0 0.0500 - 0.4000 0.1360 

.2 .0012 .0130 .0805 -.3728 .1360 

.4 .0056 .0323 .1122 -.3456 .1359 

.6 .0145 .0580 .1450 -.3184 .1 3 5 7 

.8 :0293 .0903 .1786 -.2913 .1351 

TJ f fl fll 

0 0 0 0.1064 
.3766 .0083 .050 .1628 
.6490 0284 .100 .2056 
.8732 :0562 .150 .2409 

1.0687 .0903 .200 .2707 

1.0 .0511 .1294 .2123 -.2644 .1340 
1.2 .0815 .1752 .2453 -.2378 .1323 
1.4 .1216 .2274 .2765 -.2116 .1296 
1.6 .17.28 .2856 .3045 .-.1860 .1 2 5 9 
1.8 .2362. .3489 .3276 -.1613 .1209 

1.2453 .1299 .250 .2956 
1.4087 .1748 .300 .3160 
1.5628 .2248 .350 .3322 
1.7106 .2802 .400 .3442 
1.8541 .3412 .450 .3518 

2.0 .3126 .4162 .3441 -.1377 .1145 
2.2 .4028 .4 860 .3524 - .1156 .1066 
2.4 .5071 .5565 .3513 -.0952 .0973 
2.6 .6254 .6258 .3402 -.0768 .0869 
2.8 .7572 .6919 .3193 -.0605 .0 7 5 7 

1.9955 .4083 .500 .3549 
2.1366 .4824 .550 .3533 
2.2793 .5644 .600 .3466 
2.4 2 5 9 .6561 .650 .3346 
2.5793 .7596 .700 .3166 

3.0 .9018 .7530 .2899 -.0465 .0641 
3.2 1.0580 .8075 .2541 -.0348 .0528 
3.4 1.224 3 .8544 .2146 -.0253 .0420 

2.7433 .8786 .750 .2921 
2.9242 1.0189 .800 .2600 
3.1328 1.1912 .850 .2191 

3.6 1.3992 .8933 .1744 -.0179 .0/323 
3.8 1.5 8 1 1 .9243 .1.362 -.0123 .0240 3·3918 1.4181 .900 .1 IS 72 

3.4538 1.4742 .910 .1552 

4.0 1.7684 .9480 .1021 -.0082 .0 1 7 2 
4.2 1.9598 .965.4 .0734 -.0054 .0118 

4.4 2.1 5 4 2 .9778 .0506 -.0034 .0078 
4.6 2.3 5 0 7 .9861 .0335 -.0022 .0050 
4.8 2.5 4 8 5 .9915 .0213 -.0014 .0031 

3.5210 1.5357 .920 .1425 
3.5947 1.6039 .930 .1291 
3.6767 1.6806 .940 .1149 

3.7698 1.7686 .950 .0999 
3.8220 1.8183 .955 .0920 

5.0 2.7471 .9949 .0130 -.0009 .0018 
5.2 2.9463 .9969 .0076 -.0006 .0010 
5.4 3.1 4 5 8 .9980 .0043 -.0005 .0006 
5.6 3.3455 .9987 .0024 -.0004 .0003 
5.8 3.5 4 5 3 .9991 .0013 -.0 CO 3 .0001 

3.8789 1.8728 .960 .0838 
3.9418 1.9333 .965 .0753 
4.0125 2.0017 .970 .0664 
4.0934 2.0805 .975 .0572 
4.1891 2.1740 .980 .0475 
4.3074 2.2902 .985 .0372 

6.0 3.7451 .9992 .0006 -.0003 .0001 
6.2 39450 .9993 .0004 -.0003 .0000 
6.4 4.1 448 .9994 .0000 -.0003 .0000 

4.4658 2.4467 .990 .0263 
4.5056 2.4861 .991 .0240 
4.5493 2.5295 .992 .0216 
4.5982 2.5780 .993 .0192 
4.6536 2.6330 .994 .0168 

4.7179 2.6970 .995 .0143 
4.7947 2.7735 .996 .0117 
4.8912 2.8696 .997 .0090 
5.0226 3.0006 998 .0062 
5.2317 3.2144 999 .0049 

6.5567 4.5414 1.0 00 .0000 

S 
-004000 

-.3447 
-.3050 
-.2726 
-.2447 

-.2199 
- .1974 
-.1768 
-.1577 
-.1399 

-.1232 
-.1074 
-.0926 
-.0785 
-.0651 

-.0525 
-.0405 
-.0292 

-.0186 
-.0165 
-.0145 
-.0126 
-.0106 

-.0087 
-.0078 
-.0068 
-.0059 
_.0050 
_.0041 
_.0033 
_.0024 

_.0016 
_.0014 
_.0012 
_/JOll 
_/J009 

_.0008 
-.0006 
_/J004 
_.0003 
-/JOOl 

-.0 0 0'0 

S' 
0·1473 
.1460 
.1452 
.1438 
.1418 

.1390 

.1356 

.1315 

.1267 

.1212 

.1150 

.1080 

.1002 

.0916 

.0822 

.0719 

.0606 

.0481 

.0343 

.0314 

.0283 

.0252 

.0221 

.0188 

.0171 

.0154 

.0136 

.0119 

.0101 

.0082 

.0063 

.0043 

.0039 

.0035 

.0031 

.0027 

.0022 

.0018 

.0014 

.0009 

.0004 

.0000 

... 
CD 

~ 
&; 

~ 
()l 
UI 

rn 



T) f 
0 0 
.2161 .0052 
.4108 .0197 
.5892 .0419 
.7551 .0709 

.9115 .1060 
1.0606 .1470 
1.2044 .1937 
1.3444 .2461 
1.4 8 2 1 .3047 

1.6191 .3697 
1.7569 .4421 
1.8971 .5227 
2.0419 .6132 
2.1939 .7159 

2.3571 .8343 
2.5375 .9742 
2.7460 1.1464 

3.0054 1.3737 
3.0676 .1.4300 
3.1 350 1.4911i 
3.2089 1.5600 
3.2911 1.6369 

3.3846 1.72 5 3 
3.4 3 69 1.7751 
3.4 94 1 1.8298 
3.5 5 7 2 1.8906 
3.6281 1.9592 
3.7094 2.0382 
3.8054 2.1321 
3.9240 2.2486 

4.0829 2.4056 
4.1 228 2.4451 
4.1668 2.4887 
4.2158 2.5373 
4.2714 2.5926 

4.3358 2.6567 
4.4129 2.7334 
4.5096 2.8297 
4.6411 2.9609 
4.8545 3.1740 

5.9279 4.2471 

TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSmLE BOUNDARY-LAYER EQUATIONS. 

~ ; -0.2, Sw; -0.4 ~ ; 0.5, Sw; -0.4 

f' f" S S' T) f f' f' , 

0 0.2182 -0.4 000 0.1626 
.050 .2447 -.3648 .1625 
.100 .2692 -.3332 .1621 
.150 .2914 -.3044 .1612 
.200 .3111 -.2778 .1597 

0 0 0 0.7946 
.0637 .0016 .050 .7753 
.1290 .0065 .100 .7551 
.1962 .0149 .150 .7339 
.2654 .0270 .200 .7116 

.250 .3281 -.2529 .1575 

.300 .3422 -.2297 .1546 

.350 .3531 -.2077 .1501 

.400 .3607 -.1869 .1463 

.450 .3646 -.1671 .1409 

.3368 .0431 .250 .6881 

.4108 .0635 .300 .6632 

.4 8 78 .0886 .350 .6369 

.5681 .1187 .400 .6090 

.6523 .1546 .450 .5793 

.500 .3647 -.1482 .1345 

.550 .3606 -.1302 .1272 

.600 .3519 -.1129 .1189 

.650 .3381 -.0964 .1096 

.700 .3188 -.0805 .0990 

.7411 .1968 .500 ;5477 

.8354 .2464 .550 .5138 

.9364 .3046 .600 .4774 
1.0456 .3729 .650 .4381 
1.1657 .4540 .700 .3956 

.750 .2932 -.0653 .0873 

.800 .2604 -.0508 .0742 

.850 .2190 -.0369 .0595 

1.3001 .5516 .750 .3493 
1.4 548 .6716 .800 .2984 
1.6406 .8252 .850 .2417 

.900 .1668 -.0236 .0429 

.910 .1548 - '.0211 .0393 

.920 .1421 -.0186 .0356 

.930 .1287 -.0161 .0318 

.940 .1146 -.0136 .0279 

1.8804 1.0353 .900 .1775 
1.9391 1.0885 .910 .1635 
2.0032 1.1471 .920 .1490 
2.0741 1.2127 .930 .1339 
2.1535 1.2870 .940 .1183 

.950 .0995 -.0112 .0239 

.955 .0916 -.0100 .0218 

.960 .0835 -.0088 .0196 

.965 .0750 -.0077 .0175 

.970 .0662 -.006S .0152 
:975 .0570 -.0054 .0129 
.980 .0473 -.0042 .0106 
.985 .0373 - .0 031 .0082 

2.2445 1.3730 .9 50 .1020 
2.2957 1.4 2 1 8 .955 .0935 
2.3519 1.4 7 5 6 .960 .0848 
2.4 1 4 3 1.5356 .965 .075,9 
2.4 8 4 6 1.6037 .970 .0667 
2.5654 1.68 23 .975 .0 572 
2.6614 1.7761 .980 .0 472 
2.7807 1.8933 .985 .0 36'9 

.990 .0262 -.0020 .0057 

.991 .0239 -.0018 .0051 

.992 .0216 -.0 016 .0046 

.993 .0192 -.0014 .0041 

.994 .0167 -.0012 .0035 

2.9412 2.0518 .990 .0 259 
2.9816 2.09 18 .991 .0 236 
3.0261 2.1360 .9 9 2 .0 2 1 3 
3.0759 2.18 54 .993 .0189 
3.1324 2.2 416 .994 .0 1 65 

.995 .0142 -.0010 .0029 

.996 .0117 -.0008 .0024 I 

.997 .0090 -.0005 .0019 

.998 .0062 -.0003 .0013: 

.999 .0033 -.0001 .0007 ! 

3.1980 2.3 068 .995 .0140 
3.2766 2.3850 .996 .0115 
3.3752 2.4 8 33 .997 .0 088 
3.5097 2.6174 .9 9 8 .0 0 61 
3.7288 2.8362 .999 .0 0 32 

1.000 .0000 .0000 .0000 4.8386 39458 1.000 .0 000 
- ---------

S 
-004000 
-.3866 
-.3730 
-.3590, 
-,34'45 

-;3296 
-.31-43 
-.2984 
-.2819 
-.2648 

-.2470 
-.2284 
-.2090 
-.1887 
-.1673 

-J.447 
-.1207 
-.0950 

-.0672 
-.0613 
-.0554 
-.0492 
-.0430 

-.0365 
-.0332 
-.0299 
-.0265 
-.0230 
-.0195 
-.0159 
-.0122 

-.0083 
-.0075 
-.0068 
-.0060 
-.0051 

- P 04 3 
-.0035 
- P 026 
-.0018 
-.0009 

DOOO 

S' 
0.209 
.209 
~ 2 09 
.209 
.208 

.208 

.207 

.206 

.204 

.202 

.199 

.195 

.190 

.183 

.174 

.163 

.148 

.129 

.103 

.097 

.090 

.083 

.075 

.067 

.062 

.057 

.052 

.047 

.041 

.035 

.028 

.020 

.019 

.017 

.015 

.013 

.012 

.010 

.008 

.005 

.003 

.000 

~ 
f;; 

~ 
til 
til 
C\l 
CJ1 

"" to 



TI 
0 

.0381 

.0777 

.1190 

.1 ti 2 0 

.2071 

.2 S 4 6 

.3049 

.3583 

.4155 

.4772 

.5443 

.6181 

.7002 

.7932 

.9011 
1.0302 
1.1921 

1.4116 
1.4 671 
1.5284 
1.5970 
1.6748 

1.7 65 :1 
1.8164 
1.8731 
1.9365 
2.0086 
2.0919 
2.1 914 
2.3161 

2.4 8 5 0 
2.5276 
2.5 747 
2.6274 
2.6 8 7 3 

2.7569 
2.8402 
2.9449 
3.0875 
3.3196 

4.4 979 

TABLE 1. _ Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ = 2.0, Sw = -0.4 
~ - ~0.1947, Sw - 0 

f f' fll S S' TI f f' f" 

0 0 1.3329 -0.4000 0.230 
.0009 .050 1.2868 -.3912 .230 
.0039 .100 1.2386 -.3820 .230 
.0091 .150 1.1884 -.3725 :230 
.0166 .200 1.1360 -.3626 .230 

0 0 0 -0.0500 
.2 -.0007 -.0061 -.0111 
.4 -.0019 -.0044 .0279 
.6 -.0020 .0051 .0669 
.. 8 .0006 .0223 .1058 

.0268 .250 1.0816 -.3523 .230 

.0399 .300 1.0252 -.3413 .229 

.0563 .350 .9668 -.3356 .229 

.0764 .400 .9064 -.3176 .228 

.1007 .4 5 0 .8440 - ~, 046 .227 

1.0 .0075 .0474 .1446 
1.2 .0201 .0801 .1829 
1.4 .0400 .1205 .2203 
1.6 .0688 .1681 .2559 
1.8 .1077 .2226 .2885 

.1301 .500 .7797 _.2906 .225 

.1654 .550 .7134 _.2756 '.223 

.2079 .600 .6450 _.2592 .220 

.259.3 .650 .5746 -.2413 .216 

.3222 .700 .5021 _.2215 .210 

2.0 .1582 .2833 .3169 
2.2 .2214 .3490 .3395 
2.4 .2981 .4186 .35.47 
2.6 .3889 .4903 .3610 
2.8 .4942 .5623 .3574 

.4005 .750 .4276 -.1992 .202 

.5007 .800 .3507· -·.1738 .191 

.6345 .850 .2714 -.1442 .174 

3.0 .6138 .6326 .3436 
3.2 .7470 .6991 .3202 
3.4 .8930 .7601 .2885 
3.6 1.0506 .8141 .2510 

.8269 .900 .1890 -.1087 .14 e 3.8 1.2182 .8602 .2104 

.8772 .910 .1721 -.1007 .141 

.9333 .920 .1549 -.0922 .134 

.9967 .930 .1376 -.0833 .125 
1.0695 .940 .1200 -.0739 .116 

4.0 1.3941 .89 e 3 .1697 
4.2 1.5769 .9284 .1316 
4.4 1.7650 .9512 .0980 
4.6 1.9570 .9679 .0700 

1.1549 .950 .1021 -.0640 .104 4.8 2.1518 .9796 .0480 

1.2038 .955 .0930 - .0 587 .098 
1.2581 .960 .0838 -.0533 .092 
1.3191 .965 .0744 - .0 477 .085 
1.3888 .970 .0649 - .0 41 9 .077 
1.4698 :975 .0553 - .0 358 .068 
1.5672 .980 .0454 - .0295 .058 
1.6897 .985 .0352 -.0229 .048 

5.0 2.3486 .9875 .0315 
5.2 2.5467 .99.26 .0199 
SA 2.7455 !)957 .0121 
5.6 2.9448 !)976 .0070 
5.8 3.1444 !) 986 .0039 

6.0 3.3443 .9992 .0021 

1.8565 .990 .0245 -.0158 .035 
1.8987 .991 .0223 -.0144 .032 
1.94 54 .992 .0201 -.0129 .030 
1.997.7 .993 .0178 -.0114 .027 

6.2 3.5442 .9995 .0011 
6.4 3.7441 .9997 .0006 
6.6 3.9440 .9998 .0002 
6.8 4.1440 .9998 .0002 

2.0572 .994 .0155 -.0099 .024 

2.1264 .995 .0132 -.0083 .020 
2.2093 .996 .0108 -.0067 .017 
2.3136 !)97 .0083 -.0051 .013 
2.4559 .998 .0058 -.0034 .009 
2.6877 .999 .0030 -.0017 .005 

3.8657 1.000 .0000 .0000 .000 

! 

U1 
'0 

~ 
&; 

~ 
CJ.l 
CJ.l 
[\) 
U1 



n f 
0 0 

.2 -.0030 

.4 -.0108 

.6 -.0220 

.8 -.0349 

1.0 _.0483 
1.2 _.0605 
1.4 _.0702 
1.6 _.0759 
1.8 _.0763 

2.0 _.0699 
2.2 _.0553 
2.4 _.0312 
2.6 .0037 
2.8 .0506 

3.0 .1104 
3.2 .1839 
3.4 .271 G 
3.6 .3742 
3.8 .4 909 

4.0 .6215 
4.2 .7649 
4.4 .9 2 0 1 
4.6 1.0 8 5,5 
4.8 1.2597 

5.0 1.4 4 09 
5.2 1.6277 
5.4 1.8186 
5.6 2.0127 
5.8 2.2039 

6.0 2.4 0 6 5 
6.2 2.6050 
6.4 2.8041 
6.6 3.0036 
6.8 3.2033 

7.0 3.4 0 30 
7.2 3.6 0.2 0 
7.4 3.8027 
7.6 4.0025 
7.8 4.2024 

TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ - -0.1, Sw - 1.0 ~ = -0.1305, Sw = 1.0 

fl f S SI n f fl f" S 

0 -0.1613 1.0000 O.G 0 76 
-.0283 -.1217 ,.9505 -.2 II 76 

0 0 0 -0.050 0 1.0000 
.2 -.0007 -.0048 .0014 .9372 

-.0488 -.0831 .9169 -.2079 .4 -.0013 .0004 .0511 .8744 
-.0616 -.0455 .8753 -.2066 .6 .0002 .0155 .0992 .811'7 
-.0670 - .0 086 .8335 -.209:3 .B .0056 .0400 .1456 .7489 

-.0651 .0276 .791 :3 -.2115 1.0 .0168 .0'736 ·.1900 .6862 
-.0560 .0635 .7 4 i3 8 -.213;3 1.2 .0356 .11 :, 9 .2319 .6237 
-.0"397 .0990 .70 S 8 -.21. 6 '7 1.4 .0637 .1661. .2704 .5616 
-.0164 .134'4 .6621 -.2199 

.0140 .1695 .6178 -.2233 
1.6 .1025 .2237 .) 046 .5004 
1.8 .1536 .28'76 .3 3 3 1 .4404 

.0514 .2042 .5728 -.2266 2.0 .2179 .356.5 .3545 .3822 

.0956 .2378 .5272 -.2295 2.2 .2964 .4208 .3672 .3266 

.1464 .2699 .4 ;:; 1 1 -.2 j 1:; 2.4 .3896 .5028 .3702 .2741 

.2034 .2992 .4 "347 -.2322 2.6 .4 975 .5762 .3627 .2256 

.2658 .3247 .38 i3 4 -.2310 2.8 .6199 .6472 .3449 .1817 

.33;-; 9 .3448 .3425 -.2273 3.0 ',7560 .71 3 ~ , .3176 .1428 

.4 033 .3582 .2976 -.2208 3.2 .9049 .7737 .2828 .1095 

.4756 .3634 .2544 -.21 i 0 

.5481 .3595 .21.35 -.19 7 a 
3.4 1.0650 .8263 .2430 .0816 
3.6 1.2"349 .8707 .BO 12 .0591 

.6188 .3461 .1755 -.1 U 15 3.8 1.41 28 .9068 .1603 .0414 

.6859 .32"36 .1410 -.1624 4.0 1.5971 .9351 .1227 .0 282 

.7477 .2931 .1106 -.1414 

.8028 .2568 .0845 - .1196 
4.2 1.7863 .9563 .0903 .0186 
4.4 '1.9792 .9716 .0637 .0118 

.8502 .2172 .0628 -.0979 4.6 2.1746 .9822 .0432 .0 () '7 2 

.8896 .1771 .045.? -.0774 4.8 2.3718 .9892 ,0281 .0043 

.9211 .1390 .0317 -.0591 

.9455 .1048 .0215 -.04"35 

.9635 .0760 .0141 -.0308 

.9763 .0529 .0090 -.0 210 

5.0 2.5701 .9937 .0175 .0025 
5.2 2.7692 .9964 .0105 .0014 
5.4 2.9686 .9981 .0061 .0007 
5.6 3.1684 .9990 .0034 .0004 

.9050 .0354 .0056 -.01"37 5.8 3.3682 .9995 .0018 .0002 
I 

.9908 .0227 .00"33 -.00 G 7 6.0 3.5 6 8 1 .9997 .0009 .0001 

.9944 .0140 .0020 -.0052 6.2 3.7681 .9999 .0005 .0000 

.9966 .0033 .0012 -.0 0 ~11 6.4 3.9681 .. 9999 .0002 .0000 

.9978 .004 S .0007 -.0017 

.9986 , .0026 .0004 -.0009 

.9990 .0014 .0003 _.0005 1 

.9992 .0007 .0002 _.0002 1 

.9993 .0004 .0002 -.00011 

.9993 .0003 .0002 -.0001
1 

.9994 .0001 .0002 .0000 
-_ .. 

SI 

- 0.3139 
-.3139 
-.31"39 
-.3140 
-.31"38 

-.3132 
-.3116 
-.30 G 5 
-.3035 
-.29:; 9 

-.2852 
-.2709 
.-.2530 
-.2316 1 
-.2072 

-.1806 
-.1530 
-.1257 
-.09 99 
-.0 76'7 

-.0567 i 

-.0404' 
-.0277 
-.0163 
-.0116 

-.00',1 
-.0042 
-.0024 
-.0013 
-.0007 

-.0003 
-.0001 
-.0001 

~ 
&; 

~ 
()I 
()I 
C\) 

.CJ1 

01 
t--' 



7) f 
0 0 

.2 .0003 

.4 .0027 

.6 .009 i 

.8 .0213 

1.0 .0413 
1.2 .0706 
1.4 .1108 
1.6 .1634 
1.8 .2293 

2.0 .3094 
2.2 .4043 
2.4 .5139 
2.6 .6380 
2.8 .7757 

3.0 .9260 
3.2 1.0874 
3.4 1.2583 
3.6 1.4371 
3.8 1.6221 

4.0 1.8118 
4.2 2.0 0 5 1 
4.4 2.2008 
4.6 2.3981 
4.8 2.5966 

5.0 2.7957 
5.2 2.9952 
5,4 3.1949 
5.6 3.3948 
5.8 3.5947 

6.0 3.7947 
6.2 3.9947 
6.4 4.1947 

TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

~ = -0.1295, ·Sw = 1.0 ~ = -0.1, Sw = 1.0 

f' f" S S' 
0 0 1.0000 - 0.3389 
.0051 .0509 .9322 -.3389 
.0203 .1001 .8645 -.3388 
.0450 .1473 .7967 -.3384 
.0790 .1924 .7291 -.3374 

7) f f' fIr 

0 0 0 0.1805 
.2451 .0057 .050 .2284 
.4477 .0207 .100 .2654 
.6260 .0429 .150 .2954 
.7885 .0712 .200 .3199 

.1218 .2347 .6618 -.3354 

.1727 .2735 .5951 -.3317 

.2309 .3076 .5293 -.3258 

.2953 .3358 .4 650 -.3170 

.3647 .3565 .4027 -.3049 

.9400 .1053 .250 .3398 
1.0837 .1448 .300 .3554 
1.2220 .1897 .350 .3670 
1.3568 .2402 .400 .3745 
1.4896 .2967 .450 .3778 

.4 3 7 3 .3684 .3433 -.2890 

.5114 .3702 .2874 -.2691 

.5847 .3615 .2359 -.2456 

.6553 .3425 .1894 -.2189 

.7211 .3141 .1485 -.1901 

1.6220 .3595 .500 .3769 
1.7555 .4296 .550 .3716 
1..8918 .5080 .600 .3615 
2.0329 .5962 .650 .3463 
2.1815 .6966 .700 .3255 

.7 804 .2784 .1134 -.1 604 

.8 3 2 1 .2382 .0843 -.1312 

.8756 .1 9 6 3 .0608 -.1038 

.9 1 0 7 .1556 .0426 -.0793 

.9381 .1185 .0289 -.0584 

2.3416 .8128 .750 . 2985 
2.5192 .9505 .800 .2642 
2.7250 1.1204 .850 .2215 

2.9818 1.3455 .900 .1682 
3.0 4 3 6 1.4013 .910 .1560 

.9 5 8 5 .0867 .0189 -.0414 

.9731 .0609 .0120 -.0282 

.9 8 3 2 .0410 .0074 -.0185 

.9 8 9 9 .0265 .0044 -.0117 

.9 9 4 1 .0165 .0026 -.0071 

3J.l05 1.4625 .920 .1431 
3J.839 1.5304 .930 .1295 
3.2 656 1.6069 .940 .1152 

3.3586 1.6948 .950 .1000 
3.4107 1.7444 .9 5 5 .0920 

.9 9 6 7 .0098 .0015 -.0042 

.9 9 8 2 .0056 .0009 -.0023 

.9991 .0031 .0005 -.0013 

.9 9 9 5 .0017 .0003 -.0007 

.9998 .0008 .0002 -.0003 

3.4676 1.7 989 .960 .0838 
3.5305 1.8594 .965 .0753 
3.6011 1.9278 .9 70 .0664 
3.6821 2.0066 .9 7 5 .0571 
3.7779 2.1002 .9 80 .0474 
3.8964 2.2166 .,9 8 5 .0372 

.9999 .0004 .0002 -.0001 
1.0000 .0001 .0002 -.0001 
1.0000 .0003 .0001 -.0001 

----

4.0551 2.3734 .990 .0262 
4.0950 2.4128 ,991 .0239 
4J.388 2.4563 .992 .0216 
4J.878 2.5049 ,993 .0192 
4.2433 2.5601 ,994 .0168 

4.3077 2.6241 ,995 .0143 
4.3847 2.7008 ,996 .0117 
4.4813 2.7971 ,997 .0090 
4.6129 2.9283 ,998 .0062 
4.8269 3.1420 ,999 .00·33 

5.9066 4.2 215 1.0 0 0 .0000 

S 
1.0000 
.9012 
.8197 
.7482 
.6836 

.6241 

.5684 

.5160 

.4662 

.4186 

.3731 

.3293 

.2872 

.2465 

.2071 

.1691 . 

.1324 

.0969 

.0628 

.0561 

.0496 

.0430 

.0366 

.0302 

.0270 

.0239 

.0208 

.0177 

.0146 

.0116 

.0086 

.0056 
.0050 
.0045 
.0039 
.0033 

.0027 

.0022 

.0016 

.0010 

.0005 

.0000 

S' 
-0.4033 
-.4027 
-.4016 
-.3993 
-.3956 

-.3904 
-.383 4 
-.3747 
-.3640 
-.3513 

-.3364 
- .3192 
-.2994 
-.2770 
-.2517 

-.2231 
-.1908 
-.1542 

- .1124 
-.1033 
-.0938 
-.0841 
-.0739 

-.0634 
-.0580 
-.0524 
-.0467 
-.0409 
-.0348 
-.0286 
-.0221 

-.0154 
-.0140 
-.0126 
-.0111 
-.0097 

-.0082 
-.0066 
-.0051 
-.0035 
-.0018 

.0000 

(J1 
N 

~ 
~ 

~ 
~ 
~ 
N 
(J1 

11 



n f 
0 0 
~1 .0048 
.2 .0189 
.3 .0416 
.4 .0724 

.5 .1107 

.6 .1560 

.7 .2078 

.8 .2655 

.9 .3286 

1.0 .3966 
1.1 .4690 
1.2 .5454 
1.3 .6254 
1.4 .7084 

1.5 .7942 
1.6 .8824 
1.7 .9727 
1.8 1.0647 
1.9 1.1582 

2.0 1.2530 
2.1 1.34 89 
2.2 1.4456 
2.3 1.5430 
2.4 1.6409 

2.5 1.7394 
2.6 1.8382 
2.7 1.9373 
2.8 2.0366 
2.9 2.1361 

3.0 2.2358 
3.1 2.3355 
3.2 2.4353 
3.3 2.5352 
3:4 2.6351 

3.5 2.7350 
3:6 2.8350 
3;7 2.9349 
.3.8 3.0349 
3.9 3.1349 

4.0 3.2349 
4.1 3.3349 
4.2 3.4 3 4 9 
4.3 3.5349 
4.4 3.6 349 

4.5 3.7349 
4.6 3.8 349 
4.7 39349 

TABLE 1. _ Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

f3 - 0.3, Sw - 1.0 f3 - 0.5, Sw - 1.0 

f' f" S S' n f f' f" 
0 0 0 1.2351 

.2 .0234 .2274 1.0409 

.4 .0885 .4172 .8591 

0 0.9829 1.0000 . - 0.5457 
.0953 .9237 .9454 -.5456 
.1848 .8657 .8909 -.5450 

.6 .1879 .5720 .6918 

.s .3151 .6950 .541"4 
.2665 .8089 .8365 -.5434 
.3466 .7531 .7823 -.5403 

1.0 .4640 .7898 .4103 
1.2 .6295 .8605 .3000 
1.4 .8069 .9113 .2108 
1.6 .9929 .9462 .1417 
1.8 1.1846 .9692 .0908 

.4192 .6983 .7285 -.5354 

.4863 .6445 .6752 -.5284 

.5461 .5919 .6229 -.5189 

.6047 .5406 .5716 -.5067 

.6563 .4909 .5216 -.4919 

2.0 1.3800 .9835 .0550 
2.2 1.5776 .9920 .031·3 
2.4 1.7765 .9966 .0165 
2.6 1.9 76·1 .9990 .0078 
2.8 2.1760 1.0000 .0031 

.7029 .4430 .4733 -.4744 

.7449 .3971 .4268 -.4544 

.7625 .3535 .3825 -°.4 319 

.8157 .3124 .3405 -.4074 

.8450 .2740 .3011 -.3811 

3.0 2.3761 1.0004 .0009 
3.2 2.5762 1.0004 -.0001 
3.4 2.7762 1.0004 -.0004 
3.6 2.9763 1.0003 -.0004 

.8706 .2384 .2643 -.3535 

.8928 .2058 .2304 -.3251 

.9119 .1761 .1993 -.2963 

.9281 .1494 .1711 -.2676 

.9419 .1256 .1458 -.2395 3.8 3.1764 1.0002 -°.00 0 3 

.• 9534 .1048 .1232 -.2123 4.0 3.3764 1.0002 -.0002 
4.2 3.5764 1.0001 -.0002 
4.4 3.7765 1.0001 -.0001 
4.6 3.9765 1.0001 -.0001 
4.8 4.1765 1.0001 -.0001 

°.9629 .0865 .1033 -.1864 
.9708 .0708 .0859 -.1621 
.9771 .0574 .0708 -.1396 
.9823 .0460 .0579 - .11 90 

5.0 4.3765 1.0001 -.0001 
5.2 4.5765 1.0000 -.0001 
5.4 4.7765 1.0000 -.0001 
5.6 4.9765 1.0000 -.0001 

.9864 .0 366 .0470 -.1005 

.9897 .0288 .0377 -.0841 

.9922 .0224 .0301 -.0696 

.9942 .0173 .0238 -.0571 

.9957 .0 13 2 .0186 - .0 4 63 _. 

.9969 .0100 .0144 - .0 3721 

.9977 .0075 .0111 -.0296 

.9984 .0055 .0085 -.0233 

.9989 .0040 .0064 -.0182 

.9992 .0029 .0048 - .0 141 I 

.9995 .0021 .0036 - .0 1071 

.9996 .0015 .0026 - .0 081 

.9998 .0010 .0019 -.0061 

.9998 .0007 .0014 -.0045 

.9999 .0005 .0010 -.0033 
I 

.9999 .0003 .0007 -.0024, 
1.0000 .0002 .0005 -.0017 
1.0000 .0001 .0004 -.0012 
1.0000 .0001 .0003 -.0009 
1.0000 .0001 .0002 -.0006 

1.0000 .0000 .0001 -.0004 
1.0000 .0000 .0001 -.0003 
1.0000 .0000 .0001 -.00021 

S 

1.b 000 
.8855 
.7717 
.6599 
.5523 

.4513 

.3592 

.2780 

.2088 

.1521 

.1072 

.0732 

.0484 

.0310 

.0193 

.0117 

.0069 

.0041 

.0025 

.0016 

.0011 

.0008 

.0007 

.0006 

.0006 

.0006 

.0006 

.0006 

.0006 

S' 

- 0.5725 
-.5716 
-.5656 
-.5505 
-.5237 

-.4846 
-.4346 
-.3767 
-.3147 
-.2532 

-.1959 
-.1457 
-.1041 
-.0714 
-.0471 

-.0299 
-.0182 
-.0106 
-.0061 
-.0032 

-.0017 
-.0008 
-.0004 
-.0002 
-.0001 

.0000 

.0000 

.0000 

.0000 

~ 
&; 

~ 
til 
til 
N 
Q1 

en 
til 



TABLE 1. - Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

t3 - 1.0, .Sw - 1.0 t3 = 1.5, Sw - 1.0 

n f f' f' 8 8' n f f' f" 

0 0 0 1.7368 1.0000 - 0.6154 
.1 .0084 .1638 1.5403 .9384 -.6152 
.2 .0321 .3084 1.3526 .8770 -.6140 
.3 .0694 .4347 1.1758 .8157 -.6110 

0 0 0 2.1402 
.1 .0102 .1992 1.8 46 4 
.2 .0389 .3699 1.5697 
.3 .0833 .5139 1.3150 

.4 .1185 .5439 1.0114 .7549 -.6053 .4 .1409 .6337 1.0854 

.5 .1776 .6374 .8603 .6948 -.5965 .5 ;2093 .7318 .8818 

.6 .2455 .7165 .7232 .6357 -.5840 .6 .2866 .8109 .7 (J .. 4 

.7 .3205 .7825 .6004 .5781 -.56 77 .7 .3709 .8736 .S 5 G 1 

.8 .4016 .8370 .4915 .5223 -.5476 .8 .4608 .9281 .48:5 4 

.9 .4 8 76 .8812 .3965 .4687 -.5238 .9 .5550 .9590 .3163 

1.0 .5776 .9167 .3142 .4176 -.4967 1.0 .6 5 2 3 .9861 .2287 
1.1 .6707 .9445 .2442 .3694 -.4666 1.1 .7519 1.0053 .1582 
1.2 .7663 .9659 .1857 .3243 -.4343 1.2 .8531 1.0182 .10" 6 
1.3 .8637 .9820 .1372 .2 e 2 6 -.4003 1.3 .9554 1.0262 .0598 
1.4 .9625 9936 .0979 .2444 -.3654 1.4 1.0583 1.0305 .0277 

1.5 1.0623 1.0019 .0666 .2096 -.3302 1.5 1.1614 1.0321 .0044 
1.6 1.1628 1.0073 .0422 .1783 -.2954 1.6 1.2646 1.0'316 - .011 7 
1.7 1.2637 1.0105 .0237 .1505 -.2617 1.7 1.3677 1.0299 -.0221 
1.8 1.3648 1.0122 .0101 .1259 -.3294 1.8 1.4706 1.0274 -.Q.Z 82 
1.9 1.4 661 1.0126 .0004 .1045 -.1992 1.9 1.5731 1.0244 -.0310' 

2.0 1.5673 1.0123 -.0061 .0860 -.1711 
2.1 1.6685 1.0 1 1 5 -.0101 .0702 -.1456 

2.0 1.6754 1.0212 -.0314 
2.1 1.77 74 1.0181 -.0302 

2.2 1.7696 1.0104 -.0123 .0568 -.1226 2.2 1.8791 1.0152 -.0 27 9 
2·3 1·8706 1.0091 -.0131 .0456 -.1022 
2.4 1.9714 1.0 0 7 8 .. 0130 .0363 -.08 43 

2.3 1.9805 1.0126 -.0 250 
2.4 2.0816 1.0102 -.0219 

2·5 2.0722 1.0065 -.0122 .0286 -.0689 
2.6 2.1728 1.0053 -.0111 .0224 -.0557 
2.7 2.2 7 ~F 1.°8~3 -.009 ~ .0 I ~ 4 -'8 j 16 I 2.8 2.37 6 1.0 4 -.008 .0 4 -. ::> 4 
2.9 2.4739 1.0 0 2 6 -.0071 .0103 -.0277 I 

2.5 2.1825 1.0082 -.0188 
2.6 2.2832 1.0065 -.015 8 
2.7 2.3838 1.0050 -.013 0 
2.8 2.4 843 1.0039 -.0106 
2.9 2.5846 1.0029 -.0085 

3.0 2.5741 1.0020 -.0059 .0078 -.0216 
3.1 2.6743 1.0014 -.0049 .0059 -.0166 I 

3.2 2.7744 1.0010 -.0040 .0045 -.0126' 
3.3 2.8745 1.0006 -.0032 .0034 -.0095 

3.0 2.6849 1.0022 -.0067 
3.1 2.7850 1.0016 -.0052 
3.2 2.8852 1.0011 -.0040 
3.3 2.9853 1.0007 -.0031 

3.4 2.9746 1.0003 -.0026 .0026 -.0071 3.4 3.0853 1.0 0 0 5 -.0023 

3.5 3.0745 1.0001 -.0020 .0019 -.0053 
3.6 3.17 46 .9999 -.0016 .0015 -.0038 

3.5 3.1854 1.0003 -.0017 
3.6 3.2854 1.0001 -.001 3 
3.7 3.3854 1.0000 - .0 0 0" 9 
3.8 3.4854 .9999 -.0007 

S 
1.0000 

:0935 e 
,8716 
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.7 <; 4 3 

.6 G 1 3 

.62 () 6 

.5 6 1 1 
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-.6191 
- .6 0 4 () 
-.5845 
-.5607 
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-.5017 
-.4677 
- .4 j 1 <i 
-.3943 
-.3566 

-.31:) 1 
-.282 '7 
-.~ 4 7 U 
-.2150 
-.1':) 4 7 

-.1570 
-.1321 
- .1100 
-.0907 
-.0740 

-.0598 
-.0478 
-.0379 
-.0297 
-.0231 

-.0177 
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-.0101 
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-.0056 

-.0041 
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TABLE 1. - Concluded. SIMILAR SOLUTIONS OF LAMINAR· 

COMPRESSIBLE BOUNDARY-LAYER EQUATIONS. 

I 
~ = 2.0, Sw = 1.0 

77 f fl fll S SI 

0 0 0 2.487 8 1.0000 - 0.6 613 
.1 .0118 .2291 2.097 1 .9 :3 3 9 -.6 6 11 

.2 .0446 .4204 1.7341 .8678 -.659:, 

.3 .0947 .577 1 1.4 0 7 2 .8021 -.6 5 if 8 

.4 .1589 .7031 1.120 4 .7370 -.6 4 66 

.5 .2344 .8025 .874 3 .6729 -.6 3 41 

.6 .3187 .8793 .667 1 .6103 -.6 1 68 

.7 .4 0 97 .9372 .495 8 .5 4 9 7 -.59 48 

.8 .5056 .9795 .3566 .4 9 1 5 -.56 G 2 

.9 .6052 1.0094 .2455 .436 2 - .5 3 75 

1·0 .70'72 1.0294 .158 7 .3 8 4 1 - .5 0 34 

1.1 .8108 1.0418 .092 1 .3356 -.4666 

1.2 .9153 1.0484 .0425 .2 9 0 9 -.4 280 

1.3 1.020 3 1.050 8 .0067 .2500 -.3885 

1.4 1.1-254 1.0502 -.018 0 .2132 -.3 4 90 

1.5 1.2303 1.0475 -.0 34 1 .180 2 - .3 1 02 

1.6 1.3349 1.0436 -.0 4 3 5 .1 5 1 1 -.2 7 2 9 

1.7 1.4390 1.0390 -.047 8 .1256 - .2 3 75 
1.8 1.54 26 1.034 1 -.048 6 .1 0 3 5 - .2 0 46 

1.9 1.6458 1.0293 -.0 46 8 .0846 -.1 7 45 
-

2.0 1.7485 1.024 8 -.043,4 .0685 -.1473 

2.1 1.8508 1.0207 -.039 1 .0550 - .1 2 30 
2.2 1.9527 1.0170 -.034 4 .0438 -.1 017 

2.3 2.0542 1.01 3 e -.0 29 6 .0346 - .0 (3 32 

2.4 2.1 554 1.011 1 -.0 2 5 0 .0271 -.0 6 74 

2.5 2.2564 1.0088 -.02"0 8 .0 210 -.0 541 

2.6 2.3572 1.0069 -.0170 .0 16 2 - .0 429 

2.7 2.4 578 1.0054 -.0 13 7 .0123 - .0 :5 38 

2.8 2.5583 1.004 1 -.010 9 .0094 - .0 2 6 3 

2.9 2.6587 1.0032 -.008 6 .0070 -.0 202 

3.0 2.7589 1.0024 -.006 6 .0053 -.0 1 54 

3.1 2.8591 1.001 8 -.0051 .0039 -.0 11 7 

3.2 2.9593 1.0014 -.003 8 .0029 -.0 0 [37 

3.3 3.0594 1.0011 -.002 8 .0022 -.0 0 64 

3.4 3.1595 1.0008 -.002 1 .0016 ,-.0047 

3.5 3.2596 1.0006 -.001 5 .0012 -.0 034 

3.6 3.3596 1.000' 5 -.0011 .0009 -.0 025 

3.7 3.4597 1.0004 -.000 7 .0007 ':'.0018 

3.8 3.55 97 1.0004 -.000 5 .0006 -.0 012 

3.9 3.6598 1.000 3 -.0003 .0004 - .0 0 09 

4.0 3.75 98 1.000 3 -.0002 .0004 -.0 006 
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TABLE II. - SUMMARY OF HEAT-TRANSFER 

AND WALL-SHEAR PARAMETERS. 

, CfRew Sw ~ ffl S' 
W w -Nll 

-1.0 -0.326 0 0.2477 0 
-.3657 .050 .2958 .3381 
-.3884 .140 .3:':·27 .7939 
-.360 .2448 .4001 1.224 
-.30 .3182 .4262 1.493 
-.14 .4166 .4554 1.830 
0 .470 .470 2.000 

.50 .5806 .4941:3 2.347 
2.00 .7381 .. 5203 2.837 

-0.8 -0.10 -0.0686 0.0447 -2.456 
-.2685 -.050 .1829 -.4374 
-.3088 0 .2261 0 
-.325 .0493 .2545 .3100 
-.3285 .0693 .2644 .4194 
-.3285 .llO .2818 .6245 
-.325 .1354 .2913 .7438 
-.30 .2086 .3155 1.058 
-.14 .3841 .• 359 1.712 
0 .470 .376 2.000 

.50 .6547 .403 2.599 
1.50 .8689 .4261 3.263 
2.00 .9480 .4331 3.502 

-0.4 -0.235 -0.050 0.0447 -0.8949 
-.246 0 .1249 0 
-.2483 .050 .1360 .2941 
-.24 .1064 .1474 .5775 
-.20 .218~ .1626 1.074 
0 .470 .188 2.000 

.50 .7947 .209 3.042 
2.00 1.3329 .2304 4.628 

0 -0.1947 -0.050 0 a 
-.1988 0 0 0 
-.16 .1905 0 .9480 
0 .470 0 2.000 

.50 .9277 0 3.436 
1.00 1.2326 0 4.317 
1.60 1.5213 0 5.122 
2.00 1. 6870 0 5.565 

1.0 -0.10 -0.1613 -0.2076 -1. 554 
-.1305 -.050 -.3139 -.3186 
-.1295 0 -.3388 0 
-.10 .1805 -.4033 .8956 
0 .470 -.470 2.000 

.30 .9829 -.5457 3.'602 

.50 1.2351 -.5725 4.315 
1.00 1.7368 -.6154 5.644 
1.50 2.1402 -.6425 6.662 
2.00 2.4878 -.661 7.527 

a Thls value was not calculated. 
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Figure 1. - Family of solutions for adverse pressure gradient. Sw = -0.8. 
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