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SUMMARY 

An investigation was undertaken in the Ames 10- by 14- inch super­
s oni c wind tunnel to determine so.me of the base pressure characteristics 
of related bodies of r evolution at zero angle of attack . The basic body 
shape used i n this investigation was a 10- caliber t angent ogive nose 
section combined with a cylindrical a fterbody . Other r elated shapes 
tested differed in that they had either a blunt- nosed profile or a boat­
tailed afterbody . Model fineness ratios were varied from 3 .12 t o 10 by 
changing afterbody length . Tests were conducted at free - stream Mach 
numbers from 2 . 73 to 4 . 98 over a Reynolds number r ange , based on body 
length, from 0 .6 X 106 to 8 .8 X 106 • 

In general, the base pressure coefficient decreased with increas ing 
Reynol ds number and increased with increasing free - stream Mach number 
and fineness ratio . In the particular case of an ogive- cylinder model 
of fineness ratio 5 with laminar- boundary- layer flow at a Reynolds number 
of 4 X 106 , it was found that the base pressure coefficient was about 
60 percent of the limiting va lue (represented by a vacuum) over the Mach 
number r ange of the tests . A decrease in the base pressure coefficient , 
which became more pronounced with increasing Mach number, a ccompanied 
natural trans ition from l aminar - to turbulent-boundar y- l ayer flow in the 
r egion of the base . This result is in contrast to that obtained at lower 
supersonic Mach numbers where an increase in bas e pressure coefficient 
has been found to accompany trans ition. 

The effect on the measured base pressure of the nose-profile shapes 
investigated was found to be negligible for an afterbody length of 7 body 
diameters . With turbulent- boundary- layer flow over a body of fineness 

ISupersedes recently declassified NACA RM A52E20 by John O. Reller, Jro, 
and Frank M. Hamaker , 1952 . 



2 NACA TN 3393 

ratio 7, the substitution of a 6-caliber ogival boattail (base diameter 
equals 0.604 maximum diameter) for the cylindrical afterbody resulted in 
an increase in the base pressure coefficient of approximately 75 percent 
at a Mach number of 1.50 (as determined from tests in the Ames 1- by 
3-foot supersonic wind tunnel) but only about 22 percent at a Mach number 
of 4.48. Corresponding values for laminar flow were 36 and 28 percent, 
respectively. 

INTRODUCTION 

The pressure acting on the base of a body moving at supersonic 
speeds may be of considerable practical importance since it can produce 
base drag amounting to more than one-half of the total drag of the body. 
Early attempts to predict the base pressure on bodies of revolution in 
supersonic flow were made by Lorenz, Gabeaud, and von Karman (see 
references 1, 2, and 3, respectively). It is now recognized, however, 
(see, e.g., reference 4) that these methods are generally inadequate 
because they do not account for effects of body shape on the inviscid 
flow in the region approaching the base nor do they account for the 
effects of viscosity. The more recent results of Hill (reference 5) 
are similar to those obtained in reference 3 and would appear to be 
unsatisfactory for these same reasons. 

Semi empirical theories of base pressure for bodies of revolution 
have been developed by Cope (reference 6) and Chapman (reference 4). 
In contrast with the preceding investigations, these methods attempt to 
include not only the effects of Mach number but also the effects of 
viscosity by considering the influence of the boundary-layer flow in 
the region of the base. Cope's method is designed to predict base 
pressures, provided that, in addition to free-stream conditions, the 
thickness and type of the boundary layer at the base and the distance 
from the base to the trailing shock wave are known. Because of the 
numerous assumptions and approximations that are made in developing this 
method, however, it is, according to Cope, no more than a first approxi­
mation. The method provides only a qualitative prediction of the base 
pressures of bodies of revolution at low supersonic Mach numbers. 

Chapman's method, on the other hand, is essentially a means of 
correlating experimental data at a given Mach number, and, as such, 
requires the use of fewer simplifying assumptions in its development. 
If the necessary experimental constants are known from a previous corre­
lation, it has been found that the method can be used to predict, with 
reasonable accuracy, the base pressures for similar bodies of revolution 
at low supersonic airspeeds. 

.. 
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It is evident then, that at present an adequate knowledge of the 
base pressure phenomenon remains strongly dependent on results of 
experiments. A large amount of base pressure data are available from 
both wind-tunnel and free-flight tests at low supersonic airspeeds. 
At high supersonic speeds, however, only a limited amount of data are 
available, and the accuracy of the proposed methods of references 4 
and 6 for either correlating or predicting base pressures has not been 
verified. 

The primary purpose of this investigation is to determine experi­
mentally the variation of base pressure with Reynolds number at high 
supersonic Mach numbers. To this end, several related, nonlifting 
bodies of revolution have been investigated at Mach numbers from 2.73 
to 4.98 and Reynolds numbers (based on body length) varying from 

3 

about 0 . 6 X 106 to 8 .8 X 106 in the Ames 10- by 14-inch supersonic wind 
tunnel. 

NOTATION 

d maximum model diameter 

ds model support diameter 

I length of model 

Is length of model support 

M Mach number 

P static pressure 

base pressure coefficient referred to free-etream 

conditions 

Pb
1 

base pressure coefficient referred to conditions just 

ahead of the base (pt~~l) 

q dynamic pressure (~U2) 
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local radius of body 

Reynolds number based on model length 

resultant velocity 

axial distance from the body vertex 

ratio of specific heat at constant pressure to specific 
heat at constant volume 

correction parameter, defined by equation (2) 

density 

Subscripts 

stagnation conditions 

conditions at base 

conditions in free stream 

conditions just ahead of base 

conditions on surface of extended afterbody 

APPARATUS AND TEST PROCEDURE 

Wind-Tunnel. and Auxiliary Equipment 

This investigation was conducted in the Ames lO- by l4-inch super­
sonic wind tunnel. The tunnel is of the closed-throat, continuous-flow 
type and consists of a deLaval nozzle followed by a test section and a 
converging-diverging diffuser. Details of the wind tunnel can be found 
in reference 7. A simple shadowgraph system was employed to identify 
the type of boundary-l.ayer flow. McLeod type gages, each of which was 
equipped with a trap containing dry ice and acetone to remove condensable 
vapors, were used to measure pressures. 
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Models 

The majority of the bodies tested were ogive cylinders with 
10-caliber tangent ogival noses and cylindrical afterbodies of l - inch 
diameter; the over-all fineness ratios varied from 3 . 12 to 10 (see 
models 1 through 4, fig . l(a)). A 1-1/2-inch-diameter model of fineness 
ratio 5 was also tested, primarily for the purpose of measuring the 
pressure distribution across the base. This model (model 5) and its 
special support are shown in figure l(b). 

A small amount of data was obtained with models that had noses 
of fineness ratiO 3 defined by the equation r = 0 . 219 X

3
/

4
• (This 

shape is approximately that of a body for minimum drag for an lid 
of 3, as pointed out in reference 7.) These noses were faired into 
l-inch-diameter cylindrical afterbodies (see models 6 and 7 in 
fig.l(c)) . One additional ogive-cylinder model with a boattailed 
afterbody was also tested (see fig. l(c) showing model 8; d = 1 . 25 in . , 
base diameter = 0.604d). Data obtained on these models were used to 
evaluate some of the effects of nose and afterbody shape on base 
pressure. 

Model number 2 (lid = 5) was used with supports of various lengths 
and diameters (see fig . 2) to evaluate the effect of support interfer­
ence on measured base pressure. 

The quality of model surface finish may influence the measured 
base pressure through its effect on boundary- layer development. The 
test models had, therefore, a general surface finish of about 10 micro­
inches (average deviation from the mean surface). 

Test Procedure 

Operating conditions. - For this investigation the wind tunnel was 
operated at Mach numbers from 2 . 73 to 4.98, with a maximum reservoir 
pressure of b atmospheres absolute and reservoir temperatures between 
500 F and 700 F. The absolute humidity of the air supplied to the 
tunnel was maintained between 1 . 5 X 10- 5 and 5.0 X 10- 5 pounds of water 
per pound of air . The Reynolds number of the flow at Mach numbers of 
2.73 and 4.98 was approximately 8.2 X 106 per foot and 2 . 1 X 106 per 
foot, respectively. At intermediate Mach numbers a range of Reynolds 
numbers was available with the maximum range of 3 . 6 X 106 to 8.6 X 106 

per foot occurring at a Mach number of 4.03. 
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Methods of promoting a turbulent boundary layer.- In an attempt to 
extend the range of Reynolds numbers at which a turbulent boundary layer 
would occur, several types of turbulence-promoting devices were investi ­
gated. Tests were conducted with rings of 0.005- and O. OlO- inch- diameter 
wire and salt bands of various widths, located both near the vertex and 
at the shoulder of a model . A lampblack coating on the nose of a model 
was also tried . Several of the turbulence -promoting devices are 
illustrated in figure 3. It was f ound that a salt band of approximately 
O. 020- inch thickness and 1/2-inch width, located 1/4 inch from the 
vertex of a model, was the only device that was effective in causing the 
boundary layer to become turbulent for the complete range of Mach numbers 
and Reynolds numbers of this investigation. With this device, the 
transition point was fixed at the location of the roughness. The salt ­
band roughness was therefore used as the turbulence -promoting device in 
the majority of tests. Some turbulent-boundary-layer data were obtained 
for model 8 with a O.005-inch-diameter wire ring located close to the 
vertex. The effectiveness of this device in promoting turbulence was 
limited to the higher test Reynolds numbers at Mach numbers beiow 4 . 5 . 

INTERPRETATION AND REDUCTION OF THE DATA 

Boundary-Layer Identification 

A representative series of shadowgraph pictures for both laminar­
and turburlent-boundary- layer flow is shown in figure 4 . Laminar­
boundary-layer flow is identified by the characteristic light line that 
is apparent near the model surface and that extends downstream from the 
base. Turbulent -boundary- layer flow, on the other hand, is identified 
by a diffused light region adjacent to the surface and a lack of detail 
in the expansion region behind the base. The type of boundary- layer 
flow is also indi cated by the location of the trailing shock wave behind 
the model . For turbulent flow this shock wave stands closer to the base 
than for laminar flow at the same Mach number and Reynolds number . 

It is necessary to specify the conditions under which the base 
pre ssure data of this report correspond to those for laminar-, 
transitional-, and turbulent -boundary-layer flow in the region of the 
base . The data correspond to laminar-boundary-layer flow when the 
laminar appearance of the flow (identified by the characteristic light 
line) persists downstream of the base to the location of the trailing 
shock wave. Similarly, in every case of turbulent -boundary- layer flOW, 
transition started at least 3- to 4-base diameters upstream of the base. 
Data that were measured under conditions that fall between these two 
limits are considered to be representative of transitional-boundary­
layer flow . 

----- ------------------------------------------~ 
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Support Interference 

Models were supported in the wind tunnel by a cylindrical rod extend­
ing from the base. Since this configuration is significantly different 
from a body with an unobstructed base, the measured values of base 
pressure may be considerably altered . Tests were conducted over the 
entire Mach number and Reynolds number range to determine the extent of 
the influence of both support length and support diameter on the base 
pressure. Typical results are shown in figures 5 and 6 . On the basis 
of these results it seems reasonable to assume that with a ds/d ratio 
of 0 .40 or less and an lsld ratio of 8, the measured base pressure is 
essentially free of support interference . Because of the varying loads 
encountered in the base pressure tests, it was necessary to use dsld 
ratios as great as 0 . 625 and Isld ratios as low as 6 . Therefore it was 
often necessary to apply corrections, based on the results of this inves ­
tigation, to the measured base pressure coefficients that are presented 
in the following discussion. The effects of support interference and the 
correction method are considered in more detail in appendix A. 

Condensation in the Air Stream 

As a result of the large flow expansion that takes place in the 
nozzle of a high supersonic -speed wind tunnel, extremely low static 
temperatures are realized in the flow passing through the test section . 
At a settling chamber temperature of about 600 F, the existing situation 
in the Ames 10- by 14- inch supersonic wind tunnel, the static temperature 
in the free stream falls below the liquefaction temperature at Mach 
numbers somewhat in excess of 4 . 0 . Consequently, as has been shown in 
reference 8, at these Mach numbers a portion of the air in the wind tunnel 
will enter the condensed phase and thus the properties of the stream will 
be altered . As discussed in appendix B, this phenomenon affects both 
the boundary - layer flow and the flow field outside of the boundary layer . 
It is shown in appendix B that, for the purposes of these tests, these 
inf luences on the boundary layer can be neglected, but that the alteration 
of the expansion process in the flow downstream of the base may increase 
the base pressure coefficient by as much as 12 percent at the highest 
test Mach number. (This corresponds to an increase in the base pressure 
relative to the free - stream static pressure.) Since the method used to 
evaluate this effect of condensation is only approximate, the basic data 
of the present report are presented both as corrected and uncorrected 
for condensation effects . 
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Effect of Transition-Promoting Device 

To obtain turbulent boundary layers on a representative number of 
models at several Reynolds numbers, it was necessary, as previously 
discussed, to locate a transition- promoting device close to the vertex 
of each model. However, this device caused a systematic change in the 
ba se pressures . This fact is demonstrated for models 4 and 5 in 
figure ( where a comparison is made of the base pressures obtained with 
natural transition to a turbulent boundary layer with those obtained 
with fixed transition to a turbulent boundary layer resulting from the 
use of the artificial roughness . It can be seen that the base pressure 
coefficient measured with fixed transition was from about ( to 11 percent 
higher . Shadowgraph pictures showed, correspondingly, an increase in 
boundary- layer thickness which, it is believed, would account for the 
greatest percentage of the observed difference . This difference in base 
pressure coefficient, in other words, is attributed primarily to effects 
of the artificial roughness on the turbulent boundary layer rather than 
to effects of the artificial roughness on the flow field outside the 
boundary layer. In certain qualitative respects the use of an artificial 
transition-promoting device would appear to be analogous, then, to test ­
ing with a model of greater length on which the turbulent boundary layer 
had developed to a greater thickness . At present, however, insufficient 
data are available to permit a general correction to be made for this 
effect . Thus, although the relative variations of the base pressure 
coefficient with Reynolds number and Mach number for the turbulent 
boundary layer with fixed transition are believed representative, the 
actual values of case pressure coefficient are probably high by as much 
as 10 percent. Unless specifically stated otherwise, all base pressure 
data with turbulent -boundary-layer flow that are subsequently presented 
in this report were obtained with the use of a transition-promoting 
device . 

PRECISION OF THE DATA 

Pressure Measurement 

The operational plus the reading error of the McLeod pressure gages 
varied from ±2-1/2 percent to ±1/2 percent at the lowest and highest 
measured pressures, respectively . The rate of leakage i nto the pressure ­
measuring systems introduced an uncertainty of less than 1/2 percent . 
Reservoir pressure was determined to within ±l- percent accuracy, while 
free - stream static and dynamic pressures were obtained from wind-tunnel 
calibration data which are also accurate to within ±l percent at all 
test Mach numbers. 
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Pressure Gradients in the Test Section 

The free-stream static and dynamic pressures used in the reduction 
of these data are those which exist on the center line of the wind tunnel 
(tunnel empty) in the plane of the base of the test model . Since the 
vertices of all models were located at the same station in the test 
section, the position of the plane of the base of the different models 
varied as much as 7 inches along the axis. Within this distance, the 
maximum variation of Mach number is ±1.2 percent of the mean value (see 
reference 7). Maximum errors in base pressure coefficient less than 
±2 percent are therefore introduced by relating these data to the effec ­
tive test Mach number . At Mach number 4.48, a weak pressure discontin­
uity intersected the axis close enough to the base of the longest model 
to influence the base pressure . The error from this source was estimated 
to cause an increase in Pb of less than 3 percent . 

Summation of Err ors 

The various sources of uncertainty in the mea sured base pressures 
and the corresponding maximum and probable err or s that could be introduced 
into the absolute values of the base pressure coefficients are listed in 
the following table . The maximum error would resul t if all possib l e 
errors that are known to exist were to accumUlat e . The probable error , 
that is the root -mean- square value of the errors from the several source s , 
would more nearly result if, as is usually the case, the errors were 
partially compensating. 

Error in Pb Error in Pb 
at Mo = 2·73 at ~ = 4.98 

Pressure measurement ±3 percent ±4-1/2 percent 

Pressure gradient in 
test section ±2 percent ±2 percent 

----
Maximum error ±5 percent ±~1/2 perc ent 

Probable error ±3 -1/2 percent ±5 percent 
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RESULTS AND DISCUSSION 

Variation of Pressure Over the Base 

The results of the investigation to determine the variation of 
pressure over the base of a body of revolution at high supersonic Mach 
numbers are shown in figure 8 . Base pressures on model 5 were measured 
on the model support at the base of the model as well as along two radial 
lines on the base, one in the horizontal plane and the other in the 
vertical plane of the wind tunnel . Although pressures were determined 
over a range of Reynolds numbers at each Mach number, only representative 
data are presented. In general, it is observed that changes in pressure 
coefficient with radial location are small. The differences, at the 
lower Mach numbers, between pressures in the vertical and horizontal 
planes are attributed to pressure gradients in the tunnel air stream in 
the corresponding directions normal to the tunnel center line . These 
differences are increased in the case of turbulent flow due to a partial 
deterioration of the artificial roughness that was not discovered until 
completion of the tests. It is noted that in all cases, however, these 
differences are small, and that the pressure measured on the model support 
represents a reasonably good average value . The base pressure data to 
be discussed subsequently were therefore obtained at this location . 

Variation of Base Pressure With Reynolds Number 

Constant body fineness ratio .- Base pressure coefficients for the 
lid = 5, ogive-cylinder combination are presented as a function of 
Reynolds number in figure 9 for laminar -boundary- layer flow . These 
coefficients, uncorrected for condensation in the expansion region down­
stream of the model, are shown in figure 9(a), while those corrected for 
condensation by the approximate method discussed in appendix B are shown 
in figure 9(b).2 As would be expected, the base pressure coefficient 
decreases (corresponding to decreasing base pressure relative to free ­
stream pressure) with increasing Reynolds number . It is clear that in 
general, however, the effect of Reynolds number on the coefficient 
decreases as the free-stream Mach number increases . For example, at 
Mo = 3.49 an increase of Reynolds number from 3 X 106 to 4 . 5 X 106 

changes the coefficient about 20 percent, while at Mo = 4.48 a similar 
increase of Reynolds number results in a change of only about 5 percent. 

2It will be noted that the trends and relative magnitudes of the 
corrected data are essentially the same as those for the uncorrected 
data. This property is characteristic of all data to be presented ; 
hence the discussion of results may generally be considered to apply 
to both types of data. 
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Data are presented in figure 10 for turbulent - boundary- l ayer flow. 
It can be seen that the variation of pressure coefficient with Reynolds 
number is similar for a ll Mach numbers above 2.73 . It is also evident 
from a comparison with figure 9 that the effect of Reynolds number is 
somewhat less at lower Mach numbers than for the laminar boundar y l ayer , 
whi ch agrees with the results of other investigators . However, a t 
Mo = 4.48 and 4.98, the converse is true as seen in figures 9 and 10 . 
At a Mach number of 2.73 the base pressure coefficient increases slightly 
with increas ing Reynol ds number . A similar effect has been observed at 
Mo = 1 . 5 and 2 . 0 wi th turbulent- boundary- l ayer flow and reported in 
reference 4. 

I nfluence of body fineness r atio. - Base pressure coefficients for 
ogive- cylinder models of fineness ratios 3.12 to 10 are present ed as a 
function of Reynolds number in figure 11 for laminar - boundary- layer flow. 
It can be seen that the variations of pressure coefficient with Reynol ds 
number , for a given Mach number, are gener ally similar for the different 
lid ratios tested . As would be expected, the base pressure coeffi ci ent 
at a constant Reynolds number and Mach number increases with increasing 
body f ineness r atio . Thi s variation can be attributed, i n part, to the 
i ncrea se in pressure r ecovery on the cylindrical aft er body just ahead of 
the base, with i ncr easing f ineness r atio . However, it may also be attri­
buted in part to t he increase i n boundary- l ayer thickness at the base 
(d = const . ) with increas i ng fineness r at io . 

Similar data are presented in figure 12 f or turbulent - boundary- l ayer 
flow. Agai n it can be seen that the variation with Reynolds number 
(at a constant Mo ) is similar for the lid r atios tested , and that t he 
base pressure coefficient (a t constant Re and Mo) increa ses with increas ­
i ng fineness r at i o as for the ca se previously di scuss ed . A corr e l ation 
of these data by the method of r eference 4 is presented i n a later section . 

Boundary- layer transit ion .- The variat ion of base pressure coeffi ­
ciE.nt with Reynolds number for l aminar- , transitional- , and t urbulent ­
~ o·2,~ary-layer flow for the fineness r atio 5 ogive- cyli nder models 
( r .. oj.o .::..s 2 and 5) is presented in figure 13 . The data in the low Reynolds 
:·iu~,tcr r ange 'ilere obtai ned from figure 9, while the dashed lines in the 
ni gh Peynolds number range were obtai ned by extrapolation from the curves 
of f i gure 10 . 3 Also shown in figure 13 are the data of figure 7, at Mach 
r.umber 3 . ~ 9 , for ful ly developed turbulent - boundary- l ayer flow resulting 
from na tura l boundary- layer transition . The onset of transition, that is, 
thos e condi t i ons f or which the transition point in t he boundary-layer flow 
fi r s t moves to a position upstream of the trailing shock wave , was found 
i rc t hese tests to occur a t Reynolds numbers between approxi mately 4 X 106 

,-,-c d 5 X loB . 

3 1t viill be recalled that the data of figure 10 were obtained with fixed 
~ransition resultinG from the use of an artificial roughness . 
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It c~n be seen that a decrease of base pressure coefficient occurs in 
the Reynolds number range of transition at Mach numbers above 2.73 . This 
effect becomes more pronounced as the Mach number increases, varying from 
approximately 15 percent (turbulent flow with fixed transition as compared 
to laminar flow) at Mo = 3.49 to 50 percent at Mo = 4.48 . The change 
of base pressure coefficient with natural boundary- layer transition appears 
to be even larger . For example, at Mo = 3.49 the decrease is approxi ­
mately 26 percent . From the previous discussion of the effect on base 
pressure coefficient of the transition- promoting deVice, it follows that 
the difference between turbulent flow with fixed and natural transition 
would be of similar magnitude at the other test Mach numbers . Thus , with 
natural boundary- layer development it appears that a decrease of base 
pressure coefficient occurs with transition for the entire Mach number 
range of the present tests . In contrast with these results, comparative 
data at Mo = 1.5 and Mo = 2 . 0 for a 200 cone- cylinder model of lid = 5, 
taken from reference 4, show an increase in base pressure coefficient in 
the Reynolds number· range of transition . 4 The reasons for this change 
of base pressure behavior with increasing Mach number are at present not 
completely understood; a partial verification of the phenomenon, however , 
is obtained from a consideration of the physical characteristics of the 
flow pa.ttern downstream of the base . In particular, a difference in the 
location of the trailing shock wave , relative to the base, with laminar-
as compared to turbulent-boundary- layer flow (at the same Mo and Re) i s 
shown in the shadowgraph pictures of the present tests . In every case 
(see, e . g . , fig . 4) the trailing shock wave stands closer to the base for 
turbulent flow than for laminar , with the difference increasing as the 
Mach number is increased . In general, then, it would be expected that 
for the turbulent case a greater flow expansion occurs around the corner 
of the base and thus a lower pressure is transmitted into the dead- air 
region . On the other hand, photographs at Me = 1 . 5 (see fig . 21 of 
reference 9) for a similar ogive- cylinder body indicate that the shock 
wave stands somewhat closer to the base for laminar than for turbulent 
flow . General agreement is thus apparent between these limited observa­
tions and the trends shown in figure 13 of the present report . 

Effect of Nose and Afterbody Shapes 

For the study of nose- shape effects , base pressure data were obtained 
with models having ogival noses and t he slightly bl unt noses for minimum 
pressure drag (given lid ) at hi gh supersonic airspeeds . The base pressure 
coefficients obtained with both laminar- and turbulent - boundary- layer flow 
in the region of the bases of these bodies are presented in figure 14 . 5 

4Although this body shape is not identical to the lid = 5 model used in 
the present tests, the indicated variations of the base pressure coeffi­
cient with Reynolds number are representative of the established trends 
at low supersonic Mach numbers. 

50nly data corrected for condensation are presented in this and subsequent 
figures . Uncorrected data are related to these data in the manner dis ­
cussed previously. 
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It is seen that base pressure coefficients with l aminar flow (fig . 14(a )) 
for the blunt - nosed body of lid = 3 . 12 are about 4 percent less than 
those for t he corresponding ogival- nosed body at Mach numbers f r om 2 . 7 to 
5.0 and a constant Reynolds number of 2 . 5 X 106 • Wi th turbulent - boundary­
layer flow (fig . 14(b)), a similar result i s observed for these bodies; 
for example , the base pressure coefficients for the blunt - nosed body var y 
from 7 percent less to about 3 percent less than those for the corr espond­
ing ogive as the Mach number i ncr eases from 2 . 7 to 4 . 5 . It is seen, on 
the other hand, that when a cylindrical afterbody is added to thes e bodies 
to increase their over-all lid to 10, no measurable effect of nose shape 
on base pressure coefficient is observed. That there is a r eduction i n 
this effect is not surprising, s ince it would be expected that with 
i ncreas ing afterbody length flow conditions in the r egion of t he base 
(both within and outside the boundar y layer) would become less sensitive 
to nose shape . It is i nteresting to note , however, that with the two 
different noses employed, the effect is essentiall y zero for an after­
body length of only 7 diameters . 

Effects of boattailing were studied with model 8. A comparison of 
the base pressure coefficients for t hi s body and the coeffici ents for 
the corresponding unboattailed body is shown in f i gure 15.6 Also shown 
i n figure 15 are data obtained with similar models in the Ames 1- by 
3- foot supersonic wi nd tunnel at Me = 1.5 and 2 . 0 . Some of these data 
ar e unpublished; the r emainder are interpolated from dat a of references 4) 
9 , and 10 . It is evident that the boattailed body consistently has the 
higher base pressures at Mach numbers from 1 . 5 to 4 . 5 for both laminar­
and turbulent- boundary- l ayer flow in the region of the base , The effect 
of this amount of boattailing i s observed to decrease markedly) however) 
with increas ing Mach number . For example, in the case of turbulent ­
boundary- l ayer flow ( see fig . 15(b)) boattailing increases the base 
pressure coefficient by 75 percent at Mo = 1 . 5 , while at Mo = 4 . 5 it 
increases the coefficient by only 22 percent; corresponding values for 
laminar- boundary- l ayer flow are 36 percent and 28 percent) r especti vely . 
The results of reference II , at a Mach number of 3 .25, are i n substan­
tial agr eement with those of figure 15 . 

Variation of Base Pressure with Mach Number 

Base pressure coefficients for a body of fineness ratio 5 (model 2 ) 
with both laminar-boundary- layer flow and artifici ally induced turbulent ­
boundary-layer flow are presented as a function of free - stream Mach number 
in figure 16 . The results wer e obtained from a cross plot of the data in 
figures 9 and 10. The limiting curve of base pressure coeffi cient (i . e ., 
for a vacuum at the base) is shown for comparison . For the Mach number 

6Results presented here were determined from cross plots of the dat a in 
figures 11 and 12 and similar figures for the boattailed body . Wher e 
necessary, the base pressure coefficient for model 3 was obtained by 
linear interpolation from the data of models I , 2 ) and 4. 
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range of the present tests, it can be seen that the base pressure coeffi ­
cient for laminar flow is about 60 percent of the limiting value . With 
an artificially induced turbulent boundary layer, the coefficient is 
smaller , increasing from about 62 percent to 82 percent of the limiting 
value as the ¥~ch number is increased from 2 . 73 to 4.48 . It is also 
interesting to note from a comparison of the high Mach number data of 
the present tests and the low Mach number results as interpolated from 
data of reference 4 that the same base pressure coefficients would appar­
ently be obtained with both laminar- boundary- l ayer flow and artificially 
induced turbulent - boundary- layer flow at a Mach number of about 2 . 5 . 
With natural transition to turbulent- boundary- layer flow, this Mach 
number would probably be slightly less . These results are , of course, 
consistent with those discussed previously in connection wi th figure 13. 

The ratio of base pressure to free - stream static pressure is plotted 
as a function of free - stream Mach number in figure 17 . The base pressure 
data are the same as those shown in figure 16 , but are replotted i n this 
form to expand the scale of the variation in the high Mach number range 
where the base pressure coefficient decreases to small magnitude . The 
base pressure r at io for laminar- boundary- layer flow remains relatively 
constant throughout the Mach number range of the present tests , in con­
trast with the trend indicated at lower supersonic Mach numbers by the 
data of reference 4. With turbulent flow the base pressure ratio 
decreases markedly up to Mo = 4, but relatively slowly thereaftero 

With regard to these indicated trends, the semiempirical method of 
Cope (reference 6) yi elds results that are in only qualitative agreement 
with the laminar base pressure curve of figure 17 . For turbulent­
boundary- layer flow this method fails to predict the observed variation 
of base pressure with free - stream Mach numberj in fact, values similar 
to those for laminar flow were obtainedo As a result , the intersection 
of the laminar and turbulent curves that would be indicated in figures lC 
and 17 is not apparent from the analysis of reference 6 . 

Correlation of Base Pressure Data 

A method of correlating base pressure data has been suggested by 
Chapman in reference 40 It is assumed i n the correlati on that the base 
pressure is primarily dependent upon the conditions just upstream of the 
base . Therefore, the measured base pressure coefficient Pb , which is 
referred to free - stream conditi ons , must be related to the coeffici ent 
Pb 1 based on conditions just ahead of the base . The relationship 
between Pb and Pb

1 
is given in reference 4 as: 

(1) 
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€ = (Mo
2

2 _ 1)P2 __ 2 _ (1 + 2' - 1 Mo 2) 6ra 
\" yMo2 2 Pa (2 ) 

and 6Pa is the loss in total pressure through the nose s~ock wave . 
The parameter P2 is considered to be a correction to Pb for the 
effects of profile shape and , as used herein , is defined as the press~~e 
coefficient (P2 - PO)/Qo which would exist on the surface of a hypothetical 
cylindrical extension of the body at a point midl{ay behreen the actual 
base and trailing shock wave . 

In equation (I), Pb 1 is considered to be indepf'ndent of body sh~pe 
for a given Mach number approaching the base . Since this J.1ach number 
varies somewhat for different l/d ratios, an addition 1 correction) 
(jPb oM (M1-Mo) , to Pb 1 is necessary to enable a direct comparison to be 

made between various body shapes (see reference 4) . The resultant 
equation 

was then used in the present correlation . Numerical values of the 
pressure coefficient P2 were t aken frOTIl r eference 12 . The values of 
Pb 1 obtained from this equat i on were , as suggested in reference 4, 
correlated by plotting them as a function of the parameters l/(d&) 
and l/[d(Re) 1/5 ], Hhich are appro;~iTJill.tely proportional to bOlilldary­
layer thickness for laminar- and tur"Uule:.rl:. - bow1dc..ry- layer floi·! , resuec ­
tively . 

The data of figures 11 and 12 are presented in this form in fig ­
ure 18 . For comparison , similar curves from reference 4 at Mach num­
bers 1 .53 and 2 . 00 are also shown . For both laminar- and turbulent ­
boundary- layer flow, the variation of Pb 1 with the boundary- l ayer 
parameters at each of the higher Mach numbers cannot, in contrast vrith 
the l ow Mach number data of reference 4, be completely represented by 
the single mean curve that is shown . In fact , for the present range of 
variables, it is apparent that the par meters do not bring the data for 
different fineness ratios i nto agreement . At a constant value of llach 
number and fineness ratio , a l ar ge part of the higher ~lach number data 
indicate , as shown by the short dashed lines in figure 18, a local slope 
that is appreciably greater than the slope of the mean curve. Thus on 
the basis of the experimental evidence available here) the usefulness 
of the method of base pressure correlation of reference 4 appears to be 
diminished at Mach numbers in excess of about 3. 
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CONCLUSIONS 

A wind- tunnel investigat ion was conducted to determine some of the 
base pressure characteri stics of several related bodies of revolution 
at zero angle of attack and free - stream Mach numbers from 2 . 73 to 4 .98 . 
In general, it was found that the base pressure coefficient increased 
with increasing free - stream Mach number and body fineness ratio and 
decreased wi th increasing Reynolds number, with either laminar- or 
turbulent - boundary- layer flow . 

The following specific conclusions are drawn from the results of 
this investigation : 

1 . The base pressure coefficient is higher with laminar- than with 
turbulent - boundary- layer flow at Mach numbers above approximately 2 . 5 . 

20 A decrease of the base pressure coefficient occurs with natural 
transition from laminar- to turbu1ent - boundary- l ayer flow at Reynolds 
numbers from 4.0 X 106 to 6 .0 X lae; this effect becomes more pronounced 
with increasing Mach number. At Me = 3 . 49 on a body of fineness 
ratio 5 the decrease was approximately 26 percent . 

3. With laminar- boundary- layer flow the variation of the base 
pressure coefficient with Reynolds number becomes less pronounced as the 
Mach number is increased . 

4 . A change of afterbody from a cylindrical shape to one with 
boattailing causes an increase in the base pressure coefficient . For 
turbulent - boundary- l ayer flow over a body with a 6- caliber ogival boattail 
(base diameter equals 0 . 604 maximum diameter) this effect decreased 
markedly with increasing Mach number from 75 percent at Me = 1 . 5 to 
22 percent at Me = 4 . 48 . 

5. For an afterbody length of about 7 body diameters, the effect 
of nose profile shape on base pressure was found to be negligible for 
the nose shapes tested . 

6 . The semiempirical method of Cope is inadequate for predicting 
base pressures in the Mach number range of these tests, while the cor­
responding method of Chapman provides at most only an approximate corre ­
lation of experimental data at Mach numbers above about 3. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif. , May 20 , 1952 
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APPENDIX A 

SUPPORT INTERFERENCE 

The effects on base pressure of both support length and diameter 
were investigated over the entire Mach number and Reynolds number range, 
using model 2 . Typical effects of support length for a constant 
diameter (ds/d = 0.375 ) are illustrated in figure 5 . ~ \lith a laminar 
boundary layer little change in base pressure coefficient is indicated 
from Mo = 2.73 to Mo = 4.48 for an unobstructed support length greater 
than 4 base diameters . At Mo = 4.98, however, this coefficient is 
significantly altered for support lengths less than 6 base diameters, 
and may be slightly altered for support lengths up to 8 diameters . With 
turbulent -boundary- layer flow there is no appreciable change in t he base 
pressure coefficient for support lengths greater than 4 base diameters 
over the range of Mach numbers . A comparison is made in figure 5 with 
similar data at Mo = 2. 90 from reference 4. 

Typical variations of base pressure coefficient with support 
diameter are presented in figure 6 . A constant support length-to-base­
diameter ratio of 6 was used . With a laminar boundary layer at test 
Mach numbers above 2.73 there is no significant change in bas e pressure 
coefficient for support - to -base - diameter ratios less than 0. 40 . At 
Mo = 2.73, however, support interference persists to the lowest ds/d 
ratio tested, although the effect is relatively small at ds/d ratios 
below 0. 40 . On the basis of these results, it seems reasonable to 
assume that no significant variation of base pressure coefficient for 
laminar -boundary- layer flow will occur at ds/d ratios between 0. 40 
and O. For turbulent -boundary- layer flow at Mo = 4.03 and 4. 48 there 
is a negligible change of the coefficient for support - to- base - diameter 
ratios less than 0.50. At the remaining Mach numbers the base pressure 
coefficient varies to some extent over t he entire range of diameter 
ratios tested . However, at Mo = 3. 49 and 4.98 this variation is small, 
indicating, for example, that ~ is approaching a limiting value in 
the former case for ds/d ratios less than 0.40. (Comparable data from 
reference 4 are observed to show a similar trend of Fb with the ratio 
ds/d at a Mach number of 2.90. ) In general, then , it seems reasonable 
to assume that with turbulent -boundary- layer flow at Mach numbers above 
about 3.0, little change of the base pressure coefficient occurs at ds/d 
ratios between 0. 40 and O. At Mo = 2.73 the variat i on of Pb wi th the 
ds/d ratio does not approach a limiting value; however , the free - flight 

LThe data in this and the subsequent figure are not corr ected for 
condensation, since trends only are discussed and absol ute values are 
not essential. 
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data from reference 132 and the data from reference 
ure 6(b) indicate that the values of Pb at dsld 
do not differ appreciably from that at dsld of O. 

NACA TN 3393 

4 shown in fig­
from 0.25 to 0 .375 

I n view of the results of this support-tnterference investigation, 
support lengths of at least 6 base diameters were used in all subsequent 
t e sts. Support diameters were held to a minimum consistent with strength 
requirements, with dsld varying from 0.375 to 0.625 for the shortest 
and longest models tested, respectively. Measured base pressure coeffi­
cients were adjusted, using data represented by figures 5 and 6, to 
an 2s/d ratio of 8 and a dsld ratio of 0.375 to obtain data that 
are assumed to be essentially free of support interference effects. 

No evaluation was made of the effects of support interference on 
t he measured base pressures of the boattailed model. However, since a 
support with 2s / d = 13 was used, the data presented in figure 5 
i ndicate that t hese base pressures are free of support-length interfer­
ence. An investigation of support dimensions for a boattail model of 
similar shape with laminar-boundary-layer flow (reference 9) showed that 
at Me = 1. 5 interference effects are negligible with a support of 
approximately the same relative diameter (ds / d = 0 .35) as t hat used but 
of shorter relative length (2 s /d = 7). It is thus indicated, in view 
of the results presented in figure 6 , that these pressures are also 
relatively free of support-diameter effects. 

2The free-flight body of reference 13 was a 200 cone-cylinder combination 
of 2/d = 5 instead of an ogive cylinder, but calculations show t hat 
the conditions on the model surfaces near the base are such that the 
base pressures of the two models should be closely comparable. 
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APPENDIX B 

CONDENSATION IN THE AIR STREAM 

An investigation of the condensation of air in supersonic flow has 
been reported in reference 8 . It was shown experimentally that conden­
sation occurs at f r ee - stream Mach numbers above 4 . 4 in the Ames 10- by 
14- inch supersonic wind tunnel. Therefore, the relationships given in 
appendix C of the reference report (applying when the air stream contains 
a small amount of condensed air) were used to determine the effective 
test Mach numbers 4 . 48 and 4 . 98 of the present report . The methods of 
reference 8 were also used to evaluate the effect of condensation upon 
the measured data of the present report. It was shown therein that the 
properties of the flow approaching the base of a body of revolution 
(outside the boundary layer) are approximately those that would exist at 
the same Mach number in a stream that was free of condensation . It was 
also shown that re - evaporation of the condensed phase occurs in the 
high temperature boundary-layer region of a test model. This may reduce 
the surface temperature by as much as 300 F (Me = 4 . 98) . Reference 11 
indicates, however, that a surface temperature change of this magnitude 
will alter the base pressure by only about 1. 5 percent. As a first 
approximation, therefore, the effects of condensation on the flow 
approaching the base, both inside and outside the boundary layer, may be 
considered negligibly small . 

Condensation phenomena can, however , have an appreciable effect on 
flow in the expansion region downstream of the base . The amount of 
condensation that exists in this region can exceed that of the free 
stream as a result of the relatively high local Mach numbers and hence 
low static temperatures which occur . A static pressure rise is associ ­
ated, of course , with this increased condensation and , in all likelihood, 
will be transmitted through the adjacent dead- air space to the base . 
An estimate of this rise in pressure was obtained graphically from a 
diagram similar to .that shown in figure 3 of reference 8, in combination 
with calculated flow conditions approaching the base and the measured 
base pressures . One simplifying assumption was made; namely, that the 
process of condensation does not require an appreciable time interval 
or , in other words , that saturation or subsaturation conditions exist 
at every point in the flow. Based on this analysis , condensation effects 
on base pressure were found to occur at free - stream Mach numbers as 
low as 3 . 49. As would be expected, the maximum pressure rise occurred 
at the highest test Mach number , causing a change of about 12 percent in 
the measured base pressure coeffi cient . In view of the appreciable 
magnitude of this pressure change , it wa s considered desirable to pr esent 
not only measured base pressure data but also the da ta corrected for the 
pr es sure rise . Thi s is done thr oughout much of the present report and , 
although the correction is appr oximate , it may be l ooked upon as a maximum 
cor rection, inasmuch as saturati on f l ow conditions were assumed . 
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(a) Ogive-cylinder models. 

Figure 1.- Models used in base pressure investigation. 
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Model 6, l/d:: 3 .12 

Model 7, l/d:: 10.0 

Model 8, l/d:: 7.0 

~ 
A- 160 16. 1 

( c) MOde ls use d to study effects of nose shape and boattailing. 

Figure 1.- Concluded •. 
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Vd:2 

Vd: 3 

Vd =4 

~/d: 5 

~/d: 6 

~/d: 8 

I'MCHES 11, I ,21, I ,31, I ,"I 

~ 
A-16ulS.l 

(a) Supports of various lengths~ ds/d = 0.375. 

Figure 2 .- Model supports used to study effect of support interference. 
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c{/d = 0. 75 

c{/d :: 0.625 

c{ / d :: 0.50 

1/d :: 0438 

c{/d :: 0.375 

~/d :: 0.313 

c{/d :: 0.25 

~ 
A-16014.1 

(b) Supports of various diameters ) I s/d 6 . 0 . 

Figure 2 .- Con cluded . 
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(a) Laminar boundary layer. 

(b) Turbulent boundary layer, fixed transition. 

Figure 4.- Shadowgraph pictures of flow around the base of a typical 
mode lj Mo = 3.49 , Re = 4.45 X 106

. 
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(c) Laminar boundary layer. 

(d) Turbulent boundary layer, fixed transition. 

Figure 4. - Concludedj Mo = 4.48, Re = 1.75 X 106
• 
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