
A THERMAL EQUATION FOR FLAME QUENCHING 

By A. E. Pot ter ,  Jr., and A. L. Berlad 

Lewis Flight Propulsion Laboratory 
Cleveland, Ohio 

Washington 

February 1955 



NATIONAL ADVISORY COMMITTEE FOR AEXONAUTICS 

TECIINICAL NOTE 3398 

A THERMAL EQUATION FOR FLAP4E QUENCHING 

By A. E. Po t t e r ,  Jr., and A. L. Berlad 

SUMMARY 

An approximate thermal equation w a s  derived f o r  quenching distance 
based on a previously proposed d i f fus iona l  treatment. The quenching 
dis tance i s  expressed i n  terms of t he  thermal conductivity, t he  f u e l  
mole f r ac t i on ,  the  heat  capacity, the  r a t e  of t he  ra te-control l ing chem- 
i c a l  react ions ,  a constant t h a t  depends on t h e  geometry of t h e  quenching 
surface,  and one empirical  constant. 

I n  order t o  use t he  equation with experimental data,  t h e  r a t e -  
control l ing react ion must be specified.  Two choices were made: (1) t he  
reac t ion  between ac t ive  p a r t i c l e s  and f u e l  (corresponding t o  the  d i f fu -  
s i ona l  equation), and (2 )  the  reac t ion  between oxygen and fue l .  

The e f f e c t  of pressure on quenching distance was shown t o  be in-  
versely  proportional  t o  t h e  pressure dependence of t h e  primary flame 
reac t ion ,  with a small correct ion necess i ta ted by t he  e f f e c t  of pressure 
on flame temperature. 

The general  equation was used with the  Semenov equation f o r  burning 
ve loc i ty  t o  show t h a t  t he  quenching distance w a s  inversely  proportional  
t o  burning ve loc i ty  and pressure a t  any given i n i t i a l  temperature and 
equivalence r a t i o .  

The two equations, one based on t h e  ac t ive-par t i c le  - f u e l  react ion,  
t he  other based on t h e  oxygen-fuel react ion,  were t es ted ,  using pub- 
l i shed  data  f o r  the  quenching of propane-oxygen-nitrogen flames. The 
data  se lected included t h e  e f f ec t  on quenching distance of oxygen- 
nitrogen r a t i o ,  propane concentration, and i n i t i a l  mixture temperature 
and pressure.  A cor re la t ion  of these  data  w a s  obtained, using each of 
t he  two equations, although both possessed shortcomings. The equation 
using the  ac t ive-par t i c le  - f u e l  reac t ion  did not cor re la te  data  f o r  a l l  
r i c h  mixtures; t he  equation using t h e  oxygen-fuel react ion,  while cor- 
r e l a t i n g  data  f o r  both r i c h  and l ean  mixtures, showed a l a rger  deviation 
from the  predicted l i nea r  r e l a t i o n  than t h e  other equation. 
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INTRODUCTION 

The process of flame quenching is  of in t e res t ,  since it may be re-  
l a t ed  t o  other combustion phenomena of engineering importance, such as 
flame s tab i l iza t ion ,  flammability l imi ts ,  and the general behavior of 
flames near cold walls. Flame-quenching processes become especially i m -  
portant i n  turbojet  combustion systems when operation a t  low pressure 
( i . e  . , high a l t i tudes)  i s  considered. Flame quenching is  usually studied 
experimentally i n  terms of the quenching distance, which i s  &fined as 
the  minimum channel s ize  tha t  w i l l  allow a given flame t o  propagate. 
Most of the available quenching data have been obtained e i ther  by (1) 
observation of the minimum tube diameter or rectangular s l o t  width tha t  
w i l l  allow a flame t o  f l a sh  back, or by ( 2 )  determination of the minimum 
distance between plane-parallel plates  tha t  w i l l  allow a flame t o  propa- 
gate  from a spark of minimum igni t ion energy. 

A rigorous theoret ical  treatment of the  quenching process appears 
t o  be a most d i f f i cu l t  t ask  ( re fs .  1 and 2 ) .  Consequently, present 
theore t ica l  treatments of quenching are  necessarily approximate and 
seek primarily t o  correlate the quenching process with the variables 
tha t  a f fec t  it, such a s  pressure, temperature, f u e l  type and concentra- 
t ion ,  inert-gas concentration, and quenching-surface geometry. 

Approximate treatments of quenching have been based e i ther  on a 
thermal or a diffusional mechanism f o r  the process ( re fs  . 3 and 4). 
Such apparently different  outlooks yield r e su l t s  consistent with experi- 
mental data because the  equations f o r  heat and mass t ransfer  a re  for -  
mally ident ical ,  and because the thermodiffusivity and the  molecular 
d i f fus iv i ty  are  numerically nearly equal ( r e f .  5).  Thus, each purely 
thermal approach t o  a combustion process has a diffusional analog. 

A quenching-distance equation tha t  successfully correlates lean 
quenching data ( re fs .  4, 6, and 7 )  i s  the diffusional equation given by 
Simon, Belles, and Spakowski ( r e f .  4). Unfortunately, the  use of t h i s  
equation i n  i t s  present form i s  limited t o  stoichiometric or lean mix- 
tures .  The source of t h i s  d i f f i cu l ty  appeass t o  be the choice of the 
reaction kinetics.  

Essentially,  the objective of t h i s  paper is  t o  extend, i f  possible, 
the useful range of the quenching concepts of reference 4 t o  include 
hydrocarbon-rich mixtures. Because of the s imi lar i t ies  between heat 
and mass flow, it i s  t o  be expected t h a t  a thermal analog equation can 
be derived t h a t  w i l l  correlate data equally as  well  as the diffusional 
equation of reference 4. It was believed tha t  such an a l te rna te  thermal 
equation might be more susceptible t o  changes i n  the  reaction kinetics 
than the or iginal  diffusional model. It was hoped tha t  the r e su l t  of 
such changes would be an extension of the useful range of the equation 
t o  include r i c h  mixtures. 



NACA TN 3398 3 

This repor t  contains t he  der ivat ion of a thermal quenching equation 
i n  which t he  ra te-control l ing reac t ion  i s  not specified.  Two possible  
ra te-control l ing react ions  a r e  postulated,  and t h e  resu l t ing  two quench- 
ing equations a r e  t e s t e d  using published quenching data. It i s  shown 
t h a t ,  i f  the  oxygen-fuel reac t ion  i s  assumed t o  be ra te-control l ing,  
quenching data  a r e  s a t i s f a c t o r i l y  corre la ted f o r  both r i c h  and lean 
propane-oxygen-nitrogen flames. The pressure dependence of t h e  quench- 
ing distance and t h e  r e l a t i o n  of quenching distance t o  burning ve loc i ty  
a re  a l s o  discussed. 

THE CRY 

As an i n i t i a l  assumption, t h e  authors of reference 4 assumed t h a t  
i n  order f o r  a flame t o  propagate t he  number of reac t ion  events per 
cubic centimeter t h a t  occur i n  t h e  gas ahead of t h e  burning zone (here- 
i n a f t e r  ca l l ed  t he  react ion zone) must b, 0 above some minimum value. 
The number of reac t ion  events per cubic centimeter i n  t he  reac t ion  zone 
i s  assumed t o  be t h e  number of ac t ive  p a r t i c l e s  per  cubic centimeter 

ci mul t ip l ied by  t he  average number of e f f ec t i ve  co l l i s i ons  v i  ( the  

average act ive-par t  i c l e  chain length) made by each p a r t i c l e  before i t s  
dest ruct ion a t  the  w a l l .  The minimum number of reac t ion  events neces- 
s a ry  f o r  flame propagation i s  assumed t o  be a constant f r ac t i on  A of 
t he  t o t a l  number of molecules per cubic centimeter NT. I n  terms of 

these  def in i t ions ,  t h e  c r i t e r i o n  f o r  quenching is given a s  

f o r  a s ingle  species of ac t ive  p a r t i c l e  and a surface chain-breaking 
e f f ic iency  of 1 (symbols a r e  defined i n  t h e  appendix). 

The def in i t ion  of t he  number of reac t ion  events necessary f o r  flame 
propagation used i n  reference 4 i s  not a unique one. Another p o s s i b i l i t y  
i s  t o  assume t h a t  t h e  necessary number of react ion events i n  t he  reac t ion  
zone i s  a constant f r ac t i on  F of the  t o t a l  number of events per cubic 
centimeter x t h a t  normally occur during t he  passage of a flame through 
a un i t  volume of gas. The quenching c r i t e r i o n  then becomes 

This quenching c r i t e r i o n  leads t o  a more su i t ab l e  thermal equation than 
would be obtained through t he  use of equation (1 ) .  

Equation (2) may be converted t o  i t s  thermal counterpart by multi- 
p lying through by ~ R T / P  t o  give as a f i n a l  r e s u l t  (expressed i n  
cal/mole ) : 
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Here, the  number of ca lo r ies  per mole produced i n  t he  reac t ion  zone Hr 
must be equal t o  or  l e s s  than some c r i t i c a l  value, which i s  assumed t o  
be a constant f r ac t i on  F of t h e  t o t a l  heat  produced per  mole of un- 
burned gas %. 

For the  combustion of hydrocarbons, complete combustion of t h e  f u e l  
i s  assumed t o  occur f o r  a l l  mixture compositions. Consequently, t h e  
t o t a l  heat  produced by the  process may be wr i t t en  a s  t he  product of t he  
mole f r ac t i on  of f u e l  i n  t he  unburned gas Xf and the  heat  produced 

upon t he  disappearance of 1 mole of f u e l  4 H  ( a s  defined herein, M i s  
constant and equal t o  the  heat  of combustion t o  C02 and Hz0 only f o r  
stoichiometric or lean mixtures; f o r  r i c h  mixtures, AH decreases a s  t h e  
oxygen concentration decreases). Thus, f o r  hydrocarbon flames, equation 
(3) may be wr i t t en  as  

The expression given i n  reference 4 f o r  t h e  chain length V i  
i s  

The thermal equivalent of t h i s  equation i s  found by multiplying through 
by ~ C ~ R T / P  t o  obtain as a f i n a l  r e s u l t  

According t o  t h e  def in i t ions  given i n  reference 4,  

The heat  produced per  reac t ion  event i n  t he  reac t ion  zone is proportional  
t o  t h e  heat  produced upon the  disappearance of one f u e l  molecule. For 
s impl ic i ty ,  t he  two a re  assumed t o  be equal so t h a t  t he  heat  produced 
per  reac t ion  event may be wr i t t en  a s  
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Since the molecular d i f fus iv i ty  and thermodiffusivity are  assumed 
t o  be equivalent, 

Any small error  implicit  i n  the assumption of equation (9) should not 
influence the over-all  behavior of the  resul t ing equation f o r  quenching 
distance, 

Combination of equations (6 )  t o  (9) yields the thermal analog of 
equation (5) : 

Simultaneous solution of equations (4)  and (8) gives f o r  the thermal 
quenching equation 

(The inequality sign has been removed since the quenching distance i s  
related t o  the tube configuration t h a t  just  quenches a given flame. ) The 
most important f a c t  concerning t h i s  equation i s  t ha t  the  form f o r  w i s  
no longer specified; any reaction may now be chosen as  rate-controll ing. 

I f  equation (1) rather  than equation (2)  had been used as  the 
quenching cr i te r ion ,  the f i n a l  thermal quenching equation would have 
been formally ident ica l  with equation (ll), except tha t  the f u e l  mole 
f rac t ion  Xf would not appear. This difference i s  unimportant as r e -  

gards the correlation of data i f  only a narrow range of f u e l  concentra- 
t i o n  i s  considered. For data tha t  cover a wide range of f u e l  concen- 
t ra t ion ,  the thermal quenching equation as  wri t ten i n  equation (11) i s  
found t o  be the  more sat isfactory of the two poss ib i l i t ies .  

I n  terms of the active-particle - f u e l  reaction ( the react ion spec- 
if ied as  rate-controll ing i n  the diffusional equation of ref .  4), the 
reaction r a t e  w is given by 



I f  a collision-theory-type temperature dependence i s  assigned t o  
kt, equation (12) becomes 

Combination of equations (10) and (13) gives 

The choice of rate-controll ing react ion i s  not l imited t o  the 
act ive-part ic le  - f u e l  reaction. For example, it i s  possible t o  follow 
Semenov ( ref .  8 )  and assume t h e  reaction i n  the combustion zone t o  be 
bimolecular and f i r s t -order  with respect t o  f u e l  and oxygen. For t h i s  
assumption, the r e a l  reacting species are  obviously not f u e l  and oxygen 
molecules, but such an assumption i s  sat isfactory i f  the concentrations 
of the reacting species a re  proportional t o  the f u e l  and oxygen con- 
centrations. I n  t h i s  case, then, the r a t e  of the reaction i s '  given by 

If a collision-theory-type temperature dependence i s  assigned t o  ks, 
equation (15) becomes 

The combination of equations (10) and (16) gives 

I n  order t o  t e s t  equations (14) and (17), data for  the  quenching 
of propane-oxygen-nitrogen flames were used. These data include the 
e f fec t  on quenching distance of oxygen-nitrogen r a t io ,  f u e l  concentra- 
t i on  and pressure (ref .  61, and i n i t i a l  temperature (ref .  9). 

I n  order t o  use equation (14), the assumptions made i n  reference 4 
concerning the active-particle - f u e l  reaction were followed: Tr was 

taken t o  be 0.7 TF, the p a r t i a l  pressure of f u e l  i n  the reaction zone 
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was assumed t o  be one-half t h e  p a r t i a l  pressure of f u e l  i n  t he  unburned 
gas ,  t h e  p a r t i a l  pressures of t he  ac t i ve  p a r t i c l e s  (H atoms, OH rad i -  
ca ls ,  and 0 atoms) i n  t he  reac t ion  zone were assumed t o  be 0.7 times 
t h e i r  p a r t i a l  pressure i n  t h e  adiabat ic  equil ibrium flame and Et was 

assumed t o  be 7 k i loca lor ies  per mole ( re f .  10). 

I n  order t o  use equation (17),  t h e  p a r t i a l  pressures  of f u e l  and 
oxygen i n  t he  r eac t i on  zone were taken a s  equal  t o  t h e i r  values i n  t h e  
unburned gas and Es was assumed t o  be 38 k i loca lor ies  per mole ( r e f .  

11). I n  keeping with previous usage ( r e f s .  4 and 6 ) ,  Tr was chosen 
t o  be equal  t o  0.7 TF. 

The thermal conduct ivi t ies  were calcula ted f o r  t h e  unburned gas 
mixture a t  0.7 TF. The conduct ivi t ies  f o r  oxygen, nitrogen,  and propane 

were calcula ted a t  1553' K, using t h e  t ab l e s  and data  given i n  chapter 
8 of reference 12. Conductivities a t  other temperatures were computed 
on t h e  assumption of a 3/4-power temperature dependence. The thermal 
conduct ivi t ies  of the  gas mixtures were calcula ted as  t he  sum of t h e  
mole f r a c t i o n  times t he  thermal conductivity of each component, o r ,  

It was f e l t  t h a t  t h i s  simple l i n e a r  mixing r u l e  was adequate f o r  systems 
l a rge ly  composed of nitrogen and oxygen because of t h e i r  s imilar  
conductivit ies.  

The heat  capac i t i es  were calcula ted f o r  t h e  unburned gas mixture 
a t  0.7 TF by t he  same l i nea r  mixing r u l e  used f o r  t h e  thermal con- 

duc t i v i t i e s .  Individual  heat  capac i t i es  f o r  oxygen, nitrogen,  and pro- 
pane were calcula ted from da ta  given i n  reference 13. 

The equilibrium adiabat ic  flame temperatures and product conrposi- 
t i ons  were calcula ted by t h e  matrix method of reference 14 using t h e  
thermodynamic constants of reference 14 and t he  heat of formation of 
propane given i n  reference 13. 

RESULTS AND DISCUSSION 

Correlat ion of Quenching-Distance Data 

Inasmuch a s  t he  square of t h e  quenching distance i s  predicted t o  
be d i r e c t l y  proportional  t o  qt (eq. (14))  or t o  qs (eq. (17) ) , values 

of qt and qs were calcula ted f o r  t h e  pressure ,  equilibrium adiabat ic  

flame composition and temperature, unburned gas composition and temper - 
a ture ,  and tube geometry (assumed t o  be plane-paral le l  p l a t e s ) ,  which 



8 NACA TN 3398 

correspond t o  the quenching distances reported i n  references 6 and 9 
f o r  propane -oxygen-nitrogen flames. P l o t s  of d2 against Qt and Q, 

- 

a re  shown i n  f igures  l ( a )  and (b) ,  respectively. The ranges of the var- 
iables  included were : pressure, 0.1 t o  1.0 atmosphere ; equivalence r a t i o ,  
0.33 t o  1.90; mole f rac t ion  oxygen i n  the oxidant mixture, 0.21 t o  0.70; 
and unburned gas temperature, 300' t o  558' K. I n  f igure l ( a )  , it i s  
seen tha t  qt (which i s  en t i r e ly  analogous t o  the diffusional equation 
of r e f .  4 except f o r  the choice of quenching cr i te r ion)  sa t i s f ac to r i ly  
correlates the e f fec t  of these variables except f o r  propane-rich mix- 
tures  where cp >1.2. 

Inspection of f igure l ( b )  reveals tha t  Qs (which includes the 

oxygen-fuel react ion as  the rate-determining step, ra ther  than the 
act ive-part ic le  - f u e l  reaction) correlates not only the propane-lean, 
but a lso a l l  the propane-rich quenching data. Thus, it appears tha t  by 
proper choice of the rate-controll ing reaction, the quenching concepts 
of reference 4 may be extended i n  such a way as t o  include r i c h  mixtures 
fo r  the  propane-oxygen-nitrogen system. 

A mean l i n e  drawn through the data presented i n  f igure 1 reveals 
tha t  the predicted l inear  r e l a t ion  between d2 and qt and qs does 

not hold exactly. Rather, the  data are best  correlated i f  

d2 K ($t)0*94 cx (9s)0*84. This d i f f i cu l ty  i s  related, a t  l eas t  i n  pa r t ,  

t o  the choice of reaction mechanism, since the "best correlation" ex- 
ponent i s  changed by a change i n  react ion mechanism. 

Pressure Dependence of Quenching Distance 

Examination of the  equation f o r  quenching distance (eq. (11) ) re -  
veals t h a t  a l l  terms on the r igh t  side are independent of pressure ex- 
cept the reaction r a t e  w. However, hydrocarbon flame temperatures 
change s l i g h t l y  with pressure because of changes i n  the extent of dis-  
sociation. Consequently, a pressure change indirect ly  a f fec ts  
temperature- and composition-dependent terms i n  the equation. This 
e f fec t  i s  quite small, so t h a t  the pressure dependence of the quenching 
distance may be regarded a s  primarily dependent on the pressure de- 
pendence of the i n i t i a l  chemical processes i n  the  cambustion wave. 

The calculated pressure dependence of the  quenching distance (in- 
cluding the indirect  e f fec t  of pressure on flame temperature and coqo-  
s i t i o n )  i s  compared i n  table  I with the experimental values of reference 
6. The average deviation of the calculated values from the observed 
values was found t o  be 10 percent fo r  qt and 17 percent f o r  Qs . 
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Reference 6 gives a value of 7 percent f o r  the  average deviation of 
values computed f o r  the diffusional  equation. 

It is  seen tha t  Jrs does not predict  the  pressure dependence as 

well  a s  does $t, except f o r  the high-velocity flames a t  an oxygen 
f r ac t ion  of 0.70. This i s  probably because the assumption of a simple 
second-order react ion between f u e l  and oxygen i s  a poor one. Concern- 
ing prediction of pressure dependence, a be t t e r  choice of over-all order 
would be 1 .7  ra ther  than 2.0; t h i s  i s  i n  agreement with theore t ica l  
studies of the pressure dependence of burning velocity ( r e f .  12, p. 7 6 5 ) ,  
which indicate t h a t  the global react ion i n  most hydrocarbon flames ranges 
between f i r s t  and second order. Such a choice would also tend t o  improve 

the l i n e a r i t y  of the r e l a t ion  between d2 (observed) and qS (calculated).  

Quenching Distance and Burning Velocity 

The r e l a t ion  of quenching distance t o  burning velocity has been 
discussed i n  references 3, 4, and 15. I n  reference 4, an equation re-  
l a t ing  the two variables is  derived on a purely diffusional basis.  The 
thermal analog t o  t h i s  equation may be derived as  follows: 

According t o  reference 16, the  Semenov equation f o r  the burning 
velocity may be wri t ten a s  

Multiplying equation (11) by equation (19) and writing f o r  a. and 

Po, 

yields 
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I f  it is assumed tha t  and w have the same pressure dependence, 
it follows from equation (21) tha t ,  a t  a given equivalence r a t i o ,  

From reference 6, it i s  seen t h a t  n decreases from about -0.9 t o  
-1.05 as  the percent oxygen i n  the oxidant mixture i s  increased from 21 
t o  70. Simultaneously, the burning velocity increases from about 40 
centimeters per second t o  the order of 300 centimeters per second. 
Consequently, equation (22) predicts tha t  the  exponent describing the 
pressure dependence of U should increase from about -0.1 t o  0.05 as 
U increases Prom 40 centimeters per second t o  about 300 centimeters 
per second. This r e su l t  may be compared with the experimental findings 
of Lewis (ref .  17) (which indicate an increase of about -0.05 t o  0.07 
a s  burning velocity changes from 40 t o  300 cm/sec) t o  confirm equation 
(22) qualitatively.  

CONCLUDING REMARKS 

The f a c t  t ha t  reasonable agreement e x i s t s  between experiment and 
quenching concepts based on e i the r  heat or mass t ransfer  indicates only 
t h a t  these processes have the same formal laws and tha t  the  thermal and 
molecular d i f fus iv i t i e s  are  e i the r  equal or remain d i rec t ly  proportional 
f o r  the data considered i n  t h i s  study. No evidence f o r  the  preponder- 
ance of e i ther  heat or mass t ransfer  i n  quenching can be deduced from 
these resu l t s .  The pr incipal  advantage gained by formulation of the 
quenching concepts of reference 4 i n  a "thermal" form is tha t  a change 
i n  reaction kinet ics  is  much simpler from a conceptual point of view 
f o r  the "thermal" form than fo r  the "diffusional" form. This con- 
ceptual advantage might be useful i n  a discussion of bizarre  fue l -  
oxidant systems f o r  example, CS2-FZ flames. I n  addition, the actual  

calculations may be simplified, since by the proper choice of reaction 
mechanism, it may become unnecessary t o  calculate the equilibrium 
flame composition. 

SUMMARY CIF RESULTS 

The r e su l t s  of an investigation in to  the poss ib i l i t y  of extending 
quenching concepts previously proposed t o  include quenching of 
hydrocarbon-rich flames may be summarized as follows : 

1. An equation f o r  the c r i t i c a l  quenching configuration of a 
channel was derived fo r  hydrocarbon flames: 
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where 

C~ ,r heat capacity i n .  reaction zone, c a l / ( O ~ )  (mole) 

d character is t ic  dimension of tube geometry; quenching distance, 
cm 

F constant t h a t  r e l a t e s  t o t a l  number of reaction events tha t  occur 
during the passage of a flame t o  number tha t  must occur i n  the 
reaction zone fo r  flame propagation 

i dimensionless geometrical fac tor ,  dependent only on channel 
geometry 

N Avogadro ' s n M e r  

w r a t e  of react ion i n  react ion zone, molecules/(cc)(sec) 

xf mole f rac t ion  of f u e l  i n  unburned gas 

n r mean thermal conductivity i n  reaction zone, cal/(cm) (sec)  (OK) 

2. Two possible flame-init iating reactions were considered i n  the 
detai led formulation of w: (1) , the  reaction between act ive par t ic les  
and f u e l  molecules, and (2), the react ion between oxygen and fue l  
molecules. 

3. The two equations resul t ing from the  two reaction mechanism 
choices were tes ted  using published data tha t  included the e f fec t  of 
oxygen-nitrogen r a t i o ,  f u e l  concentration, pressure, and unburned gas 
temperature on the quenching distance f o r  propane-oxygen-nitrogen flames. 
These variables were correlated reasonably well  f o r  both r i ch  and lean 
flames by the equation involving the  oxygen-fuel reaction. The equation 
involving the act ive-part ic le  - f u e l  reaction was sa t i s fac tory  primarily 
f o r  lean flames. 

4. It was concluded tha t ,  by the  proper choice of reaction kinet ics ,  
the quenching concepts previously proposed may be cast  i n  a form useful 
fo r  the  prediction of both propane-rich and -lean quenching data. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, DeceIliber 6, 1954 
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APPENDIX - SYMBOLS 

The following symbols a re  used i n  t h i s  report: 

f rac t ion  of molecules present t h a t  m u s t  r eac t  f o r  flame t o  con- 
t inue t o  propagate 

f u e l  concentration, molecules/cc 

Arrhenius constant 

oxygen concentration, molecule s/cc 

concentration of ith active par t ic le ,  molecules/cc 

heat capacity, cal/  (OK) (mole) 

average heat capacity, To t o  TF, cal/(%) (mole) 

diffusion coefficient , cm2/sec 

character is t ic  dimension of tube geometryj quenching distance, 
cm 

act ivat ion energy, cal/mole 

constant tha t  r e l a t e s  the t o t a l  number of reaction events tha t  
occur during the passage of a flame t o  the number which must 
occur i n  the reaction zone f o r  flame propagation 

dimensionless factor ,  value of which i s  dependent only on tube 
geometry 

heat released upon consumption of 1 mole of f u e l  by combustion 
process, cal/mole 

heat produced by chemical reaction i n  primary reaction zone, 
cal/mok 

t o t a l  heat produced by combustion of 1 mole of unburned gas, 
cal/mole 

heat produced per react ion event, c a l  

r a t e  constant, (cc) (molecules)/sec 

average molecular weight of unburned gas, g/mole 

molecularity of flame reaction 
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N Avogadro ' s number 

N~ t o t a l  number of molecules present per cc 

n exponen-k describing pressure dependence of quenching distance 

nl/n2 moles of reactant per  moles of product from stoichiometric 
equation 

P pressure, atm 

R gas constant 

T temperature, "K 

U flame speed, cm/sec 

ti average reaction r a t e  i n  flame f ront  a s  defined by Semenov, 
molecules/ (cc)  (sec) 

w react ion r a t e  i n  primary react ion zone, molecules/(cc) (sec) 

Xf mole f rac t ion  of f u e l  

x number of reaction events per cc t h a t  occur during passage of 
flame through a uni t  volume 

a mole f rac t ion  of oxidant i n  oxidant-inert mixture 

x thermal conductivity, cal/(cm) (sec) (OK) 

Y average active-particle chain length 

P density, g/cc 

z time between effect ive co l l i s ions ,  sec 

cP equivalence r a t i o  
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Subscripts : 

F flame 

i act ive-part ic le  species 

o unburned gas 

r primary react  ion zone 

s involves reaction of oxygen and f u e l  molecules 

t involves reaction of act ive par t ic les  and f u e l  molecules 
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TABU I. - COMPARISON OF OBSERVED PRESSURE DEPENDENCE 

OF QUENCHING DISTANCE WITH PREDICTED VALUES 

Oxygen 
fract ion,  

a 

0.17 

0.21 

0.30 

0.50 

0.70 

Equivalence 
ra t io ,  

'4 

0.943 
1.000 
1.340 
1.530 

0,738 
.864 

1.000 
1.240 
1.490 

0.566 
.662 
.773 

1.000 
1.380 
1.903 

0.476 . 544 
-680 

1.000 
1.358 
1.940 

0.345 
.395 
.494 

1.000 
1.234 
1.829 

Exponent n describing 
pressure dependence, 

Observeda 

0.90 
.89 
.84 
.71 

0.85 
.84 
.89 
.95 
.98 

0.76 
.93 

1.06 
.98 
.93 
.74 

1.01 
1.01 

.96 

.93 

.91 

.88 

1.12 
1.12 
1.02 
1.01 
1.07 

-60 

d oc p-n 

Diffu- 
s ionala 

0.88 
.85 
.75 
.75 

0.86 
.89 
.93 
.78 
.76 

0.87 
.89 
.92 
.94 
.86 
-76 

0.91 
.93 
.96 
.97 . 95 
.82 

0.91 
-93 
.96 
.98 
.98 
.89 

Predicted 

"'t 

0.83 
.76 
.75 
.75 

0.80 
.84 
.89 
.79 
.77 

0.87 
.88 

1 .90 
.90 
.84 
.76 

0.89 
.91 
.92 
-92 
.90 
.81 

0.89 
.91 
-92 
-93 
.92 
-86 

Thermal 

"'s 

1.03 
1.01 
1.00 
1.00 

1.00 
1.03 
1.03 
1.02 
1.00 

1.01 
1.04 
1.07 
1.09 
1.06 
1.01 

1.06 
1.07 
1.09 
1.11 
1.09 
1.05 

1.06 
1.07 
1.09 
1.09 
1.11 
1.08 
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