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SUMMARY 

In transpiration cooling of various structural elements in gas tur­
bines, the coolant has to be ducted within passages to the porous walls 
through which it is ejected into the gas stream. The passages, often 
arranged in rotating parts, have to be designed in such a way as to en­
sure the proper local distribution of the coolant. In this report, a 
method is presented by which either the local permeability necessary for 
a prescribed distribution of the coolant flow or the coolant-flow dis­
tribution resulting from a prescribed local permeability can be predicted. 
The method is based on a one-dimensional treatment of the gas flow through 
a rotating channel with varying cross section and partially porous walls. 
The inlet pressure into the channel and the outside pressure along it are 
assumed prescribed. It is also stipulated that the passage ends blindly. 
However, the method can easily be extended to cover the situation where 
a certain mass flow leaves the open end of the passage. 

The method was applied to a determination of conditions in rotating 
turbine blades with transpiration-cooled walls. The cooling air is as­
sumed to flow from the blade root through several channels to the porous 
skin of the blades . For prescribed coolant-flow ejection rates necessary 
to maintain a constant porous wall temperature , considerable reduction 
in wall permeability from passage entrance to passage tip (blade root to 
blade tip) is required. In fact, such required variations will be ex­
tremely difficult to fabricate, and compromises between prescribed wall 
temperature and coolant-flow ejection may be necessary. For prescribed 
locally constant permeability, the mass-flow ejection rate increased from 
blade root to blade tip. The relative increase along the blade became 
smaller when the inlet pressure of the coolant at the blade root was in­
creased . A large inlet pressure is therefore conducive to a uniform flow 
ejection rate and, accordingly, a more uniform blade wall temperature . 
In the investigated range, a passage area variation had practically no 
effect on flow ejection rates. For low Mach numbers at the passage inlet 
(below approximately 0.2 in the examples), the internal pressure distri­
bution may well be approximated by consideration of rotational effects 
only. This leads to a considerable simplification in the calculation 
procedure. 
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INTRODUCTION 

Transpiration cooling is considered as an effective means of keeping 
different structural elements in gas turbines at a temperature level suf­
ficiently low for the material from which the elements are fabricated . 
Application of this cooling method is considered, for instance , for cool­
ing the walls of combustion chambers and of rotating turbine blades . In 
both cases, passages have to be provided within which the coolant is 
ducted to the porous surfaces before it is finally ejected into the gas 
stream. 

When transpiration cooling is applied to the rotating blades of the 
gas turbine, these passages will have to be arranged in the interior of 
the blade, for instance , as indicated in figure 1 . The passages are 
closed at the top of the blade , and the cooling air leaves the passages 
through the porous blade surfaces. The flow of the cooling air through 
each of the passages is subject to friction forces along the passage 
wall, to centrifugal forces that tend to increase the pressure from the 
blade root towards the blade tip, and to pressure changes connected with 
the change in momentum of the cooling air on its way along the passage 
interior. The problem arises as to what local permeabilities along the 
passage are required to ensure a certain flow distribution or what the 
local flow distribution of the cooling air will be as it passes the po­
rous surface with prescribed permeability and is ejected into the gas 
stream. In both cases, the calculation is complicated by the fact that 
the pressure outside the blade varies locally in radial direction as well 
as around the blade circumference. 

A proper design of the blade requires the ability to predict the 
local flow rates through the porous blade walls. It is the purpose of 
this report to present a method by which the flow through passages with 
porous walls of the form indicated in figure 1 may be calculated. The 
method is based on a one-dimensional treatment of the flow and is essen­
tially the same as presented in references 1 and 2. It is, however, 
especially adapted to the problem under investigation. The basic equa­
tions necessary for a solution of the problem are derived at first in a 
general way, so that they can be applied generally to calculate flow 
conditions in rotating passages. These equations are then adapted to 
the special conditions expected in gas turbine blades. The calculation 
procedure is discussed in detail, and the importance of the various pa­
rameters affecting the flow distribution is investigated in a number of 
numerical solutions. 

SYMBOLS 

The following symbols, with consistent units, are used: 

A cross-sectional (flow) area of passage 

a slope of dimensionless temperature ratiO, ~ = 1 + a~ 
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b length of porous section of passage measured in circumferential 
direction 

quantity containing permeability coefficient (see eq. (11)) 

dimensionless quantity containing permeability coefficient 
(see eq. (17)) 

viscous -resistance coefficient 

inertial-resistance coefficient 

specif ic heat 

hydraulic diameter of passage (=. 4A ) 
clrcumference 

f friction coefficient 

I function 

K permeability coefficient (see eq. (9)) 

L length of passage 

M Mach number at passage inlet 

m mass coolant flow 

N ruI-/VrRTr 

Nit ruLPi,r /~Tr (m!A)r] 

n exponent 

p pressure 

R gas constant 

r radius to element measured in plane of rotation (see fig. 1) 

T temperature of coolant 

effective gas temperature 

t thickness of porous wall 
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V flow velocity through porous wall (based on total porous surface 
area) 

W velocity of main flow through passage 

x distance from passage entrance (see fig. 1) 

~ dimensionless area ratio, A!~ 

angle between velocity vector and direction of increasing radius 

y ratio of specific heats, 1.4 

~ dimensionless coolant mass velocity ratio, (m!A)!(m!A)r 

v kinematic viscosity 

dimensionless distance from passage entrance, x/L 

dimensionless external pressure ratio, Pe/Pi r , 
dimensionless internal pressure ratio, Pi/Pi,r 

p density 

-. dimensionless temperature ratio, T/Tr , except for -'w (shearing 
stress at wall) 

ill angular velocity 

Subscripts: 

e external 

i internal 

r root (passage entrance) 

s considers rotating effects only 

w wall 

0 NAeA standard conditions 

Superscript: 

total condition 
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ANALYSIS 

Derivation of Basic Equations 

The basic equations used in this report are developed with the help 
of figure 1. This figure shows a portion of a channel) one wall of which 
is porous. The channel may rotate around the axis 1-1 with the angular 
velocity m. Attention is fixed on a portion of fluid between the cross 
sections A and A + dA. This region is located at the distance r 
from the axis 1-1, and the axis of the channel is inclined under an angle 
~ against the radial direction) where ~ is measured between the ve­
locity vector and the direction of increasing r. The flow through the 
passage is assumed to be steady relative to the channel. 

For steady-flow problems) application of Newton's second law of mo­
tion may be made by equating the net force acting on a control surface 
and the body forces acting on the fluid particles within the control area 
to the increase in momentum of the stream flowing through the stationary 
control surface. In the present case this law must be applied to a con­
trol area that is at rest relative to the channel. In figure 1 such a 
control area is indicated bounded by the two cross sections A and 
A + dA and by a surface located in immediate proximity to the inside 
wall of the channel between the two cross sections. Forces acting in 
flow direction on the control surface will be pressure forces in the two 
cross sections and along the channel wall, friction forces acting along 
the channel wall in the portion between the two cross sections) centrifu­
gal forces, and Coriolis forces. The sum of all pressure forces is 

if the pressure on the surface bounding the channel walls is approximated 
by Pi + dPi!2. Neglecting second-order terms reduces the pressure 

forces to 

When the friction factor f is defined by the equation 

_ f p w2 
"w - 8 

c"w denoting the shearing stress at the wall)) the friction force can 

be expressed in the following way: 



6 

d.x W2 
-f - P - A 
~ 2 

NACA TN 3408 

Body forces} caused by centrifugal acceleration of the fluid particles} 
can be written as 

The Coriolis force is oriented normal to the flow direction through the 
passage and has no component in the direction of the passage axis. The 
increase in momentum of the stream flowing through the control surfaces 
is 

(m + dm)(W + dW) - mW 

or 

m dW + W dm 

Equating the various force terms wit h the change in momentum results 
in 

Use of the continuity equation 

the equation of state 

and the relation 

in equation (1) leads to 

dm 
dx 

m = pAW 

pRT 

mdA +-­Adx 

Pi 2RT (~) d(~) _ rm2 cos 13 -
RT Pi A dx 

m dW + W dm (1) 

(2 ) 

(3) 

(4) 
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The static temperature T is determined by the rate at which internal 
energy in the flowing gas stream is converted into kinetic energy, as 
well as by the rate with which heat is added to or subtracted from the 
gas stream. For high- velocity flow in which the conversion of internal 
energy into kinetic energy becomes an important factor, it would be more 
appropriate to calculate with the total temperature , which is directly 
connected with the rate of heat addition, than with the static tempera­
ture. This conversion can be made with the help of the following 
equation: 

T' 

The change from the static to the total temperature , however, complicates 
equation (5) considerably. On the one hand, the flow velocities in the 
passages are usually small enough to make the temperature change connected 
with the conversion of internal into kinet ic energy small. On the other 
hand, the rate of heat addition to the coolant on its way through the 
flow channel usually is not too well known and has to be estimated. For 
these reasons, the static temperature is maintained in the following 
calculations. It is assumed that the variation of the static temperature 
along the coolant flow channel is known. 

In equation (5), the specific mass flow miA, the internal' pre~sure 
Pi' the radius r, the tangential velocity rill, and the cross-sectional 

area A are generally functions of the distance x from the channel 
entrance measured along the channel axis. The temperature T may also 
vary along x. 

A second expression including the same variables as functions of 
the distance from the passage entrance can be obtained from a considera­
tion of the pressure drop through the porous wall when the pressure dis­
tribution along the outside of the passage is prescribed. The mass 
velocity of the coolant ejected through the porous wall at any location 
multiplied by the width of the porous portion of the channel wall meas­
ured in circumferential direction equals the rate of change of the cool­
ant mass flow passing through the passage at th~t location; that is, 

dill 
-b(pV) = dx (6) 

The quantity pV is the average mass-flow rate over the channel width 
b. The negative sign appears in the left member of equation (6) when 
the velocity is considered positive for flow leaving the channel through 
the porous wall. Reference 3 shows that the mass velocity of a gas 
flowing through a porous wall is connected with the difference in the 
squares of the pressures acting on both sides of the wall, through the 
equation 



8 NACA TN 3408 

(7 ) 

Values of C1 and Cz must be determined experimentally for each porous 

material. 

Equation (7) may be referred to measurements at standard conditions 
by transformation into (see ref. 4) 

(8 ) 

The parameters appearing on both sides of equation (8), when plotted on 
log-log coordinates for several types of porous materials, indicate an 
almost linear variation over a fairly wide range of flow for any of the 
materials. As a consequence, equation (8) may be well approximated by 

V PO\lO _ [K ~PO\lO)z TO (Z _ P -- - - -- - Pi p\l t p\l T 

where K is the permeability of the material. 
222 

(9) 

On a log-log plot of 

Pi - Pe (PO \10\ TO 
t P\I) T against pV(povolpv), the intercept of the curve for 

a given porous material on the log pV(PO\lO/P\}) axis is the value of n 

log K for that material. This definition of K is similar, but not 
identical, to that normally used. For the purpose of this calculation, 
equation (9) is simplified to 

(10) 

by introduction of the parameter 

(11) 

The values of CK and n are functions of the porous material; they 

also vary slightly with the specific mass flow pV(POvO/P\I). The value 

of CK is a function of the material permeability and thickness, and of 

cooling-air properties based on porous-wall temperature. Substitution 
of equations (4) and (10) into equation (6) gives the desired relation: 

m 
N 
If) 

to 
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(l2 ) 

Equations (5) and (l2) are two equations from which two unknown values 
can be calculated. 

Reduction to Dimensionless Form 

In order to make the results of calculations more generally appli­
cable, it is advantageous to change equations (5) and (l2) to dimension­
less form . For this purpose, the following substitutions are made (the 
dimensionless variables are ~enoted by Greek letters corresponding to 
the English letters for the dimensioned quantities , and the constants by 
English capital letters): 

N" 

N 

:rc 
e 

A 
a, = Ar 

coLPi r , 

N"M = coL 
AJYRT: 

(l3 ) 
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It can be shown easily that the parameter M is the Mach number of the 
flow at the passage inlet. The parameter Nil is essentially the square 
root of the ratio of the centrifugal force to an inertia force. This 
can be seen from the following transformation: 

The right-hand term is, in addition to the length ratio L/2rr , the ratio 

of the centrifugal force per unit fluid volume at the passage entrance 
to the inertia force that would be necessary to slow down the fluid par­
ticle from an initial velocity Wr to the velocity zero over a length 
equal to the channel length L. 

Use of these substitutions in equations (5), (10), and (12) gives 
the following dimensionless equations: 

(14) 

(15) 

~ ~ - ~ bL C
K 

d. (rt? _ rt2e)n 
ex. d'; ex. Ar ) lm l 

(16) 

where 

(17 ) 

CALCULATION PROCEDURE 

The two equations (5) and (12) or (14) and (16) can be used to 
calculate two of the parameters that depend on x if the rest of the 

m 
(\J 
I.[) 

to 
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parameters and an appropriate set of boundary conditions are prescribed. 
Two problems are most frequently encountered in applying t his analysis 
to des i gn calculations: (1) A passage of prescribed geometry is .. closed 
at one end and fed at the other end by gas of a prescribed state. The 
pressure along the outside of the porous passage wall of prescribed 
material (CK and n known) and the local d istribut ion of the flow ejec-

tion through the porous wall are prescribed as well. The local distribu­
tion of the permeability of the channel wall has to be determined in such 
a way that the required flow rate through this wall (for instance, to ob­
tain a desired wall temperature distribution) is obtained. (2) The passage 
geometry as well as the permeability of the porous portion of the channel 
walls of known material is prescribed. The channel is again closed at 
one end and f ed at the other end with gas of a pres cribed state. The 
outside pressure distribution i s known. The distribution of the local 
flow rate through the porous wall has t o be determined. 

The first problem is the easier one to calculate, because, with 
the local flow rate prescribed, the mass flow within the channel may be 
obtained from integration of equation (6 ) . Equation (5) or (14) then 
can be used t o calculate the internal pressure distribution along the 
passage, because all the other terms in either equation are known, and 
equation (10) (or (15)) can then be solved for the constants CK or 

CK,dim' wh ich determine the required local permeability of the porous 

wall. 

Case (2) makes it necessary t o solve equations (5) and (12) or (14) 
and (16) simultaneously for the two unknowns Pi or ni and m/A or 

~, the internal pressure and the mass velocity, respectively. 

A simplification of the outlined calculation procedure, investigated 
for assumed radial pas sages, considers only centrifugal and pressure 
for ces in the balance of forces act ing on the control area. Equation (1) 
reduces to 

- A dp. + pArm2 dx 0 1,S 

and equation (14) reduces to 

(18) 

The numerical examples presented later in this report are obtained for 
an assumed linear variation in cooling-air temperature; as a consequence, 
~ also varies linearly in the form 

't" = 1 + a~ 
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With this expression for ~ inserted in equation (18), direct integra­
tion results in 

In 'i,8 = :~2 (rt a-I) In (1 + a~) + r~2 ~ (19) 

The dimensionless pressure ni s in the passage is now independent of , 
the coolant flow. The conditions under which the simplified procedure 
can be used are discussed later . 

NUMERICAL EXAMPLES 

Sample calculations for each of the two problems previously discussed 
were made for cooling- air passages I and II of the turbine blade shown 
in figure 2. The parameters needed in the calculations are indicated in 
the figure legend. They were chosen to correspond to conditions prevail­
ing in a test engine available at the NACA Lewis laboratory for the test­
ing of turbine blades. Passages I and II were assumed to be radial pas­
ages (~ = 0). The cross-sectional area of passage II is assumed to 
decrease lin~arly along the blade span to a value at the tip which is 
half that at tne root. That of passage I is constant for all calculations 
except one, the case where the effect of area variation on flow conditions 
was investigated. For this case, two arbitrary passage area variations 
to be discussed later were conSidered, in addition to the case of constant 
area. Poroloy wire cloth was selected as the porous material for the 
turbine blade skin, constituting the porous side of each passage. An 
empirical equation supplied by the manufacturers of Poroloy (ref . 5) and 
valid for flow rates between 0 . 0001 and 0.1 pound per sec ond per square 
inch gives the value n in equation (10) as 5/8. The expre~sion 

will be used later to determine the permeability per unit thickness Kit 
of the porous side of passages I and II (see fig. 2). 

The external pressure variations along passages I and II are also 
shown in figure 2. These spanwise pressure distributions were obtained 
from calculated velocity and pressure distributions around the blade 
periphery at three spanwise locations. The effective gas temperature 
profile along the blade span shown in figure 2 was determined experimen­
tally with uncooled blades of the same geometry in a test engine. The 
inlet cooling-air temperature was assumed as Tr = 6400 R. A linear in­
crease of approximately 2000 F in cooling-air temperature through the 
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blade span was assumed arbitrarily. The friction factor f indicated 
in figure 2 was obtained from the relation valid for turbulent flow 
through a tube. It corresponds to a Reynolds number of about 2000 when 
this parameter is based on the hydraulic diameter of the passage. Ac­
tually, the Reynolds number, and therefore the friction factor, varies 
along the passage. This variation was neglected in the present 
calculations. 

The following dimensionless quantities were obtained from the pa­
r.ameters in figure 2; they are held fixed throughout the calculations: 

f = 0.0475 

~ 1 + 0.328 ~ 

N 0.2916 

Permeability Requirements for Prescribed Flow Ejection 

The determination of the permeability of the porous wall necessary 
to fulfill prescribed flow ejection distributions for the two passages 
of the blade shown in figure 2 will be considered first. The results 
of these calculations are presented in figures 3 to 6. The two pass~es 
were chosen so that laminar boundary-layer flow is expected along the 
outside blade surface adjacent to one passage (I) and turbulent flow 
along the outside blade surface adjacent to the other passage (II) when 
transition is estimated from the pressure distribution around the blade 
periphery. A blade wall temperature of 6000 F was prescribed. The 
spanwise cooling-air-flow rate pV can be calculated from the data pre­
sented and from the condition that the blade temperature is constant over 
the surface (ref. 4). The cooling-air-flow distribution and a knowledge 
of b, the circumferential length of the porous section Of the passage 
at each spanwise position, permit the integration of equation (6) and 
hence the determination of the distribution of the mass flow m through­
out the passage. After conversion to the dimensionless mass-flow pa­
rameter ~,equation (14) can be solved for the dimensionless internal 
pressure distribution ni. For the integration of equation (14), the 

cooling-air pressure at the entrance of the passage must be known. For 
this calculation, the value of the dimensionless external pressure at 
the root ne r was assumed to be 0.95. From the internal and external , 
dimensionless pressure ratios ni and 

less permeability parameter CK dim is , 
ne , respectively, the dimension­

obtained from equation (15). 

This parameter is valid for any porous material for which the mass flow 
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is described by equation (12). For Poroloy the desired permeability per 
unit thickness is determined from the express i on 

resulting from use of equations (17) and (ll). 

Figure 3 shows, in dimensionless form, the results of this calcula­
tion, namely, the internal mass-flow distribution ~ (which is nearly 
linear) and the internal pressure distribution ~i as functions of the 

dimensionless distance ~ = x/L for passage I, whose porous wall is 
exposed to laminar external flow. The prescribed external pressure 
distribution ~e is also shown once more for comparison. Figure 4 shows 

the dimensionless permeability parameter CK dim' which is valid for any , 
porous material for which equation (10) holds, and the permeability dis­
~ribution Kit required to satisfy the prescribed cooling-air ejection 
rates through the porous Poroloy wall. A rapid reduction in blade per­
meability or a corresponding increase in wall thickness is required near 
the lower quarter-span of the passage, a more gradual permeability re­
duction or thickness increase to about the three-quarter-span location, 
and a nearly constant permeability or thickness in the region near the 
blade tip. Such a permeability or thickness variation will be extremely 
difficult to fabricate; and, in all probability, some sort of compromise 
between prescribed wall temperature (and corresponding prescribed 
coolant-flow ejection pV) and a more readily obtainable permeability or 
thickness variation will be necessary. 

A variation of the parameter Kit as shown in figure 4 is also often 
unfavorable with regard to stress, because it may mean heavier material 
for the blade shell near the tip of the blade. It is easily understand­
able that the variation of the parameter Kit along the blade length be­
comes smaller when the pressure at the passage inlet is increased. This 
is shown in more detail in some later figures. The result of the simpli­
fied calculation procedure (eq. (19)) is shown in figure 3 as the dashed 
line ~i s· It can be observed that the difference between the result , 
of the original calculation (the solid line ~i) and the result of the 

simplified procedure (the dashed line ~i s) is very small under the as­, 
surned parameters. 

Passage II differs from passage I by the fact that the gas flow 
around the blade is expected to produce a turbulent boundary layer adja­
cent to passage II. Consequently, the coolant-flow ejection pV 

(J) 

C\J 
Lf) 
10 
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requi r ed t o maint ain a blade wall temperat ure of 6000 F is considerably 
larger t han for passage I. This distribution along the span of passage 
II was calculated by t he method discussed in reference 4 and is shown in 
figur e 5 . The cross-sectional area of passage II was assumed to decrease 
linearly from blade root to tip; its value at the tip was half its value 
at t he root . In algebraic form, the dimens ionless area of passage II 
may be expres sed as ~ = 1 - 0. 5 s. The calculation proceeded as in the 
previously described case. The results are plotted in figures 5 and 6. 
Dimens ionless distributions of external p~essure rte , internal pressure 

rti' and mas s velocit y ~ are shown a s functions of the dimensionless 

distance s = x/L in figure 5 . The variation of the cross-sectional 
area of the pas sage is reflected in the distribution of mass velocity 
m/A. The dimens ionless permeabilit y parameter CK dim and the distri-, 
bution of Kit are presented in figure 6. The variation of these pa­
rameters over the blade height is qualitatively the same as for passage 
I. The required permeabilities, however, are considerably larger for 
passage II in order to a c commodate the larger coolant-flow rates. 

The dimensionless internal pressure distribution rti s calculated , 
by the simplified equation is inserted in figure 5 as the dashed line . 
The difference between the solid line pressure distribution rti obtained 

by use of equation (14) and the dashed line in figure 5 is larger than 
it was for passage I (fig. 3). Since the calculation is considerably 
simplified by use of equation (18) instead of equation (14), it is im­
portant to know when this simplification is permissible . This will be 
discussed in detail later. 

Flow Ejection Distribution for Prescribed Permeability 

The determination of the flow ejection distribution for a prescribed 
porous-wall permeability requires the simultaneous solution of equations 
(14) and (16). The two boundary conditions that must be fulfilled apply 
at opposite ends of the passage; that is, the dimensionless internal 
pressure at the passage entrance rti r must equal unity, and the dimen-, 
sionless mass velocity ~ must reduce to zero at the passage tip. More­
over, rti must exceed (or in the limiting case, equal) the dimensionless 

external pressure rte everywhere along the passage to ensure flow through 

the wall in the proper direction. For a prescribed distribution of the 
outside pressure rte , a unique ~ distribution that reduces to zero at 

the passage tip can be found. However, this distribution can only be 
found by a trial-and-error procedure. It is necessary to assume values 
of p. and (m/A)r at the passage entrance, to solve the equations l,r 
numerically, and to check the value of ~ at the passage tip. In gen­
eral, several trials will be required before the value ~ = 0 at the 
tip is obtained. 
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Calculations were made for the determination of the flow ejection 
distributions in passage I for three assumed values of the internal pres­
sure at the passage entrance Pi r (and hence for three distributions of 

J 

~e Pe/Pi r) for a passage with a porous wall whose permeability is , 
CK 10- 5 ft l / 2/(sec)(lbl / 4 ). Uniform porous-wall thickness and constant 

passage area (~ = 1) were assumed. The external pressure distributions 
~e' the internal pressure distributions ~i' and the internal flow dis -

tributions ~ are shown in figure 7. Also shown, as a dashed curve, is 
the internal pressure distribution ~i s ' which includes rotational ef-, 
fects only and was caJculated by use of equation (19). Only slight varia­
tions in the internal pressure distribution ~i result from variation 

of the pressure with which the cooling air enters the blade root. More­
over, the internal pressure distribution ~i s obtained by use of equa-, 
tion (18) is only slightly different from the other ~i distributions 

obtained by use of equation (14). For this blade passage, therefore, the 
simplified procedure would give practically the same results as the more 
complicated solution involving equation (14). The saving in time is 
especially large in this case, since no trial-and-error procedure has to 
be employed when equation (18) is used . 

The distribution of the air ejection rate pV is shown in figure 8. 
As expected, the pV values increase as ~e r decreases. Also, the , 
ratio of the pV value at any location to the value at the passage en­
trance changes less along the blade length with increasing inlet pressure. 
The pV distribution that results in a constant blade shell temperature 
is nearly constant spanwise, as can be seen from figure 3. A constant 
value of K/t for the porous wall will therefore lead to a blade tem­
perature that decreases from root to tip. To make this decrease small, 
the cooling-air inlet pressure at the blade root should be made as large 
as possible. 

Figure 8 can be used to estimate how much more cooling air is re­
quired for passage I when the porous wall has constant permeability than 
when the permeability varies spanwise so as to give the constant or nearly 
constant coolant-flow rate pV necessary to maintain a constant spanwise 
wall temperature. For purpose of comparison, it may be assumed that the 
wall permeability and inlet pressure at the passage entrance are adjusted 
so that the coolant flow pV (and hence also the wall temperature) at the 
base is the same for both cases. It is then seen that, for the cases of 
a constant wall permeability with ~e r = 0.8 and 0.6, the corresponding , 
excess use of cooling air over the ideal case of a constant spanwise pV 
is approximately 77 percent and 45 percent, respectively . For the limit­
ing case where ~e r = 1.0, the coolant flow pV is zero at the blade , 
root, and the condition of a constant spanwise coolant flow pV reduces 
to the case of an impermeable blade wall. 
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A series of calculations was made for the same passage, the same 
wall permeability, the same external pressure distribution corresponding 
to 11:e r = 0.8, but for passages whose flow areas increase (0.=1+0.5 .;), , 
are constant (a. = 1), and decrease (a. = 1 - 0.5';) in flow direction, 
respectively. Figures 9 and 10 present the results of these calculations. 
Figure 9 s hows very little variation in the various 11:i distributions 

(including 11:i s), in spite of rather marked variations in the mass ve-, 
locity distributions ~. Accordingly, the pV distributions indicate 
(fig. 10) that passage flow-area variation has an almost negligible in­
fluence on the flow ejection rates. 

From the fact that the 11:i curves in figure 9 are all in reasonably 

close agreement with the 11:i,s c~ve resulting from the simplified cal­

culation (eq. (19)), it may be deduced that changes in the variation of 
cross-sectional area do not cause appreciable differences between the 
pressure distributions obtained by the two calculation procedures. It 
can be concluded, therefore, that the rate of coolant flow, or Mach num­
ber, is the determining parameter in this regard. 

Examination of equations (14) and (18) reveals that the two solutions 
are identical for the case of zero coolant flow (M = 0); and, hence, for 
small Mach numbers M good agreement ~etween the solutions for 11:i and 

11:i s (eqs. (14) and (18), respectively) is expected. That this is the , 
case for the present calculations can be seen from figures 3, 5, 7, . and 
9. In figure 3, the Mach number is very small (M = 0.059), and the 
solutions for 11:i and 11:i s are practically identical. In figure 7, , 
the solutions for 11:i are for Mach numbers M of 0.135, 0.185, and 
0.228; the corresponding maximum percentage differences between 11:i and 

11:i - 11:i s 
11:i s are ' xlOO% = 0.9, 1.8, and 3.1 percent, respectively. In 

, 11:i s , 
figure 9, where all solutions are for an essentially constant Mach number 
of 0.185, the maximum percentage difference between 11:i and 11:i s is , 
only 2.1 percent. The solution for 11:i presented in figure 5, however, 

represents a comparatively high coolant-flow rate with .a Mach number of 
0.350, and the maximum percentage difference between 11:i and 11:i s is , 
8.6 percent, an appreciable amount. From these results, it appears that 
the use of the simplified solution for the internal pressure 11:i s given , 
by equation (19) results in an error of order not more than approximately 
2 percent from the exact solution, as long as the coolant-flow Mach num­
ber does not greatly exceed 0.2 • 
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SUMMARY OF RESULTS 

A one- dimensional method that permits the calculation of local per­
meability for prescribed coolant flow (or the solution of the inverse 
problem) for a rotating passage with varying cross section and partially 
porous walls was developed. A knowledge of the temperature distribution 
of the cooling air inside the passage, the outside pressure along the 
passage , and the passage geometry is required . Solutions to the first 
problem were obtained by solving independently a pair of first - order dif­
ferential equations . For the inverse problem, a simultaneous solution 
of a pair of equations is required; a trial- and- error procedure has to 
be applied in this case . 

Solutions to both problems were obtained for several blind radial 
passages in a transpiration- cooled turbine rotor blade . ~le results of 
this investigation are as follows; 

1 . For prescribed coolant-flow ejection rates necessary to maintain 
a constant porous -wall temperature for both a constant-area passage ex­
posed to external laminar- flow conditions and a variable- area passage 
exposed to external turbulent - flow conditions, cons iderable reduction in 
permeability or increase in thickness is required from blade root to 
blade tip . In either case , a rapid reduction in permeability or increase 
in thickness is required near the root of the blade; the reduction tends 
to level off considerably beyond this point. 

2 . Permeability or thickness variations like those necessary to 
maintain a constant wall temperature throughout appear extremely diffi­
cult to obtain with present- day materials, and some compromises between 
prescribed wall temper ature and a more readily obtainable permeability 
or thickness distr ibution will undoubtedly be necessary . These variations 
will probably require some increase in shell thickness near the tip of 
the blade and, as a consequence , they might- be unfavorable from stress 
considerations. 

3 . For prescribed locally constant permeability, the mass - flow ejec ­
tion rate increases from blade root to blade tip . As the passage inlet 
pressure is increased, the relative increase in flow ejection rate along 
the blade height becomes less . Consequently, a large inlet pressure will 
result in a more nearly uniform flow ejection rate . 

4 . For prescribed locally constant permeability, variations in pas ­
sage cros s-sectional area had practically no influence on flow ejection 
rates . 

5 . The internal pressure distribution of cooling air in a rotating 
passage can be apprOXimated by balancing the centrifugal force due to 
rot ation with the pressure forces only . This approximation can be 

• 

• 
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applied to the solution of both types of problems discussed above. For 
many cases of practical importance , the simplified differential equation 
can be integrated directly to obtain the pressure distribution, thus 
eliminating the numerical process necessary for the complete solution. 
The complete solution and the approximate solution converge for zero 
coolant flow. The resul~s presented in this report indicate that the 
complete solution for the internal pressure is well approximated by the 
simplified solution, for cooling- air Mach numbers at the passage entrance 
that do not greatly exceed 0.2. The maximum difference between the com­
plete and approximate solutions is then of the order of 2 percent. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, OhiO, November 18, 1954 
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