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NATIONAL ADVISCRY COMMITI'EE FOR AERONAUTICS 

TECHNICAL NOTE 3340 

GENERALIZATION OF GAS-FLOW -INTERFEROMETRY THEORY AND INTERFEROGRAM 

EVALUATION EQUATIONS FOR ONE-DIMENSIONAL DENSITY FIELDS 

By Walton L. Howes and Donald R. Buchele 

SUMMARY 

Interferogram evaluation equations for calculating one-dimensional 
density distributions from optical-interference records are derived 
from generalized equations. The resulting evaluation equations are ap­
plicable for any plane of focus. Assumptions involved in the deriva­
tions are more general than heretofore and permit determination of limi­
tations and systematic errors of the evaluation equations. Errors 
caused by an extended or misalined light source and by test-section 
windows are found to be negligible when the extension or misalinement 
is small compared with the focal length of the collimating lens. A 
criterion for applicability of the evaluation equations is established, 
and a criterion for avoiding apparent-ray-trace crossing is derived. 

The proposed evaluation equations and procedures are compared with 
previous results and are tested in a hypothetical and an experimental 
situation involving known density distributions. 

INTRODUCTION 

Zehnder-Mach interferometers have been employed in recent years for 
quantitative studies of various aerodynamic and thermodynamic phenomena 
(refs. 1 to 6), particularly boundary layers. The optical-interference 
method possesses the important advantages of permitting instantaneous 
quantitative recording of the entire phenomenon without disturbing it. 
However, because the interference method is integrative, it is presently 
restricted to certain quantitative applications by mathematical limita­
tions that are primarily attributable to the geometry of the phenomenon 
and to optical refraction. 

Practical interferogram evaluation equations for one-dimensional 
density fields, where the density gradient is essentially perpendicular 
to the incident light path, have been proposed in references 7 to 11 
and include the effects of optical refraction. In references 7 to 10 a 
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simple evaluation procedure is developed; however, this procedure in 
its most general form necessitates a "shift ing" procedure, becomes in­
valid in the presence of apparent -ray-trace crossing, and may not apply 
in the immediate vicinity of surfaces . In the present report the analy­
sis given in reference 11 is generalized and modified in an attempt to 
eliminate the preceding difficulties and to determine the importance of 
various systematic errors . 

GENERALIZED EQUATIONS 

General functional relations giving the refractive-index distribu­
tion as a func~ion of measurable ~uantities and considering a laterally 
extended light source are derived . For subsequent simplicity, the fol ­
lowing assumptions are made : 

(1) The interferometer optical system is perfect. 

(2) The light incident at the test section, which contains the 
phenomenon to be studied, is perfectly collimated. 

(3) The refractive index of the medium to be studied is very nearly 
unity. 

( a ) The test medium possesses no internal space discontinui­
ties of refractive index, such as shock waves, in the region of 
interest . 

(b) The test medium is bounded by plane discontinuities, such 
as wind-tunnel windows, perpendicular to the optical axis of the 
interferometer optical system. 

(4) All other media traversed by the light possess a constant 
refractive index. 

References 9 and 11 have shown that the pertinent effects of wind­
tunnel wi ndows are insignificant for the case of an axial point-light­
source . It will presently be shown that window effects are also essen­
tially negligible with respect to light emitted from off-axis source 
points . Hence, the effects of windows bounding the test section will 
be disregarded temporarily in the subsequent analysis. 

The important optical quantities involved in evaluating an unknown 
density field from an interferogram are: fringe shifts, which denote 
observed changes of phase and order of interference associated with 
density changes at fixed points in the field; and, a form of optical 
distortion (very similar to a mirage) that results from apparent shifts 
of location of points in the field . 
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In order to express fringe shifts and distortions as functions of 
measurable quantities, the light path must be known. Light-ray traces 
in an optical medium follow Fermat's princ~ple, namely, 

3 

1jr = c J dt = J ~ ds = extremum (1) 

which def ines an optical-path length 1jr (all symbols are defined in 
appendix A), where c is the velocity of light in vacuum, t is the 
time required for the light to traverse distances measured along the 
light paths, and ~ is the refractive index of the medium. Fringe 
shifts N are defined by 

(2) 

where A denotes a specific wave length of light, and optical lengths 
1jrl and 1jr2 are assoclated with coherent light waves and are measured 

from the light source to the plane at which interference is recorded. 
Two or more light waves are coherent and, hence, may be observed to in­
terfere at the interferometer image plane when any pair of ray traces 
associated with the waves proceeds from the same light-source point and 
intercepts the same image point . 

A few representative ray traces throughout an interferometer opti­
cal system are shown in figure 1 . Interference at a given image point 
may be represented generally in terms of one ray trace contained in the 
test beam (trace 1), which traverses the test section, in conjunction 
with a second ray trace contained in the reference beam (trace 2), which 
circumvents the test section. However, it can be easily demonstrated 
(ref. 8) that those fringe shifts which are of practical interest may be 
expressed in terms of ray traces in the test beam alone . Thus, the 
word "reference" will henceforth refer to reference conditions pertain­
ing to the test beam. The fringe shifts of immediate practical interest 
are: 

(1) Nc ' associated with the refractive index change ~a to ~_ 

within the test section, where the subscript a refers to 
atmosphere external to the test section, and the subscript ~ 

refers to ambient conditions within the test section 

(2) N) associated with the refractive index change ~~ to ~ with­

in the test section, where generally ~ = ~ (x,y,z) and x)y)z 
are cartesian space coordinates 

Let the x,y,z coordinate system be a right-handed system, as de ­
fined in figure 1. Then, including fringe shifts contributed by off­
axis points in the light source, it is shown in appendix B that 

J 
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"aD sin • (-1) + "aKL[sec ~r(+l) - sec ~ (+1)]} 

where, as shown in figure 2, L is the test-section span, q> is the 
angle that a particular ray trace makes with the z-axis, D is the opti­
cal distortion which has been defined previously in reference 11 and 
will subsequently be discussed, and K is a fraction of the test­
section span defined by 

ZR 
K = 1 -­L 

(4) 

where the real object-plane Z = zR is the real locus of objects imaged 

at the selected image plane. All geometrical quantities in equation 
(3), except those quantities bearing the subscript r, are referred to 
ray traces that traverse the field ~. The subscript r refers to ref­
erence traces that traverse the field ~e. Quantities denoted (-1) or 

(+1) are referred to the medium immediately preceding or succeeding the 
test section (atmosphere, as a result of the present assumptions), re­
spectively. Equation (3) represents a set of equations for each point 
of the interferogram, one equation corresponding to each pertinent pair 
of ray traces which intercepts a given image point. 

If ~a replaces ~~ as a reference and ~ reduces to the constant 

value ~_ , then equation (3) reduces to 

(3a) 

which is most commonly applied in the paraxial form 

1 
N = - (~ - ~ ) L 

c A - a 
(3b ) 

associated with an axial point-light source (ref. 12). 

Distortion of the locations of conjugate points can be derived by 
inspection of figure 2. Thus, 

(5) 

where 
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ZL = ±{C'Z - 'Zr)2 + 2'Z'Zr [1 - Icos v (+l)IJ} 1/2 

7, KL Isec ~(+1)1 

7, 
r 

5 

(5a) 

(5b ) 

(5c) 

and v is the angle of refraction, H is the refraction displacement 
~ perpendicular to the z-axis at plane z = L, and u is the angle formed 
~ by the intersections of a trace through the field ~, its unrefracted ex­

tension from plane z = 0, and the associated reference trace through 
the field ~~ at, and in, the plane z = L. 

Equations (3) and (5) are useful for starting the derivation of 
interferogram-evaluation equations for particular refractive-index­
field geometries and for investigating effects of extended or off-axis 
light sources. 

APPLICATION TO ONE -DIMENSIONAL DENSITY DISTRIBUTION 

Because of mathematical complications, only the following cases 
have been considered: 

(1) ~ 

(2) ~ 

(3) ~ 

constant 

~(y) or ~(x) 

~Cr) Cr2 x2 + ~) or 

~(R) (R2 x2 + ~ + z2) 

An evaluation equation for case (1) is supplied, in general, by equation 
C3a) and for the partic.ular case of the axial point-light-source by 
equation (3b). Evaluation methods for case (2) have been described in 
references 7 to 11. Evaluation methods for case (3) have been described 
extensively in several papers including references 1, 13, 14, and 15. 
The present report is concerned with case (2) in which ~ is a func­
tion of a single cartesian coordinate, say y, which is perpendicular 
to the optical axis. (The density p is related to the refractive 
index by the Dale-Gladstone formula 

~ = 1 + kp 

where k, the specific refractivity, is a constant for any given wave 
length.) However, it is noteworthy that equations (3) and (5) also re­
duce to the standard starting equations employed for evaluating axially 
symmetric distributions ~(r) Crefs. 1, 13, 14, and 15). 
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Evaluat i on equations for density distributions of the form p(y) 
are derived in series form in appendixes C and D by utilizing equations 
(3) and (5). For simplicity the evaluation equations are expressed in 
terms of the object - space coordinate y, which is related to the cor­
responding image - space coordinate y' by 

where m 
Also, the 
p*, where 

y' = -my 

is the lateral magnification introduced by the camera lens. 
distribution p(y) is evaluated in terms of the density ratio 
at a given ordinate value Yo 

p* 
p(yO) 

The present evaluation equations are based, whenever possible, upon 
simplifying assumptions involving the independent variables of an ex­
periment, for example, refractive index, geometry of the phenomenon, or 
geometry of the experimental apparetus, rather than, for example, the 
light path . The principal additional assumptions are as follows: 

(1) The refractive index ~ is a monotonic function of y along 
any given ray trace . 

(2) The function ~ is representable along any given ray trace by 

the power series ~~ = ~bv ~ v , where the cartesian coordi nate ~ is 

defined by ~ = Iy - Yol o This permits simplification and extension of 

the analysis to decreasing, as well as increasing, functions ~(y). 
Approximations are denoted one - term, two-term, ... according to the 

number of terms of the series L bv-~ v which is utilized. 

(3) Ray traces are representable by the power series ~ = LCa~cr 
in the interval 0 ~ ~ ~ L, where ~ = Z. 

According to the preceding as sumptions, one- and two-term approximations 
are associated with the following additional assumptions: 

One - term approximation: 

(a) Along any given ray trace, ~ = constant. 

(b) The ray traces are straight lines through the test section. 

(c) The measured fringe - shift profile is always distortionless. 

-- -- --~~~---
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(d) The measured fringe -shift profile is a step function of 
y or a constant for all values of y. 

Two-term approximation: 

(a) Along any given ray trace ~ is a linear function of y. 

(b) The ray traces are parabolas within the test section. 

(c) The measured fringe - shift profile is distortionless 'when 
the selected object plane corresponds to the midspan plane of the 
test section. 

One - and two-term approximations and the corresponding evaluation 
procedures associated with an axial point - light - source are as follows: 

One - term approximation: ~~ = b O 

* A (a) p = I + N - -
kp.,L 

Two- term approximation: ~~ = bO + bl~ 

(a) p* = I + ~ .. [N ~ ~ (2 - 3K) bI L2] 

(b) y == YO = YD - D 

(see footnote) 

Evaluation procedure: 

(a) Plot N as a function of YD graphically from measured 
data. 

(b) At each datum point measure the slope of the resulting 
profile ND. 

(c) For each datum point compute bl , then p*, D, and yo 

(if necessary). The density ratio p* as a function of 
y represents the desired profile. 

The convention + or - is associated with ~(y) increasing or de­
creaSing, respectively. 

7 
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Although, when K = 1/2, the preceding one - and two-term evaluation 
equations are identical to the corresponding results indicated in ref ­
erence 11, important differences are made evident by the derivations, 
namely : 

(1) The present evaluation equations apply for any value of K and 
permit direct calculation of p * without recourse to a shifting pro ­
cedure (refs. 8 to 10). 

(2) The addit ional assumption dD/dy = 0 (stated somewhat incom­
pletelyas D = 0 in ref . 11) is unnecessary (but instead follows as a 
direct result of the two - term assumption), so that mention in reference 
11 of an iteration process for eliminating residual distortion is in­
consistent with respect to the primary analysis . 

By relating derivatives of the measured fringe - shift profile to 
derivatives of the corresponding hypothetical distortionless profile 
and then t o coefficients b , it follows from the derivations in appen­

v 
dixes C and D that, as a 
dN/dYD = dN/dy because 

result of the two-term approximation, 
dD/dy = 0; that is, the slope of the measured 

fringe - shift profile at y = YD has the same value as that of the cor­

responding hypothetical distortionless-fringe-shift profile at y = YO. 

Thus, correct values of the coeEficient b l are presumably determinable 

from the measured fringe-shift profile associated with any value of K, 
and, hence, the present equations apply for any value of K. 

Theoretical Limitations 

The analysis described in appendixes C and D can be used to obtain 
theoretical information concerning limitations of the interferometric 
method and the preceding evaluation equations and concerning the im­
portance of certain other systematic errors. In the succeeding para­
graphs the following items are considered: 

(1) Establishment of a criterion for minimizing apparent -ray-trace 
crossing 

(2) Series convergence and the calculation of remainders associated 
with the finite approximat ions 

(3) Establishment of a criterion for the applicability of the pro­
posed evaluation equations 

(4) Estimation of the importance of lateral extension or misaline ­
ment of the light source 
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(5) Determination of desirable light - source ge ometries 

(6) Estimation of the effect of test-section windows with respect 
to off- axis light -source points 

9 

Apparent -ray-trace crossing . - Apparent -ray- trace crossing, which 
has been noted in references 9 and 10, occurs when the relative magni ­
tudes of the initial ordinates YO and corresponding apparent ordinates 

YD associated with any pair of refracted ray trace s are reversed (as i n 

the case of an inverted mirage) . Two cases of apparent - ray-trace cros­
sing are illustrated in figure 3 . In figure 3(a) "crossing" prevails 
throughout the interval for which 

_ 00 

whereas in figure 3(b) crossing occurs t hroughout the interval for which 

It is demonstrated in appendix E that crossing occurs whenever 

I:I~ 1 

Regions of an interferogram that are associated with crossing ex­
hibit multiple imagery in that records of two or more regions of the 
field p (y) are superimposed and interrelated . Such regions probably 
cannot be evaluated unless one trace of each of the crossed pairs is 
prevented from reaching the final image plane . Unfortunately, the ex­
istence of crossing may not be apparent from the interferogram. 

The possibility of crossing can generally be alleviated by the 
proper choice of K. It is shown in appendix E that, for arbitrary 
functions p(y), apparent -ray- trace crossing is least likely to occur 
when K :; 1/ 2 because dD / dy is e s sent ially zero when K = 1/2. A 
criterion for avoiding apparent -ray-trace crOSSing is also derived in 
appendix E as follows : The existence of apparent - ray-trace crossing is 
unlikely when the inequality 

2 
± 1 (1 _ 2K) k ~ L2 + Jl (1 _ 

2 dy2 24 

is satisfied . The inequality may be satisfied by properly selecting 
K if information regarding the expected extreme value of d2P/dy2 is 
available prior to the experiment . 
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Series convergence . - It has been shown in reference 9 that, if the 
series expansions for ~ and ~ converge, then the resulting power 
series for p* and D also converge . The introduction of a laterally 
extended light source still yields a convergent series, but differentia­
tion of series may not always yield a convergent series. In an arbitrary 
experiment the existence of convergence is not assured, although it 
would appear that the power series for p* and D are usually con­
vergent or, at least) asymptotic because the one - term expression for p* 
has always been found to yield results which are in reasonably good 
agreement with predicted physical value s of p*. 

The remainders associated with the one - and two-term approximations 
of p* and D are given in appendix E) where remainders associated 
with the two -term approximation depend upon the three-term approximation 
which is derived in appendix F. 

Applicability criterion. - A criterion for the applicability of the 
two - term approximation i s derived in appendix E. It is shown that the 
two - term approximation is likely to be valid for at least those regions 
of the field for which the second derivative of the measured fringe ­
shift profile satisfies the inequalities 

2 
- 8 < ± d N < 14 when 
'AL dy2 'AL 

D 

-1. 7 d2N 1. 6 
-n- <+ -- <-- when - dy2 AI, 

D 

- 0 . 8 < d2N < 0 . 5 when ± --
AI, AL dy2 

D 

1 
K=3 

K 

K 

1 
"2 

1 

Calculation of p* and D up to and including the two - term ap ­
proximat ion is practical . Higher - order approximations are excessively 
complicated and are limited by the inaccuracy of measuring higher - order 
derivatives of N. Also, no practical situation has yet been en ­
countered in which the additional terms involved in the three - term ap­
proximation are appreciable. 

Extended or misalined light source. - Estimation of the importance 
of off -axis light -source points resulting from lateral ext ension or mis ­
alinement of the light source can be made by i nspecting the equations 
for p* and D which are derived in appendix C. Thus, if p and q 
represent coordinates of light - source points in a plane perpendicular 
to the opt ica l axis such that 
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p - x + constant 

q = - y + constant 

where the orlgln (p,q) = (0,0) lies on the optical axis, then the ef­
fects of off- axis source points are expressed by 

and 

where c 
its value 
the focal 
indicated 
firms the 

2 2 
cp* '" 0 if (~) '(f) «1 

2 
cD ~ 0 if (¥) , I; I < < 1 

denotes the variation of value of the associated quantity 
when the light source consists of an axial point, and f 
length of the collimating lens. The pertinent quantities 
in figure 4 . Experimental evidence, which qualitatively 
preceding conclusion, is presented in reference 8. 

from 
is 
are 

con-

Light - source geometry. - It is found by inspecting the series ex­
pansions for p* and D in appendix C that, from the standpoint of 
evaluation-equation simplicity, light-source geometries in order of de­
creasing desirability are: 

(1) Axial point 

(2) Narrow slit along p - axis 

(3 ) Narrow slit along q- axis 

(4 ) Extension in p,q-plane 

Test-section windows. - For simplicity, the effects of test-section 
windows upon Nand D were disregarded in the preceding analysis. 
It is shown in appendix E that window effects are negligible when 

2 
(;) < <1 

and 

2 
(~) «1 



12 NACA TN 3340 

Analytical Verification 

The validity of proposed evaluation procedures can oe investigated 
and their limitations illustrated oy calculating exactly the profile 
ND associated with an assumed hypothetical profile p(y) and then oy 

attempting to recalculate p*(y) from the proposed evaluation equations 
and the computed profile ND. However, the equations for computing ND 

must oe assumed correct and exact, or nearly so. Otherwise the evalua­
tion equations may effect an excellent reproduction of the assumed pro­
file p*(y) although they are incorrect, as was the case in reference 16 

The present evaluation equations were tested by assuming an expo­
nential profile p(y) . The profiles ND were calculated accurately and 

the recomputed profiles p*(y) were calculated to one-, two-, and three­
term approximations for three values of K, namely K = 1/3, 1/2, and 
1 and for two values of L, namely L = 1.8 and 3.6 inches. The equa­
tions for calculating ND are given in appendix G. The recomputed pro-

files p*(y) for L = 1 . 8 and 3.6 inches are presented in figures 5 and 
6 , respectively. The two - term profiles for K = 1/2 and L = 1.8 and 
3.6 inches are compared in figures 7(a) and (b), respectively, with the 
corresponding profiles obtained by using the Wachtell-DeFrate method 
(refs . 7 to 10) . 

A value of the exponential coefficient a (appendix G) was selected 
that would introduce strong nonlinearities in the profile p (y) and 
hence permit illustration of limitations of the interferometric analy­
sis and evaluation equations . 

For L = 1 . 8 inches, the two- and three-term approximations yielded 
r e computed profiles p* (y) that are in excellent agreement with the 
assumed profile p*(y) for all values of K (as suggested in the pre­
vious discussion) and represent definite improvements over the results 
of the one - term approximation. It is apparent from figure 7(a) that 
the two -term approximation for K = 1/2 permits evaluation closer to 
the surface (y = 0) than does the Wachtell-DeFrate method. In particu­
lar, p(y) is only determinable for 

y ~ 0.0032 inch for K 1/3 (method of refs. 7 to 10) 

y ~ 0 . 0012 inch for K 1/2 (method of present report) 

For K = 1/ 2 and 1 the maximum absolute magnitudes of d2N/dy~ slightly 

exceed the values set by the applicability criterion, but the agreement 
of the two - term result with the assumed profile p*(y) is still very 
good. 
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The ratios of successive terms of the series expansions for p* 
and D are proportional to L. Therefore, as L is increased, higher­
order terms increase in relative importance. For L = 3 . 6 inches, the 
two-term approximation represents an improvement over the one-term ap­
proximation, and the profiles for all values of K are in agreement; 
however, because of the increased value of L the y interval of good 
agreement with the assumed profile p*(y) is considerably reduced. In 
particular, the recomputed profile p*(y) for K = 1/3 is stronglyaf­
fected by apparent-ray-trace crossing and the recomputed profile p*(y) 
for K = 1/2 is slightly affected, as is apparent from figure 8. How­
ever, distortion is smallest when K = 1/2 and is an absolute over-all 
minimum for some plane in the interval 1/2 < K < 1, as is idD/dyi. 
For all values of K, the maximum absolute values of d2N/dy~ exceed 

the values set by the applicability criterion. However, the profiles 
p*(y) recomputed according to the two-term approximation do not begin 
to deviate appreciably from the assumed profile until the criterion has 
been definitely violated. Thus, it may be tentatively surmised that 
the applicability criterion is somewhat conservative. The three-term 
profile p*(y) is strongly affected by the preceding difficulties and 
is less useful than the profile obtained from the two-term calculation. 
According to figure 7(b) the Wachtell-DeFrate result is again limited 
to a smaller y interval than the present two - term result. 

Experimental Verification 

In order to verify conclusively the existence and magnitude of the 
optical-refraction effect, an experiment was devised for measuring the 
effect and confirming the refraction terms associated with the two-term 
approximation of p* and D. Good agreement was obtained between 
theory and experiment. Details and results of the experiment are dis­
cussed in appendix H. 

Comparison with other Analyses 

Objections to analyses presented in references 16 and 17 have been 
discussed in references 9 and 10. Object~ons to the analysis in refer­
ence 11 have already been discussed in the present report. 

Results given by the two-term equation derived independently by 
Wachtell and DeFrate (refs. 7 to 10) are equivalent to those given by 
the present one-term equation when K = 1/3. The former equation may 
be readily derived from the present two-term equation. For any other 
selected value of K, Wachtell in references 9 and 10 proposed a 
"shifting" procedure by which an uncorrected density profile is com­
puted and then corrected by means of shifting equations to give the 
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However, if apparent -ray- trace cross­
entire method fails because the den­
K = 1/3. For K = 1/3, 

so that a r ay trace that satisfies y = 0 at z = 0, where y = 0 repre ­
sents the surface of a model, will generally appear at y = D f 0 (ref. 
8) . Thus, the Wachtell -DeFrate method can only be used to evaluate 
p ~ in the immediate vicinity of a surface when (dp/dy)O = o. 

By comparison, failure of the present method resulting from 
apparent -ray- trace crossing should not occur because the corrected den­
sity profile is associated with the selected value of K, rather than 
with K = 1/3, specifically. Generally, a value of K can be chosen 
for which crossing is absent . Moreover~ the computed distortion is zero 
if K = 1/2 . However, slopes dN/dYD must be measured, and a refrac -

tion term must be computed in calculating p*. On the other hand, 
p*(y) can be computed for any other selected value of K without re­
course to a shifting procedure if D is computed. The total amount of 
computation is equivalent to that of the Wachtell-DeFrate method with 
shifting. 

In reference 8 an iteration procedure is proposed which presumably 
can be applied when p(y) is extremely nonlinear and when there is no 
apparent - ray-trace crossing . However, the iteration method in compari­
son with the preceding approximation methods necessitates an excessive 
amount of computation and some degree of guesswork . 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, November 19, 1954 
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APPENDIX A 

SYMBOLS 

The following symbols are used in this report: 

a 

by 

b v,l,b",2 

C 

c 

CO' 

c* a 

CO' \I , 
D 

e 

f 

H 

K 

k 

L 

m 

N 

exponential refractive-index-distribution coefficient 

refractive-index coefficients 

refractive-index coefficient; first and second approxima­
tions, respectively 

constant 

velocity of light 

light-path coefficients 

light-path coefficients 

fringe-shift coefficients 

optical distortion 

exponential 

focal length of collimating lens 

refraction displacements of ray traces in and at plane 
z = L 

fraction of test-section span, K 

constant, ~ a = ~ - O'K , 

specific refractivity 

test-section span 

~ 
1 - L 

lengths given by equations (5a), (Sb), and (5c), respec­
tively (fig. 2) 

lateral magnification 

interference-fringe shift 

15 
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function representing hypothetical distortion-free 
interference -fringe - shift profile 

function representing measured (distorted) interference­
fringe - shift profile 

integer 

light - source coordinate parallel to x - coordinate 

light - source coordinate parallel to y - coordinate 

radius in spherical coordinates 

remainder 

radius in cylindrical coordinates 

length measured a l ong ray trace 

absolute temperature 

time 

window thickness 

quantity defined i n appendix G 

angle formed by intersection of refracted-ray trace} its 
unrefracted extension from plane z = O} and its associ ­
ated reference trace at} and in} plane z = L (fig. 2) 

refraction angle of refracted ray- trace (fig. 2) 

cartesian coordinates perpendicular to optical axis 

y- coordinate value of ray trace at plane z = 0; y-coordinate 
values associated with profile NO 

apparent y- coordinat e value of source of ray trace; 
y - coordinate values a ssoc iated with profile No 

axial separation of real - and apparent - object plane 

optical axis 

real- object plane 

_J 
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y 

\I 

p 

p* 

'" (-2),(-1) 

(+1) ,( +2) 

Subscripts : 

A 

a 

c 

projected angle in xy- or ~~-plane 

projected angle in yz - or ~s -plane 

projected angle in xz - or ~s-plane 

increment 

variation or change 

ray- trace coordinate parallel to optical axis 

ray-trace coordinate perpendicual to optical axis 

coefficients 

wave length of light 

refractive index 

integer 

ray-trace coordinate perpendicular to optical axis 

density 

density ratio, p* 

integers 

angle formed by ray trace and optical axis 

optical-path length 

refers to mediums preceding test section 

refers to mediums succeeding test section 

refers to lower surface of upper block in hot-plate model 

atmosphere 

refers to change of refractive index within test section 
from that of the external atmosphere to some other con­
stant value 

17 
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g window 

r refer ence ray trace 

w value at wall, or surface 

m,n, v,a ,'t" integers 

- refers to ambient conditions within test section 

Superscript : 

refers to image space associated with camera lens 

maximum absolute value 

L 
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APPENDIX B 

GENERALIZED FRINGE-SHIFT EQUATION 

In general, the interference fringe shift measured at a given image 
point is represented by equation (2), namely 

(2) 

The quantities *1 and *2 are determined from associated ray traces 

whose paths in any given optical medium are found from the first-order 
partial differential equation (ref . 18) 

(Bl) 

Equation (Bl) is the solution of the variation problem indicated by 
equation (1), where ~ = ~ (x,y,z) may be an arbitrary function of the 
cartesian coordinates x, y, z. 

If *1 and *2 are associated with ray_trac~s which traverse the 
fields ~ and ~~, respectively, then 6* = *1 - *2 is determined by 
ray traces 1 and 2 in figures 1 and 2; these traces satisfy the re ­
quirements for interference because they are parallel in the space pre­
ceding the test section . It is shown in references 7,8, and 11 that 
6~ is determined entirely in the interval bounded by the plane wave­
fronts in the medium ( -1), which immediately preceeds the test section, 
and by the effective plane, or spherical, wavefronts determined by 
traces I and 2 in the medium (+1) . Thus, N may be expressed by inspec­
tion in terms of the geometrical quantities shown in figure 2. The re ­
sult is equation (3), in which the first term on the right-hand side is 
attributed to the trace through the field ~,the second term to the 
trace through the field ~w , the third term to obliquity of traces in 
medium ( -1), and the last term to obliquity of traces in medium (+1) 
plus refraction . 
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APPENDIX C 

DERIVATION OF EVALUATI ON EQUATIONS ASSOC IATED WITH A 

ONE -DIMENSIONAL DISTRIBUTION p(y) 

Light Path 

Light ray traces are determined by 

(Bl) 

For a function ~ ~(y)) equation (Bl ) possesses a solution of the form 

namely 

where 

are constants . Applying J acobi's theorem (ref. 18) reduces the solution 
for * to solutions for the ray traces) namely 

Init i ally) whe n 

then 

~ _ + 1 .1 2 C2 = tan (.l dz - - C3 ~ ~ - 2 ~ 

y = yo z 
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and the constants Cl and C3 are given by 

where 

dx 
dz 

Thus, t he ray traces are given by 

t an y 

21 

(Cl) 

where 

1 + tan2 (3 ( 0) + tan2 yeO) 

and 

dy 
dx = constant 

Equation (Cl), which applies when ~(y) is an increasing function, 
can be extended to include cases where ~(y) is a decreasing function 
and, also, ult i mately to lead to simpler evaluation equations by intro ­
ducing auxiliary, floating, coordinates ~,~, S defined by 

~ = Ix xol 

~ Iy - Yol 

s = z 

The coordinates of any given ray trace are then (~,~,s) = (0,0 , 0) at 
z = O. In terms of the new coordinates, ~~ corresponds to ~(y) and 

~o = ~ ( yO) 

YO = ± yeO) 

CLO = ± CL(XO) 

<P O =± ,,(o) 
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Then equat ion (C l ) b ecomes 

(C le. ) 

I f is rewritten i n the for m 

(C2) 

where) f or gases) 

(C 3) 

t hen equation (Cla) reduces to 

(Cl b) 

where t erms in (~~ ) 2 are inf i ni t es i mals of h i gher order as a res ul t 

of conditions (C3) . 

Generally ~~ 

the -power ser i es 

where 

a nd 

is not constant . The n 

eo \I 

= L b\l I y - Yo I 
\I =0 

.. 
4t~ = L b \l ~ \I «1 

\I =1 

may be r epr e sente d by 

(C.i ) 

(C ,j.e.) 

(C5) 
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Also, let the ray traces be represented by the power series 

where 

Utilizing the assumed series (C 4) and (C6) results in the following 
solution of equation (Clb): 

where the eoef~cients c~ are functions of t he coeff icients bv ; 
namely 

c!.= 1 c! 1 - b2 3 

* 1 * 1 
c2 = '2 b l c4 = 12 b l b 2 

and the coefficients Ccr are given by 

because Tl = 0 at S = 0, and 

={c~ tan ~O sec cr -1 CPo 
CO" 

c* sec 'Po cr 

(cr odd) 

(cr even) 

23 

(C6) 

(C7) 

(cs) 

(C9) 

(CIO) 

Expressions (C9) are obtained by subst i t uting seri es (C4) and (C6) in 
equation (C1b) and equating coefficients of like powers of ~. Coeffi­
cients c~ (cr even) are identical to the c0efficients Ccr defined in 

reference 11 for the case of an axial point-light -source. 

Solutions of equat i on (Clb) for special light-source geomet r ies are 
readily obtainable from equation (CS): 
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(1) The identity (p,q) = (0,0) represent s an axi al-point light 
source. Then ~O = YO = 0, and equation (CS ) reduces to the ray- trace 

equation, which was derived in reference 11. 

(2) The identity (p,q) = (p,O) represents a narrow sli t-light­
source parallel to the x-axis. Then ~O = 0, a nd the resulting simpli-

fication of equation (C S ) is ob vious . 

(3) The identity (p,q) = (O,q) repre sents a narrow slit-light ­
source parallel to the y-axis . Then YO = 0, a nd the resulting simpli-

fication of equation (CS) is again obvious. 

It should be noted that equation (CS) increases i n complexity in the 
order (1 ), (2), (3) of the preceding light -source geometries. 

Optical Distortion 

Because the general frin e - shift equation (3) is a funrt ion of the 
optical distortion D, the distort i on will be cons idered first . 

According to equation (Cl) individua l ray trace s i n the f ield \l( y ) 
are refracted in planes. Then, fr om f igure 2, 

u = 0 

and equation (5) reduces to 

However, as seen f r om f igure s 9( a ) and (b) which depict ray- trace pro ­
jections in the xz - a nd yz -planes, respecti vely, 

H - D + KL t an (30 = KL tan (3L 

where ~ L; therefore, 

D (cn) 

By definition, H = ~ S=L and tan ~ = d~/d s, so that i n ser ies f orm H 

is given by series (CS) with S replaced b y L, and tan ~L is given 

by the fir st derivative of series (CS) with S replaced by L. Per ­
forming the appropriate substitutions in equation (Cll) and red uc ing 
the resulting expression, the equation for D, expressed in series f orm, 
becomes 
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.. 
D = ±L Kl aCaLa + KL tan '13o 

a=l ' 
(Clla) 

where, by definition, 

Kl a = 1 + aK , 

The algebraic sign of D has been chosen to be consistent with the 
coordinate y when D is measured with respect to the distortion-free 
object pOint. The resulting sign convention with respect to D is the 
reverse of that used in reference 11. 

When (p,q,) == (0,0), equation (Clla) reduces to the distortion 
equation that was derived in reference 11. 

Fringe Shift 

When ~ = ~(y) the integral in equation (3) may be rewritten for 
subsequent simplicity in terms of ~~ and the coordinates {,~, s. 
Then, by successive substitutions 

sec <Po SaL 2 
= ~ dS 

~o ° ~ 

where terms in are infinitesimals of higher order. Because 

~~ z 1 and test-section windows are disregarded, the following approx­

imations can be made regarding ~, especially wh~n ~ is small: 
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sec <P r '" sec <PO 

sinCP(-l) ... sin CPa 

sec cP (+1) '" sec CPo r 

sec CP(+l) '" sec CPL 

However , 

sec cP L 

sec CP o 

Substituting the appropriate preceding quantities in equation (3) yields 

Equation (C12) can be derived in a more exact form by determining the 
exact expressions for the various angles cP as functions of CPo and 

retaining the multiplicative constants involving ~m' ~a' and ~O. 

However, the additional work required is excessive and yields additional 
terms which are appreciable only when cP is impractically large . When 
rewritten in series form, equation (C12) becomes 

sec <p 0 r, 
N = A l ~O - ~cJ L 

cos ~~ 
(C12a ) 

where t "he coefficients CO' \I are functions of the coefficients CO' , 
obtained by equating coefficients of like powers of S in the expression 
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t 
0'=1 

The density ratio p* is obtained by solving equation (C12a) for 
~ - ~_J utilizing the Dale-Gladstone formula, and dividing both sides 

of the equation by p... Thus, 

(C13) 

When (p,q) = (0,0), equations (C12a) and (C13) reduce to the cor­
responding equations for N and p* that were derived in reference 11. 

The angle ~O is a function of angles ~O and YO. Moreover, ~O 
and YO are related to the coordinates (p,q) of the light source. 

Specifically> 

tan 130 = ±.9. 
f 

tan YO = ±E 
f 

(C14) 

The conclusion stated in the section Extended or misalined light source 
then results from equations (Clla), (C13), and (C14). 

Equations (Clla) and (C13) yield practical evaluation equations 
for D and p*. However, the coefficients tv, cO', and CO' v must , 
first be expressed as functions of measurable quantities. The coeffi­
cients CO' and c'a ,v are functions of by. Relations permitting the 

expression of coefficients b v as functions of measurable quantit i es 
are derived in appendix D. 
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APPENDIX D 

RELATION BETWEEN MEASURED AND DISTORTIONLESS FRINGE - SHIFT PROFILES 

ASSOCIATED WITH A ONE -DIMENSIONAL DISTRIBUTION p(y) 

The coefficients ccr, v ' up to c4 2' are given by , 

cI I cI,2 0 cI , 

c2 I == c 2 c2 2 c 2 , , I 

c3,l c3 c3,2 2clc2 

c4,1 == c4 c4,2 = 
2 c2 + 2clc3 

Coefficients Ccr are given by equations (CIO), and coefficients 

given as functions of b v by expressions (C9). The coefficients 

(DI) 

can be related to measurable space der ivatives of the measured fringe­
shift profile by conSidering the relation between space derivatives of 
the measured fringe - shift profile and derivatives of the correspondjng 
profile that would result if distortion were absent. 

Let 

(1) NO (y) denote the fringe - shift profile that would be measured 

if distortion were absent 

(2) ND( Y) denote the observed fringe-shift profile 

The y component of separation of the profiles NO and ND is the 

distort ion D. 
NO == ND are 

The y- coordinate values associated with a given value 
yo and YD' respectively, where 

YD == yo + D (D2) 

and D = D( yO) ' In equations (Clla) and (CI2a) all quantities, except 

N, that are variables When associated with a single i nterferogram are 
defined with respect to initial values yO' However, N is associated 

with values YD' If the fringe - shift profile is distortionless, then 
ND = NO and is associated with values YO' 

• 

t"-
en 
H 
to 
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Consider figure 10, which illustrates hypothetical profiles ND 

and NO- In a given fixed interval DN, the incremental slopes of the 

profiles NO and ND are, respectively, (6N/6y)yO and (6N/6 YD)Yo-

The ratio of the slopes is 

However, it results from equation (D2) that 

Therefore, 

In the limit, as 6YD '" 0, 

6YD = I + .6D 
6y 6y 

29 

(D3) 

Relations between higher derivatives of the fringe - shift profiles 
may be determined by differentiating equation (D3) with respect to YD -

Thus, the nth derivative is given by the recurrence formula 

~dnN~= I ~ ~dn-1N) (D4) 
dm I + dD dy dyg-l 

D dy D 

Derivatives dnN/dyg are determined from the measured profile ND , 

whereas derivatives dnN/d~ may be expressed as functions of by by 
differentiating equation (CI2a) with the final distortion-contributed 
term omitted (because dnN/dyn involves no distortion)_ By direct sub ­
stitutions equations (D3) and (D4) become, respectively, 
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sec ~O 

- (dC) + L Kl,er d er 
)1 =1 y YO 

(D3a) 

~(dn-1N) 

(dnN) 
dy dYD 

YD 
(D4a) = - (dCer) dyt YD 1 +L Kl,er dy L

er 

'11 =1 YO 

which include the effect of off-axis source points. The coefficients 
b , c , and c are functions of y and can be differentiated. How-

'll er er, v 
ever , derivatives of coefficients b )l are functions of other coeffi­
cients b v+n ' name ly 

d~v _ 1 dv+n~ _ (v+n) 1 
--------+ b dyll - v 1 dy v+n - - 'V 1 v +n (D5) 

as a result of definition (C5). Computations involving a finite number 
of terms in equations (D3a) and (D4a) and including derivatives of ND 
up to the mth derivative must only inc lude coeff i cients bv up to bm 
in order to be consistent . Eqlilltions (D3a), (D4a), and (D5) then yield 
expressions for by as functions of measurable derivatives dnN/ dyg. 
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APPENDIX E 

LIMITATIONS OF TWO-TERM EVALUATION EQUATIONS ASSOCIATED 

WITH A ONE-DIMENSIONAL DISTRIBUTION p(y) 

31 

Apparent-ray-trace crossing. - The condition associated with 
apparent -ray-trace crossing can be developed by considering two ray 
traces which possess initial values yo and YO + 6yO' respectively, at 

z = 0, where Iyo + 6Yol >IYol. Suppose distortions D(yO) and 
D(yO + 6yO) are associated with the respective traces. If 

then "crossing" does not occur because the larger initial and apparent 
absolute y-values are associated with the same ray trace. However, if 

then "crossing" occurs because the trace possessing the larger absolute 
initial value possesses the smaller absolute apparent-value. When the 
equality is satisfied, the ~pparent-object points are superimposed. By 
subtracting yo and D(yO) from both sides of the preceding equation 

and dividing by 6yO' the following inequality results: 

(El) 

where 

A practical criterion for avoiding apparent-ray-trace crossing may 
be derived from inequality (El). The limiting condition for crossing 
occurs as 6y ~ O. Then, inequality (El) becomes 
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The der i vative of D can be calculated from equation (Clla). Thus, 

which for the case of an axial point - light - source becomes 

- d • 

IdD l= L K ~ La 
dy a=2,4 , 6, .. . l, a dy 

(E2) 

Corresponding to the two - term approximation, 

I~ = 0 

because equation (E2) is ultimately independent of bl . However, in the 

three - term approximation , equation (E2) be comes 

IdD l 2 1 Z 4 dy = Kl,ZbZL + 2 Kl ,4b 2L 

With convergence assumed, equation (E3) indicates that IdD/ dyl= 0 
a first approximation when K = 112 . Also, equation (E3) yields a 
criterion for avoiding crossing . If the coefficients b v (v > 2) 

assumed to be insignificant, then IdD/dYI~ 1 when 

(E3) 

to 

are 

(E4 ) 

When apparent - r ay - trace crossing exists, the experiment must be 
repeated using another value of K because none of the evaluation 
methods appl y . Thus, it becomes des irable to express inequality (E4) 
in terms of quantities that might be estimated before the experiment 
is performed so that a value of K which will avoid crossing can be 
selected initially. The most useful result is obtained by expressing 
b2 as a function of P, namely 

which results from the Dale -Gladstone formula and definition (C5). Then, 
inequal ity (E4) immediately becomes the crossing- criterion inequality 
given in the section Apparent - ray-trace crossing . 
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Series convergence . - The series remainders a ssociated with the 
one-term approximation are given by the additional term contained in 
the two -term approximations . The remainders associated with the two­
term approximations of p* and D are given by the additional terms 
which are contained in the three-term approximation derived in appendix 
F. However, because in the third approximation the expression for b l 
becomes modified by the multiplicative factor Xl /X 2 ' the additional 

term involving obI arises in the remainder equations . The remainders 

associated with the two-term approximation are, therefore, given by 

where 

Xz 
ObI -1 

Xl 

bl 2 I:DI A 
, L 

bl ,3 l:nl Xl A 
x2 L 

2 
b2 

d2N Xl A 
± 

dyfi x2 2L 

In general, 

K - .. - O'K 4"1: ,0' -

where .. and 0' are integers, and the selected values of the combina­

tions bi 3b 2 and bl 3b2 correspond to the largest absolute values , , 
(denoted by bars) in the interval Yo ~ y ~ yO + H traversed by a given 

ray trace. The constants Xl and x2 may be calculated according to 

the method described in appendix F. 

The present analysis can be applied to develop residual-error 
expressions associated with the Wachtell-DeFrate method also. 
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X2 2 
Applicability criterion. - The profiles ~ b21 shown in figure 

xl 
11 as a function of b2L2 (cf . appendix F) are approximately straight 
lines with a slope of unity in the vicinity of the origin. Thus, 

~ • 1, from which it follows that /b2)«1. However, for ICVb2L21 

sufficiently large, the profiles deviate drastically from a straight 
line thus indicating that Ib21 increases considerably. In fact, when 
d2N/dY~ < 0, increasing values of Ib

2
L21 eventually correspond to de-

creasing values of ( : r)b2L2\; this conditiqn is absurd from practical 

considerations. The points at which the slopes of the profiles become 

zero (d2N/d~ < 0) may be considered, somewhat arbitrarily, as the 

extreme limits for which IItrue ll values of b 2 are obtained. The de ­

fined limits correspond to f i xed percentage deviations of the ratio 
x / x2 from unity, name·ly 

2 1 

100% when K = 1/3 

30% when K = 1/2 

60% when K = 1 

Let the pr eceding percentage deviations determine the practical limits 
of the profiles for d2N/d~ > 0, also. Then because 

the indicated limits correspond to 

d2N XL 
- 4 < ± -- -- < 7 

dy~ 2 
when 1 

K=3" 

-0.8 < 
d2N AL 

< 0.8 when 1 ± ---- K=-
dy2 2 2 

D 

-0.4 < 
d2N L 

< 0 . 3 when K = 1 ± - -
dy2 2 

D 
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The inequalities listed in the section Applicability criterion result 
immediately from the preceding inequalities. 

35 

Test-section windows. - If the test section is bounded by windows, 
then mediums (-1) and (+1) correspond to the initial and final window, 
respectively, and the external atmosphere is contained in mediums ( -2) 
and (+2). It has been demonstr ated in reference 11 that, associated 
with an axial point-source, the additional optical -path differences con­
tributed by the presence of windows are : in the final window, 

(E5) 

and, in the atmosphere succeeding the test section, 

~a [KL - Z(t) + tJ ~ - sec ~ (+2) J (E6 ) 

where Ilg 
thickness. 

is the refractive index of the window and t is the window 
The axial separation Z(t) of the apparent - and real-object 

p l anes is given by 

(E7) 

for small angles ',but is exact according to the initial assumption 
(1) in the section GENERALIZED EQUATIONS. 

If off-axis source points are considered, then contributions (E5) 
and (E6) are replaced by 

Ilgt [ se c ~ (+1) - sec ~r (+1) ] (E8) 

and 

(E9) 

respectively, where Z(t) has been replaced by the right side of expres­
sion (E7). The initial window introduces no additional contribution to 
the optical-path difference because associated ray traces are parallel 
within the window. 

In reference 11 it has also been shown that terms (E5) and (E6), 
with the quantity KL omitted, cancel to a high order of approximation . 
With terms involving KL disregurded, the only possible additional t erms 
of appreciable magnitude contributed by the window are, therefore, 
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and 

flgt [1 - sec <Pr (+1) ] 

fl2 
~ t [sec 'r (+2) - 1] 
flg 
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(E10) 

(Ell) 

These terms , whi ch result from off -axis source points, also cancel if 
sec ~r (+1) and sec ~ r (+2) are of the same order of magnitude as 

sec IfI ( +1) and sec ~ (+2) . The preceding cancellat i ons result when 
~O is zero , in which case the r ay traces are given by 

sec 13 

If cp 0 is not zero , then the ray traces are given by 

sec 13 

which is simply equation (Cla) r ewritten. Thus, the preceding cancel ­
lations r esult when 

-2 
se c ~ O "' 1 

and 

tan2 
YO • 0 

or, in other words, when 

tan2 130 
2 

( ;) < < 1 

and 

2 
tan2 

YO = (~) < < 1 

The only remaining t erm of appreciabl e magnitude is then 

flaKL [sec <Pr ( +2 ) - sec " (+2)] 

which is actuall y the last term in equation (3). 
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APPENDIX F 

THREE -TERM EVALUATION EQUATIONS ASSOCIATED WITH A 

ONE -DIMENSIONAL DISTRIBUTION p(y) 

Assuming that ~~ = bO + bl~ + b2~2 , the evaluation equations 

associated with the three -term approximation are 

( 2) Y =- YO = YD - D 

The evaluation procedure is : 

37 

(1) Plot N as a function of YD graphically from measured data . 

( 2 ) At each datum point measure slope dN/dYD of the profile ND. 

(3) Plot dN/ dYD as a function of YD . 

(4) At each datum point measure slope d2N/dy~ of the profile 
dN/dYD · 
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( 6) Select appropriate plot of b 2L2 as a function of (X2/XY)b2L2 

from figure ll(a) or ll(b ), depending upon the algebraic sign of 

d2N/d~, and determine tbe value of b2L2 which corresponds to the 

appropriate value of K and to the computed value of (x2/xi)b2Li­

(Plots of (x 2/ xi)b2L2 as a function of b2L2 are given in fi gures 

ll(a) and (b) for K = 1/3, 1/ 2, and 1 and for d2N/dy~ > 0 and 

d2N/dy~ < 0.) 

(7) For each datum point compute b2 = (b 2L2) /L2_ 

(8) For each datum point compute Xl and X 2-

(9) For each datum point compute bl' then p*, D, and YO-

The density ratio p* as a function of y represents the desired 
profile. 

The measured quantity N and the computed quantities dN/dYD' 

d2N/dY5 are associated with the measured profile ND and values YD ­

All other quantities which are functions of yare associated with 
distortionless values YO = y -

The profiles (X2/ x y)b 2L2 as a function of b 2L2 were obtained by 

choosing values of b 2L2 , computing Xl' x 2 ' and then (X2/xy)b2L2 for 

a given value of K. ThUS, profiles can be readily determined for other 
values of K. 
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APPENDIX G 

EQUATIONS FOR CALCULATING PROFILE ND ASSOCIATED WITH A 

HYPOTHETICAL EXPONENTIAL-DENSITY PROFILE 

In order to calculate the profile ND associated with an assumed 

hypothetical profile p(y), the assumed profile p(y) must be selected 
such that 

H 

L 
dy (Gl) 

o 

and 

which are involved in computing ND, are readily integrable in exact, 
or nearly exact, form. Among possible assumed distributions p(y) an 
exponential function, which corresponds to the refractive-index dis­
tribution 

where ~ = ~ at y = 0, and a is an arbitrary constant, permits the 

required integrations and corresponds vaguely to a possible boundary­
layer profile. 

With an exponential density distribution and an axial point source 
assumed, the ray-trace displacements ' H at S = L are given by the 
solution of equation (Gl), namely 

H = a In[~ (1 + cosh t)] (G2) 

where 
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The ray traces satisfy 

y = Yo at ~ 0 

y = YL at ~ L 

where 

At Y = yO' 

(G3a) 

() ( ) -yJa 
~ YL =~.. - ~_ - ~w e (G3b) 

The fringe shifts and distortions are given by equations (C1Z) and 
(ell), respectively, which become in the present instance 

(G4) 

(G5) 

I n or der to recompute p*(y) , values of the derivatives dnN/dyg 

must be determined. Theoretical values of dnN/dYE can be computed. 

Derivatives dnN/d~ are obtained by differentiating equation (G4), 
with ~(yO) and ~(YL) replaced by the right side of equations (G3a) 

and (G3b) , respectively . The required first two derivatives are given by 

(QN) _ r(l _ K)(2H.) + K(~) (1 + dH)l!: + 4a
2 

d
2
H 

\dY yo l dy yo \dy YL dy J A 'A L dy2 
(G6a) 

~~~)YO = -{(l-K)(~))yo + K [~i)YL ~:~ +~~)YL (1+ :fn~+~2 ~;~ 
(G6b) 

- - - ------ - --
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where 

a 

(:2~) = 

Y YO 

l(dl-l) 
a dy YO 

and 

Derivatives dnH/d~ follow from equation (G2). Thus, 

where 

sinh t dt 
dH dy 
- = a -=-----:--""'" dy 1 + cosh t 

a 

(~)2 + sinh t ~ 
1 + cosh t 

dt - t 
dy = 2a 

41 

(G7a) 

(G7b) 

(G8a) 

(G8b) 

(G9a) 

(G9b) 

(G9c) 

(GlOa) 

(GlOb) 
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Derlvatives dnN/dYE are functions of derivatives dnN/dyn given b y 

e~uation (D3) and the recurrence formula (D4). The required first two 
derivatives of D are obtained by differentiating equat i on (G5) follow­
ing the previously mentioned substitutions for ~(YO) and ~(YL ) . Then, 

dD dB -=-+ dy dy 
2aK d

2
H 

dy2 
(GIla) 

d2D = d2H 2aK d41 (GlIb) -- + 
dy2 dy2 d~ 

The profile ND is determined by computing equations (Gl) to (G5), 
and the derivatives dnN/dyO (n = 1,2) are calculated f rom equations 

(G6) to (GIl) . 

The selected values of the constants were 

~_ = 1 . 0000792 (p_ 6.77XlO-4 slug/ft3 ) 

~w = 1 . 0000475 (pw 4 . 06XlO- 4 slug/ft3 ) 

a = 0 . 0058 in . 

\ = 2 .15XIO- 5 in. (mercury green line) 

x = 0 . 117 ft 3/s1ug 

which, except for a, are identical to the values involved in the 
example of reference 11. 

r---
CTl 
..--l 
t() 



NACA TN 3340 43 

APPENDIX H 

EXPERIMENTAL VERIFICATION OF REFRACTION EFFECT 

The conduction of heat by air between two horizontal surfaces pro­
vides a readily produced and reasonably predictable density distribution 
which may be utilized for verifying the refraction effect and two-term 
evaluation equations . Consider two identical rectangular-shaped blocks 
placed one ~bove the other and separated by a small distance, with f ac­
ing surfaces A and B corresponding to the bottom surface of the top 
block and the top surface of the bottom block, respectively. Suppose 
that both blocks contain a reference hole which extends throughout the 
horizontal length of the block and is oriented parallel to the optical 
axis of the interferometer. 

When the upper block is heated, a constant temperature gradient is 
produced in the airspace between the blocks, whereas the temperatures 
within the reference holes are constants. If the blocks are good heat 
conductors, then the temperature TI within the reference hole through 

the upper block and the temperature TA at surface A are equal. How­

ever, (dP/dY)1 = 0 whereas (dP/dY)A = constant f 0, so that light which 

traverses the space between the blocks is refracted whereas light which 
traverses the reference hole is not. Thus, the optical-path difference 
between light passing adjacent to A and light traversing the reference 
hole should theoretically be given by 

(HI) 

and the distortion should be given by 

(H2) 

These equations contain only contributions attributable to refraction. 

In order to properly associate the refraction and reference fringes, 
the algebraic sign of the fringe shift corresponding to the reference 
region in the lower block must be determined. Because T2 < TI , where 

T2 is the temperature of the lower block, ~2 > ~l' so that N2 > O. 

Therefore, it follows from equation (HI) that: 
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(1) If K < 2/3, then NA > 0 and the fringes between the blocks 

are displaced toward the zero- order fringe in the lower reference region 
(fig . 12(a)) . 

(2) If K 

(fig. 12(b)) . 

0, that is, no fringe shift occurs 

(3) If K > 2/ 3, then NA < 0 and the fringes are displaced away 
from the zero -order fringe in the lower reference region (fig. 12(c)). 
A corresponding interferogram utilizing unfiltered light will permit 
the zero -order fringe to be distinguished. 

The model shown in figure 13 was constructed in order to simulate 
the aforementioned conditions . The model consists -of two Duraluminum 
blocks 10- inches long which are separated by two 0.14-inch thick, 10-
inch long insulating strips of glass . The top surface of the upper 
block is radiant-heated by a Nichrome -wire heater consisting of Nichrome 
resistance wire wound with varying pitch around a thin sheet of mica. 
The heating element and most of the upper block are insulated from the 
external atmosphere by a Transite lid in order that the heat-flow rate 
from the upper block to the lower block will be a maximum for any given 
heating current. A reference hole was machined the length of each 
block, and a reference pin was projected into each reference hole for 
focussing purposes and as a measuring reference. 

Figures 14(a) and (b) depict typical interferograms of the heated 
air for K = 1/2 and 1, respectively; these interferograms were ob­
tained by utilizing unfiltered light from a magnesium spark in conjunc­
tion with a horizontal slit. It is apparent that the temperature gra­
dient between the blocks is nearly constant. Curvature of the fringes 
near the upper surface of the lower block is caused by reflection. 

In figures 15(a) and (b), experimentally determined values of 
optical-path differences and distortion, respectively, are compared 
with theoretical values indicated by equations (Hl) and (H2). The 
quantities NAA and DA are plotted with respect to the generalized 

coordinate (dN/dYD)A A which yields a single curve for all wave lengths 

A. Actually, the experimental data include measurements at two wave 
o 0 

lengths, namely 4481 A (magnesium spark) and 5461 A (mercury arc). 
Agreement of the experimentally determined points with the predicted 
curves is regarded as good considering the errors involved in the ex­
periment and the fact that the difference in values amounts to the 
error of measuring a small error . 

The most important experimental errors probably were end effects, 
thermal expansion of the apparatus, nonuniform heating of the apparatus, 
inclination of reference fringes, and poor definition of the apparent 
location of surface A. 
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In attempting to ml nlmlze end effects, the model was initially 
bounded by .0.8-inch-thick glass windows separated from the model ends 
by thin cork spacers. The windows were slid into position immediately 
preceding each photographic exposure. The experimental data were then 
in poor agreement with theory. Apparently, insertion of the windows 
prior to the photographic exposure, even for very short periods of time, 
allowed appreciable nonuniform heating of the glass. Air disturbances 
were not evident. It would a~pear that extreme caution should be ex­
ercised in interpreting interferograms of heated models when the model 
contacts bounding glass windows. in order to eliminate the window 
effects, the windows were removed, and the ends were left unbounded. 
A new set of measurements rendered the results presented in figures 
l5(a) and (b). The interference pattern obtained across the end of the 
model with the open-end arrangement was examined visually while the 
model was heated. The endwise boundary layer was found to be of nearly 
constant thickness (about 1/4 inch) in the region of interest, and the 
temperature gradient was essentially parallel to the model length at 
all pertinent temperatures. Thus, the end effects were regarded as in­
appreciable When the windows were removed. 

Thermal expansion of the model was considered in the vertical di­
rection, but expansion in the lengthwise direction was neglected. 

Temperatures were measured throughout the model by means of thermo ­
couples located at the points indicated in figure 13(b). A typical 
temperature distribution is also indicated in the figure, where the 
temperature difference at each point is noted with respect to the upper ­
most thermocouple location in the midspan plane . Inclination of refer­
ence fringes with respect to surface A, caused by initial misorientation 
of the fringes and the small vertical temperature gradient within the 
upper block, was considered in the measurements. 

The existence of refracted r ay traces in the vicinity of surface 
A tended to diminish the definition of the apparent surface location. 
The difficulty of locating surface A, especially when K = 1/2, may 
account for the apparent systematic disagreement between theory and 
experiment when K = 1/2 . 
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Figure 12 . - Fringe shifts associated with various focal planes in hot-plate model. 
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Figure 13 . - Concluded. Hot-plate model. 
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(a) K _ 1 - "2. 

Figure 14 . - Interferogram of he~ted model. 
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Figure 14 . - Concluded . Interferogram of heated model . 
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