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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 3227 

APPLICATI ON OF TWO -DIMENSIONAL VORTEX THEORY TO THE 

PREDICTION OF FLOW FIELDS BEHIND WINGS OF WING -BODY 

COMBINATIONS AT SUBSONIC AND SUPERSONIC SPEEDS 

By Arthur Wm . Rogers 

SUMMARY 

A theoretical investigati on has been made of a general method for 
predicting the flow field behind the wings of plane and cruciform wing 
and body combinations at transonic or supersonic speeds and slender con­
figurations at subsonic speeds. The wi ng trailing-vortex wake is repre ­
sented initially by line vortices distributed to approximate the spanwise 
dis t ribution of circulation along the trailing edge of the exposed wing 
panels . The afterbody is r epre sented by corresponding image vortices 
within the body . Two -dimens ional line -vortex theory is then used to 
compute the induced ve locities at each vortex and the resulting displace ­
ment of each vortex is determined by means of a numerical stepwise inte ­
gr at ion procedure. The method was applied to the calculation of the 
position of the vortex wake and the estimation of downwash at chosen tail 
locations behi nd triangular -wing and cylindrical-body combinations at 
supersonic speeds . The effects of such geometric parameters as aspec t 
ratiO, angle of atta ck and incidence, ratio of body radius to .,ing semi ­
span, and angle of bank on the vortex wake behind wings of wi ng-body 
combinations wer e studied . The r elative importance of wing vortices, 
the corresponding i mage vortices within the body, and body crossflow i n 
determining the total dovmwash was assessed at a possible tail location . 

It \-las found that the l ine -vortex method of this report permitted 
the calculation of vortex paths behind wings of wing-body combinations 
with reasonable f acility and accuracy . A calculated sample wake shape 
agreed qualitatively with one obse rve d experimentally, and sample results 
of the line -vortex method compared well with an available exact crossf IOl-l­
plane solution . An empirical formula was derived to estimate the number 
of vortices required per wing panel for a satisfactory computation of 
dowmrash at tail locations . I t was found that the shape of the vortex 
.Take and the ultimate number of rolled-up vortices behind El \-ling depend 
on the circulation distribution along the \-ling traili ng edge . For the 
low-a spec t - ratio plane wing and body combinations considered, it appeared 
that do.mwash at horizontal tail locations is l ar gely determined except 
near the tail -body junct ure by the wing vor tices alone for small ratios 
of body r adius to \-li ng semi span , and by the body upHash a lone for large 
values of that r atio . 
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INTRODUCTION 

Satisfactory aerodynamic design of high-speed aircraft requires 
knowledge of the interference flow field resulting from wing-body-tail 
interaction . The behavior of the wing vortex wake in the presence of 
the body directly affects the air stream flowing past the tail surfaces. 
In particular, for certain relative sizes and positions of wing , body, 
and tail, the wing -body vortex wake produces large stream angles at the 
tail surfaces and nonlinear variation with angle of attack of the pitch­
ing moment contributed by the tail. Therefore, it is desirable to be 
able to predict flow fields at the tail location for a given configura­
tion in order to evaluate stability and control r eqUirements . 

• Furthermore, vapor-screen studies i n supersonic wind tunnels have 
shown that the configuration of the vortex wake from the wings of some 
wing -body combinations differs markedly from the usual conception of a 
sheet whose side edges curl over to form a single pair of vortices. 
For example , figure l(a) shows the S-shaped cros s section of a vortex 
sheet from each panel of a high-aspect - ratio supersonic wing and body 
combination at angle of attack . 1 Here the ultimate vortex pattern far 
downstream of the wing consists of two vortice s from each wing panel, 
both rotating. in the same direction. Such a vortex wake r esults in a 
flow field different from the more well -known pattern, and the load on 
a tail situated in that flow field differs from the tail load associated 
with a single-vortex wake. It is important, t herefor e , to determine 
the conditions under which this unusual wake pattern occurs. 

Considerable investigation (refs . 2-12) has been devoted to the pre­
diction of flow fields behind wings , both plane and cruciform. Ref e r­
ence 2 uses linearized conical-flow theory to calculate s idewash and 
downwash for a flat vortex sheet at the wing trailing edge and in the 
Trefftz plane, references 3 and 4 use supersonic potential doublet dis ­
tributions to determine downwash in the plane of a flat wake and in the 
vertical plane of symmetry for any distance downstream of a wing. Ref ­
erence 5 employs pressure doublets to obtain general expressions for 
the induced velocities in space behind a wing, and references 6 through 8 
utilize line-vortex theory to predict sidewash and downwash in the flat­
vortex wake and in space. The flow in the Trefftz plane behind super­
sonic wings is treated in reference 9 by means of linearized conical-flow 
theory . The downwash based on a flat deflected vortex sheet and the 
downwash based on two deflected vortex lines are calculated in refer­
ence 10 . The rolling up of the trailing-vortex sheet behind wings is 
analyzed in reference 11, and reference 12 considers the motion of single 
vorti ces f r om each panel of a cruciform wing. The literature on the 
vortex wake behind wings of wing-body combinations, however, is still 
relatively meager (refs . 13 and 14) . For wing-body combinations , r e f ­
erence 13 accounts for the effect of the fuselage on the flow field by 

lA de scr i ption of the vapor - screen t echnique is given in reference 1. 

,,--
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considering the motion of two fully rolled-up vortices in the presence 
of a circular cylinder. Reference 14 treats a specific configuration by 
slender -body theory with the two assumptions of either a flat vortex 
sheet or two fully rolled-up vortices . 

The general problem to be considered here is the determination of 
the interference flow field behind wings of wing-body combinations 
(e . g., fig. 2) at subsonic or supersonic speeds. The dual purposes of 
this report are to present in detail and evaluate the method outlined 
in reference 13, and to apply it to the calculation of vortex paths and 
to the effects of wing aspect ratio, span loading, angle of attack, ratio 
of body diameter to wing span, angle of bank, and wing incidence on vor­
tex paths and downwash at a possible tail location. 

Part I of this report presents the results of the application of 
the method. All calculations of span loading were made for triangular­
wing and cylindrical-body combinations at a Mach number of 2.0. Wing 
aspect ratios of 2/3, 2, and 4 are considered, combined with bodies 
whose radii are 0.2, 0.4, 0.6, and 0.72 times the wing semispan. The 
tail location selected for downwash computations in this part represents 
a missile - type configuration, for which the horizontal tail is assumed 
to be located in the body diametral plane 10 body radii downstream of 
the wing trailing edge. 

Part II of this report contains a detailed description of the line­
vortex method . An examination is made of the effect on downwash at 
chosen tail locations of the number of vortices used to represent the 
trailing vorticity. The nature of the stepwise integration method used 
is discussed, and solutions obtained by the stepwise integration method 
are compared with known exact solutions. Downwash is also computed at 
the tail of a high-tail airplane-type configuration, characterized by a 
horizontal tail 3 body radii downstream of the wing trailing edge and 
2 body radii above the body axis. 

SYMBOLS 

A aspect ratio 

c local wing chord 

wing root chord in plane of symmetry 

directed line segment of a contour 

E elliptic integral of second kind 

i,j,k unit vectors in x,y, z directions 
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aspect-ratio correction factor defined in Appendix B 

lift 

Mach number 

number of vortices in summation 

static pressure 

pressure differential across wing surface, Pl - Pu 

PV 2 

free-stream dynamic pressure, ____ 0_ 
2 

velocity vector, ui + v} + wk 

body radius 

local horizontal-wing semispan 

maximum horizontal-wing semispan 

spanwise position of wing vortex 

local vertical-wing semispan 

maximum vertical-wing semispan 

velocities in x,y,z directions (See fig. 2.) 

free-stream velocity 

chordwise distance from leading edge 

Cartesian coordinates of wind axes (See fig. 2.) 

load coefficient 

angle of attack of body axis, radians 

angle of yaw, 0'. sin ~, radians 

spanwise distribution of circulation (defined by eq . (Al)) 

increment 
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5 

downwash angle, 

wing leading-edge sweep angle, 900 - w, radians 

x y z 
dimensionless rectangular coordinate s of wind axes , r'r'r' 

(See fig. 2.) 

air density of free stream 

coordinates of source-point in xy plane 

angle of bank, radians 

velocity potentials 

1 sm wing semiapex angle , tan- -, radians 
cr 

Subscripts 

body 

indices of summation 

lower 

maximum 

upper 

wing 

linear theory 

slender-body theory 

~-- J 
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I.- APPLICATION OF METHOD TO THE PREDICTION OF VORTEX PATHS 
AND DOWNWASH BEHIND TRIANGULAR -WING AND CYLINDRICAL-BODY 

COMBINATIONS AT SUPERSONIC SPEED 

General Description of Method 

The method used herein follows that of reference 13. The circula­
tion distribution along the wing trailing edge of a given wing-body con­
figuration is required as the initial condition. In this report, the 
circulation distribution .is determined by modified slender-body theory . 
The circulation distribution is then replaced by a finite number of vor­
tices which trail downstream and represent the wake vorticity. The 
effect of the afterbody is accounted for by vortices placed within the 
body at the image position of each of the wake vortices . It is assumed, 
in general , that the flow changes in the stream direction are such that 
in the velocity potential equation 

the first term is negligibly small, that is, 

(1 - M2) cp = 0 xx 

so that 

Thus the solution is independent of Mach number. Such an assumption 
of two-dimensionality is valid for slender, pointed wings and bodies at 
subsonic speed, and at supersonic speed when the entire plan form lies 
within the body nose Mach cone, or near M = 1 for more general con­
figurations. 2 

Consistent with this slender-body theory assumption, the bound vor­
tices within the wing are neglected in computing vortex paths and down­
wash. The trailing vortices are extended to infinity upstream and down­
stream, and the induced velocities in crossflow planes are calculated by 
two-dimensi0nal line-vortex theory and body potential crossflow. In the 
crossflow plane, therefore, the analysis considers the following picture: 

2See reference 15 for a discussion of these limitations. 
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The moti on of each of the vortices in the crossflow plane is computed, 
and the results applied to the wing -body problem by relating time in the 
crossflow plane motion to distance downstream of the wing trailing edge . 

• 
The wing and image trailing vortex system used in the stepwise cal­

culations constitutes the only vortex pattern considered here. It is 
known that at high angles of attack and for large ratios of body diameter 
to wing span, viscous crossflow produces vortices above the body (e.g . , 
fig. 1 and ref . 1) which signifi cantly affect the flow field. A thorough 
understanding of the mechanism of formation, strength, and stability of 
crossflow vortices is as yet lacking . Consequently, no attempt has been 
made to account for them. 

On the basis of a large number of computations made during this 
investigation, the following analysis was made of the effect of geometric 
parameters on the vortex wake and the induced flow field behind wings of 
wing-body combinations . Although only triangular wing and body combina­
tions were studied, the general conclusions should be applicable to any 
wing plan form for whi ch the circulation distribution is similar to the 
types contained herein. 
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Ef fect of Reduced Aspect Ratio, ~A, and Span Loading 
on the Rolli ng Up of the Vortex Wake 

Fi gure 3 shows the calculated detailed rolling up of 10 vortices 
representi ng a typ i cal wake behi nd a low-aspect-ratio configuration . 
Vortex coordi nates for this figur e are listed in table I. It can be 
seen that at 10 body radii downstream of the wing trailing edge, 7 of 
the 10 vorti ces have already spiraled into a single group which trails 
downstream in approximately the f ree - stream direction . The circulation 
distribution along the trailing edge of the subsonic-leading- edge wing 
of this configur ati on is of almost elli ptic shape . The vortex sheet 
behind a wing of a h i gh- aspect- ratio combination, represented in fig ­
ure 4, distor ts much slower toward its final configuration and shows a 
different pattern . Vortex coordi nates for this figure are listed in 
table II . The different shape of the vortex sheet is due to the change 
in span loadi ng ,vi th reduced aspect ratio ~A. 

The difference in span loadi ng for the high - and low-aspect- ratio 
configurati on is a consequence of the supersonic or subsonic leading 
edge, respectively . As a consequence of its supersonic leading edge , 
the wing trai ling edge of the high -aspect- ratio combination of figure 4 
has a theor eti cal ci rculati on distribution which is linear from about 
the mid- semi span to the tip . Thi s linear distribution is represented 
by the eight equal, uniformly spaced vortices shown, the remaining two 
vortices arising from the slender-body type of loading (eq . (3) of 
part II ) i nboard of the int er section of leading-edge Mach line and the 
wing trailing edge . Now, it is characteristic of a uniform distribution 
of isolated vortices along a line, such as those shown in figure 5, that 
the rolling up proceeds in the form of a symmetri cal, S-shaped curve 
rotating about the centroid . The final configurati on of the vortices in 
figure 5 will consist of two equal vortex cores, each containing four 
vortices , r otating symmetrically about the fixed centroid . In figure 4, 
ther efore , the S- shaped rolling up occurs for the uniform portion of the 
sheet, although.the symmetr y about and fixity of t he centroid in space 
does not occur because the flow field is due not only to the 8 vortices 
but also to the other 12 wing vortices , 20 image vortices , and the body 
crossflow . The inboard portion of the vortex sheet displaces downward 
and outward i n the conventional manner of figure 3. In summary, then, 
the effect of aspect ratio and the consequent change in circulation dis ­
tribut i on is to change the shape of the rolling -up vortex sheet as in 
sketch (b) . The final vortex pattern for the high- aspect-ratio case 
depends on the extent of the span over which the circulati on distribu­
tion a l ong the wing trailing edge i s linear. A comparison of the calcu­
lated S- shaped sheet and an experi mental ly observed vortex sheet is 
shown i n figures lea) and l(b) . 

- - -----~ 
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Low i3A High ~A Very high ~A 
Trailing- edge circulation distribution 

Shape of rolling-up vortex sheet 

Final vortex pattern 
Sketch (b) 

Effects of Geometric Parameters on Vortex Paths 
and Downwash at a Tail Location 

9 

In the following sections , calculated vortex paths and downwash are 
presented for a wing-body- tail combination at a Mach number of 2.0. The 
tail location at which downwash is determined is 10 body radii dO¥ffistream 
of the wing trailing edge, a possible missile - type configuration. The 
vortic i ty shed from each ,-ring panel is r epresented by a single vortex . 
For the comparison of the relative importance on downwash at the tail of 
the wing vortex, image vortex, and body crossflow, a single vortex for 
each wing panel suffices, in general, although the computation of the 
actual magni tude of dovnwash requires several vortices . In part II of 
this report an investigation is made of the effect of the number of vor­
tices used to represent the trailing vorticity on the computed downwash 
at chosen tail locations . 

Effect of aspect rat io .- Figures 6(a), (b), and (c) present the 
effect of aspect ratio on downwash, calculated at a missile-type tail 
location, for a small body and wing combination (r/sm = 0 .2) at an angle 
of attack of 50. For the l ow-aspect- ratio combination, the approximation 
that the total downwash is caused by wing vortices alone is good except 
in close proximity to the tail-body juncture . For increasing aspect 
ratios the approximation is good only at greater spam-rise distances from 
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the body . The reason for this result is simply that the downwash from 
the wing vortices decreases with increasing aspect ratio for the condi­
tion of a given ratio of body radius to wing semispan . The wing lift 
decreases with increasing aspect ratio because of span load changes, and 
the effect of the body upwash therefore becomes more pronounced . Slender­
body theory predicts that the wake downwash angle exactly cancels the 
flow angle of attack inboard of the tip. It is interesting to note that 
inboard of the vortex location for the aspect ratio 2/3 wing (A ~ 4) the 
ave rage downwash angle is roughly the negative of the angle of attack of 
the wing -body configuration. 

Effect of angle of attack .- Vortex paths behind wings of two 
triangular -wing and body combinations at various angles of attack are 
presented in figure 7. It is seen that increased angle of attack results 
in a more pronounced inward and downward motion of the wing vortex with 
increasing distance ~ downstream, although for low-aspect-ratio com­
binations the initial vertical motion is upward due to body upwash. 
Farther downstream the distance between the body and the vortex wake 
increases, with a corre~ponding decrease in the effect of body upwash. 
The vortices from the wing panels of the low-aspect-ratio configuration 
then move downward more rapidly because of their nearness to each other. 

Examination of the equations of motion of the vortex wake, presented 
in part II of this report, shows that for a given wing-body combination 
a single set of computations can be made for all angles of attack a. 
The results of figures 7(a) and (b) are replotted against ~a in fig­
ure 7(c), which then applies to all angles of attack, at the same Mach 
number. 

The effect of angle of attack on downwash is illustrated by fig­
ures 8(a), (b) , and (c) for an aspect ratio 2/3 wing and large-body com­
bination, and by figures 8(d), (e), and (f) for an aspect ratio 4 wing 
and small -body combination. For the low-aspect-ratio configuration, it 
appears that the largest portion of the total downwash is contributed by 
the body upwash because of the large body. The difference in the shape 
of ' the total downwash curves of figures 8(a), (b), and (c) is due to the 
fact that the vortex wake passes farther above the horizontal tail as 
the angle of attack increases . For the high-aspect-ratio configuration 
the total downwash is not primarily cause~ by any single component 
because of the small body size . Wing and image vortices together with 
body upwash must be considered in calculating total downwash at any 
angle of attack for such configurations . 

Effect of ratio of body radius to wing semispan.- Another parameter 
governing the behavior of the vortex wake is the ratio of the body radius 
to the ,.,ing semispan, r Ism. Figure 9 presents the results for an aspect 
ratio 2/3 wing of fixed span, alone and in combination with bodies of 
different radii. The variation of the vortex strength with body size, 
given by equation (3) with Y = r, is plotted in figure 10. The vortex 
strength goes to zero for r/sm 1 since the entire wing then is 
enclosed by the body . It is seen in figure 9 that the initial slope of 

-- ----

• 
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the vertical displacement of the vortex path near the wing trailing edge 
increases in magnitude as rlsm increases. This is the result of 
increasing upwash in the body crossflow field coupled with correspond­
ingly decreasing wing vortex strength (see fig. 10). The final uniform 
downward motion of the vortex pair begins when the body is far removed 
from the vortices, and the path lies above that for the wing alone case 
in which the vortex pair moves linearly downward from the trailing edge. 
The lateral motion of the trailing vortex is shown in the lower part of 
figure 9. Together with the decreased strength of the wing vortex for 
large values of rlsm, there is an initial outboard shift of the vortex 
at the trailing edge . For the isolated elliptically loaded wing, ylsm 
equals rr/4 and it approaches 1 (the initial vortex location moves 
toward the wing tip) as rlsm increases from 0 to 1. The lateral vor­
tex motion downstream is affected by the sidewash component of the body 
crossflow field. The larger the body for a given wing, the more rapid 
is the inboard motion of the vortex . 

Figures 6(a), ll(a), 8(a) , and ll(b) show the effect of rlsm on 
downwash for ratios of body radius to wing semispan of 0.2, 0.4, 0.6, 
and 0 .72, respectively . The results shown in the figures can be antici ­
pated qualitatively. For an rlsm of 0 .2, figure 6 (a) shows that the 
downwash contributed by the image vortices almost entirely cancels the 
body upwash, except in close proximity to the body-tail juncture. Thus, 
for small ratios of body radius to wing semispan, downwash at the tail 
location is mostly given by the downwash caused by the wing vortices 
alone except near the juncture. Figure ll(a), for an rlsm of 0 . 4, 
exhibits a decrease in downwasb from the wing vortices, and the total 
downwash is not as well given by the wing vortices as in figure 6(a) 
especially near the body-tail juncture. Figure 8(a), for an rlsm of 
0 . 6, shows that except near the body-tail juncture the downwash in this 
case is largely that given by the body upwash. Finally, figure ll(b) 
for an rlsm of 0.72, showing the same trend as figure ll(a) and fig­
ure 8(a), indicates that for very large ratios of body radius to wing 
semispan, such as for canard configurations, the downwash at the tail is 
almost entirely determined by the body upwash. 

Comparison of Rolling Up of Vortex Sheet Behind 
Wing Alone and Wing-Body Combination 

Plane wing and body .- It is interesting to compare the rolling-up 
process of the vortex sheet behind a wing alone with that behind a wing­
body combination under the conditions of sketch (c). 
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t 
Elliptical 

Sketch (c ) 

Both wings have the same aspect ratio, root chord, and fo' However, 
this maximum f occurs at the cente r line for the wing (with elliptical 
distribution) and at the wing -body juncture for the wing-body combination 
(with near-elliptical circulation distribut ion). Figure 5 of refer-
ence 11 presents a picture of the rolling up of a vortex sheet behind an 
elliptically loaded wing as calculated by We stwater (ref. 16) in t e rms 
of the ratio of downstream distance d to rolling-up distance e. This 
ratio is related to ~ in figure 3 as follows (using eq. (5) of ref. 11): 

or 

where 

b wing span 

~ X e 
e c 

CL total lift coefficient 

d -c 

K constant based on the shape of the trailing-edge circulation distri­
bution 
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The value of K is 0.28 for elliptic loading. Nmr equation (10) of 
reference 11 is: 

13 

where To corresponds to elliptic loading for the wing alone. When the 
last two equations are combined, 

or 

In the present notation, 

d x 
= 

s 8m 

The lift coefficient of a triangular-wing and infinite cylindrical-body 
combination in terms of the wing alone lift coefficient is given by 
equation (38) of reference 15 as: 

CLW+B = CLw (1 - s~2)2 
It is clear that while the same ro is chosen in this comparison, 

the total lift of the combination is less than that of the wing alone 
because of the loss of exposed wing area. For the calculations of fig­
ure 3, ro/vo equals 0. 575 and sm equals 3.75. These values being 
assumed in the equation for d/s, 

For figure 3: 

Therefore the streamwise stations in figure 3 correspond to 0.2 , 
0 .4, 0 . 6, ... 2 wing semispans downstream. The values of d/e in 
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figure 5 of reference 11 correspond to values of x/sm of 0, 0.233, 
0·977 , 1·953, 4.370, and 8 .040 . Cross sections through the vortex sheet 
at these six stations have been drawn in figure 12 as well as the nearest 
corresponding sheet configuration from figure 3. From figure 12 it can 
be seen that the rolling-up process of the vortex sheet behind a 
triangular-wing and small -body combination closely resembles that for a 
wing alone under the conditions of the preceding sketch. 

Banked wing and body .- The qualitative difference between the 
rolling-up motion of a vortex wake behind an isolated wing and wing-body 
combination both banked at a given small angle and at angle of attack 
can be reasoned simply with the aid of sketch (d), illustrating condi­
tions immediately behind the trailing edge. 

Sketch (d) 

For the isolated wing, each panel vortex induces a velocity Vl on 
the opposite vortex and both move in the dotted direction with uniform 
velocity . The motion in this case is symmetric with respect to the ~'~ 
plane. Now the addition of a body, with potential crossflow symmetrical 
respect to the ~~ plane, adds the same induced velocity V2 at each 
vortex . The wing vortices in this case then move initially in the direc­
tion of the resultant velocity VR. Henceforth, the velocity due to the 
body crossflow is different at each vortex. Thus it can be seen that 
the wake motion i s different from that behind an isolated wing, that is, 
completely nonsymmetrical. Similar reasoning for wing vortices of 
unequal . strength leads to the same conclusion . 

For a cruciform wing and body combination at 450 angle of bank and 
at angle of attack , the superposed velocity fields (from the wing and 
body) are both symmetrical with respect to the ~~ plane. Therefore · 
the computed vortex wake motion should agree qualitatively with results 
for isolated cruciform wings. 
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11.- PRESENTATION AND EVALUATION OF METHOD 

The remainder of this report will examine in detail the line-vortex 
method outlined in reference 13. The manner by which the i nitially 
required circulation distribution was obtained is first discussed. The 
method of replacing the wake circulation distribution and the afte~body 
by discrete vortices then follows. The determination of the flow field 
in transverse planes and the stepwise integration technique are next 
explained. After a few sample calculations, an evaluation is made of 
the errors inherent in the stepwise integration and of the effect of the 
number of vortices used on the computed downwash distribution at chosen 
tail locations. 

Circulation Distribution at Wing Trailing Edge 

Before the stepwise calculation of vortex paths behind the wings of 
wing-body combinations can be started, it is necessary to know the cir­
culation distribution along the wing trailing edge. In general, the 
circulation distribution r(y) and the wing span loading are not equiva­
lent. The conditions for equivalence are derived in Appendix A. The 
method of this report has been applied to triangular-wing configurations 
which have readily obtainable circulation distributions. However, the 
stepwise calculation method is applicable to configurations with any 
wing plan form. 

For a plane-wing and cylindrical-body combination, the span loading 
is equivalent to the circulation distribution and can be obtained by 
chordwise integration of the complete pressure coefficient (~p/q)W' 
Equations for (~p/q)W are given in the slender-body analysis of refer­
ence 15. For such configurations, the circulation about the wing at any 
spanwise station y is given by linear theory as: 

fey) ~ :0 [(~~ dx , (1) 

The notation for this and the following equations is defined in fig­
ure 13, which shows the more general case of a noncylindrical body. 

Equation (11) of reference 15 furnishes the wing loading coefficient 
for a pl ane - wi ng and cylindrical-body combination as: 

(2) 
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Substitution of equation (2) in equation (1) and integration yields: 

r(y) 

When the body is not cylindrical, equation (2) is modified to: 

ds 
( 

r4) 2.E dr (r2 _ r2) 
dx 1 - s4 + s dx S2 y2 

dr (1 _ r 4) 
dx y4 

(4 ) 

The last term of equation (4) is due to the spanwise velocity and 
does not contribute to the circulation distribution. Hence one obtains 
the required circulation distribution by insertion of only the first 
term of equation (4) in equation (1) and integration . The result is 
identically equation (3). This shows that the circulation distribution 
r(y) along the trailing edge of a plane wing on a noncylindrical body is 
dependent only on the cross section of the configuration at the trailing 
edge , as could be anticipated . The circulation is, in fact, the jump in 
the crossflow potential at the trailing edge and hence must agree with 
the slender-body result, equation (3). 

For cruciform wings on a cylindrical body at angle of attack and 
sideslip, the complete ve locity potential (eq. (47) of ref. 15) is: 

Voa'z ± };' {[ (1+ :1:) r 1
2 cos 28 + t2(1 + ::) ] + 

[r14 (1 _ :~)2 + 4r
4 

cos2 28 + t
4 

(1 + ~:)2 + 

2t2(1 + ::)(1 + ::.) r 1
2 cos 2eJ~}~ + Vo~'Y ( 5) • 
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where 

and 

r 2 1. y2+ e = tan-1. z· y 

+ means 0 < e < " 
- means ,,< e < 2" 
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The t r ansformation to a configuration pitched a radians and banked 
~ radians is f or small angles a : 

a ' = a cos ~, 13 ' = a sin ~ ( 6) 

Now for banked cruciform configurations, the span load distribution 
is not equivalent to the circulation distribution. Hence, instead of 
equation (1) one must use the general relation between r and the jump 
in the velocity potential at the wing trailing edge: 

r - 6~ - TE 

For horizontal and vertical surfaces respectively, one obtains by 
substitution of equation (5) in equation (7): 

r(y) 
2Voa' J (sm2 _ y2)(sm2y2 _ r 4 ) 

smY 
(8) 

2Vo/3 ' 
r(z) J (tm

2 - Z2) (tm2 z2 - r 4 ) = 
tmz 

It is thus seen, by comparing equations (8) and (9) with (3), that 
the circulation distribution for a cruciform wing and body combination 
is derivable by assuming that each wing acts independently of the other 
as part of a plane wing and body combination at an angle of attack given 
by e quation (6) . This can be seen also by the linear superposition of 
potentials in equation (5) . 

The foregoing equations are based on the slender -body theory of 
r eference 15, which is postulated for slender wing and body configura ­
tions at subsoni c, transonic, and supersonic speeds. In order for the 
equations to apply at supersonic speeds, the entire configuration must 
lie we ll within the body nose Mach cone . Experimental data on models 
conforming to these restrictions agree well with the theory. In order 
to apply the results of slender-body theory to nonslender wing and body 
combinations, an aspect-ratio correction factor is employed. This factor, 
,·rhich for triangular- wing configurations is the ratio of the lift of a 
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triangular wing calculated by linear theory to t he lift calcul ated by 
slender-body theory, is discussed fully i n Appendix B. The r e sults may 
be surmnarized as follows : For sub sonic-leading-edge wings (~ t an W < 1), 
equat i ons (3), (8), and (9) should be multipl i ed by the fact or 

For supersonic-leading- edge wings, ( ~ tan W > 1), t hese e quations shoul d 
be multiplied by equations (B7 ) or (B18) for the ranges of y indicated: 

k 
1 J:: : ; 

tan2 
W - 1 

for 

sm - r 
r + < y ~ sm 

~ tan W -

_
-;::=========1============= { 1 I ( ) . - 1 y~2 tan

2 
W - sm k = 8m + - L sm - y s1.n 

J(sm2 - r ) (~2 tan2 W - 1) 11: ~ tan w(sm - y) 

for 

y~2 tan
2 

W + Sm ]} 
(sm + y ) s i n- 1 -------

~ tan w(sm + y) 

Sm -r 
r ~ y < r+ ----

13 tan W 

Replacement of Wake Circulation Distribution 
and Body by Discrete Vortices 

(B18) 

After the circulation distribution r(y) along the wing trailing 
edge has been determined, the next step is the replacement of the conse ­
quent wake circulation function by a finite number of vortices. A plot 
of the circulation function, equation (3), for example, looks like that 
portion of t he solid curve above the wing in sketch (e): 

_ C 
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r 

Sketch (e) 

The loading over the body, which can be calculated from the corre­
sponding body pressure coefficient (eq . (12) of ref. 15), is not explic­
itly required here. It will be seen that this loading is automatically 
accounted for by the vortex model set up for the wing loading. The 
curve r(y) over the wing can be replaced by a suitable number of step 
functions (dashed lines in sketch), each of which corresponds to a vor­
tex of strength equal to the step height and located at the step abscissa 
as shown. Although an infinite number of step functions would be 
required to duplicate the given curve, in practice the number selected 
are the fewest which render possible a reasonably accurate prediction of 
the trailing-vortex sheet behavior. Single-, three-, and ten- step func­
tion distributions have been used herein. Quantitative results will be 
presented later concerning the number of vortices used to replace the 
circulation distribution. For a single-step (one vortex) approximation, 
integrating equation (3) for the area under the r(y) curve and equating 
the result to a single rectangular area lead to the simple result shown 
in figure 14, namely, that the spanwise distance from the body of a 
single vortex representing the circulation distribution on one panel of 
a plane, subsonic-leading-edge wing and body combination is approximately 
constant and equal to about 0.76 times the exposed wing semispan for all 
ratios of body radius to wing semispan. In this approximation by a 
single vortex the value of rmax at the wing -body juncture is assigned 
to the vortex . In all cases the two panels of the wing are treated inde­
pendently. A circulation distribution which, unlike the preceding sketch , 
i s asymmetrical across the wing trailing edge will, therefore, require 
an asymmetrical vortex distribution. 

The effect of a circular body in the presence of this wing vortex 
distribution is accounted for by placing an image vortex for each wing 
vortex within the body at the inverse point, as indicated by sketch (f). 
The image vortex cancels the velocity normal to the body due to the wing 
vortex . 

• 
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Sketch (f) 

The foregoing discussion applies to the trailing-vortex filaments 
from the wing and the image vortices contained within the body. These 
filaments can be considered joined by bound vortices within the wing 
and adjacent body to form horseshoe vortices as shown in sketch (g). 

The portion of the total lift of 
the wing -body combination carried 

- " by the wing and by the body is rep­
resented by the bound filaments of 
length 12 within the wing and II 
within the body, respectively. A 
plot of r(y) across the body is, 
therefore, obviated since the single 
vortex representing the body loading 
automatically appears at the inverse 
(image) point of the wing vortex . 
This vortex model, due to Lennertz 
(ref. 17), assumes that the ratio 
of body to wing lift is proportional 

t to the ratio Il/12 Ol + 12 being 
, the "effective semispan"), and is 

Sketch (g) 

known from experiments to represent 
the distribution of lift between 
wing and body with good accuracy, 
deviating but slightly from slender-
body theory. 

Consistent with the assumed two-dimensional nature of the solution, 
the segments of the vortices bound within the wing and adjacent body are 
neglected. It is then assumed that the remaining filaments extend 
upstream to infinity . 

Determination of the Flow Field in Transverse Planes 

The nonlinear differential equations governing the downstream motion 
of the vortex wake require a stepwise solution for the vortex positions 
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at successive streamwise stations (or time increments). Consider a 
vortex pattern at any downstream station such as section A-A in figure 2 . 
(The image vortices inside the body are not shown in the figure.) It is 
assumed that every vortex infl uences the flow field according to the 
Biot - Savart velocity law of planar , incompressible-flow vortex theory , 
as illustrated in the sketch (h) . This assumption will be justified 
later . 

+w to 
~+v 

Sketch (h) 

The velocity Vi induced at the ith vortex by the jth vortex is: 

(10) 

The vertical component, Wi' of Vi is: 

(11) 

The horizontal component, Vi' of Vi is: 

-rj ~i - ~j 

2rrr (Ai - Aj)2 + (~i _ ~j)2 
(12) 

In general, for a flow field containing n 
components induced at the position of the ith 
n - l vortices are: 

1 
2rrr 

n 

L 
j =l 
#i 

vortices, the velocity 
wing vortex by the other 
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n 
rj(T)i - T)j) 

- 1 L (14) Vi 
= 2n:r (Ai - Aj)2 + (TJi - T)j) 2 

j=l 
#i 

Equation (10 ) is derived from consideration of an infinitely long, 
incompressible - flow vortex filament, and is, therefore, applicable only 
to two-dimensional flow . For supersonic speeds, the use of equation (10) 
is consistent with the slender-body theory underlying this study for 
these reasons: Reference 7 shows that an infinitely long vortex filament 
parallel to a supersonic stream obeys the Biot-Savart law of incompres­
sible flow. Omission of the bound vortex and wing chord loading causes 
the difference between initial a nd asymptotic downwash at the wing trail­
ing edge seen in figure 15 reproduced from reference 7; the downwash 
along the wake center line approaches the asymptotic value within a chord 
length behind the trailing edge f or the triangular wings of ~A < 4. 
Hence the asymptotic downwash gi ven by a two-dimensional trailing-vortex 
system has been used . 

Superi mposed on the velocity field due to the wing and image vortex 
system is the body potential crossflow velocity field. From the poten­
tial: 

(15) 

where Zl is measured from the body axis (instead of the wind axis), one 
readily obtains the veloc i ty components induced by the body: 

d<Pl 
w 

dz 
, 

d <Pl 
v = - -

or in dimens i onle ss form: 

dy 

w 

Vo 

2 2 y - z, 
= V ar2 

0 
(y2 + 

- 2Voar7z' 

T- 2 2 ( + z' ) 

.2 ,2 
f\ - T) 

Z, 

= a ------
2 2)2 (A + T) ' 

2)2 
(16) 

(17) 

(18) 

-' 

------ -~ 
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where 

~I = ~ + ~ tan a ~ ~ + ~a (20) 

This transformation from the usual potential equations is neces ­
sitated here by the fact that the coordinates are not body centered, and 
the body is inclined, with respect to the free-s t r eam direction. 

These last equations assume that the body angle of attack is small 
enough so that tan a ~ a, cos a ~ 1 (which is true for a up to approxi ­
mately 200 ), and that the contribution of the crossflow to the local 
streamwise velocity is negligible. As stated previously, viscous cross­
flow separation around the body, with its consequent vortex wake, is not 
considered here. 

St epwise Determination of Vortex Paths 

The replacement of the wing trailing-edge circulation distribution 
by step functions and associated vortices, together with the placement 
of image vortices within the body, as detailed above, provide the start­
ing point for the stepwise calculations to be described. The spanwise 
and heightwise coordinates of all vortices at ~ = 0 are known. The 
downstream incremental motion of these vort ices will next be determined. 

Now at any point in a transverse (yz) plane, the lateral velocity, v, 
is given by the sum of equations (14) and (19). The- vertical velocity, w, 
is similarly given by the sum of -equations (13) and (18). The streamwise 
velocity, u, perpendicular to the plane, is everywhere Vo ' Consider 
the point where a vortex line passe s through the transverse plane. In 
a time interval 6t t he vortex filament moves with the fluid a vertical 
distance 6z = w 6t. Since 6t = 6x/Vo ' 6z = (W/Vo)6x, then nondimen­
sionally: 

(21) 

Similarly the dimensionless lateral movement is: 

(22) 

The last two equations then furnish points in transverse planes a 
distance 6~ apart, the locus of which is the path of a vortex filament 
moving in the wing-body flow field. With each vortex, a "strength" rjlvo 
(rather than rj) will be associated in order that equations (13) 
and (14) will actually yield the velocity ratios wlvo and vivo. 



24 NACA TN 3227 

In the plane /.l = 0, .,hich contains the wing trailing edge, as long 
as the wings have no i ncidence with respect to the body, all the vortex 
filaments have coordinates ~ = O. Therefore, the total spanwise veloc ­
ity induced at the location of any given wing vortex can readily be seen 
to be zero, from equations (14) and (19 ). In fact, the initia l motion 
of such a vortex sheet is always one of pure vertical displacement. The 
total vertical velocity summed from equations (13) and (18) is multiplied 
by a suitable increment 6/.l yielding an incremental distance 6~ moved 
by the given vortex line, according to equation (21). Values of 6~ ar e 
thus calculated for all the wing vor t ices, the entire group of which is 
so transported to the plane /.l = 6/.l. The coordinates of each wing vortex 
in this new plane are found simply by adding the computed increments to 
the coordinates at the previous station. Of course, symmetrical proper­
ties are used wherever possible to obviate the calculation of the paths 
of vortices from each half of a wing. Corresponding to the new l ocation 
of each wing vortex line at the station /.l = 6/.l, the image vortices 
within the body a re repositioned according to the following formulas: 

A image = " ,,2 + (~ + /.l ta.n a)2 

~ + /.l tan a 
~image = -/.l tan a + 

,,2 + (~ + /.l tan a)2 
(24 ) 

where ( A,~) are the coordinates of the wing vortex at the new station 
/.l = 6/.l. This readjustment of the image vor tex positions, re quired by 
the downstream displacement of the inclined body away from the free ­
stream direction, is made because the image vortice s are bound within 
the body; the image vortex displacement, in fact, measures the amount 
of lift carried by the afterbody (see ref. 13). 

With the new positions of wing and image vortices this procedure is 
r epeated. That is, the total lateral and vertica l velocity induced at 
each wing vortex location is calculated and multiplied by an incrementa l 
distance 6/.l. The new wing vortex positions are obtai ned by adding the 
computed increments to the original coordinates. The image vortice s are 
then repositioned according to the new wing vortex locations , and the 
stepwise calculation continued to the desire d dOiVllstream station . 

This stepwise procedure is Simply a method for integrating numeri ­
cally ' n simultaneous differential equations of motion of n/2 _ri ng 
vortices for the downstream paths. A closed solution for the thr ee ­
dimensional paths is, in general, extremely complicated, if not impos­
sible . While the equations of the vortex motions in a transverse or 
crossflow plane can be written, introduction of time dependence (equiva ­
lent to the streamwise coordinate) renders a closed solut ion extremely 

-- - ------
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difficult. Reference 13, using complex variable notation, cites explic~ 
itly the entire path of a pair of vortices in the presence of a cylinder 
in the transverse plane. The equations were derived by Villat in refer­
ence 18. Even for this simple case, where n = 4, recourse i s ne ce s sar y 
to numerical solution for the time or streamwise coordinate. Thi s sol u ­
tion will be analyzed in greater detail subsequently , as wel l a s the 
manner of choosing the proper spacing ~~ of success ive s t ations . 

Sample Calculations 

Three examples will now be pre sented to illustrate the ca l cul&tive 
procedure and resulting vortex pa ths. They are: 

1. A plane-wing and cylindrica l-body combination a t a,ngle of 
attack. 

2 . A cruciform-wing and cylindrical-body configuration at angl = 
of attack and bank . 

3. A plane - wing and cylindrical-body combination with the body at 
-angle of attack and the wing panels at differential i ncide nce . 

The procedure has been systematized by prepared computation f orms 
such as table III which is used when the circulation distribution on one 
wing panel is repla ced by a single vortex. 

Example 1, plane triangular -wing and cylindrical-body combinat ion 
at angle of atta ck . - The data for this example a.re: wing aspe ct 
ratio = 2/6, ratio of body radius to wing semispan = 0. 6, a ngle of 
attack = 5 , and Mach number = 2 .0 . 

The l eading e dge of the wing is subsonic (~ tan w = 0 .2912 < 1), so 
the trailing-edge circulation distribution r(y) is calculated from e qua­
tion (3) and multiplied by the aspect- ratio correction factor k = 0 . 917 
(see Appendix B). A plot of r (y) vs. y like that of figure 14 is 
obtained, wi th a maximum ordinate r/vo = 0 .12796 in this example. 
First, this distribution is replaced by a single vortex per wing panel, 
with the location consequently given by figure 14 as s ' I(sm - r) = 0 .763, 
or Al = 1 . 509 (rlsID = 0 . 6) . The vertical coordinate of the vortex at 
the wing trailing edge ( ~ = 0) is zero in this case. The dimensionless 
spanwi se coordinate of the image vortex is, therefore, A2 = l/Al = 0 .663. 

Refer r i ng now to table III(a), the above values of r1/v, A
l

, ~ 
A2 , and, ~2 are filled into the proper boxes of columns @' d), and &. By 
symmetr y , t he values of A

3
, A4 ' ~ , and ~ can be readily filled in, and 

an i ncr ement ~~ is chosen (1 her~). Col-dillns G> through @' based on 
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equations (13) and (14), are then computed in order, the last two glvlng 
the vertical and horizontal veloci~ components induced at vortex 1 by 
the other three vortices (columns 8 and @, respectively). Rows @ 
through~ , based on equations (18 through (22), next add the~otential 
crossflow velocity components at vortex 1. Thus, rows @ and @]J give 
the new coordinates of vortex 1 for use in table III(b), while the 
bottom calculation furnishes the coordinates of the corresponding new 
image vortex 2 position. 

Columns ® through ® of the table III(b), for station ~ = 1, can 
now be filled in and the procedure repeated, as illustrated. This step­
wise computation is continued for as many stations downstream as deSired, 
each part of this example representing positions at increments of one 
body radius (6~ = 1) downstream of the wing trailing edge . The results 
are summarized graphically by figure 16. 

For the same given data, the calculated circulation distribution 
for one wing panel is now replaced by three vortices of equal strength 
r/vo = 0.042653 . Their spanwise locations are determined graphically, 
equating areas under the curve of r(y) vs . y, and in this example are : 
Al = 1 .652, A2 = 1.558, and A3 = 1.316. The three image vortex loca­
tions are again calculated as the inverse points, giving : A4 = 0.75988, 
As = 0.64185 , and A6 = 0.60533 . The rp.sults of this case are shown in 
figure 17. 

Example 2 , cruciform triangular-wing and cylindrical-body configura­
tion at angle of attack and bank .- The configuration data of the pre ­
ceding example are again assumed in addition to which another pair of 
wing panels now exists, forming a cruciform wing-body arrangement banked 
450 • The strengths of the assumed four vortices originating from the 
four wing panels are identical, as required by equations (8) and (9). 
These equations with equation (6) provide the required circulation dis­
tribution r(y) and r(z) which is corrected for aspect ratio as explained 
in Appendix B. Figure 14 again furnishes the initial pOSitions of the 
four wing vortices, wbose corresponding four image vortices are then 
located at the inverse points . The calculative procedure follows that 
describ~d above. Because of planar (xz) symmetry, only the paths of a 
pair of vortices on one side of the body need be computed. The results 
of this case are presented in figure 18, which shows that there is a 
tendency toward "leapfrogging," sketch (i)3 although the process appears 
to be retarded initially by the body. 

3The phenomenon of ttleapfroggingtt vortices is discussed in detail 
for isolated wings in reference 12. 
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"Leapfrogging" paths in crossflow plane 

Sketch (i) 

Example 3, plane -wing and cylindrical-body combination with the 
body at angle of attack and the wing panels at differential incidence.­
The given data for this case ar e the same as for the first example with 
two exceptions , One wing panel is deflected and the other is at zero 
incidence with respect to the body axi s such that the vortex from each 
panel has the same strength . Now the vortices from both wing panels 
are rotati ng in the same direction . The vortex shed from the deflected 
panel is assumed t ·o start above the xy plane because of the angular 
displacement about the hinge line of that panel's trailing edge. It is 
further assumed that the vor tex from each panel is shed at the same span­
wise station. 

Figure 19 illustrates an effect characteristic of wings differen­
tially inclined , The vortex from the wing panel which has no incidence 
to the body moves essentially the same way as in the plane wing case. 
However, the vortex from the wing panel which is at a negative angle of 
attack travels sharply upward and inboard. This marked motion is due 
to two effects: First, the vortex starts at the trailing edge with some 
~ > 0 because of the negative angle of attack of the panel, and second, 
the body cros sflow and image vortex- induced velocities are cumulative in 
this case instead of being subtractive as in the plane case. At a suf­
ficiently high angle of attack, it may be possible for the rising vortex 
to jump over the body to the same side as the other vortex. Such an 
occurrence would cause a sharp increase in rolling moment from the tail 
surfaces . 

For the case of a pair of wing panels inclined together, the trail­
ing vortex paths can be estimated qualitatively by consideration of the 
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vortex picture in the crossflow plane. Thus, for a pair of wing panels 
inclined at a positive angle of attack on a body whose axis is parallel 
to the free stream, the vortex paths trail below the free-stream direc­
tion with concavity upwards since there is no body upwash and the effect 
of the image vortices is to depress the wing vortex wake. For a pair of 
wing panels at a negative angle of attack on a body at a positive angle 
of attack, the trailing vortices are inclined upward since the body 
crossflow and vortex-induced velocities are additive. 

These and all other computations except those with 10 vortices per 
wing panel were performed with a desk calculator. It was found that the 
solution of vortex paths downstream of the wing could be accomplished in 
about fifteen minutes per station for a single-wing vortex, and two hours 
per station for a three-wing vortex scheme. In general, the number of 
computations per solution increases approximately as the square of the 
number of vortices assigned per wing panel. 

Evaluation of the Effect of Stepwise Integration 
on Vortex Paths 

In the present line-vortex method, the principal factors governing 
the labor expended in the solution to a given problem are the size of 
the "time" increment 61-1 and the number of vortices used to replace the 
trailing vorti~ity . The first factor will now be discussed in detail. 

The necessity for a stepwise solution for vortex paths stems from 
the difficulty of integrating n simultaneous differential equations of 
vortex motion (eqs. (13) and (14), together with eqs . (18) and (19)). 
The differential equations are therefore solved with a small, finite 61-1. 
In this report, the use of equations (21) and (22) implies the use of 
Euler's linear integration method, that is, 

where , 

and i = 1 , 2, 3, . . . TJ/2 

A Taylor series expansion shows the higher order terms neglected: 

Thus, it may be seen that the use of Euler's method without appre­
ciable error requires either the second and higher derivatives to be 
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small or .6.1l to be small. The following discussion indicates the impor­
tance of the higher order terms for vortex motion. 

Comparison of known exact solution of vortex motion with stepwise 
integration.- A simple example of the mutual interaction of two vortices, 
for which the exact solution is known, furnishes an insight into the 
nature of the cumulative error incurred by this stepwise-integration 
method. It is easily shown by the methods of hydrodynamics (e.g ., p. 320 
of ref. 19) that two vortices of strengths r1 and r2 will, due to their 
own mutual influence, each rotate about their common IIcentroid" in a cir­
cular path with constant angular velocity which is equal to (f1 + f 2 )/2n 
divided by the square of the distance between the vortices. This motion 
is illustrated in figure 20. The solid lines ra.diating from the centroid 
represent the ends of a constant time increment (proportional to 61l) and 
the solid, spiral-like curves are the corresponding paths computed by a 
stepwise approximation. The dashed radial lines and spirals relate to a 
time interval half of that used before. It appears from figure 20 that 
the e rror or discrepancy between circular and spiral paths increases 
'-Ihile the rate of growth of this error decreases with time (or distance 
downstream of the initial position). Further, it is seen that a decreased 
size of time increment results in a decreased error, for this example, in 
approximately the same ratio. Of course, this case of completely circular 
vortex motion cannot be solved accurately by Euler's linear scheme without 
using extremely small increments. However, for many of the computed vor ­
tex paths behind the configurations considered in this report it will now 
be shown that Euler's method is sufficiently accurate. 

Effect of size of increment 61l on computed vortex paths.- The 
error incurred by using the linear integration method can be judged by 
calculating vortex paths with different increments .6.1l and extrapolating 
the results to 61l = O. This has been done for single- and three -vortex 
schemes at a = 50 and typical results appear in figures 21 and 22. 
Both figures show that the stepwise method employing finite increments .6.1l 
yields results which converge fairly rapidly to the exact solution (for 
which .6.1l~dll~ O) . Here the error, using a given value of 61l, is 
indicated by the difference between the value of A or ~ extrapolated 
to 61-L = 0 and the value of A or ~ at the given value of 61-L. As in 
figure' 20, the error is seen to increase with time or distance I-L down­
stream of the wing. For a single-vortex scheme (fig. 21), the error is 
approximately proportional to 1-L61-L and is small, in general. The error 
becomes greater and less predictable, for the same increme nt slze, with 
a multiple-vortex scheme (fig. 22). A single-vortex scheme is therefore 
less subject to integration error than a multiple-vortex scheme. The 
reason why the error increases nonlinearly for the three-vortex scheme 
of figure 22 can be explained by reference to figure 22(c) which shows 
the projection of the vortex paths on the crossflow plane. For small 
values of I-L the vortex paths are fairly linear, with the vortex posi­
tion error given by figure 22(a) being small and essentially linear 
with .6.1l. Further downstream, as the effect of the rolling-up process 
becomes marked, the paths are seen to become spiral-like. Each vortex­
position error curve becomes increasingly nonlinear as the vortex path 

J 
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approaches a maximum or mini mum vertical position in the crossflow plane. 
The use of small er increments 6~ then reveals the tendency toward con­
vergence of the path to one of a lesser radius of curvature, as illus ­
trated previou s l y for the case of truly circular paths. 

From these results it appear s that the selection of a suitable 
increment 6~ for any given case should be made by trial calculation 
with several values of 6~ for a few stations downstream of the wing. 
As long as the computed vortex paths are relatively linear in the cross­
flow plane, the largest value of 6~ should be chosen which permits the 
extrapolated error in vortex location to be the maximum tolerable at the 
furthest downstream station at which downwash is desired; 6~ should be 
decreased locally wherever the vortex paths appear to be approaching a 
maximum or minimum height in the crossflow plane. 

More accurate numerical integration schemes than Euler's method can 
be found in reference 20 . Curve-fitting and extrapolation formulas are 
presented which by taking account of the higher order derivatives of the 
path enable one to maintain sufficient accuracy of vortex positions with 
a given 6~ even when the paths are markedly nonlinear. 

Comparison of computed paths with exact solution for vortex paths 
in crossflow plane. - The exact solution known for the vortex path in the 
crossflow plane corresponding to the single-panel vortex representation 
mentioned previously can be used to check the accuracy of the stepwise 
integration . Equation (vI - 4) of reference 13 cites the result obtained 
by Villat (ref. 18 ). In the present notation, it is: 

where 

AO == (A) 
~ =o 

At an infinite distance downstream the vortices are infinitely far 
removed from the body (~ + ~a~~ ) so that the asymptotic ,spacing 
2(A)~=~ of the vortex pair is given by the relation: 

2(A)~= - (26) 

---- -~ 
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Two solutions by the 
equations (25) and (26 ). 
of the coordina tes ~ and 
equation (25) and solving 
son appears in figure 23, 

31 

steplfise method have been checke d against 
This has been done by inserting pairs of values 
~, from the stepwise-calculated paths, into 
for the A coordinate by trial. The compari ­
shovring the results to be practically coincident . 

Effect of Number of Vortices on Downwash a t Tail Locations 

Comparisons were, made of the downwash along a line, represe nt ing a 
horizonta l tail plane, resulting from the separate presence of one, 
t hree , and t en vortices, all derived from a give n circulation di s tribu­
tion . Po s sible tail locations for both a missile - type and high-ta il 
a irplane-type configuration were chosen. 

Missile - type configuration .- For the former, ~ = 10 was selectedj 
that is, a t a il location 10 body radii downstream of the wing trailing 
edge . Therefore downwash was first computed along the line ~ = 10 , 
~ = - 10 t an Q, 1 < A < 6 , which is a horizontal line through the body 
center line of the missile - type configuration. 

Figures 24( a ) and (b) show the effect of number of vortices on down­
wash at the chosen missile tail location with and without components of 
the body potential crossflovT in the stepwise computations. These omis ­
sions were made for t wo rea sons : One was to determine the extent ,to 
which the step,-rise calculations could be simplified without obtaining 
dissimilar results in downwash, and the other 'Ivas an attempt to account 
for the flow around the body at high angles of attack . As an assumption 
for the high -angle -of -attack crossflow, the potential crossflow (eqs . (18) 
and (19)) vas replaced by e quation (18 ) alone with TJ ' == O. This assump ­
tion implies that the velocity distribution on the lee side of the body 
is the same at any vertical station as along the horizontal diameter, as 
indicated in sketch (j ). 

Potentia l cr ossflow. Assumed center line crossflow. 

Sketch ( j ) 
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For the aspect ratio 2/3 configuration of figure 24(a), with 
rlsm = 0.6, the number of vortices used has a negligibly small effect on 
downwash except when the body crossflow is entirely omitted in the step­
wise calculations. Observance of the various vortex positions at the 
tail location, shown at the top of figure 24(a), shows that the vortices 
from the wing panels are subject to a relatively strong body crossflow 
so that the ir computed positions are greatly in error if the body upwash 
is neglected. Thus , when at least the upwash component of the body cross­
flow (the center line crossflow in sketch (j)) is added to the stepwise 
calculations there is, no appreciable effect of either the number of vor ­
tices used or the strength distribution for a given multiple-vortex 
scheme . Figure 24(a) also shows that only a small change in downwash 
results from replacing the potential body crossflow by the assumed center 
line crossflow . 

For the aspect ratio 4 wing and body combination of figure 24(b), 
with rlsm = 0 .2, it is seen that there is little effect of body cross­
flow on the dOWilwash at the tail . This could be expected because of 
the relatively large wing . While the use of a single vortex does not 
adequately approximate the magnitude of downwash over a tailspan equal 
to the 'nngspan, a 3-vortex scheme appears to be as satisfactory as a 
10-vortex scheme. Reference to the computed vortex locations shown at 
the top of the figure indicates that the vortex sheet from a high-aspect­
ratio wing at low angles of attack rolls up so slowly a.nd extends over 
such a lar ge spanwi se distance that a single vortex cannot give the cor ­
rect dis tribution of downwash. 

At higher angles of attack , the vortex wake .nIl be even furthe~ 
from the horizontal tail plane because the body .nIl be inclined below 
the free-stream direction mor e than the vortex wake according to fig ­
ure 7. Although the vortex strengths increase directly with angle of 
attack, the dOWilwash at the tail decreases very rapidly with distance 
from the wake . Consequently, the effect of number of vortices should be 
smaller at higher angles of attack . 

Airplane-type configuration .- Now a possible horizontal tail loca­
tion for a high-tail airplane-type configuration is ~ = 3 and ~ ~ 2, 
that is, 3 body radii dOlmstream of the trailing edge of the wing and 
2 body radi i above the body axis . Figure 25 presents the effect of the 
number of vortices used on the downwash at this tail location. The 
aspect ratio 2/3 configuration of figure 25(a), .nth rlsm = 0 . 6, shows 
no noticeable effect of number of vortices on either the distribution or 
magnitude of downwash simply because of the distance of the horizontal 
tail plane a.bove the vortex wake . Neither is there any appreciable effect 
of assuming the body crossflow to be the center line crossflow. The 
aspect ratio 4 configuration of figure 25(b), ivi th rlsm::: 0.2, shows 
that 3 vortices give the same downivash as 10 vortices. However, from 
figure 7 the vortex wake behind the vnngs of both high - and low-aspect­
ratio configurati ons at small values of ~ is seen to be fairly close 
to the free - stream direction at all angles of attack . Therefore it can 
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be expected that with increasing angle of attack, the tail plane 
approaches the wing vortex wake and the use of at least three vortices 
to represent the wake behind wings of such high-tail airplane-type con­
figurations will be required to obtain the correct magnitude of downwash 
across the tailspan. 

To obtain the shape of a vortex wake behind a wing, clearly a mul­
tiple trailing-vortex system, such as the 10-vortex systems used herein, 
is required. However, for the computation of downwash at tail locations 
a minimum number of vortices is desirable and this number depends mainly 
on the distance between the wing wake and tail surfaces. The number 
varied from about one to three for the configurations studied herein, 
depending on whether that distance was large or smal~ . An empirical 
relation, based on the calculations made in this study, for estimating 
the nearest integral number of vortices required per wing panel is: 

0 .16A 
N = 1 + ------------

where h is the height of the horizontal tail above the body axis in 
terms of body radii. 

Note on calculations involving large numbers of vortices.- In set­
ting up the initial (trailing-edge) vortex distribution from the given 
circulation distribution r(y), one must exercise great care when n is 
large (i .e., n > 20). The spacing of the vortices which approximate 
r(y) stepwise must be checked to insure a smooth curve of their divided 
differences. Otherwise, spurious effects such as the "loss" of a vortex, 
caused by excessive induced velocity, sketched below, can occur (see 
fig. 24(a)). 

o " 8 
5 ~32. I (() omo 

Initial vortex distribution 
at ~ = 0 

"Lost" vortex 

o I 

G-~"""Or-M/Ji) 

Incorrect result at ~ = 6~ 
due to vortex No. 2 

Sketch (k) 
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CONCLUSIONS 

An investigation has been made of a line-vortex method for computing 
vortex paths, downwash, and s i dewash behind wings of wing -body combina ­
tions . Application of the method to the calculation of wake shapes, 
vortex paths, and downwash behind triangular-wing and cylindrical-body 
combinations with various prescribed data leads to the following con­
clusions ; 

1. Wake shapes calculate d by two-dimensional "line - vortex theory 
agree qualitatively at least ,-lith wakes observed in a supersonic ,-lind 
tunnel. Calculated vortex pa.ths using this line-vortex method agree 
well with a known exact crossflow-plane solution. 

2 . A missile-type wing-body- tail combination with the horizont al 
t ail located in the body diametral plane 10 body radii downstream of the 
wing trailing edge at 50 angle of attack was considered . It was found 
t ha t if the plane wing is of low aspect ratio (or der of 2/3), downvrash 
can be computed at the horizontal tail from the wing vortices alone f or 
small values of the ratio of body radius to wing semispan (order of 0 . 2) 
and from the body upwash alone for l arge values of that r atio (orde r 
of 0 . 7) . For high-aspect- ratio wings (order of 4) on small bodies, dmm­
wa.sh at the tail location can be well approximated only by considering 
all the flow components - wing vortices, image vortices, and body cross­
flow. 

3. A multiple traili ng-vortex system is, of course, required to . 
determine the shape of the ,-lake behind a wing. However, for the computa­
tions of down,msh at a tail location the number of vortices required per 
panel depends ma inly on the distance between the wing wake and tail sur­
faces . The number varies from about one to three for the configurat ions 
studied her ein, depending on ,-lhether this distance is large or small. 
An empirica l relation, based on the calculations made in this report, 
f or estimating the nearest integral number of vortices N r equire d per 
wing panel is: 

N 1 + 
0 .16A 

where h is the he ight of the horizontal tail above the body axis, ~ 

the distance of the tail from the wing trailing edge (both in terms of 
body radius), a is the angle of attack in radians, A is the wing a spect 
ratio, and rlsm the ratio of body radius to wing semispan. 

4. The rolling up of a vortex wake behind wings of unbanked ,nng­
body combinations qualitatively resembles the wake pattern behind com­
parable isolated wings . The comma- shaped rolling-up patte r n of the 
vortex '-lake behind a subsoni c-leading-edge t ria ngular wing pane l, v!i th 
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the eventual single -vortex core ~ is due to the nearly elliptic circula ­
tion distribution along the wing trailing edge . In contrast , a supe r s onic ­
leading-edge triangular wing panel generates an S-shape d vor tex wake 
behind the portion of the trailing edge which has a linea r circul ati on 
distribution, and the S- shaped wake eventually rolls up int o t wo vortice s. 

5. The spanwise distance from the body of a single vor t ex r epre ­
senting the circulation distribution on one panel of a pl a ne, subsonic ­
leading-edge wing and body combination is approximately cons tant and 
equal to about 0. 76 times the exposed wing semispan for all ratios of 
body radius to wing semispan. 

6. The type of vortex wake, and resultant downwash f r om a wing, is 
significantly affected by the circulation distribution along t he wing 
trailing edge. It should be noted that the circulation di s tribution 
which must be used in setting up the initial vort ex distribution a l ong 
t he wing trailing edge is not equivalent to span loading when the wings 
are in sideslip or the body noncylindrical. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Fi eld, Calif . , June 1, 1954 
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APPENDIX A 

NONEQUIVALENCE OF WING SPAN LOADING AND CIRCULATION DISTRIBUTION 

r (y) ALONG THE TRAILING EDGE OF A WING 

The cir culation function r in fluid dynamics is defined by the 
contour integral : 

where 

q == ui + v} + wk 

and 

ds == dxi + dy} + dzk 

Let r be eval uated around a streamwise chord of a flat plate such 
as AB in figure 13 . Then : 

where Uu means (u)z~+o ' and ul means (u)z~-o. 

Within the limits of linear theory, ul = -uu, so that: 

r [CUU 
- == 2 - d.x1 
Vo 0 Vo 

(Al) or 

The span loading on a wing is defined by the relation: 

(A2) 

From the Bernoulli equation one obtains the lifting pressure coef­
ficient for a general wing-body combination as: 

D.p 
q 

== 
(V12 -VU2 ) + (w12-wu 2) 

V0
2 

------------- - ---

(A3) 
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For a noncylindrical body-wing combination, two linear crossflow 
velocity potentials must be added; ~2 associated with a cylindrical 
body-wing combination and ~2 for an expanding body can be superposed 
as follows: 

l 

Sketch (2) 

When the potential subscript 2 i s dropped, 

u2 - Uu = f(~ ) = -2u~ , 
u 

l. 

/ 
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(A4) 

using the symmetrical properties of each potential. 

Substituting equations (A4) into (A3), one has : 

(A5) 

where the derivatives are evaluated on the wing (z = O). Equation (4) in 
the text is the result of substituting the expressions for potentials 
~and ~ in equation (A5). It can thus be seen that the second term in 
equation (4) representing the contribution of the spanwise velocities 
(the second term of eq . (A5)), can be of the same order of magnitude as 
the first term, and not negligible as in the linearized theory for wings 
alone .1 

1The above derivation appears in reference 21 where it is pointed 
out that for axisymmetric bodies, crossflow velocities may considerably 
exceed axial velocities, that is, O(u) < O(v). 
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Now the span loading is obta ined by substituting equati on (A5) in 
(A2) : 

ClL I C 
Ucp I C 

vcpv<z> - = q 4 - dx - q 4 -- dx Cly V l V 2 l 
o 0 0 0 

and using equat ion (AI) : 

ClL 
Cly 

(A6) 

Thus it is seen that the span loadi ng along the wi ng trailing e dge 
of a noncylindrical body-wing combination differ s from the circulation 
distri bution by the last integral term. In fact, it can be shown, by 
\fr iting equation (A3) i n t e rms of veloc i ty potenti al and comparison with 
equation (7), that to any order theory span loading is not equivalent to 
circulati on distribution as long as sideslip angle of flow is not zero 
or the body noncylindrical. For a bahked cruciform configuration, there­
fore, thi s nonequivalence is always present . 
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APPENDIX B 

CORRECTION OF SLENDER-BODY THEORY TO ACCOUNT 

FOR MODERATE ASPECT RATIO 

The theory developed in r eference 15, for the lift of wings and 
wing-body combinations, is based on the assumption of slenderness. The 
aspect ratio of the configuration analyzed by this theory must be low 
enough so that the wings are near the axis of the Mach cone. A correc­
tion factor is required, therefore , to apply slender-body results to 
higher - aspect-ratio wings according to the formula: 

(Bl) 

The correction factor k is obtained by comparison of slender-body 
theory vrith the more exact linear theory (applicable to high-aspect-ratio 
wings) for triangular wings (ref. 22), that is: 

k = (B2) 

It has here been assumed that this wing aspect-ratio factor k can 
be used for the winged portion of wing-body combinations and for other 
than triangular-wing plan forms. Thus one can correct the lift of a 
higher - aspect-ratio configuration by means of equation (Bl). This assump­
tion is justified for small va.lues of the parameter i3 tan w (see fig. 26) 
when k is a.pproximately one, and slender-body theory is itself applica ­
ble. Satisfactory results should also be obtained for large wing-to-body 
area ratios since the wing then carries the major portion of the lift of 
the combination. Experimental data confirm the validity of these assump ­
tions for wing-body configurations of aspect ratios on the order of 
1 to 4. 

For triangular wings with subsonic leading edges , the lift distribu­
tion given by linear theory has the same shape as that give n by slender­
body theory. Therefore the k factor can be defined as in equation (B2) 
by total lift ratios, and is independent of the spanwise coordinate y. 
For such wings, the method of reference 15 (applied to wings alone) yields 
results identical to the low-aspect-ratio triangular -wing results of 
Jones (ref. 23). However, it is known that Jones' results overestimate 
lift-curve slope when the parameter i3 tan w is not small relative to 
unity. The factor by which lift-curve slopes calculated by slender-body 
theory must be multiplied to agree with linear theory is given as: 
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k 
1 

13 tan w $ 1 

2 
k = ---- 13 tan w 2: 1 

11: 13 tan w 

These equations have been plotted in figure 26 . 

I 
I 
j 

( 
j 

J 
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However , f or supersonic l eading edges (13 tan w > 1), the lift dis­
tributions are not f unctionally identical so that equation (Bl ) must be 
written in terms of local chord lift . The n k be comes a function of y , 
name l y , the ratio of section lif ts or circulation by linear and slender ­
body theory. Now in linear theory, the pressure coefficient on a 
supersonic - leading -edge t riangular wing outboard of the Mach line is: 

IIp 
q = 

4a 
(B4) 

Substitution of this expressi on in equation (1) yields the circu­
lation distributi on ( i n this case equivalent to the span loading): 

For a wing alone r 
body theory result: 

r(y) = 
2Voa tan A(Sm - y) 

J 132 
- t an2 A 

(B5 ) 

o in equation (3), thus giving the slender-

(B6) 

Hence, for the part of the wing trailing edge outboard of the Mach 
cone , the factor k for a wing-body combination is the ratio of equa­
tion (B5) to (B6), or: 

k 
1 

~ (B7 ) = 
J 13

2 tan2 w- l sm + y 

f or 
sm -r 

r + $ y $ sm 
13 tan w 
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Fortunately, the accuracy of the k factor can be checked in this. 
case since an exact answer for r(y) for the wing-body combination can 
be calculated by linear theory without excessive labor. Referring to 
figure 27, at any point p(x,y) on the wing trailing edge outboard of 
the point of intersection of the Mach cone with the t railing edge, the 
potential CP3 can be evaluated by integration of the distribution of 
sources at points (O,T) within the forecone of P, that is: 

CP3(X,y) 
Vo II a do dT = rr rn 

(B8 ) 

forecone 
of P 

where, in the plane of the wing (z = 0 ), the hyperbolic radius rn is: 

and the angle of attack a is the sum of the body angle of attack, aB' 
and the body angle of upwash: 

a (BIO) 

On the wing, the fore cone of point P produces the shaded area 
shown 1,Ti th the corresponding boundaries of integration. Thus : 

i3 -tan J\. 

i3y+x 

f i3+tan J\. d T 

Y 

+ 

The integrals not containing r have been evaluated in refer­
ence 24, and in the present coordinate system give : 

CP4 = 
VoaB(x -y tan A) 

J /32 
- tan2 A 

(Bll) 

(B12) 
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The integrals containing r 2 / T2 yield: 

CPs == 

VoaBr2(x - y tan A) 

y J i32y2 - x2 

Therefore the t otal potential at P i s 
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(B13) 

(B14) 

The c i rculation distribution r (y) along the wing tra iling edge 
x ~ cr is then (see eq . (7) ): 

where 

r + 
sm - r 
--- tan A :::; Y ::; sm 

13 

(B15) 

Thus equation (B15) furnishes the linear-theory answer for r( y ) 
along the trailing edge outs i de of the Mach cone , while equation (3) 
multiplied by equation (B7 ) is the appr oximation to the linear theory 
assumed by equati on (Bl) wi th k = key) . This appr oximation is com­
pared with linear theory in figure 28 at the spanwise position of the 
Mach line y = r + (sm - r)/i3tanw for various value s of r/sm as a 
function of 13 tan w. It is seen that the approxima.tion assumed by 
equation (Bl) with k = key) i s sati sf actory, producing a maximum error 
of about 20 percent and only about 10 percent f or the range of the 
parameter 13 tan w from 0 to 4. 

For the region of the wing inboard of the Mach cone, the pressure 
coefficient given by linear theory is (for a wing alone): 

!.... 132 cot A - 1 
Y 

6p 4a 1 
- 132 cot A + 1 

1 s in- 1 x sin- 1 x 
- = 1+-q J 132 - tan2 1t 

13 (cot A - ~) 1t 
13 ( cot A + ~) A 

(B16) 

.' 

.. 
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Integration of equation (1) then results in: 

r(Y)TE = 

Yi3
2 

tan
2 

W + sm ] } (sm + y) sin- l ----- - -

( sm + y) i3 tan W 

(B17) 

Therefore the factor k(Y) to be used for r(y) along the wing 
traiJ_ing edge inboard of the Mach cone is the ratio of equation (B17) to 
equation (B6) or: 

(sm + y)sin- l 
yi32 tan2 W ;- Sm ]} 
(sm + y)i3 tan W 

(B18) 

for 

sm - r 
r:s;y:s;r+ 

i3 tan W 

- -- ----~- ~-------' 
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TABLE I. - VORTEX COORDINATES A, 1'] VERSUS DOWNSTREAM DISTANCE I-L FOR lO-VORTEX CALCULATION OF FIGURE 3 z 
!J> 

~ " 1 ~ , "2 ~2 "3 ~3 ". ~. ". ~5 "6 ~6 "7 ~7 "8 ~6 "s ~s " 10 ll ~o J 
0 ~ . ~oo 0 ~ :~mg 0 ~ . ~?070 0 4 ·70670 0 • ·50530 0 :: :~mg 0 3·90130 0 ~ . 45~30 0 ~ :mgg 0 1.95200 o ,I ·5 4 . 98400 .23998 -. 0l831 4 .85070 - . 03362 4 .70670 - .03563 4 .50530 - . 03~~ -.03728 3 ·90130 -. 03797 3 . 4~730 - .03784 - .03765 1.95200 -.03526 1 
1.0 4 . 92143 .28803 4 ·95033 .10055 4 .87897 - . 02834 4 .72001 -. 06016 4 .51151 -. 069 4 .24436 - .07355 3.90287 -.07558 3.45808 - . 0755~ 2 .86441 - .07525 1.95219 -. 07050 
1.5 4 .84318 .31648 4 .92515 .17185 4 .92378 .02114 4 .75109 - .06926 4 ·52619 - ·0976( 4.25135 - .10814 3.90634 - .11259 3.45976 - ·1l303 2 .86527 - .11276 1.95258 -.10571 
2 . 0 4 . 75866 ·31859 4 .88702 .22868 4 .96182 . . 08524 4 .79233 -. 06294 4 ·54893 -. 11~~ 4 .26259 -. 14019 3·91191 - .14866 3.46244 - .15015 2 .86662 - .15012 1.95319 -.14086 1 
2 ·5 4 . 68296 .29273 4 .84010 .27330 4 ·98181 .16389 4 .83678 - .04277 4 .57839 -.1332:' 4.27818 -.16931 3 ·91972 - .18359 3.46618 - .18683 2 .86848 - .18732 1.95402 -·17595 
3·0 4 .62884 .24905 4 .78430 ·30620 4 ·97680 .24637 4 .87955 -· 00890 4 .61361 - .14027 4 .29810 - .19549 3.92984 - .21733 3.47102 - .22301 2 .87088 - .22432 1.95509 - .21096 
3·5 4 · 59820 .20169 4 .72124 · 32493 4 .94880 . 32197 4 .91594 .03732 4 .65385 -.13972 4· 32229 -.21884 3.94224 - .24986 3.47696 -.25866 2 .87381 - .26110 1.95639 - .24587 
4 .0 4 ·58598 .15991 4 .65501 · 32797 4 .90388 . 38496 4 ·94209 .09296 4 ·69812 - .13073 4.35062 -.23940 3 .95683 - .28113 3.48398 - .29372 2 .87728 - .29762 1.95792 - .28067 
4 ·5 4 . 58614 .12765 4 ·58997 · 31567 4.84791 . 43347 4 ·95581 .15421 4 .74471 -.11227 4.38291 -.25704 3 ·97350 -· 31103 3.49207 - ·32811 2 .88129 - · 33384 1.95969 - ·31535 
5 ·0 4 ·59374 .10589 4 .52993 .28941 4 .78544 .46752 4.95656 .21742 4 .79101 -. 0836c 4 .41894 -.27141 3 ·99217 - .33946 3·50123 -· 36179 2 .88586 - . 36975 1.96171 -. 34990 
5 ·5 4 . 60489 .09419 4 .47832 .25138 4 .71987 . 48787 4 ·94484 .27962 4 .83389 -. 04492 4 .45842 -.28199 4 .01282 - . 36632 j ·51146 -· 39472 2 .89099 - .40533 1.96398 - .38431 
6 .0 4 . 61648 ·09120 4 .43795 .20484 4 .65376 .49556 4 .92163 .33851 4 .87047 .00237 4 ·50097 -.28813 4 .03544 -. 39156 3·52277 -.42688 2 .89669 - .44055 1.96650 - .41856 
6 .5 4 .62633 ·Q9485 4 .41028 .15392 4 .58909 .49179 4 .88814 ·39225 4 .89880 ·05615 4 .54606 - .28912 4 .06005 - .41516 3.53514 - .45828 2 .90296 - .47541 1.96928 -. 45265 
7 .0 4 . 63346 .10290 4 . 39499 .10269 4 .52743 .47781 4 .84576 .43934 4 ·91792 .11415 4 ·59298 -.28426 4 .08668 - .43713 3.54855 -. 48893 2 ·90980 - ·50991 1.97232 -. 48658 
7·5 4 .63784 .11362 4 . 39052 ·05418 4 .47002 .45491 4.79606 .47858 4 .92760 . 1744c 4 .64079 -.27297 4 .11534 - .45749 3.56297 - ·51883 2 ·91719 - ·54402 1.97562 -·52033 
8 .0 4 .63985 .12598 4 · 39493 .01020 4.41783 .42444 4 .74074 ·50910 4 ·92793 .23525 4.68832 - .25487 4 .14601 - .47623 3·57835 - ·54797 2 ·92513 - ·57774 1.97918 -· 55390 
8 .5 4 .63981 .13953 4 .40652 - .02835 4.37161 .38770 4.68156 .53041 4 ·91918 .29531 4.73428 -.22990 4 .17867 - .49333 3.59466 - ·57633 2 .93361 - .61105 1.98300 -.58728 
9 ·0 4 .63784 .15405 4 .42396 -.06100 4.33189 · 34598 4 .62022 .54240 4 .90174 ·35331 4 .77735 - .19832 4 .21324 - .50870 3.61186 -.60389 2 .94262 - .64392 1.98708 -.62046 
9 ·5 4 .63383 .16934 4.44618 -.08743 4.29906 .30053 4 .55827 ·54528 4 .87614 .40808 4 .81635 -.16071 4 .24963 -· 52223 3.62993 - .63062 2 .95216 - .67637 1.99143 -.65343 

10.0 4 .62762 .18512 4.47224 - .10736 4.27332 .25259 4 .49707 ·53950 4 .84306 .45858 4.85032 - .11785 4 .28769 -. 53378 3.64884 -.65649 2 .96222 - .70838 1.99604 -.68619 

- _. - -- -

~ 

TABLE II. - VORTEX COORDINATES A, 1'] VERSUS DOWNSTREAM DISTANCE I-L FOR lO-VORTEX CALCULATION OF FIGURE 4 

~ "1 n, 

"" 
n2 "3 n3 ". n. "5 ns "s ne "7 n., "8 "6 ". ns "10 n,O 

0 4 .59330 0 ' . ~72OO 0 4 . ~~!0 0 ' .2""00 0 4.02530 0 3.50930 0 3 ·59200 0 3 . 3~000 0 2 .~5~00 0 1.~~?D 0 
·5 4 .89330 .03242 4.67200 .01934 4 .45870 .0l073 4.24400 .00422 4.02530 -·00095 3.80930 - .00712 3 ·59200 -. 01471 3. 36000 -.02469 2 .85600 -. 01778 1.94400 -.00967 

1.0 4 .89174 .06476 4.67160 .03868 4 .45867 . 02147 4 .24409 .00845 4.02530 -.00190 3.8Q944 -. 01424 3·59250 -.02941 3.36128 - .04933 2 .85618 - .03555 1.94414 -. 01933 
1.5 4 .88861 ·09698 4 .67080 · 05800 4 .45862 .03222 4 .24428 .01269 4 .02529 - .00283 3.80971 - .02134 3 .59349 -. 04408 3·36385 -. 07393 2 .85654 - ·05329 1 .94442 -.02899 
2 .0 4 .88392 .12903 4 .66961 .07729 4 .45854 .04296 4 .24456 .01693 4 .02526 - .00373 3.81011 - .02840 3 ·59498 - ·05869 3.36771 -· 09848 2 .85709 - . 07099 1 ·94484 - .03861 
2 ·5 4 .87766 .16088 4.66804 ·09652 4 .45844 .05369 4 .24494 .02117 4 .02521 - .00458 3.81063 - .03541 3 .59694 - .07322 3. 37287 - .12297 2 .85783 - . 08863 1.94539 - .04819 
3·0 4 .86981 .19246 4. 66612 .11568 4 .45833 .06441 4 .24543 .02540 4 .02512 - . 00536 3.81125 - .04234 3 ·59936 -. 08766 3· 37935 - .14741 2 .85875 -.10618 1.94608 -.05771 
3·5 4 .86035 .22373 4.66387 .13475 4 .45822 ·07511 4 .24605 . 029/52 4 .02497 - .00606 3.81196 -. 04918 3 .60222 -. 10198 3·38718 -.17176 2 .85987 - .12363 1.94690 -. 06717 
4 .0 4 .84923 .25462 4.66135 .15374 4 .45813 .08580 4 .24681 .03383 4 .02474 -. 00666 3.81273 - ·05592 3 .60549 -.11017 3. 39639 - .19602 2 .86118 - .14097 1.94785 -. 07656 
4 .5 4 .83642 .28505 4.65860 .17264 4 .45807 .Q9647 4 .24772 .03802 4 .02440 - .00715 3.81353 - .06256 3 ·60912 - .lj021 3·40703 - .22015 2 .86269 - .15817 1.94892 -. 08586 
5 ·0 4 . 82185 ·31495 4.65569 .19147 4 .45807 .10714 4.24881 .04220 4 .02391 - .00153 3·81433 - .06908 3 ·61308 - .14411 3.41914 -.24412 2 .86440 - .17522 1.95011 -· 09507 
5 ·5 4 .80547 .34419 4.65270 .21025 4 .45814 .11781 4.25011 .04635 4 .02324 -. 00778 3.81510 -. 07549 3 .61731 -.15787 3.43279 -.26787 2 .86631 - .192l2 1.95141 -.10417 
6 .0 4 . 78719 .37265 4.64971 .22902 4 .45830 .12850 4.25164 .05049 4 .02234 - .00790 3.81580 -. 08179 3 ·62174 - .17149 3.44805 -·29133 2.86843 -.20884 1.95282 - ·.11317 
6 ·5 4 .76692 .40018 4.64684 .24786 4 .45857 .13924 4.25344 .05461 4 .02117 -. 00788 3.81639 -. 08799 3 .62630 - .18498 3.46500 -· 31443 2 .87076 - .22538 1.95433 - .12205 
7 .0 4 . 74457 .42655 4 .64420 .26687 4. 45896 .15005 4.25555 .05873 4 .01968 -· 00772 3.81684 -. 09410 3 ·63091 -.19839 3. 48373 - ·33704 2 .87331 -.24174 1. 95594 - .13081 
7 ·5 4 .72004 .45149 4 .64192 .28622 4 .45948 .16097 4.25800 .06284 4 .01782 -. 00742 3.81711 -. 10015 3 ·63546 - .21176 3.50434 - ·35900 2 .87608 - .25791 1.95764 -.13944 
8 .0 4 . 69325 .47464 4 .64011 .30614 4.46013 .17205 4.26083 . 06695 4 .01553 -. 00699 3.81717 -.10617 3 .63984 - .22519 3.52<>95 -·38013 2.87908 - .27388 1.95942 -.14793 
8 · 5 4 . 66417 .49553 4.63883 .32696 4 .46091 .18334 4 .26409 .07109 4 .01276 -. 00644 3·81700 -. 11220 3 ·64393 - .23882 3. 55166 -.40017 2 .88231 -.28965 1.96128 - .15628 
9 · 0 4 . 63289 ·51358 4 .63803 .34914 4 .46180 .19491 4.26783 .07526 4 .00946 -.00578 3.81658 - .1l829 3.64761 - .25283 3·57857 -.41878 2 .8857f - .30523 1.96322 -.16450 
9 ·5 4 ·59970 .52808 4.63744 .37318 4 .46280 .20685 4.27210 .07951 4 .00559 -· 00505 3.81590 -.12451 3 .65079 - .26751 3.60775 - .43553 2 .88949 - .32062 1.96523 -. 17257 

10.0 4 . 56522 ·53831 4.63645 .39962 4 .46391 .21924 4 .27694 . 08386 4. 00110 - .00427 3.81497 -.13094 3 ·65345 - .28320 3.63918 -.44988 2 .89344 -. 33583 1 ·96730 -.18050 
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(a) a. 

Vortex rj 
Aj 

No . j Vo 

(0 ® G) 

1 0 .12796 1. 50870 

2 - .12796 . 66284 

3 . 12796 - .66284 

4 - .12796 -1. 50870 

'1 1 + ~ tan a A 2 1 @/ (@+ @y 
@ @ @ @) 

0 2.27618 0 5 .18100 

Ii + 6~ tan a @ x @ A1+ @ 

® @) @ ® 
1 0 .08749 0 .08749 1. 50870 

TABLE III . - SINGLE WING VORTEX FORM 
5°; cp == 0°; M == 2 ; r == 3/ 4; Il == 0 ; l'.1l = 1 

Vortex-induced velocities 

Al - Aj '11 - '1 j 0)2 + (02 ~1 Al 
1 I ' 1 I . '1j A1 - G) '11 -® @x0)/(j) 

- '1 - A 
- @x@/(j) 21lr 1 21lr 1 

ill 0) @ CD ® @ @ @ 

0 0 0 0 0 0 

0 .84586 0 . 71548 - .15128 0 

2 .17154 4 . 71559 .05893 
-0 .02860 0 

0 0 0 

0 3.01740 0 9 ·10470 - .04241 0 

CrossfloH velocities 

@-@ -2A1 X @ ax @/@ aX @/@ ew( @+@) 6~(@+ @) 
@ @ @ @ ® @ 

2.27618 0 0 .03834 0 0 .00974 0 

Image vortex position 

'11 + @ @ + @ @/ + @t A2 = @ /@ @/@ 

@ ® @ ® @ 

0 .00974 0 .09723 2 . 28563 0 . 66008 0 .04254 

'1 1 + @ Al + @ 

@ @ 

0 .00974 1. 50870 

'1 2 = - @+@) 
-

@) 
-

-0 .04495 

~ 

. . 

+=­
CP 

S; 
0 
~ 

~ 
W 
f\) 
f\) 
-..l 



,. 

TABLE III. - SINGLE WING VORTEX FORM 
(b) a 5°; cP = 0°; M = 2; r = 3/4; ~ = 1; 6.~ = 1- Concluded 

Vortex induced velocities 

Vortex rj 
Aj Tlj 

\. - Aj Tl1 - Tlj 
C3J+@ 

~1 )...1 
1 L' 1 I ' No . j Vo A1 - G) Tl1 -® @ X (2) !(f) -@x@)!G) 2rrr Tl1 2nr A1 

CD @ ® ® 0) ® ill ® ® @ @ 

1 0.12796 1.50870 0 .00974 0 0 0 0 0 
2 - .12796 .66008 -. 04495 .84862 .05469 ·72315 - .15016 .00968 
3 .12796 -. 66008 -. 04495 2.16878 .05469 4·70660 .05896 -. 00149 -0 .02835 -0.00174 

4 -.12796 -1. 50870 .00974 3.01740 0 9·10470 -.04241 0 

Crossflov velocities 

Tl1 + >< tan a A 2 1 @i (@+@)2 @ - @ -2A1 X @ aX @!@) ax @!@ AIl(@+ @} 6>«@+@)) Tl1 +@ A1 + @ 

@ © @ © @ @ @ @) @ @ @ @ 

0. 09723 2 .27618 0.00945 5.22410 2 .26673 -0. 029338 0.03787 -0 .00500 0.00952 -0.00674 0.01926 1.50196 

Image vortex position 

><+ 6>< tan a @x6) A1 + @ Tl1 + @ @ + @ fff + @f A2 = @!® @!@ Tl2 = - @ + @ 

@ ~ @ @ @ @ ® @ @ @ 

2 0.08749 0.17498 1.50196 0.01926 0.19424 2 .29361 0 .65485 0.08469 -0. 09029 

~7 

I 

I 

~ 
~ 

~ 
VJ 
I\) 
I\) 
-..J 

+=­
\0 
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(a) Vapor- screen photograph. 
A-18224 

----. -.-
.. --

(b) Calculated theoretical wing vortex wake. 

Figure 1 .- Vortex wake behind wing of high-aspect-ratio supersonic wing 
and body combination at angle of attack. 
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Figure 2 .- Geometry of the flow field. 
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Aspect ratio = 2/3 

r/smox =0.2 

M=2 

10 vortices per wing panel 

~ 

Figure 3.- Rolling up of a vortex sheet behi nd wing of subsonic leading-edge wing and body 
configuration. 
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Aspect ratio = 4 

r/smax=O.2 

M=2 % 

Figure 4. - Rolling up of a vortex sheet behind wing of supersonic leading-edge wing and body 
configuration. 
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All vortices rotating 

~ 

Figure 5.- Rolling up of a vortex shee t segment containing eight equal-strength, equally spaced 
vortices . 
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Wing vortices i: . . ------ Image vortices 
.. ,. Body cross flow 

o ~ " A~Lex 
1\ 1J vortex 
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~ 
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~ - I ~ 
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-3 

-4 

-5 

-6 A vortex = 4.045 

1Jvortex =-.1350 

o I 2 3 4 5 6 
Span wise coordinate, A 

(a) Aspect r ati o = 2/3 

Figure 6.- Contribution of wing vortices , image vortices, and.body cross ­
flow t o tota l downwash a t tail l ocati on for various aspect r ati os. 
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(b) Aspect ratio = 2 

Figure 6.- Continued. 
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Figure 6.- Concluded . 
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Figure 7.- Vortex paths behind two wing-body combinations at various 
angles of attack. 
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Figure 7.- Concluded . 
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{ . .- Wing vorlicils 
------- Image vortices 
-- .. -_ .. - Body crossf/ow 

\ ~ Avortex 
r:) ~ + \ 
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Awing tip = 1.667 

AvortB}( = 1,392 

'lvortu = .0439 

/ 2 3 4 5 6 
Spanwise coordinate, A ~ 

(a) a = 50 

Figure 8.- Contribution of wing vortice s, image vor t ices, and body cross ­
flow to total downwash at tai l locat ion. 
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Figure 8.- Continued. 
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Figure 8. - Continued . 
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Figure 8 .- Continued. 
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