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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3227

APPLICATION OF TWO-DIMENSIONAL VORTEX THEORY TO THE
PREDICTION OF FLOW FIELDS BEHIND WINGS OF WING-BODY
COMBINATIONS AT SUBSONIC AND SUPERSONIC SPEEDS

By Arthur Wm. Rogers

SUMMARY

*

A theoretical investigation has been made of a general method for
predicting the flow field behind the wings of plane and cruciform wing
and body combinations at transonic or supersonic speeds and slender con-
figurations at subsonic speeds. The wing trailing-vortex wake is repre-
sented initially by line vortices distributed to approximate the spanwise
distribution of circulation along the trailing edge of the exposed wing
panels. The afterbody is represented by corresponding image vortices
within the body. Two-dimensional line-vortex theory is then used to
compute the induced velocities at each vortex and the resulting displace-
ment of each vortex is determined by means of a numerical stepwise inte-
gration procedure. The method was applied to the calculation of the
position of the vortex wake and the estimation of downwash at chosen tail
locations behind triangular-wing and cylindrical-body combinations at
supersonic speeds. The effects of such geometric parameters as aspect
ratio, angle of attack and incidence, ratio of body radius to wing semi-
span, and angle of bank on the vortex wake behind wings of wing-body
combinations were studied. The relative importance of wing vortices,
the corresponding image vortices within the body, and body crossflow in
determining the total downwash was assessed at a possible tail location.

It was found that the line-vortex method of this report permitted
the calculation of vortex paths behind wings of wing-body combinations
with reasonable facility and accuracy. A calculated sample wake shape
agreed qualitatively with one observed experimentally, and sample results
of the line-vortex method compared well with an available exact crossflow-
plane solution. An empirical formula was derived to estimate the number
of vortices required per wing panel for a satisfactory computation of
downwash at tail locations. It was found that the shape of the vortex
wake and the ultimate number of rolled-up vortices behind a wing depend
on the circulation distribution along the wing trailing edge. For the
low-aspect-ratio plane wing and body combinations considered, it appeared
that downwash at horizontal tail locations is largely determined except
near the tail-body Jjuncture by the wing vortices alone for small ratios
of body radius to wing semispan, and by the body upwash alone for large
values of that ratio.
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INTRODUCTION

Satisfactory aerodynamic design of high-speed aircraft requires
knowledge of the interference flow field resulting from wing-body-tail
interaction. The behavior of the wing vortex wake in the presence of
the body directly affects the air stream flowing past the tail surfaces.
In particular, for certain relative sizes and positions of wing, body,
and tail, the wing-body vortex wake produces large stream angles at the
tail surfaces and nonlinear variation with angle of attack of the pitch-
ing moment contributed by the tail. Therefore, it is desirable to be
able to predict flow fields at the tail location for a given configura-
tion in order to evaluate stability and control requirements.

Furthermore, vapor-screen studies in éupersonic wind tunnels have
shown that the configuration of the vortex wake from the wings of some
wing-body combinations differs markedly from the usual conception of a
sheet whose side edges curl over to form a single pair of vortices.

For example, figure 1(a) shows the S-shaped cross section of a vortex

sheet from each panel of a high-aspect-ratio supersonic wing and body

combination at angle of attack.® Here the ultimate vortex pattern far

downstream of the wing consists of two vortices from each wing panel,

both rotating in the same direction. Such a vortex wake results in a

flow field different from the more well-known pattern, and the load on v
a tail situated in that flow field differs from the tail load associated

with a single-vortex wake. It is important, therefore, to determine

the conditions under which this unusual wake pattern occurs.

Considerable investigation (refs. 2-12) has been devoted to the pre-
diction of flow fields behind wings, both plane and cruciform. Refer-
ence 2 uses linearized conical-flow theory to calculate sidewash and
downwash for a flat vortex sheet at the wing trailing edge and in the
Trefftz plane, references 3 and U4 use supersonic potential doublet dis-
tributions to determine downwash in the plane of a flat wake and in the
vertical plane of symmetry for any distance downstream of a wing. Ref-
erence 5 employs pressure doublets to obtain general expressions for
the induced velocities in space behind a wing, and references 6 through 8
utilize line-vortex theory to predict sidewash and downwash in the flat-
vortex wake and in space. The flow in the Trefftz plane behind super-
sonic .wings is treated in reference 9 by means of linearized conical-flow
theory. The downwash based on a flat deflected vortex sheet and the
downwash based on two deflected vortex lines are calculated in refer-
ence 10. The rolling up of the trailing-vortex sheet behind wings is -
analyzed in reference 11, and reference 12 considers the motion of single
vortices from each panel of a cruciform wing. The literature on the
vortex wake behind wings of wing-body combinations, however, is still -
relatively meager (refs. 13 and 14). For wing-body combinations, ref-

erence 13 accounts for the effect of the fuselage on the flow field by 4

1A description of the vapor-screen technique is given in reference 1.
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considering the motion of two fully rolled-up vortices in the presence
of a circular cylinder. Reference 14 treats a specific configuration by
slender-body theory with the two assumptions of either a flat vortex
sheet or two fully rolled-up vortices.

The general problem to be considered here is the determination of
the interference flow field behind wings of wing-body combinations
(e.g., fig. 2) at subsonic or supersonic speeds. The dual purposes of
this report are to present in detail and evaluate the method outlined
in reference 13, and to apply it to the calculation of vortex paths and
to the effects of wing aspect ratio, span loading, angle of attack, ratio
of body diameter to wing span, angle of bank, and wing incidence on vor-
tex paths and downwash at a possible tail location.

Part I of this report presents the results of the application of
the method. All calculations of span loading were made for triangular-
wing and cylindrical-body combinations at a Mach number of 2.0. Wing
aspect ratios of 2/3, 2, and 4 are considered, combined with bodies
whose radii are 0.2, 0.4, 0.6, and 0.72 times the wilng semispan. The
tail location selected for downwash computations in this part represents
a missile-type configuration, for which the horizontal tail is assumed
to be located in the body diametral plane 10 body radii downstream of
the wing trailing edge.

Part II of this report contains a detailed description of the line-
vortex method. An examination is made of the effect on downwash at
chosen tail locations of the number of vortices used to represent the
trailing vorticity. The nature of the stepwise integration method used
1s discussed, and solutions obtained by the stepwise integration method
are compared with known exact solutions. Downwash is also computed at
the tail of a high-tail airplane~-type configuration, characterized by a
horizontal tail 3 body radii downstream of the wing trailing edge and
2 body radii above the body axis.

SYMBOLS
A aspect ratio
e local wing chord
Cy wing root chord in plane of symmetry
ds directed line segment of a contour

=

elliptic integral of second kind

I;E,E unit vectors in x,y,z directions
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aspect-ratio correction factor defined in Appendix B
1ift

Mach number

number of vortices in summation

static pressure

pressure differential across wing surface, pZ =P

PV

free-stream dynamic pressure,

velocity vector, ui + vJ + wk

body radius

local horizontal-wing semispan

maximum horizontal-wing semispan

spanwise position of wing vortex

local vertical-wing semispan

maximum vertical-wing semispan

velocities in x,y,z directions (See fig. 2.)
free-stream velocity

chordwise distance from leading edge

Cartesian coordinates of wind axes (See fig. 2.)

load coefficient

angle of attack of body axis, radians
ME -1
angle of yaw, a sin @, radians
spanwise distribution of circulation (defined by eq. (Al))

increment

-
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1,J

LT

SBT

downwash angle, — %L
o

tan~t

<~

wing leading-edge sweep angle, 90° - w, radians

: ” : . X z
dimensionless rectangular coordinates of wind axes, F’X’_’

T
(Sea. Fig. 2.)
air density of free stream
coordinates of source-point in xy plane

angle of bank, radians

velocity potentials

2 &

s

" : = m -

wing semiapex angle, tan = radians
i7)

Subscripts

body

indices of summation
lower

maximum

upper

wing

linear theory

slender-body theory

N
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I.- APPLICATION OF METHOD TO THE PREDICTION OF VORTEX PATHS
AND DOWNWASH BEHIND TRIANGULAR-WING AND CYLINDRICAL-BODY 3
COMBINATIONS AT SUPERSONIC SPEED

General Description of Method

The method used herein follows that of reference 13. The circula-
tion distribution along the wing trailing edge of a given wing-body con-
figuration is required as the initial condition. In this report, the
circulation distribution is determined by modified slender-body theory.
The circulation distribution is then replaced by a finite number of vor-
tices which trail downstream and represent the wake vorticity. The
effect of the afterbody is accounted for by vortices placed within the
body at the image position of each of the wake vortices. Tt is assumed,
in general, that the flow changes in the stream direction are such that
in the velocity potential equation

(1 - M) 9, + Pyy + Pyx =0

the first term is negligibly small, that is,

2
(@ -0 =0
so that )

Pye + Py = 0

Thus the solution is independent of Mach number. Such an assumption
of two-dimensionality is valid for slender, pointed wings and bodies at
subsonic speed, and at supersonic speed when the entire plan form lies
within the body nose Mach cone, or near M = 1 for more general con-
figurations.2

Consistent with this slender-body theory assumption, the bound vor-
tices within the wing are neglected in computing vortex paths and down-
wash. The trailing vortices are extended to infinity upstream and down-
stream, and the induced velocities in crossflow planes are calculated by
two-dimensional line-vortex theory and body potential crossflow. In the
crossflow plane, therefore, the analysis considers the following picture:

2See reference 15 for a discussion of these limitations.
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Wing vortex repre-

1~ senting circula-
/Eg/ tion distribution

-

Image vortex

Body
\ Potential

crossflow

Sketch (a)

The motion of each of the vortices in the crossflow plane is computed,
and the results applied to the wing-body problem by relating time in the
crossflow plane motion to distance downstream»of the wing trailing edge.

The wing and image trailing vortex system used in the stepwise cal-
culations constitutes the only vortex pattern considered here. It is
known that at high angles of attack and for large ratios of body diameter
to wing span, viscous crossflow produces vortices above the body (e.g.,
fig. 1 and ref. 1) which significantly affect the flow field. A thorough
understanding of the mechanism of formation, strength, and stability of
crossflow vortices is as yet lacking. Consequently, no attempt has been
made to account for them.

On the basis of a large number of computations made during this
investigation, the following analysis was made of the effect of geometric
parameters on the vortex wake and the induced flow field behind wings of
wing-body combinations. Although only triangular wing and body combina-
tions were studied, the general conclusions should be applicable to any
wing plan form for which the circulation distribution is similar to the
types contained herein.
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Effect of Reduced Aspect Ratio, BA, and Span Loading
on the Rolling Up of the Vortex Wake

Figure 3 shows the calculated detailed rolling up of 10 vortices
representing a typical wake behind a low-aspect-ratio configuration.
Vortex coordinates for this figure are listed in table I. It can be
seen that at 10 body radii downstream of the wing trailing edge, 7 of
the 10 vortices have already spiraled into a single group which trails
downstream in approximately the free-stream direction. The circulation
distribution along the trailing edge of the subsonic-leading-edge wing
of this configuration is of almost elliptic shape. The vortex sheet
behind a wing of a high-aspect-ratio combination, represented in fig-
ure 4, distorts much slower toward its final configuration and shows a
different pattern. Vortex coordinates for this figure are listed in
table II. The different shape of the vortex sheet is due to the change
in span loading with reduced aspect ratio pA.

The difference in span loading for the high- and low-aspect-ratio
configuration is a consequence of the supersonic or subsonic leading
edge, respectively. As a consequence of its supersonic leading edge,
the wing trailing edge of the high-aspect-ratio combination of figure 4
has a theoretical circulation distribution which is linear from about
the mid-semispan to the tip. This linear distribution is represented
by the eight equal, uniformly spaced vortices shown, the remaining two
vortices arising from the slender-body type of loading (eq. (3) of
part II) inboard of the intersection of leading-edge Mach line and the
wing trailing edge. Now, it is characteristic of a uniform distribution
of isolated vortices along a line, such as those shown in figure 5, that
the rolling up proceeds in the form of a symmetrical, S-shaped curve
rotating about the centroid. The final configuration of the vortices in
figure 5 will consist of two equal vortex cores, each containing four
vortices, rotating symmetrically about the fixed centroid. 1In figure k4,
therefore, the S-shaped rolling up occurs for the uniform portion of the
sheet, although the symmetry about and fixity of the centroid in space
does not occur because the flow field is due not only to the 8 vortices
but also to the other 12 wing vortices, 20 image vortices, and the body
crossflow. The inboard portion of the vortex sheet displaces downward
and outward in the conventional manner of figure 3. In summary, then,
the effect of aspect ratio and the consequent change in circulation dis-
tribution is to change the shape of the rolling-up vortex sheet as in
sketch (b). The final vortex pattern for the high-aspect-ratio case
depends on the extent of the span over which the circulation distribu-
tion along the wing trailing edge is linear. A comparison of the calcu-
lated S-shaped sheet and an experimentally observed vortex sheet is
shown in figures 1(a) and 1(b).




NACA TN 3227 9

" \ [\

—S—

¢
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Trailing-edge circulation distribution

-

Shape of rolling-up vortex sheet

© ¢

Final vortex pattern
Sketch (b)

Effects of Geometric Parameters on Vortex Paths
and Downwash at a Tail Location

In the following sections, calculated vortex paths and downwash are
presented for a wing-body-tail combination at a Mach number of 2.0. The
tail location at which downwash is determined is 10 body radii downstream
of the wing trailing edge, a possible missile-type configuration. The
vorticity shed from each wing panel is represented by a single vortex.
For the comparison of the relative importance on downwash at the tail of
the wing vortex, image vortex, and body crossflow, a single vortex for
each wing panel suffices, in general, although the computation of the
actual magnitude of downwash requires several vortices. In part II of
this report an investigation is made of the effect of the number of vor-
tices used to represent the trailing vorticity on the computed downwash
at chosen tail locations.

Effect of aspect ratio.- Figures 6(a), (b), and (c) present the
effect of aspect ratio on downwash, calculated at a missile-type tail
location, for a small body and wing combination (r/sy = 0.2) at an angle
of attack of 5°. For the low-aspect-ratio combination, the approximation
that the total downwash is caused by wing vortices alone is good except
in close proximity to the tail-body Jjuncture. For increasing aspect
ratios the approximation is good only at greater spanwise distances from
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the body. The reason for this result is simply that the downwash from
the wing vortices decreases with increasing aspect ratio for the condi-
tion of a given ratio of body radius to wing semispan. The wing lift
decreases with increasing aspect ratio because of span load changes, and
the effect of the body upwash therefore becomes more pronounced. Slender-
body theory predicts that the wake downwash angle exactly cancels the
flow angle of attack inboard of the tip. It is interesting to note that
inboard of the vortex location for the aspect ratio 2/3 wing (A = L4) the
average downwash angle is roughly the negative of the angle of attack of
the wing-body configuration.

Effect of angle of attack.- Vortex paths behind wings of two
triangular-wing and body combinations at various angles of attack are
presented in figure 7. It is seen that increased angle of attack results
in a more pronounced inward and downward motion of the wing vortex with
increasing distance up downstream, although for low-aspect-ratio com-
binations the initial vertical motion is upward due to body upwash.
Farther downstream the distance between the body and the vortex wake
increases, with a corresponding decrease in the effect of body upwash.
The vortices from the wing panels of the low-aspect-ratio configuration
then move downward more rapidly because of their nearness to each other.

Examination of the equations of motion of the vortex wake, presented
in part II of this report, shows that for a given wing-body combination
a single set of computations can be made for all angles of attack «a.
The results of figures 7(a) and (b) are replotted against pa in fig-
ure T(c), which then applies to all angles of attack, at the same Mach
number.

The effect of angle of attack on downwash is illustrated by fig-
ures 8(a), (b), and (c) for an aspect ratio 2/3 wing and large-body com-
bination, and by figures 8(d), (e), and (f) for an aspect ratio 4 wing
and small-body combination. For the low-aspect-ratio configuration, it
appears that the largest portion of the total downwash is contributed by
the body upwash because of the large body. The difference in the shape
of the total downwash curves of figures 8(a), (b), and (c) is due to the
fact that the vortex wake passes farther above the horizontal tail as
the angle of attack increases. For the high-aspect-ratio configuration
the total downwash is not primarily caused by any single component
because of the small body size. Wing and image vortices together with
body upwash must be considered in calculating total downwash at any
angle of attack for such configurations.

Effect of ratio of body radius to wing semispan.- Another parameter
governing the behavior of the vortex wake is the ratio of the body radius
to the wing semispan, r/sm. Figure 9 presents the results for an aspect
ratio 2/3 wing of fixed span, alone and in combination with bodies of
different radii. The variation of the vortex strength with body size,
given by equation (3) with vy = r, is plotted in figure 10. The vortex
strength goes to zero for r/sm = 1 since the entire wing then is
enclosed by the body. It is seen in figure 9 that the initial slope of
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the vertical displacement of the vortex path near the wing trailing edge
increases in magnitude as r/sm increases. This is the result of
increasing upwash in the body crossflow field coupled with correspond-
ingly decreasing wing vortex strength (see fig. 10). The final uniform
downward motion of the vortex pair begins when the body is far removed
from the vortices, and the path lies above that for the wing alone case
in which the vortex pair moves linearly downward from the trailing edge.
The lateral motion of the trailing vortex is shown in the lower part of
figure 9. Together with the decreased strength of the wing vortex for
large values of r/sm, there is an initial outboard shift of the vortex
at the trailing edge. For the isolated elliptically loaded wing, y/sm
equals n/h and 1t approaches 1 (the initial vortex location moves
toward the wing tip) as r/sm increases from O to 1. The lateral vor-
tex motion downstream is affected by the sidewash component of the body
crossflow field. The larger the body for a given wing, the more rapid
is the inboard motion of the vortex.

Figures 6(a), 11(a), 8(a), and 11(b) show the effect of r/sm on
downwash for ratios of body radius to wing semispan of 0.2 6.0, 0.6,
and 0.72, respectively. The results shown in the figures can be antici-
pated qualitatively. For an r/sm of 0.2, figure 6(a) shows that the
downwash contributed by the image vortices almost entirely cancels the
body upwash, except in close proximity to the body-tail juncture. Thus,
for small ratios of body radius to wing semispan, downwash at the tail
location is mostly given by the downwash caused by the wing vortices
alone except near the juncture. Figure 11(a), for an r/eym . OFf 0.4
exhibits a decrease in downwasb from the wing vortices, and the total
downwash is not as well given by the wing vortices as in figure 6(a)
especially near the body-tail Juncture. Figure 8(a), for an r/sm of
0.6, shows that except near the body-tail juncture the downwash in this
case is largely that given by the body upwash. Finally, figure 11(b)
for an r/sm of 0.72, showing the same trend as figure 11(a) and fig-
ure 8(a), indicates that for very large ratios of body radius to wing
semispan, such as for canard configurations, the downwash at the tail is
almost entirely determined by the body upwash.

Comparison of Rolling Up of Vortex Sheet Behind
Wing Alone and Wing-Body Combination

Plane wing and body.- It is interesting to compare the rolling-up
process of the vortex sheet behind a wing alone with that behind a wing-
body combination under the conditions of sketch (c).
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Sketch (c)

Both wings have the same aspect ratio, root chord, and I'y. However,
this maximum I' occurs at the center line for the wing (with elliptical
distribution) and at the wing-body juncture for the wing-body combination
(with near-elliptical circulation distribution). Figure 5 of refer-
ence 11 presents a picture of the rolling up of a vortex sheet behind an
elliptically loaded wing as calculated by Westwater (ref. 16) in terms
of the ratio of downstream distance d to rolling-up distance e. This
ratio is related to p in figure 3 as follows (using eq. (5) of ref. 11):

(Do(2)E)
- (D)o(&)

o|e
X

olm
i

ola

or

o'|p
I

where
b wing span
C;, total lift coefficient

K constant based on the shape of the trailing-edge circulation distri-
bution
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The value of K is 0.28 for elliptic loading. Now equation (10) of
reference 11 is:

(6
I e ligy Lall
9 @ A

where I'y corresponds to elliptic loading for the wing alone. When the
last two equations are combined,

o <§>(o.28) ;T(F:jvT

(277

e

L 2.5k <g> s
. \e/ Io/Vs

In the present notation,

e

.
Sm

The 1ift coefficient of a triangular-wing and infinite cylindrical-body
combination in terms of the wing alone lift coefficient is given by
equation (38) of reference 15 as:

€ = 1 2.
Liwp = “Iy (1 - 32

It 1s clear that while the same Iy, is chosen in this comparison,
the total 1ift of the combination is less than that of the wing alone
because of the loss of exposed wing area. For the calculations of fig-
ure 3, PO/VO equals 0.575 and sp equals 3.75. These values being
assumed in the equation for d/s,

PN AT R d
Sm‘< " ><e><o-575 i <‘>

For figure 3:

Gl
=rX s 0.2

Therefore the streamwise stations in figure 3 correspond to 0.2,
0.4, B e . .. D wing semispans downstream. The values of d/e in
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figure 5 of reference 11 correspond to values of x/s; of 0) (0525130
0.977, 1.953, 4.370, and 8.040. Cross sections through the vortex sheet
at these six stations have been drawn in figure 12 as well as the nearest
corresponding sheet configuration from figure 3. From figure 12 it can
be seen that the rolling-up process of the vortex sheet behind a
triangular-wing and small-body combination closely resembles that for a
wing alone under the conditions of the preceding sketch.

Banked wing and body.- The qualitative difference between the
rolling-up motion of a vortex wake behind an isolated wing and wing-body
combination both banked at a given small angle and at angle of attack
can be reasoned simply with the aid of sketch (d), illustrating condi-
tions immediately behind the trailing edge.

Sketch (d)

For the isolated wing, each panel vortex induces a velocity V, on
the opposite vortex and both move in the dotted direction with uniform
velocity. The motion in this case is symmetric with respect to the n'u
plane. Now the addition of a body, with potential crossflow symmetrical
respect to the nu plane, adds the same induced velocity V., at each
vortex. The wing vortices in this case then move initially in the direc-
tion of the resultant velocity VR. Henceforth, the velocity due to the
body crossflow is different at each vortex. Thus it can be seen that
the wake motion is different from that behind an isolated wing, that is,
completely nonsymmetrical. Similar reasoning for wing vortices of
unequal. strength leads to the same conclusion.

For a cruciform wing and body combination at 45° angle of bank and
at angle of attack, the superposed velocity fields (from the wing and
body) are both symmetrical with respect to the nu plane. Therefore
the computed vortex wake motion should agree qualitatively with results
for isolated cruciform wings.
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IT.- PRESENTATION AND EVALUATION OF METHOD

The remainder of this report will examine in detail the line-vortex
method outlined in reference 13. The manner by which the initially
required circulation distribution was obtained is first discussed. The
method of replacing the wake circulation distribution and the afterbody
by discrete vortices then follows. The determination of the flow field
in transverse planes and the stepwise integration technique are next
explained. After a few sample calculations, an evaluation is made of
the errors inherent in the stepwise integration and of the effect of the
number of vortices used on the computed downwash distribution at chosen
tail locations.

Circulation Distribution at Wing Trailing Edge

Before the stepwise calculation of vortex paths behind the wings of
wing-body combinations can be started, it is necessary to know the cir-
culation distribution along the wing trailing edge. In general, the
circulation distribution TI(y) and the wing span loading are not equiva-
lent. The conditions for equivalence are derived in Appendix A. The
method of this report has been applied to triangular-wing configurations
which have readily obtainable circulation distributions. However, the
stepwise calculation method is applicable to configurations with any
wing plan form.

For a plane-wing and cylindrical-body combination, the span loading
i1s equivalent to the circulation distribution and can be obtained by
chordwise integration of the complete pressure coefficient (Ap/q)w.
Equations for (Ap/q) are given in the slender-body analysis of refer-
ence 15. For such configurations, the circulation about the wing at any
spanwise station y 1is given by linear theory as:

) e T ) & (1)

The notation for this and the following equations is defined in fig-
ure 13, which shows the more general case of a noncylindrical body.

Equation (11) of reference 15 furnishes the wing loading coefficient
for a plane-wing and cylindrical-body combination as:

(%)w - la e %;( y2§> (2)

(l + B )
t et T2 v
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Substitution of equation (2) in equation (1) and integration yields:

2V .a
r(y) = °

v (sm® - ¥°) (sm3y® - r4) (3)

When the body is not cylindrical, equation (2) is modified to:

ds i rdr ((r® r®
<Ap> ) dx<l';4?>+2§a - o l'—
== - Q =
A / pt . y=
l+S—4-'-g§<l+F> <l——->< >

()

The last term of equation (4) is due to the spanwise velocity and
does not contribute to the circulation distribution. Hence one obtains
the required circulation distribution by insertion of only the first
term of equation (4) in equation (1) and integration. The result is
identically equation (3). This shows that the circulation distribution
I'(y) along the trailing edge of a plane wing on a noncylindrical body is
dependent only on the cross section of the configuration at the trailing
edge, as could be anticipated. The circulation is, in fact, the jump in
the crossflow potential at the trailing edge and hence must agree with
the slender-body result, equation (3).

For cruciform wings on a cylindrical body at angle of attack and
sideslip, the complete velocity potential (eq. (47) of ref. 15) is:

1 4 4 4 2
<Dl=ivoa {[-(l+ -r—>r12c0329+sg<l+r—4>J+l:rl4< el Sy
/ 4 4
2 rl & I‘l
ANE % 1
4 4 2
br* cos2 26 + s*(1+ %) -2s2(1+ 1+ £-)r,2 cos 26 =
s4 rl4 54 il
V. gt 4 4
Voa'z & of {[<l+£—>r12 cos 20 + t2( 1 + — -
N2 rl4 i
4 2 42
rit(1- =4 + hr* cos? 29+t4<l+-r—4>
ry t

AL

i3
r4 4 b=
2t <l + ; 1 +1-'r_; r,Z cos 20 + V' (2
1
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where

s 2 -1
o e e ik S 6 = tan

I

and
+ means 0 <6 <

- means n <0 < 2n

The transformation to a configuration pitched o radians and banked
@ radians is for small angles a:

a' = a cos @, B! = a sin @ (6)

Now for banked cruciform configurations, the span load distribution
is not equivalent to the circulation distribution. Hence, instead of
equation (1) one must use the general relation between I' and the Jump
in the velocity potential at the wing trailing edge:

T = AP (7)

For horizontal and vertical surfaces respectively, one obtains by
substitution of equation (5) in equation (7):

2Voa'

Dy = =2 (a® - wlentse < ) (8)
r(z) = 2:;5' o [tn® - TR0 - %) (9)

It is thus seen, by comparing equations (8) and (9) with (3), that
the circulation distribution for a cruciform wing and body combination
is derivable by assuming that each wing acts independently of the other
as part of a plane wing and body combination at an angle of attack given
by equation (6). This can be seen also by the linear superposition of
potentials in equation (5).

The foregoing equations are based on the slender-body theory of
reference 15, which is postulated for slender wing and body configura-
tions at subsonic, transonic, and supersonic speeds. In order for the
equations to apply at supersonic speeds, the entire configuration must
lie well within the body nose Mach cone. Experimental data on models
conforming to these restrictions agree well with the theory. In order
to apply the results of slender-body theory to nonslender wing and body
combinations, an aspect-ratio correction factor is employed. This factor,
which for triangular-wing configurations is the ratio of the lift of a
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triangular wing calculated by linear theory to the 1lift calculated by
slender-body theory, is discussed fully in Appendix B. The results may
be summarized as follows: For subsonic-leading-edge wings (B tan w <Zl),
equations (3), (8), and (9) should be multiplied by the factor

X =5EL- (Jl . than2m>

For supersonic-leading-edge wings, (B tan w > 1), these equations should
be multiplied by equations (B7) or (B18) for the ranges of y indicated:

k = . /Sm = J (BT)
Sm + ¥

./132 tan® w - 1

for

Sm -T

I‘+—£—Sy£sm
B tan w
2 2
tan® w - s
k = 1 {sm+-’];'{(sm - y)sin-1 yB m o
VQSmZ = ya)(B2 tan® w -1) B tan w(sy - ¥)

2

yB2 tan® w + sy J}

Btan w(sy + ¥)

(B18)

(sm + y) sin=1

for
Sm—r

B tan w

Replacement of Wake Circulation Distribution
and Body by Discrete Vortices

After the circulation distribution I(y) along the wing trailing
edge has been determined, the next step is the replacement of the conse-
quent wake circulation function by a finite number of vortices. A plot
of the circulation function, equation (3), for example, looks like that
portion of the solid curve above the wing in sketch (e):




NACA TN 3227 19

B e )

&

4

/
=)
~
Ve
W

\\\\-| W/
Sketch (e)

The loading over the body, which can be calculated from the corre-
sponding body pressure coefficient (eq. (12) of ref. 15), is not explic-
itly required here. It will be seen that this loading is automatically
accounted for by the vortex model set up for the wing loading. The
curve TI'(y) over the wing can be replaced by a suitable number of step
functions (dashed lines in sketch), each of which corresponds to a vor-
tex of strength equal to the step height and located at the step abscissa
as shown. Although an infinite number of step functions would be
required to duplicate the given curve, in practice the number selected
are the fewest which render possible a reasonably accurate prediction of
the trailing-vortex sheet behavior. Single-, three-, and ten-step func-
tion distributions have been used herein. Quantitative results will be
presented later concerning the number of vortices used to replace the
circulation distribution. For a single-step (one vortex) approximation,
integrating equation (3) for the area under the I(y) curve and equating
the result to a single rectangular area lead to the simple result shown
in figure 14, namely, that the spanwise distance from the body of a
single vortex representing the circulation distribution on one panel of
a plane, subsonic-leading-edge wing and body combination is approximately
constant and equal to about 0.76 times the exposed wing semispan for all
ratios of body radius to wing semispan. In this approximation by a
single vortex the value of I'max at the wing-body juncture is assigned
to the vortex. 1In all cases the two panels of the wing are treated inde-
pendently. A circulation distribution which, unlike the preceding sketch,
is asymmetrical across the wing trailing edge will, therefore, require
an asymmetrical vortex distribution.

The effect of a circular body in the presence of this wing vortex
distribution is accounted for by placing an image vortex for each wing
vortex within the body at the inverse point, as indicated by sketch (f).
The image vortex cancels the velocity normal to the body due to the wing
vortex.
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Sketch (f)

The foregoing discussion applies to the trailing-vortex filaments
from the wing and the image vortices contained within the body. These
filaments can be considered joined by bound vortices within the wing
and adjacent body to form horseshoe vortices as shown in sketch (8).

The portion of the total 1lift of

the wing-body combination carried
by the wing and by the body is rep-
resented by the bound filaments of
length 1o within the wing and 1,
within the body, respectively. A
plot of T(y) across the body is,
therefore, obviated since the single
vortex representing the body loading
automatically appears at the inverse
(image) point of the wing vortex.
This vortex model, due to Lennertz
(ref. 17), assumes that the ratio

of body to wing 1ift is proportional

ﬂ il o to the ratio 1,/1lp (1; + 1, being
’ 2 the "effective semispan"), and is
<@ Fﬁfh D) known from experiments to represent

the distribution of 1lift between
wing and body with good accuracy,
deviating but slightly from slender-
body theory.

Sketch (g)

Consistent with the assumed two-dimensional nature of the solution,
the segments of the vortices bound within the wing and adjacent body are
neglected. It is then assumed that the remaining filaments extend
upstream to infinity.

Determination of the Flow Field in Transverse Planes

The nonlinear differential equations governing the downstream motion
of the vortex wake require a stepwise solution for the vortex positions
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at successive streamwise stations (or time increments). Consider a
vortex pattern at any downstream station such as section A-A in figure 2.
(The image vortices inside the body are not shown in the figure.) It is
assumed that every vortex influences the flow field according to the
Biot-Savart velocity law of planar, incompressible-flow vortex theory,

as illustrated in the sketch (h). This assumption will be Jjustified

later.
f
+W
2 7
O

+v

s x
('\'J' ) )7J) Sketch (h)

The velocity Vi 1induced at the ith vortex by the Jjth vortex is:

o
Vi = 10
L 2nrs )
The vertical component, wy, of V5 is:
I. Aoz s
Wi =T = d ; d = (11)
enr (7\1-)\J) T (T]i i WJ)
The horizontal component, vi, of V3 is:
5 =T UEE = s
vi= A = —3 % (12)

enr (A - XJ)Z + (ng - ﬂj)z

In general, for a flow field containing n vortices, the velocity
components induced at the position of the 1ith wing vortex by the other
n-1 vortices are:

1 & r;(A - Ay)
e z Ay =A35)% + (ng - ns)2 S
T Y. i Fu i3
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}: (ﬂi = nj) o
Cemr : (A - A3)2% + (ng - ny)?

Equation (10) is derived from consideration of an infinitely long,
incompressible-flow vortex filament, and is, therefore, applicable only
to two-dimensional flow. For supersonic speeds, the use of equation (10)
is consistent with the slender-body theory underlying this study for
these reasons: Reference 7 shows that an infinitely long vortex filament
parallel to a supersonic stream obeys the Biot-Savart law of incompres-
sible flow. Omission of the bound vortex and wing chord loading causes
the difference between initial and asymptotic downwash at the wing trail-
ing edge seen in figure 15 reproduced from reference 7; the downwash
along the wake center line approaches the asymptotic value within a chord
length behind the trailing edge for the triangular wings of BA < k.
Hence the asymptotic downwash given by a two-dimensional trailing-vortex
system has been used.

Superimposed on the velocity field due to the wing and image vortex
system is the body potential crossflow velocity field. From the poten-

Ciatlse
Py =V ' & 15)
i = Vo @z _;;___—TE:> (15
v g

where z' 1s measured from the body axis (instead of the wind axis), one
readily obtains the velocity components induced by the body:

aCP . e

. SN Lt i (16)
- (v* + 2'%)
o0 -2V, arlyz!

T e (17)

¥  (y% + 2'®)°

or in dimensionless form:

2_ |2
LA el (18)
o (A% + 1'%)
- = 1
Mo i)\n_ (19)
v 2 1242
g A" &)
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where
" =N+ ptan o =N + pa (20)

This transformation from the usual potential equations is neces-
sitated here by the fact that the coordinates are not body centered, and
the body is inclined, with respect to the free-stream direction.

These last equations assume that the body angle of attack is small
enough so that tan a & a, cos a &% 1 (which is true for a up to approxi-
mately 20°), and that the contribution of the crossflow to the local
streamwise velocity is negligible. As stated previously, viscous cross-
flow separation around the body, with its consequent vortex wake, is not
considered here.

Stepwise Determination of Vortex Paths

: The replacement of the wing trailing-edge circulation distribution
by step functions and associated vortices, together with the placement
of image vortices within the body, as detailed above, provide the start-
ing point for the stepwise calculations to be described. The spanwise
and heightwise coordinates of all vortices at p =0 are known. The
downstream incremental motion of these vortices will next be determined.

Now at any point in a transverse (yz) plane, the lateral velocity, v,
1s given by the sum of equations (14) and (19). The vertical velocity, w,
1s similarly given by the sum of equations (13) and (18). The streamwise
velocity, u, perpendicular to the plane, is everywhere Vy. Consider
the point where a vortex line passes through the transverse plane. In
a time interval At the vortex filament moves with the fluid a vertical
distance Az = w At. Since At = Ax/V,, Az = (w/V,)Ax, then nondimen-
sionally:

An = L Ap (21)
Vo
Similarly the dimensionless lateral movement is:

Ap (22)

The last two equations then furnish points in transverse planes a
distance Ap apart, the locus of which is the path of a vortex filament
moving in the wing-body flow field. With each vortex, a "strength" PJ/Vo
(rather than TIj) will be associated in order that equations (13)
and (14) will actually yield the velocity ratios w/V, and v/V,.
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In the plane p = 0, which contains the wing trailing edge, as long
as the wings have no incidence with respect to the body, all the vortex
filaments have coordinates 1 = 0. Therefore, the total spanwise veloc-
ity induced at the location of any given wing vortex can readily be seen
to be zero, from equations (14) and (19). In fact, the initial motion
of such a vortex sheet is always one of pure vertical displacement. The
total vertical velocity summed from equations (13) and (18) is multiplied
by a suitable increment Ap yielding an incremental distance An moved
by the given vortex line, according to equation (21). Values of An are
thus calculated for all the wing vortices, the entire group of which is
so transported to the plane W = Au. The coordinates of each wing vortex
in this new plane are found simply by adding the computed increments to
the coordinates at the previous station. Of course, symmetrical proper-
ties are used wherever possible to obviate the calculation of the paths
of vortices from each half of a wing. Corresponding to the new location
of each wing vortex line at the station i = AWM, the image vortices
within the body are repositioned according to the following formulas:

A2 & (n + 4 tan a)®

n + tan a
= -p tan a + = (2k)

R bten @)

nim.age

where (A,n) are the coordinates of the wing vortex at the new station
L = Ap. This readjustment of the image vortex positions, required by
the downstream displacement of the inclined body away from the free-
stream direction, is made because the image vortices are bound within
the body; the image vortex displacement, in fact, measures the amount
of 1lift carried by the afterbody (see ref. 13).

With the new positions of wing and image vortices this procedure is
repeated. That is, the total lateral and vertical velocity induced at
each wing vortex location is calculated and multiplied by an incremental
distance AWl. The new wing vortex positions are obtained by adding the
computed increments to the original coordinates. The 1lmage vortices are
then repositioned according to the new wing vortex locations, and the
stepwise calculation continued to the desired downstream station.

This stepwise procedure is simply a method for integrating numeri-
cally ' n simultaneous differential equations of motion of n/2 wing
vortices for the downstream paths. A closed solution for the three-
dimensional paths is, in general, extremely complicated, if not impos-
sible. While the equations of the vortex motions in a transverse or
crossflow plane can be written, introduction of time dependence (equiva-
lent to the streamwise coordinate) renders a closed solution extremely
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difficult. Reference 13, using complex variable notation, cites explic~
itly the entire path of a pair of vortices in the presence of a cylinder
in the transverse plane. The equations were derived by Villat in refer-
ence 18. Even for this simple case, where n = 4, recourse is necessary
to numerical solution for the time or streamwise coordinate. This solu-
tion will be analyzed in greater detail subsequently, as well as the
manner of choosing the proper spacing AWM of successive stations.

Sample Calculations

Three examples will now be presented to illustrate the calculative
procedure and resulting vortex paths. They are:

1. A plane-wing and cylindrical-body combination at angle of
attack.

2. A cruciform-wing and cylindrical-body configuration at angl=
of attack and bank.

3. A plane-wing and cylindrical-body combination with the body at
‘angle of attack and the wing panels at differential incidence.

The procedure has been systematized by prepared computation forms
such as table III which is used when the circulation distribution on one
wing panel is replaced by a single vortex.

Example 1, plane triangular-wing and cylindrical-body combination
at angle of attack.- The data for this example are: wing aspect
ratio = 2/3, ratio of body radius to wing semispan = 0.6, angle of
attaeck = 50, and Mach number = 2.0.

The leading edge of the wing is subsonic (B tan w= 0.2912 < 1), so
the trailing-edge circulation distribution TI(y) is calculated from equa-
tion (3) and multiplied by the aspect-ratio correction factor k = 0.917
(see Appendix B). A plot of TI(y) vs. y like that of figure 1k is
obtained, with a maximum ordinate T/Vy = 0.12796 in this example.
First, this distribution is replaced by a single vortex per wing panel,
with the location consequently given by figure 14 as s'/(sy-r) = O. 763,
or A; = 1.509 (r/sm = 0.6). The vertical coordinate of the vortex at
the wing trailing edge (p = O) is zero in this case. The dimensionless
spanwise coordinate of the image vortex is, therefore, A, = 1/7\l = 0,663,

Referring now to table III(a), the above values of TI',/V., > S,
Kz, and N, are filled into the proper boxes of columns (fs, and S By

symmetry, the values of A 5. Ays Mgy &nd 0, can be readily filled in, and
an increment Ap is chosen (1 here) Columns @ through @, based on
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equations (13) and (14), are then computed in order, the last two giving
the vertical and horizontal velocity components induced at vortex 1 by
the other three vortices (columns and @, respectively). Rows
through éi),based on equations (18) through (22), next add the potential
crossflow velocity components at vortex 1. Thus, rows and(i? give
the new coordinates of vortex 1 for use in table III(b), while the
bottom calculation furnishes the coordinates of the corresponding new
image vortex 2 position.

Columns(ED through(:> of the table III(b), for station u = 1, can
now be filled in and the procedure repeated, as illustrated. This step-
wise computation is continued for as many stations downstream as desired,
each part of this example representing positions at increments of one
body radius (Ap = 1) downstream of the wing trailing edge. The results
are summarized graphically by figure 16.

For the same  given data, the calculated circulation distribution
for one wing panel is now replaced by three vortices of equal strength
l"/Vo = 0.042653. Their spanwise locations are determined graphically,
equating areas under the curve of T[(y) vs. y, and in this example are:
AL = 1.652, A\, = 1.558, and A\g = 1.316. The three image vortex loca-
tions are again calculated as the inverse points, giving: ), = 0.75988,
As = 0.64185, and Ag = 0.60533. The results of this case are shown in
Flguret.

Example 2, cruciform triangular-wing and cylindrical-body configura-
tion at angle of attack and bank.- The configuration data of the pre-
ceding example are again assumed in addition to which another pair of
wing panels now exists, forming a cruciform wing-body arrangement banked
45°,  The strengths of the assumed four vortices originating from the
four wing panels are identical, as required by equations (8) and (9).
These equations with equation (6) provide the required circulation dis-
tribution I(y) and I'(z) which is corrected for aspect ratio as explained
in Appendix B. Figure 14 again furnishes the initial positions of the
four wing vortices, whose corresponding four image vortices are then
located at the inverse points. The calculative procedure follows that
described above. Because of planar (xz) symmetry, only the paths of a
pair of vortices on one side of the body need be computed. The results
of this case are presented in figure 18, which shows that there is a
tendency toward "leapfrogging," sketch (i)3 although the process appears
to be retarded initially by the body.

SThe phenomenon of "leapfrogging" vortices is discussed in detail
for isolated wings in reference 12.
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Sketch (i)

Example 3, plane-wing and cylindrical-body combination with the
body at angle of attack and the wing panels at differential incidence.-
The given data for this case are the same as for the first example with
two exceptions. One wing panel is deflected and the other is at zero
incidence with respect to the body axis such that the vortex from each
panel has the same strength. Now the vortices from both wing panels
are rotating in the same direction. The vortex shed from the deflected
panel is assumed to start above the xy plane because of the angular
displacement about the hinge line of that panel's trailing edge. It is
further assumed that the vortex from each panel is shed at the same span-
wise station.

Figure 19 illustrates an effect characteristic of wings differen-
tially inclined. The vortex from the wing panel which has no incidence
to the body moves essentially the same way as in the plane wing case.
However, the vortex from the wing panel which is at a negative angle of
attack travels sharply upward and inboard. This marked motion is due
to two effects: First, the vortex starts at the trailing edge with some
N >0 Dbecause of the negative angle of attack of the panel, and second,
the body crossflow and image vortex-induced velocities are cumulative in
this case instead of being subtractive as in the plane case. At a suf-
ficiently high angle of attack, it may be possible for the rising vortex
to jump over the body to the same side as the other vortex. Such an
occurrence would cause a sharp increase in rolling moment from the tail
surfaces.

For the case of a pair of wing panels inclined together, the trail-
ing vortex paths can be estimated qualitatively by consideration of the
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vortex picture in the crossflow plane. Thus, for a pair of wing panels
inclined at a positive angle of attack on a body whose axis is parallel
to the free stream, the vortex paths trail below the free-stream direc-
tion with concavity upwards since there is no body upwash and the effect
of the image vortices is to depress the wing vortex wake. For a pair of
wing panels at a negative angle of attack on a body at a positive angle
of attack, the tralling vortices are inclined upward since the body
crossflow and vortex-induced velocities are additive.

These and all other computations except those with 10 vortices per
wing panel were performed with a desk calculator. It was found that the
solution of vortex paths downstream of the wing could be accomplished in
about fifteen minutes per station for a single-wing vortex, and two hours
per station for a three-wing vortex scheme. In general, the number of
computations per solution increases approximately as the square of the
number of vortices assigned per wing panel.

Evaluation of the Effect of Stepwise Integration
on Vortex Paths

In the present line-vortex method, the principal factors governing
the labor expended in the solution to a given problem are the size of
the "time" increment Ap and the number of vortices used to replace the
trailing vortizity. The first factor will now be discussed in detail.

The necessity for a stepwise solution for vortex paths stems from
the difficulty of integrating n simultaneous differential equations of
vortex motion (egs. (13) and (14), together with egs. (18) and (19)).

The differential equations are therefore solved with a small, finite Au.

In this report, the use of equations (21) and (22) implies the use of
Euler's linear integration method, that is,

1) = 00, + (), o

where ,

vy = N\ Or My, and 1 =21, 2, 35 « » « NP

A Taylor series expansion shows the higher order terms neglected:

“ihmﬁ“’ih*(%i‘u Aw + ( ) ( ) S

Thus, it may be seen that the use of Euler's method without appre-
ciable error requires either the second and higher derivatives to be
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small or Ap to be small. The following discussion indicates the impor-
tance of the higher order terms for vortex motion.

Comparison of known exact solution of vortex motion with stepwise
integration.- A simple example of the mutual interaction of two vortices,
for which the exact solution is known, furnishes an insight into the
nature of the cumulative error incurred by this stepwise-integration
method. It is easily shown by the methods of hydrodynamics (e.g., p. 320
of ref. 19) that two vortices of strengths I, and I, will, due to their
own mutual influence, each rotate about their common "centroid” in a cir-
cular path with constant angular velocity which is egual to (I& + Ié)/En
divided by the square of the distance between the vortices. This motion
is illustrated in figure 20. The solid lines radiating from the centroid
represent the ends of a constant time increment (proportional to Au) and
the solid, spiral-like curves are the corresponding paths computed by a
stepwise approximation. The dashed radial lines and spirals relate to a
time interval half of that used before. It appears from figure 20 that
the error or discrepancy between circular and spiral paths increases
while the rate of growth of this error decreases with time (or distance
downstream of the initial position). Further, it is seen that a decreased
size of time increment results in a decreased error, for this example, in
approximately the same ratio. Of course, this case of completely circular
vortex motion cannot be solved accurately by Euler's linear scheme without
using extremely small increments. However, for many of the computed vor-
tex paths behind the configurations considered in this report it will now
be shown that Euler's method is sufficiently accurate.

Effect of size of increment Ap on computed vortex paths.- The
error incurred by using the linear integration method can be Judged by
calculating vortex paths with different increments Ap and extrapolating
the results to AW = 0. This has been done for single- and three-vortex
schemes at a = 5° and typical results appear in figures 21 and 22.
Both figures show that the stepwise method employing finite increments AW
yields results which converge fairly rapidly to the exact solution (for
which Ap—>du—>0). Here the error, using a given value of AW, is
indicated by the difference between the value of A or n extrapolated
to Ap =0 and the value of A or n at the given value of Ap. As in
figure 20, the error is seen to increase with time or distance KL down-
stream of the wing. For a single-vortex scheme (fig. 21), the error is
approximately proportional to pARL and is small, in general. The error
becomes greater and less predictable, for the same increment size, with
a multiple-vortex scheme (fig. 22). A single-vortex scheme is therefore
less subject to integration error than a multiple-vortex scheme. The
reason why the error increases nonlinearly for the three-vortex scheme
of figure 22 can be explained by reference to figure 22(c) which shows
the projection of the vortex paths on the crossflow plane. For small
values of p the vortex paths are fairly linear, with the vortex posi-
tion error given by figure 22(a) being small and essentially linear
with AHM. Further downstream, as the effect of the rolling-up process
becomes marked, the paths are seen to become spiral-like. Each vortex-
position error curve becomes increasingly nonlinear as the vortex path
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approaches a maximum or minimum vertical position in the crossflow plane.
The use of smaller increments Ap then reveals the tendency toward con-
vergence of the path to one of a lesser radius of curvature, as illus-
trated previously for the case of truly circular paths.

From these results it appears that the selection of a suitable
increment Ap for any given case should be made by trial calculation
with several values of Ap for a few stations downstream of the wing.
As long as the computed vortex paths are relatively linear in the cross-
flow plane, the largest value of Ap should be chosen which permits the
extrapolated error in vortex location to be the maximum tolerable at the
furthest downstream station at which downwash is desired; Ap should be
decreased locally wherever the vortex paths appear to be approaching a
maximum or minimum height in the crossflow plane.

More accurate numerical integration schemes than Euler's method can
be found in reference 20. Curve-fitting and extrapolation formulas are
presented which by taking account of the higher order derivatives of the
path enable one to maintain sufficient accuracy of vortex positions with
a given Ap even when the paths are markedly nonlinear.

Comparison of computed paths with exact solution for vortex paths
in crossflow plane.- The exact solution known for the vortex path in the
crossflow plane corresponding to the single-panel vortex representation
mentioned previously can be used to check the accuracy of the stepwise
integration. Equation (VI-4) of reference 13 cites the result obtained
by Villat (ref. 18). In the present notation, it is:

U2 (g2-1)% 2 23
2k<1- 32> o o T SR e S 2ol -1)
3 Lav,

(£2-1)2 + 1A2 0"/ g ot +1
(25)
where
£2 = 22 + (0 + pa)?
Ao = (7\)'&=o
At an infinite distance downstream the vortices are infinitely far
removed from the body (n + pa—>w) so that the asymptotic spacing
2(?x)u=eo of the vortex pair is given by the relation:
s
r 1 I Ao (No=-1)
2(A - 10 20N jue ® S (1~ | = oy Skl o e (26)
( )p_:o OV ( )u_w O< ')\02> Q“VO )\02+l

o
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Two solutions by the stepwise method have been checked against
equations (25) and (26). This has been done by inserting pairs of values
of the coordinates p and n, from the stepwise~calculated paths, into
equation (25) and solving for the A coordinate by trial. The compari-
son appears 1n figure 23, showing the results to be practically coincident.

Effect of Number of Vortices on Downwash at Tail Locations

Comparisons were made of the downwash along a line, representing a
horizontal tail plane, resulting from the separate presence of one,
three, and ten vortices, all derived from a given circulation distribu-
tion. Possible tail locations for both a missile-type and high-tail
airplane-type configuration were chosen.

Missile-type configuration.- For the former, p = 10 was selected;
that is, a tail location 10 body radii downstream of the wing trailing
edge. Therefore downwash was first computed along the line u = 10,
n=-10 tan a, 1 < A < 6, which is a horizontal line through the body
center line of the missile-type configuration.

Figures 24(a) and (b) show the ‘effect of number of vortices on down-
wash at the chosen missile tail location with and without components of
the body potential crossflow in the stepwise computations. These omis-
sions were made for two reasons: One was to determine the extent ‘to
which the stepwise calculations could be simplified without obtaining
dissimilar results in downwash, and the other was an attempt to account
for the flow around the body at high angles of attack. As an assumption
for the high-angle-of-attack crossflow, the potential crossflow (eqs. (18)
and (19)) was replaced by equation (18) alone with n' = 0. This assump-
tion implies that the velocity distribution on the lee side of the body
is the same at any vertical station as along the horizontal diameter, as
indicated in sketch (j).

1] /H\fN
5o 2] w \\;L///

o

Potential crossflow. Assumed center line crossflow.
Sketch (j)
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For the aspect ratio 2/3 configuration of figure 24(a), with
r/sm = 0.6, the number of vortices used has a negligibly small effect on
downwash except when the body crossflow is entirely omitted in the step-
wise calculations. Observance of the various vortex positions at the
tail location, shown at the top of figure 24(a), shows that the vortices
from the wing panels are subject to a relatively strong body crossflow
so that their computed positions are greatly in error if the body upwash
is neglected. Thus, when at least the upwash component of the body cross-
flow (the center line crossflow in sketch (j)) is added to the stepwise
calculations there is. no appreciable effect of either the number of vor-
tices used or the strength distribution for a given multiple-vortex
scheme. Figure 24(a) also shows that only a small change in downwash
results from replacing the potential body crossflow by the assumed center
line crossflow.

For the aspect ratio 4 wing and body combination of figure 2u4(b),
with r/sm = 0.2, it is seen that there is little effect of body cross-
flow on the downwash at the tail., This could be expected because of
the relatively large wing. While the use of a single vortex does not
adequately approximate the magnitude of downwash over a tailspan equal
to the wingspan, a 3-vortex scheme appears to be as satisfactory as a
10-vortex scheme. Reference to the computed vortex locations shown at
the top of the figure indicates that the vortex sheet from a high-aspect-
ratio wing at low angles of attack rolls up so slowly and extends over
such a large spanwise distance that a single vortex cannot give the cor-
rect distribution of downwash.

At higher angles of attack, the vortex wake will be even further
from the horizontal tail plane because the body will be inclined below
the free-stream direction more than the vortex wake according to fig-
ure 7. Although the vortex strengths increase directly with angle of
attack, the downwash at the tail decreases very rapidly with distance
from the wake. Consequently, the effect of number of vortices should be
smaller at higher angles of attack.

Airplane-type configuration.- Now a possible horizontal tail loca-
tion for a high-tail airplane-type configuration is p = 3 and 7 s 2,
that is, 3 body radii downstream of the trailing edge of the wing and
2 body radii above the body axis. Figure 25 presents the effect of the
number of vortices used on the downwash at this tail location. The
aspect ratio 2/3 configuration of figure 25(a), with r/spm = 0.6, shows
no noticeable effect of number of vortices on either the distribution or
magnitude of downwash simply because of the distance of the horizontal
tail plane above the vortex wake. Neither is there any appreciable effect
of assuming the body crossflow to be the center line crossflow. The
aspect ratio 4 configuration of figure 25(b), with r/sy = 0.2, shows
that 3 vortices give the same downwash as 10 vortices. However, from
figure 7 the vortex wake behind the wings of both high- and low-aspect-
ratio configurations at small values of p 1is seen to be fairly close
to the free-stream direction at all angles of attack. Therefore it can
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be expected that with increasing angle of attack, the tail plane
approaches the wing vortex wake and the use of at least three vortices
to represent the wake behind wings of such high-tail airplane-type con-
figurations will be required to obtain the correct magnitude of downwash
across the tailspan.

To obtain the shape of a vortex wake behind a wing, clearly a mul-
tiple trailing-vortex system, such as the 10-vortex systems used herein,
is required. However, for the computation of downwash at tail locations
a minimum number of vortices is desirable and this number depends mainly
on the distance between the wing wake and tail surfaces. The number
varied from about one to three for the configurations studied herein,
depending on whether that distance was large or small. An empirical
relation, based on the calculations made in this study, for estimating
the nearest integral number of vortices required per wing panel is:

THOLILY 0.16A

Ir
wa [n - ]

where h 1s the height of the horizontal tail above the body axis in
terms of body radii.

Note on calculations involving large numbers of vortices.- In set-
ting up the initial (trailing-edge) vortex distribution from the given
circulation distribution TI'(y), one must exercise great care when n 1is
lapge (1.6.,n > 20). The spacing of the vortices which approximate
I'(y) stepwise must be checked to insure a smooth curve of their divided
differences. Otherwise, spurious effects such as the "loss" of a vortex,
caused by excessive induced velocity, sketched below, can occur (see
fig. 2k(a)).

"Lost" vortex

T

!
& S 432!

Initial vortex distribution Incorrect result at p = Ap
at pu=0 due to vortex No. 2

Sketch (k)
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CONCLUSIONS

An investigation has been made of a line-vortex method for computing
vortex paths, downwash, and sidewash behind wings of wing-body combina-
tions. Application of the method to the calculation of wake shapes,
vortex paths, and downwash behind triangular-wing and cylindrical-body
combinations with various prescribed data leads to the following con-
clusions:

1. Wake shapes calculated by two-dimensional line-vortex theory
agree qualitatively at least with wakes observed in a supersonic wind
tunnel. Calculated vortex paths using this line-vortex method agree
well with a known exact crossflow-plane solution.

2. A missile-type wing-body-tail combination with the horizontal
tail located in the body diametral plane 10 body radil downstream of the
wing trailing edge at 5° angle of attack was considered. It was found
that if the plane wing is of low aspect ratio (order of 2/3), downwash
can be computed at the horizontal tail from the wing vortices alone for
small values of the ratio of body radius to wing semispan (order of 0.2)
and from the body upwash alone for large values of that ratio (order
of 0.7). For high-aspect-ratio wings (order of 4) on small bodies, down-
wash at the tail location can be well approximated only by considering
all the flow components - wing vortices, image vortices, and body cross-
flow.

3. A multiple trailing-vortex system is, of course, required to.
determine the shape of the wake behind a wing. However, for the computa-
tions of downwash at a tail location the number of vortices required per
panel depends mainly on the distance between the wing wake and tail sur-
faces. The number varies from about one to three for the configurations
studied herein, depending on whether this distance is large or small.

An empirical relation, based on the calculations made in this report,
for estimating the nearest integral number of vortices N required per
wing panel is:

where h 1s the height of the horizontal tail above the body axis, pu
the distance of the tail from the wing trailing edge (both in terms of
body radius), a is the angle of attack in radians, A is the wing aspect
ratio, and r/sm the ratio of body radius to wing semispan.

4. The rolling up of a vortex wake behind wings of unbanked wing-
body combinations qualitatively resembles the wake pattern behind com-
parable isolated wings. The comma-shaped rolling-up pattern of the
vortex wake behind a subsonic-leading-edge triangular wing panel, with
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the eventual single-vortex core, is due to the nearly elliptic circula-
tlon distribution along the wing trailing edge. In contrast, a supersonic-
leading-edge triangular wing panel generates an S-shaped vortex wake
behind the portion of the trailing edge which has a linear circulation
distribution, and the S-shaped wake eventually rolls up into two vortices.

5. The spanwise distance from the body of a single vortex repre-
senting the circulation distribution on one panel of a plane, subsonic-
leading-edge wing and body combination is approximately constant and
equal to about 0.76 times the exposed wing semispan for all ratios of
body radius to wing semispan.

6. The type of vortex wake, and resultant downwash from a wing, is
significantly affected by the circulation distribution along the wing
trailing edge. It should be noted that the circulation distribution
which must be used in setting up the initial vortex distribution along
the wing trailing edge is not equivalent to span loading when the wings
are in sideslip or the body noncylindrical.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., June 1, 1954
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APPENDIX A

NONEQUIVALENCE OF WING SPAN LOADING AND CIRCULATION DISTRIBUTION

I'(y) ALONG THE TRAILING EDGE OF A WING

The circulation function I' in fluid dynamics is defined by the
contour integral:

where

ui + vj + wk

Q|
1]

and

ds = dxi + dyj + dzk

Let T' be evaluated around a streamwise chord of a flat plate such
as AB 1in figure 13. Then:

c o
r =J£1u dx, =u/1 uy dx,y +d/‘ u; dx;
Yo c
where u; means (W) 540, and ug means (u), 5 _o.

Within the limits of linear theory, u; = -uy,, so that:

c r Cuy
P=2f uudxl O '—=2f—d.X1 (Al)
o) Vo (o} Vo

The span loading on a wing is defined by the relation:

§—§=qfoc(%>w axy (12)

From the Bernoulli equation one obtains the lifting pressure coef-
ficient for a general wing-body combination as:

op _ -2(ug-un)  (vyE-vuB) + (0 Fw®) (A3)

q v, Vo
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For a noncylindrical body-wing combination, two linear crossflow
velocity potentials must be added; @, associated with a cylindrical
body-wing combination and 02 for an expanding body can be superposed
as follows:

Iz ¥F3

Vi vt "
5 = g,

h ?,

Sketch (1)

When the potential subscript 2 is dropped,

)
u; - uy = £(9) = -2u@u, Wy - Wy = g(®) = -2w¢u =0
nT |v¢1| = |v¢1l’ Vu = | Ve l-lv@u I f (AL)
2 2 -
e e 2|v¢u|(]v¢z[ + |V¢u|) =L [V¢u || v¢u|
using the symmetrical properties of each potential. J
Substituting equations (A4) into (A3), one has:
Ap by Yy o
E‘) = =2 e i (A5)
W o Vo

where the derivatives are evaluated on the wing (z=0). Equation (4) in
the text is the result of substituting the expressions for potentials
pand ¢ 1in equation (A5). It can thus be seen that the second term in
equation (4) representing the contribution of the spanwise velocities
(the second term of eq. (A5)), can be of the same order of magnitude as
the first term, and not negligible as in the linearized theory for wings
alone.?l

1The above derivation appears in reference 21 where it is pointed
out that for axisymmetric bodies, crossflow velocities may considerably
exceed axial velocities, that is, O(u) < O(v).
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Now the span loading is obtained by substituting equation (A5) in
(a2):

dL ¢ u ¢, Vovo
— =q Iy it dx, -q L ¢)2 dxos
oy 5 A\

o o 5

and using equation (Al):

JL I 4 pc
a—-y = 2q V—O— = -\ZE f VQ)VQd'Xl (A6)

Thus it is seen that the span loading along the wing trailing edge
of a noncylindrical body-wing combination differs from the circulation
distribution by the last integral term. In fact, it can be shown, by
writing equation (A3) in terms of velocity potential and comparison with
equation (7), that to any order theory span loading is not equivalent to
circulation distribution as long as sideslip angle of flow is not zero
or the body noncylindrical. For a banked cruciform configuration, there-
fore, this nonequivalence is always present.
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APPENDIX B

CORRECTION OF SLENDER-BODY THEORY TO ACCOUNT

FOR MODERATE ASPECT RATIO

. The theory developed in reference 15, for the lift of wings and
wing-body combinations, is based on the assumption of slenderness. The
aspect ratio of the configuration analyzed by this theory must be low
enough so that the wings are near the axis of the Mach cone. A correc-
tion factor is required, therefore, to apply slender-body results to
higher-aspect-ratio wings according to the formula:

Lyyp = (k) <LW+B)SBT (1)

The correction factor k is obtained by comparison of slender-body
theory with the more exact linear theory (applicable to high-aspect-ratio
wings) for triangular wings (ref. 22), that is:

(Lyy )LT

k (B2)

(Tay )SBT

It has here been assumed that this wing aspect-ratio factor k can
be used for the winged portion of wing-body combinations and for other
than triangular-wing plan forms. Thus one can correct the lift of a
higher-aspect-ratio configuration by means of equation (Bl). This assump-
tion is justified for small values of the parameter B tan w (see #ig. 26)
when k 1is approximately one, and slender-body theory is itself applica-
ble. Satisfactory results should also be obtained for large wing-to-body
area ratios since the wing then carries the major portion of the lift of
the combination. Experimental data confirm the validity of these assump-
tionshfor wing-body configurations of aspect ratios on the order of
i te" 4.

For triangular wings with subsonic leading edges, the 1lift distribu-
tion given by linear theory has the same shape as that given by slender-
body theory. Therefore the k factor can be defined as in equation (B2)
by total 1ift ratios, and is independent of the spanwise coordinate 7.
For such wings, the method of reference 15 (applied to wings alone) yields
results identical to the low-aspect-ratio triangular-wing results of
Jones (ref. 23). However, it is known that Jones' results overestimate
lift-curve slope when the parameter B tanw is not small relative to
unity. The factor by which lift-curve slopes calculated by slender-body
theory must be multiplied to agree with linear theory is given as:
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al {
!
f

k = B tan w <1 5
E<«/ 1-82 tan® w) -i

? (B3)
k = ————E————~ B tanw > 1 i

T B tan w
- These equations have been plotted in figure 26.

However, for supersonic leading edges (B tan w > 1)) thet 1Pt di6~
tributions are not functionally identical so that equation (Bl) must be
written in terms of local chord lift. Then k becomes a function of iy
namely, the ratio of section lifts or circulation by linear and slender-
body theory. Now in linear theory, the pressure coefficient on a
supersonic-leading-edge triangular wing outboard of the Mach line is:

i
B (3)

q
A Bg - tan= A

Substitution of this expression in equation (1) yields the circu-
lation distribution (in this case equivalent to the span loading):

2V,a tan A(sp - )

I(y) = (B5)

JBz-thA

For a wing alone r = O in equation (3), thus giving the slender-
body theory result:

I(y) = 2Voan/sm® - y@ (B6)

Hence, for the part of the wing trailing edge outboard of the Mach
cone, the factor k for a wing-body combination is the ratio of equa-

tion (B5) to (B6), or:
k = = iz 5 (BT)
VB2 tan?w-1 4 Sm+ ¥

for
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Fortunately, the accuracy of the k factor can be checked in this
case since an exact answer for [I'(y) for the wing-body combination can
be calculated by linear theory without excessive labor. Referring to
figure 27, at any point P(x,y) on the wing trailing edge outboard of
the point of intersection of the Mach cone with the trailing edge, the
potential ®5 can be evaluated by integration of the distribution of
sources at points (o,T) within the forecone of P,=that disk

o (x,¥) = - 2 ff Zaoar (38)

forecone
OINE

where, in the plane of the wing (z = 0), the hyperbolic radius Ty, is:

rn=./(x - 0)2 - gB(y-T)2 (B9)

and the angle of attack a 1is the sum of the body angle of attack > Qg
and the body angle of upwash:

I'2
a = G.B 1+ T_2 (BlO)

On the wing, the forecone of point P produces the shaded area
shown with the corresponding boundaries of integration. Thus:

2
V. a y x-B(y-7) <1+F_ do
- i +
By -x Takan, A A/(X'U)g - B2 (y-7)%
B-tan A
By+x =

iy g x+B(y-7) <1 - %) do
fB+tan Ao T s
v T tan A »\/(x-O)Z- BE(y-T)%

The integrals not containing r have been evaluated in refer-
ence 24, and in the present coordinate system give:

Voop(x-y tan A)

Q= B12
y / 82 -tan® A ( )
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The integrals containing r2/t2 yield:

VouBrz(x—y tan A)

e S 2 (Blé)
Yo/ BTy - x
Therefore the total potential at P 1is = cp4 + cp5 or:
cps(x,y) = - Vyap(x-y tan A)( = + r° > (B1k4)
VB2 -tan® Ay PPy - x2

The circulation distribution TI'(y) along the wing trailing edge
x = cr 1is then (see eq. (7)):

2
r'(y) = 2Voap tan A(sy - y)< = . = >
T 0B e
B B2 ~tan® Ay p2y2- Bp teR- A

(B15)

where

Sm"r

r + tan ALy < sp

Thus equation (B15) furnishes the linear-theory answer for [I'(y)
along the trailing edge outside of the Mach cone, while equation (3)
multiplied by equation (B7) is the approximation to the linear theory
assumed by equation (Bl) with k = k(y). This approximation is com-
pared with linear theory in figure 28 at the spanwise position of the
Mach line y =71 + (sm-r)ﬂ3tan w for various values of r/sm as a
function of B tan w. It is seen that the approximation assumed by
equation (Bl) with k = k(y) is satisfactory, producing a maximum error
of about 20 percent and only about 10 percent for the range of the
parameter B tan w from O to 4.

For the region of the wing inboard of the Mach cone, the pressure
coefficient given by linear theory is (for a wing alone):

-1 X e
= 14+ sin™?t — = gin

VBZ—tanzA T B(cotA-%) & B<cot1\.+ %)

Yoo .
é?_ Lo = BT cotA-1 1 N
q
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43
Integration of equation (1) then results in:
oV a 20 sk O
I'(y) = < sm-l-i (spm-y)sin-1 mi L S =
- v B2 tan® w -1 ; (
Sm-y)B tan w
2 2
yBT tan® w+sp
(sm + y)sin~1 J } (B17)
(sp+y)B tan w

Therefore the factor k(y) to be used for [I'(y) along the wing
trailing edge inboard of the Mach cone is the ratio of equation (B1l7) to
equation (B6) or:

i W SN
il - { Sm + % {(sm-y)sin‘l L el
/(smg = YIRS tan® g - 1) (spm -¥)B tan w

) yBZ tan~ U 4+ Sm
(sm + y)sin-1 j‘ }
(spm + ¥)B tan w

(B18)

For
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COORDINATES A, n VERSUS DOWNSTREAM DISTANCE g FOR

TABLE I.- VORTEX 10-VORTEX CALCULATION OF FIGURE 3
M A n, A n, 2 L A n, A L A e A M7 Ag g Ay g Mo o
0 L.98Lko0| 0 L.94130] 0 L.85070] O L.70670] O L.50530] O L.2k130[ o 3.90130 | 0 3.55730[ © 2.865G0| 0 1.95200 | 0
5| 4.98400| .23998| 4.94130| -.01831| 4.85070| -.03362| 4.70670| -.03563 4.50530[ -.03633| %-24130| -.03728 | 3.90130 | -.03797 | 3.45730| -.03784 | 2.86400 | -.03765 | 1.95200 | -.03526
1.0f h.g21k3| 28803 [ 4.95033| .10055| 4.87897| -.02834| 4.72001( -.06016 4.51151| -.069k| 4.24436| -.07355 | 3.90287 | -.07558 | 3.45808| -.07555 | 2.86kk1 -.07525 | 1.95219 | -.07050
15| 4.84318) 31648 h.92515)| (17185( 4.92378| .02114| 4.75100| -.06926| 4.52619| -.0976 4.25135| -.1081k | 3.9063% | -.11259| 3.45976 | -.11303 | 2.86527 | -.11276 1.95258 | -.10571
2.0 k.75866 .31859( %.88702( .22868{ %.96182{  .0852k 4.79233( -.0629k( 4.54893( -.11897] ¥.26259( -.14019 [ 3.91191 | -.14866 [ 3.4624k | -.15015 [ 2.86662 | -.15012 1.95319 | -.14086
2.5 h.66296] .29273| 4.84010( .27330| 4.98181( .16389| 4.83678| -.04277| 4.57839| -.13302 4.27818| -.16931 | 3.91972 -.18359 [ 3.46618 | -.18683 | 2.86848 | -.18732 | 1.95402 | -.17595
3.0 4.62884( .24905 | 4.78430| .30620| 4.97680| .24637| k.87955| -.00890| 4.61361| -.1h027| 4.29810| -.19549 | 3.9298 | -.21733 | 3.47202| -.22301 | 2.87088 -.22432 | 1.95509 | -.21096
3.5| h.59820|  .20169 | h.72124 [ .32493| 4.94880| .32197| 4.9150k| .03732| 4.65385| -.13972| 4.32229| -.2188k | 3.9ka2k | - 2koBs | 3.47696 -.25866 | 2.87381 | -.26110 [ 1.95639 | -.24587
4.01 k.58598] 15991 | 465501 | .32797| 4.90388( .38495| k.9k209| .09296| k.60B12| -.13073| 4.35062| -.23940 | 3.95683 | -.28113 | 3.48398 | -.20372 | 2.87728 | -.29762 | 1.95792 | - 28067
L5 458614 12765 | 4.58997 | 31567 L.8h7onl  L43347| 4.95581| .15421| 4.7hh71| -.11227| 4.38291) -.2570k | 3.97350 | -.31103 | 3.49207 | -.32811 2.88129 | -.33384 | 1.95969 | -.31535
5:0| k.5937h| 10589 | 4.52993 | .289k1| L.785kk| .uET52| 4.95656| .217h2| k.79101| -.08360 4.H180k| -.271k1 | 3.99217 | -.33946 | 3.50123 | -.36179 | 2.88586 | -.36975 | 1.96171 | -.34990
5:5| 4.60891 .o9k19| k.k7832( .25138( 4.71987| .4BTBT| k.ohuBU| .27962| 4.83389| -.oukop| k.458k2| -.28199 | 4.01282 | -.36632 | 3.51146 | -.39472 | 2.89099 | - .50533 | 1.96398 | -.38431
6.0 4.61648| .09120 [ 4.43795 [ .20484( 4.65376| .49556| 4.92163| .33851| 4.87047| .00237| 4-50097| -.28813 | k.0354k | -.30156 | 3.52277 | -.k2688 2.89669 | -.44055 [ 1.96650 | -.41856
6.5| 4.62633| .09485 [ 4.41028 | .15392 4.58909| .49179| 4.8881k| .39225( 4.89880 .05615| 4.54606 | -.28912 | 4.06005 | -.41516 | 3.53514 | -.45828 | 2.90296 | - 47541 | 1.96928 | -.45065
7.0) 4.63346] .10290 | 4.39499 | .10269| 4.527h3| .ATTBL| 4.8U576| 4393k h.o1792| .11415) 4.59298 | -.28426 | 4.08668 | -.43713 | 3.54855 | -.48893 | 2.90980 | -.50091 | 1.97232 | -.4B658
T.5( k.63764( .11362 | 4.39052 | 0518 4.hT00R2| .4SUOL( 4.79606( 47858 k.o2760| .17MMO| 4.6k079| -.27297 | 4.1153h | - 457G | 3.56297 | -.51883 | 201719 | -.54koe | 1.97562 | -.52033
8.0| 4.63985| .12598 | 4.39493 | .01020| 4.41783| .u2kik L.7horh| .50910| 4.92793| .23525| 4.68832| -.25487 | k.1k60L | -.47623 [ 3.57835 | -.54797 | 2.92513 | -.5777% | 1.97918 | -.55390
8.5 | 4.63981| .13953 | k.ho652 | -.02835| 4.37161 .38770| 4.68156| .530u1| 4.91018| .29531| 4.73428| -.22990 | 4.17867 | -.49333 | 3.59466 -.57633 [ 2.93361 | -.61105 | 1.98300 | -.58728
9-0| 4.63784) 15405 | 4.42396 | -.06100| 4.33189| .34598| h.62022| .Sh2ko| h.9o17h| .35331| 4.T7735| -.19832 | 4.21324 | -.50870 | 3.61186 | -.60389 | 2.0k262 | -.64392 | 1.98708 | -.62046
9.5| 4.63383| .1693h | 4.44618 | -.08743| 4.29906 230053 | k.55827| 54528 | L.87614 | 40808l 4.81635| -.16071 | 4.24963 | -.52223 | 3.62993 | -.63062 | 2.95216 | -.67637 | 1.99143 | -.65343
10.0| h.62762| .18512 | k.h722k | -.10736| 4.27332| .25259 | k.h9T07| .53950| 4.84306| .4s5EsE| 4.85032| -.11785 | 4.28769 | -.53378 | 3.6488k | -.65640 | 2.96022 | - 70838 1.99604 | -.68619

TABLE II.- VORTEX COORDINATES A, 7

VERSUS DOWNSTREAM DISTANCE K FOR 10-VORTEX CALCULATION OF FIGURE k4

B A o Ao n, Ay g A, n, A ng Ae g A Ty Ag g Ay g Ao o
0 | %.89330 .67200| O T.45870| O 24500 T.02530[ 0 3.80930 | 0 3.59200 | O 3.36000( 0 2.05600( O 1.95%00[ O

-5 | 4.89330| .032h2| 4.67200( .0193k| L.45870| .01073| 4.24hoo| .ook22| 4.02530| -.00095 | 3.80930 |-.00712 | 3.59200 | -.0L471 | 3.36000| -.02469 [ 2.85600| -.01778 | 1.94400 -.00967
1.0 | k.8917h) .06KT6( k.67160( .03868| 4.45867| .0R1MT| h.2Whog| .00845| 4.02530| -.00190 | 3.800kk [ -.0142k | 3.59250 | -.02941 | 3.36128| -.04933 | 2.85618| -.03555 [ 1.9kk1k | -.01933
1.5 k.88861) .09698| 4.67080| .05800| 4.45862] .03222| k.oU42B| .01269) 4.02529] -.00283 | 3.80971 | -.02134 | 3.59349 | -.04k08 | 3.36385) -.07393 | 2.85654 | -.05329| 1.9kkk2| -.02899
2.0 [ 4.88392| .12903| 4.66961 [ .07729| 4.45854| .ob296| k.okhs56| .01693 4.02526| -.00373 | 3.81011 | -.02840( 3.59498 | -.05869 | 3.36771| -.09848 | 2.85709 | -.07099 | 1.94484 | -.03861
2.5 | k67766 | .16088 | L.6680M [ .09652| 4.458kk]| .05369| k.2bhok| .0e117| ¥.o2521| -.00k58 | 3.81063 | -.035k1 | 3.5969k | -.07322 | 3.37287| -.12297 [ 2.85783| -.08863[ 1.94539| -.0k819
3.0 4.86981  .19246| h.66612 | .11568| 4.45833| .06UML| 4.2usk3| .oosko| 4.02512| -.00536 | 3.81125 | -.0k23k | 3.50936 | -.08766 | 3.37935| -.147h1 [ 2.85875 | -.10618 | 1.94608| -.05771
3.5 4.86035| .22373| 4.66387| .13475| 4.45822| .o7511| 4.24605| .02962| k.02h97| -.00606 | 381196 | -.04918 | 3.60222 -.10198 [ 3.38718| -.17176 | 2.85987 | -.12363 | 1.94690| -.06717
k.0 f k.B4923] .25k62 | 4.66135( .1537h| k.45813| .08580| 4.24681| .03383( 4.cek7h| -.00666 | 3.81273 | -.05592 | 3.60549 | -.11617 [ 3.39639| -.19602 | 2.86118 | -.14097 | 1.94785| -.07656
k.51 h.B36k2| .28505( 4.65860 .17264| 4.45807| .09647| k.2k772| .03802| k.02UhO| -.00715 | 3.81353 | -.06256 | 3.60912 | -.13021 | 3.k0703| -.22015 | 2.86269| -.15817 | 1.94892 | -.08586
5.0 | 4.82185| .31h95 4.65569 | .19147| k.45807| .10714| 4.24881| .ok220| h.02391| -.00753 | 3.81433 |-.06908 | 3.61308 | -.1kk11 | 3.4291k | -.2uk12 | 2.864k0| -.17522| 1.95011 | -.09507
5.5 | 4.80547| .3uk19| 4.65270| .21025| 4.45814| .11781 4.25011| .04635| 4.02324| -.00778 | 3.81510 | -.07549 | 3.61731 | -.15787 | 3.43279| -.26787 | 2.86631 | -.19212 | 1.95141 [ -.10417
6.0 | 4.78719) .37265( 4.6h971| .22902| 4.45830| ..12850| 4.25164| .050k9| 4.0223h -.00790 | 3.81580 |-.08179 | 3.6217h4 | -.17149 | 3.44805| -.29133 | 2.86843 | -.20884 | 1.95282 | -.11317
6.5 | k.76692| .LoOL8| k.6UECk | .24786| b.45B5T| .13924| 4.253uk| .05461[ 4.02117| -.00788 | 3.81639 |-.08799 [ 3.62630 | -.18498 [ 3.46500| -.314k3 | 2.87076 | -.22538 | 1.95433 | -.12205
7.0 [ h.Thh5T)  .42655) 4.64420) .26687) 4.45896) .15005] 4.25555| .05873| 4.02068) -.00772 | 3-8168k |-.09410 [ 3.63091 | -.19839 | 3.48373| -.3370k | 2.87331 | -.24174 | 1.9559% | -.13081
7.5 [ k.72004 | 451k k.6kige | .28622| k.450M8| 16097 4.25800| .0628k| 4.01782| -.c0Th2 | 3.81711 [-.10015 | 3.63546 | -.21176 | 3.5043k | -.35900 | 2.87608 | -.25791 | 1.9576k | -.13944
8.0 | k.69325( .u7h6l | k64011 .3061k| 4.46013| .17205| 4.26083| .06695| 4.01553| -.00699 | 3-81727 |-.10617 | 3.63984 | -.22519 | 3.52695 | -.38013 | 2.87908 | -.27388| 1.95942 | -.14793
8.5 h.66u1T( 49553 | 4.63883 | .30696| 4.46091)| .18334| 4.26409| .07109| 4.01276| -.006kk | 3.81700 |-.11220 [ 3.64393 | -.23882 | 3.55166 | -.koorT | 2.88231 | -.28965 1.96128 | -.15628
9.0 | 4.63289| .51358( 4.63803| .3ho1k| 4.46180| .19491| 4.26783| .07526| 4.00946| -.00578 | 3.81658 |-.11829 | 3.64761 | -.25283 | 3.57857 | -.41878 | 2.88576 | -.30523 | 1.96322 | -.16450
9:5 | k.50970| .52808| 4.637hk [ .37318| h.46280| .20685| k.27210| .07951( 4.00559| -.00505 | 3.81590 |-.12451 | 3.65079 | -.26751 | 3.60775 | -.43553 | 2.889k9 | -.32062 | 1.96523 | -.17257
10.0 | 4.56522| 53631 4.63645| .39962| b.b6391| .2192k| 4.2769k| .08386| 4.00120| -.00427 | 3.8197 |-.1309k | 3.65345 | -.28320 | 3.63918 | -.4h9BB | 2.8934k | -.33583 | 1.96730 -.18050
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(8) @ =5% 9=0% M=2; r=3/4 p=0; Ap

TABLE III.- SINGLE WING VORTEX FORM

= 1
Vortex~induced velocities
r A - Al -y i A .
Vortex ) A 1 ) |k ) 2 2 1 1 1 1 Z
3 == J M5 +©® - ) [ I
No. j| 7V, I - @ -® ® @ xO/D|-Gx@ /D] 2 H onr 3
Ol ® | ® |®] 6 | ® | @ ® ® | @
1 0.12796 1.50870 00 0 (0] 0 0
2 -.12796 . 6628} 0 .8L4586 0 . 71548 -.15128 0 e "
-0.0266f
3 .12796 | -.66284%| 0| 2.1715k4 0 k.71559 .05893 0
4 ~.12796 |-1.50870 0] 3.017k40 0 9.10470 -.0k241 0
Crossflow velocities

n, +u tan a

(®: @)

©-®

-27; X @

/O

< @/

Au(@ + )

s(®+ @)

n, + (29

7\1+@

@

A2 @2
@

&)

©

@

@

®

0 2.27618 0 5.18100 2.27618 0 0.0383k 0 0.0097T4 0 0.0097% | 1.50870
Image vortex position
Lo+ Al tan a @x @ Ay + N, + @ + @2 + @2 )\2=@/ / o= = @+@)

@ | @ Q) 9 &) ® &)
il 0.08749 0.08749 1.50870 0.00974 0.09723 2.28563 0.66008 0.0L4254 -0.04495

gn
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TABLE III.- SINGLE WING VORTEX FORM
(b) @ =5% P=0°% M=2; r = 3/4; mw=1; Ap = 1- Concluded
Vortex induced velocities
Vortex Ty 5 e )\J M = Ny 2 Yy 7.\1 an, : 1 v
No. j V_o J nJ )\1_®nl_®@+©2 @X@/@ -@X@/@ 2"1‘2"]1 %27\1
®| ® ®| ® ® ® | @ ©) © @
1 ]0.12796 | 1.50870 [ 0.00974 | O 0 0 0 0
2 [-.12796 | .66008 | -.04kos5 | .84862 | .05469 .72315 -.15016 .00968
3 12796 | -.66008 | -.0Lk95 | 2.16878 | .05469 | 4.70660 .05896 -.001k49 -0.02835 | -0.00174
b ]-.12796 |-1.50870 | .00974 | 3.01740 |0 9.10470 -.0k241 0
Crossflow velocities
2
wrewal 2 |G (@0 | 00| B xB/O|xD/O | MO Oew(@+B) 1.+ O | 1+ @
@ D) © ©® @ €9 ) € &)
0.09723 2.27618 [ 0.00945| 5.22410 2.26673 -0.029338 0.03787 -0.00500 0.00952 -0.0067k 0.01926 1.50196
Image vortex position
H+ Ap | tan a @X@ )‘1+® HEL @ @ "' @2 & @2 )‘2=@/® @/@ 712='®+®
e | & € ) 2 B B) @ @
2 0.087T49 0.17498 1.50196 0.01926 0.19424 2.29361 0.65485 0.08469 -0.09029

“NACA
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NACA TN 3227

(a) Vapor-screen photograph.

(b) Calculated theoretical wing vortex wake.

Figure 1.- Vortex wake behind wing of high-aspect-ratio supersonic wing

and body combination at angle of attack.
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Vortex paths

Plan view
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Side view

Figure 2.- Geometry of the flow field.

Section |B—FB
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Aspect ratio = 2/3

r/Smax =90-2

M=2

10 vortices per wing panel

Figure 3.- Rolling up of a vortex sheet behind wing of subsonic leading-edge wing and body
configuration.
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NACA TN 3227

- Rolling up of a vortex sheet behind wing of supersonic leading-edge wing and body
configuration.
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56 NACA TN 3227

- - Wing vortices
{ —————— /mage vortices
Body crossflow
6 ,{ vortex
5 Q T
A
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o / 2 2 4 ) 6
Spanwise coordinate, A

(a) Aspect ratio = 2/3

Figure 6.- Contribution of wing vortices, image vortices, and body cross-
flow to total downwash at tail location for various aspect ratios.




(b) Aspect ratio = 2

Figure 6.- Continued.
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Downwash, €, deg

NACA TN 3227

-—— Wing vortices
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Body crossflow
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Figure 6.- Concluded.
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(b) Aspect ratio = 4, M = 2, r/sy = 0.2

Figure T.- Vortex paths behind two wing-body combinations at various
angles of attack.
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Vertical coordinate,

Spanwise coordinate, A
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(¢) Replot of figures T(a) and (b) against ua.

Figure 7T.- Concluded.
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- Wing vortices
{ ——————— /mage vortices
—ee—————_. _Body crossfiow
6
]
\ A vortex
— o
y vortex
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T 3 \ Aspect ratio =2/3
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/ ijng tip = /667
Avortex = 1.392
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Spanwise coordinate, )
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Figure 8.- Contribution of wing vortices, image vortices, and body cross-
flow to total downwash at tail location.
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Figure 8.- Continued.
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Figure 8.- Continued.
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Downwash, <, deg

NACA TN 3227
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Figure 8.- Continued.
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Figure 8.- Continued.
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Downwash, €, deg

NACA TN 3227
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Figure 8.- Concluded.
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Figure 9.- Vortex paths behind wings of 2/3-aspect-ratio triangular-wing
and body combinations with various ratios of body radius to wing
semispan r/sm.
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0 P 4 6 .8 1.0
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Figure 10.- Variation of single-vortex strength with body radius to wing
semispan ratio for subsonic leading-edge configuration.
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Figure 11.- Contribution of wing vortices, image vortices, and body cross-
flow to total downwash at tail location.
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Figure 11.- Concluded.
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Figure 12.- Comparlson of roll1ng up of vortex sheet behind wing-body

combination (A = 2/3, r/spm = 0.2) with wing alone.
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Figure 13.- Illustration of coordinates and dimensions of general wing-
body configuration.
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Figure 1k4.- Spanwise position of single vortex approximating circulation distribution.
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Figure 15.- Downwash along line
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Figure 16.- Calculated vortex path behind plane wing and body combination of example 1.
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Figure 17.- Calculated vortex paths behind plane wing and body combination of example 1.
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Figure 18.- Calculated vortex paths behind cruciform wing and body combination of example 2.
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Figure 19.- Calculated vortex path behind plane wing and body combination of example 3.
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Figure 25.- Effect of number of vortices on downwash at .tail location
for airplane-type configuration.
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L2ct NI VOWN

68



NACA TN 3227

el A

P(x,y)

Figure 27.- Forecone of integration for equation (B8).




- $5-12-6 - A918ueT-VOVN

0007

1.0
A~ ]
2 =
S e .8
N =
Q o
W
A A N
3|8 N .6
ol © o
|l =
\\a
SR
-
ol
-
|~ 8§
© W
§ h
~
5 2
0

Figure 28.- Comparison of corrected slender-body and linear theories at Mach line on wing

trailing edge.

o a8 [0}
\ r/5,=.8
%\ =
§\
4
2 3 4 5 6 7 8
Atan w

L22t NI VOWN

6



