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SUMMARY

The effect of a strong, negative pressure gradient upon the local
rate of heat transfer through a laminar boundary layer on the isothermal
surface of an electrically heated, cylindrical body of revolution with a
hemispherical nose was determined from wind-tunnel tests at a Mach number
of 1.97. The investigation indicated that the local heat-transfer para-
meter, Nu/~f§g; based on flow conditions just outside the boundary layer,
decreased from a value of 0.65 *0.10 at the stagnation point of the hemi-
sphere to a value of 0.43 #0.05 at the junction with the cylindrical
- afterbody. Because measurements of the static pressure distribution over

the hemisphere indicated that the local flow pattern tended to become
stationary as the free-stream Mach number was increased to 3.8, this dis-
tribution of heat-transfer parameter is believed representative of all
Mach numbers greater than 1.97 and of temperatures less than that of dis-
sociation. The local heat-transfer parameter was independent of Reynolds
number based on body diameter in the range from 0.6x10% to 2.3x106.

The measured distribution of heat-transfer parameter agreed within
+]18 percent with an approximate theoretical distribution calculated with
foreknowledge only of the pressure distribution about the body. This
method, applicable to any body of revolution with an isothermal surface,

combines the Mangler transformation, Stewartson transformation, and thermal

solutions to the Falkner-Skan wedge-flow problem, and thus evaluates the

heat-transfer rate in axisymmetric compressible flow in terms of the known
heat-transfer rate in an approximately equivalent two-dimensional incompres=-

sible flow.

Measurements of recovery-temperature distributions at Mach numbers
of 1.97 and 3.04 yielded local recovery factors having an average value

of 0.823 +0.012 on the hemisphere which increased abruptly at the shoulder

to an average value of 0.8L40 #0.012 on the cylindrical afterbody. This
result suggests that the usual representation of the laminar recovery
factor as the square root of the Prandtl number is conservative in the
presence of a strong, accelerating pressure gradient.




2 NACA TN 3344

INTRODUCTION

Due to the processes of friction and compression, a body moving
through the atmosphere accumulates as thermal energy a portion of its
mechanical energy of motion. The physiological, structural, and aero-
dynamic ramifications of this well-known fact in the realm of high-
speed flight constitute the aerodynamic heating problem. The present
status of knowledge insofar as the aerodynamic aspects are concerned will
be discussed in the following section. It is sufficient now to state on
the basis of a review of selected literature (refs. 1 through 25) that
the heat transfer through the surface of a supersonic vehicle can be pre-
dicted with confidence only when the heat path is through regions of
laminar flow and small pressure gradient. Because in supersonic flow a
constant-pressure surface has a sharp leading edge which is difficult,
if not impossible to cool (refs. 15 and 16), the practical vehicle for
sustained supersonic flight may, of necessity, be blunt. Although favor-
able to the promotion of laminar flow, the severe pressure gradients
associated with bluff bodies can result in heat-transfer rates quite dif-
ferent from those on constant-pressure surfaces. The heat-transfer char-
acteristics of the compressible boundary layer on bluff bodies are there-
fore required.

The present investigation has as its purpose the measurement in
supersonic flow of laminar-boundary-layer temperature-recovery factors
and local heat-transfer coefficients on the uniformly heated surface of a
hemisphere-cylinder. The experimental results are compared with a newly
developed method of approximate prediction which utilizes existing solu-
tions to the boundary-layer problem, and which is applicable to any bluff
body of revolution with an isothermal surface.

ANALYSTS

Status of Knowledge

The ultimate rate of heat transfer through a given type of boundary
layer (i.e., laminar or turbulent) has been found to depend upon the fluid
flow conditions characterized by Mach number and Reynolds number, the
fluid properties specified by Prandtl number, the surface temperature
distribution, and the body shape. In order to calculate the heat-transfer
rate from boundary-layer theory, the body surface is commonly assumed to
be a flat plate or axisymmetric. Effects of body curvature upon the pres-
sure distribution normal to the surface are neglected, and body-shape
effects are assumed to depend on the streamwise pressure distribution
alone. When dealing with bodies of revolution, an additional shape param-
eter must be considered which accounts for the variation of circumference
along the axis. However, because this additional shape parameter has been
shown to relate the axisymmetric boundary-layer flow with an associated
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two-dimensional flow (ref. 2), it is possible, without loss in generality,
to apply two-dimensional results to axisymmetric bodies.

A representative sample of the extensive literature dealing with
laminar-boundary-layer heat-transfer theory is given in references 3
through 11. The large body of analysis based upon integral methods of
solution has been excluded from this survey partly in the interests of
brevity, and partly because the accuracy of these integral analyses is
Judged by comparison with solutions such as those of references 3 through
11. Fluid-property and flow-parameter effects are stressed in references

3, 4, and 5. Nonisothermal surfaces are considered in reference 6. Pres-
sure gradient effects are studied in references 7 and 8. Effects of small

pressure and wall-temperature gradients are investigated in reference 9.
Both pressure-gradient and fluid-property variations are considered in
reference 10, and pressure-gradient and wall-temperature effects are dis-
cussed in reference 1ll. The results of these studies suggest that fluid-
property and flow-parameter variations exert a relatively mild influence
on the local heat-transfer coefficient. Pressure and wall-temperature
gradients, on the other hand, can produce local heat~transfer coefficients
which depart significantly from the isobaric and isothermal predictions.
The influence of shape is illustrated in reference 12 - which, inciden-
tally, presents an excellent account of methods employed to predict heat
transfer - wherein a procedure is developed for the calculation of laminar
heat-transfer coefficients about isothermal cylinders of arbitrary cross
section. The effect of nonuniform temperature upon the heat-transfer
coefficient in an application of practical interest is assessed in refer-
ence 13, which is a study of transient heating in a flat plate.

Accurate experimental verification of the laminar heat-transfer
theory has been obtained in cases where the surface temperature and pres-
sure were nominally uniform (refs. 14 through 17). Heat-transfer meas-
urements under conditions of nonuniform temperature are discussed in
reference 18. References 19 and 20 describe experiments in which local
heat-transfer coefficients were measured in supersonic flow on nominally
isothermal bodies with negative pressure gradients. In the former case
the pressure gradient was mild and the heat~transfer coefficient did not
depart significantly from the theoretical prediction for a constant-
pressure surface. On the other hand, in the latter experiment, the heat-
transfer coefficient was a strong function of the relatively severe pres-
sure gradient; however, since the data of reference 20 were obtained under
transient conditions in the presence of a surface temperature tending to
become nonisothermal, the validity of these results is uncertain.

Heat Transfer

According to the Newtonian Law of heat transfer, the thermal flow
through a unit area of the fluid in contact with an isothermal surface
is proportional to the difference between the actual skin temperature
and the skin temperature corresponding to no heat flow. The factor of
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proportionality, called the local heat-transfer coefficient, depends,
in cases of forced convection, upon the boundary-layer type, and the
flow, fluid-property, and pressure-gradient parameters mentioned pre- B
viously. For laminar flow, the local Nusselt number formed from the

local heat-transfer coefficient, the length of boundary-layer run, and

the local free-stream thermal conductivity can be combined with the local
Reynolds number into a local heat-transfer parameter, defined as the ratio

of the Nusselt number to the square root of the Reynolds number:

Nu _ bx/k
+/ Re /p1ul x
M1

(For Notation, see Appendix A.)

(1)

On the basis of available theory for isothermal surfaces, moderate
Mach number, and small temperature differences, one can reason that the
local laminar heat-transfer parameter on the blunt nose of a body of
revolution should lie within the interval 0.66 2Nu/s/ Re>0.30. The higher
value (at the stagnation point of a sphere) is predicted (for o = 0.7)
in reference 22 by neglecting compressibility; the lower figure is appli-
cable to a flat plate or a hollow cylinder with surface parallel to the
air stream.

No exact, simple expression can be written to predict the local heat-
transfer parameter for points on the surface of a body lying in regions
of arbitrary pressure gradients, although a number of approximate methods
are available (refs. 12, 23, and 24 for example). Another approximate
method - an adaptation of a technique described in reference 12 ~ which
is easy to apply to any body of revolution and promises to be fairly
accurate for uniform surface temperatures not greatly different from the
stagnation temperature - was developed in conjunction with the present
experimental investigation. This method has the advantage that no knowl-
edge is required of the velocity or temperature profiles in the boundary
layer; only the pressure distribution about the body need be known. The
main results of this analysis are summarized in the following paragraphs;
the details can be found in Appendix B.

Briefly, the method makes use of the transformations of Mangler,
(ref. 2) and Stewartson (ref. 25) to remove the problem from the axisym-
metric compressible plane to the approximately equivalent two-dimensional
incompressible plane. The local heat-transfer parameter on the axisym=-
metric body in compressible flow, Nu/./Re, is expressed in terms of the

corresponding parameters in two-dimensional incompressible flow, EE/J ﬁg, -
and two-dimensional compressible flow, Nu/ ﬁg, as follows:
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Nu = Nu/~F§g ﬁE/~/§§ Eﬁ (2)
N A =

The factor relating axisymmetric and two-dimensional compressible
flows (Mangler's transformation, ref. 2) is:

(3

This factor is specified completely by the shape of the body of revolu-
tion.

The factor arising from Stewartson's transformation (ref. 25) between
two-dimensional compressible and incompressible flows is:

37-1
N
Tu/f Re = (Eo

37-1

_— i—— —
/ X —
NU/ Re f <§i y-1 iz
a0,
Xo

This factor involves not only the streamwise body coordinate but also
changes in the local speed of sound just outside the boundary layer and

is rigorously valid only for vanishingly small heat transfer, Prandtl
number of unity, and viscosity proportional to temperature. The conse-
quences of relaxing the first two of these restrictions and the evaluation
of this factor in terms of known conditions in the axisymmetric compres-
sible flow are discussed in Appendix B.

To make practical use of equation (2) it is necessary to specify an
incompressible heat-transfer parameter which corresponds to some known
characteristic of the axisymmetric compressible flow. An approximate
correspondence can be established if the boundary-layer model of Fage
and Falkner is assumed for the incompressible plane. This wedge-flow
model, in which both the local free-stream velocity and the surface
temperature are proportional to arbitrary powers of the streamwise coor-
dinate so that velocity and temperature profiles through the layer at all
streamwise locations are similar, has been studied extensively. The loecal,

incompressible heat=-transfer parameter, ﬁﬁ/~/§g, has_been calculated for
the wedge flows over_wide ranges of Prandtl number Pr, temperature-
gradient parameter A, and pressure-gradient parameter ™ (refs. 10 and
and 11). According to this theory, the pressure-gradient parameter
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and the temperature-gradient parameter are constant over the wedge and
are related to the local flow, streamwise coordinate, and local surface
temperature as follows: *
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It has been shown (ref. 12, for example) that even though- the pressure-
gradient parameter m varies as a function of the coordinate, X, the
Fage and Falkner model can be applied locally to predict a corresponding
variation of local heat-transfer parameter. The agreement with experiment
is good, even though the theory is not rigorously applicable. The assump-
tion is therefore introduced that the last factor on the right-hand side . |
of equation (2) is defined on a local basis for a given Prandtl number ‘
and uniform surface temperature (A = O) by local values of the incompres-
sible pressure-gradient parameter, m. For convenience and consistency
it is further assumed that the incompressible pressure-gradient parameter
has its analogues in the two-dimensional compressible and the axisymmetric
compressible flows. The relation between pressure-gradient parameters in the
respective flows is taken to be:

- DO

where

du daM

dx W dx M \5 + M2
The right-hand side of equation (7) can be evaluated as a function of the
coordinate x for a body of revolution about which the local isentropic .

flow is known. The transformation factors (fi/m) and (f/m) on the right-

hand side of equation (6) can be calculated approximately in terms of

the local flow about the body of revolution, as is shown in detail in .
Appendix B. Thus a correspondence is established between the known
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pressure-gradient parameter, m, in the axisymmetric compressible plane
and the analogous parameter, m, in the incompressible two-dimensional
plane. One is therefore able to determine the last factor on the right-
hand side of equation (2) by recourse to the tables of references 10
and 11; and, consequently, the distribution of axisymmetric compressible
heat-transfer parameter Nu/J.Re can be established.

In the present investigation, the local heat-transfer-parameter
distribution on the surface of a hemisphere-cylinder is calculated using
the experimentally determined pressure-gradient parameter, m, according
to the foregoing method.

Recovery Temperature and Recovery Factor

When a body moves through the atmosphere the surface tends to assume
a temperature distribution, called the equilibrium temperature distribu-
tion, such that the local heat transfer at each point is a minimum. In
the absence of radiation and internal heat flow the minimum heat transfer
is zero; this equilibrium distribution is called the recovery-temperature
distribution, and the body is said to be insulated. Since a spot on the
surface can assume a temperature no greater than its local recovery tem-
perature, the question of how hot a body can possibly become for given
flight velocity and ambient temperature can be answered by investigating
the properties of insulated bodies.

The recovery temperature at a point on an insulated body is specified
by the sum of the local free-stream temperature Jjust outside the boundary
layer and the temperature rise across the boundary layer. The temperature
rise across the boundary layer depends upon the boundary-layer type and
the dimensionless flow, fluid property, and body-shape parameters mentioned
previously. It is convenient to compare the actual temperature rise
across the boundary layer with the rise which would occur if the local
free stream were brought to rest adiabatically. In the notation of
Appendix A, the ratio so obtained can be written

Iy =04
Cp = ——— (8)
Tt -Tl

The factor C, 1is called the temperature-recovery factor and has a dif-
ferent value for laminar than for turbulent boundary layers.

With the aid of analogue computers and numerical integrations, the
local laminar recovery factors on an insulated flat plate in air have been
deduced (ref. 3, 4, and 5) for a wide range of local free-stream velocities
and temperatures. It is interesting to note that one can correlate these
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recovery factors as a function of the sum of the local free-stream tem-
perature T; and the stagnation temperature T, provided the air does
not dissociate. The flow parameters (Mach number and Reynolds number)
do not enter the correlation explicitly. If the sum of T; and Ty does
not exceed about 2000° Rankine, the recovery factors predicted in refer-
ences 4 and 5 can then be approximated within 1 percent by the following
equation:

CI‘ = L5 T‘t""Tl) (9)
2

where Pr is the Prandtl number evaluated at the arithmetic mean
(T4+T1/2)

of the local free-stream and the stagnation temperatures. If the sum of
Ty and T 1is greater than 2000° Rankine, equation (9) does not hold, and
it is desirable to utilize the predictions of references 3, 4, and 5
directly.

Although the influence of pressure gradient on the local laminar
recovery factor has been calculated theoretically for two-dimensional,
constant-property wedge flows, slight disagreement exists among the
numerical results of four independent determinations of the recovery fac-
tor at a stagnation point (ref. 21). The extremes of the various computa-
tions range from a prediction of no change to a prediction of a 5-percent
decrease in recovery factor from the constant-pressure value. Thus, the
validity of equation (9) in regions of nonzero pressure gradient can best
be determined by experiment.

In the present investigation the equilibrium-temperature distribu-
tion on the surface of a hemisphere with a cylindrical afterbody was
measured, assumed to be the recovery-temperature distribution, and com-
bined with the local free-stream temperature and the stagnation tempera-
ture according to equation (8) to test the applicability of equation (9)
in a strong pressure gradient. For reasons to be discussed later, the
equilibrium temperature close to the stagnation point of the test body
was significantly different from the recovery temperature. Hence, in this
region the recovery factor was estimated by combining the theoretical
results of references 4 and 5 with that of reference 21 which produced
the best fit with the valid portion of the data. Once the recovery factor
was known, the recovery temperature (necessary for reduction of heat-
transfer data) was found from equation (8) rewritten:
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APPARATUS AND PROCEDURE

Wind Tunnels

The present experimental investigation was conducted in the Ames
1- by 3-foot supersonic wind tunnels No. 1 and No. 2. Wind tunnel No. 1
is of the closed-circuit, continuous-operation, variable-pressure type
and is equipped with a flexible-plate nozzle that provides a range of
Mach numbers from 1.2 to 2.5. The absolute pressure in the tunnel set-
tling chamber can be varied from one-fifth of an atmosphere to three
atmospheres to provide changes in the test Reynolds number. The absolute
humidity of the air is maintained at less than 0.0001 pound of water per
pound of dry air so that the effects of water vapor on the supersonic
flow are negligible. The No. 2 wind funnel is of the intermittent-
operation, nonreturn, variable-pressure type and uses the dry air at high
pressure (six atmospheres absolute) from the Ames 12-foot wind tunnel.
The air is expanded to atmospheric pressure through the 1- by 3-foot test
section, which is structurally identical to that of wind tunnel No. 1.
The Mach number can be varied from about 1.2 to 3.8. The steady running
time available for each test depends largely on the test Mach number and
varies from about 18 minutes at a Mach number of 2.9 to 5 minutes at a
Mach number of 3.8. The total pressure in the wind-tunnel settling chamber
is controlled by means of a butterfly throttling valve in the supply pipe.
Because the air in the supply system expands during each test, the stag-
nation temperature decreases with time; the maximum rate of decrease is
about 4O F per minute. Although thermal equilibrium is never achieved,
it is possible to obtain valid temperature data under certain operating
conditions. Wind tunnel No. 2 was used for some of the tests because it
provides higher Mach numbers and Reynolds numbers than wind tunnel No. 1.

Test Body

A hemispherical nose shape was selected for the test body in the
present investigation. Considerations of experimental convenience (such
as ease of construction, mounting, and testing) and the precedent of con-
siderable theoretical background dealing with flow about spheres combined
to suggest the hemisphere as the test body. The L-inch diameter hemi-
spherical nose had a cylindrical afterbody with a length limited to 3
inches to avoid intersecting the reflection of the bow shock wave from
the wind-tunnel walls. Three sting-supported models of the test body
were constructed, each having the same external size and shape, and sur-
face roughnesses (less than about 20 microinches). The instrumentation
housed in each and the sting-support details, however, were different.

Pressure-distribution model.- The pressure-distribution model
(fig. 1(a)) made from aluminum, had a wall thickness of one-half inch.
Twenty-two 0.031l-inch-diameter static-pressure orifices were placed on

the surface in a plane passing through the axis of revolution (meridian
plane). Brass plugs containing the drilled orifices were pressed
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into 3/16-inch-diameter, 3/8-inch-deep holes in the aluminum. Copper
tubing attached to the plugs passed radially through 0.064-inch-diameter
holes into the model cavity and emerged through a 2-inch-diameter hollow
sting threaded into the base. Each plug and tube was coated with an
alkyd resin before insertion to prevent leaks between the cavity and the
surface.

Recovery-temperature model.- The recovery-temperature model

(fig. 1(b)), made from stainless steel, had, except for the afterbody,

a nominal wall thickness of 0.020 inch. The thickness of the cylindrical
portion increased linearly from 0.020 inch at its Jjunction with the hemi-
sphere (shoulder) to 1/8 inch at the point of attachment of the 1/2-inch-
thick base ring. The thin wall served to minimize both the heat capacity
of the model and the longitudinal heat conduction within the shell.
Stainless steel was used because of its low thermal conductivity relative
to other metals. Twenty-four constantan wires were soldered into holes
in the surface lying in a meridian plane, as shown in figure 1(b). A
single stainless-steel wire connected to the inside of the shell near

the base completed the return circuit for the twenty-four stainless-
steel-constantan thermocouples. The thermocouple wires were brought into
the 2-inch-diameter hollow sting through a pressure-tight fitting in the
base. The assembly was calibrated in a liquid bath. A copper tube com-
municating with the model cavity was provided so that the internal air
pressure could be reduced to less than 400 microns (0.0l6-inch Hg) abso-
lute to minimize internal heat transfer due to free convection.

Heat-transfer model.- The heat-transfer model (fig. 1(c)) was a
stainless-steel shell which formed the resistance element of the low-
voltage, high-amperage electrical circuit used to heat the body. The
circuit was arranged so that a 60-cycle alternating current could be passed
longitudinally through the shell, entering through a copper bus bar imbed-
ded in the nose, and leaving through a copper collector ring which formed
the base. The interior surface of the shell was contoured to provide an
effective thickness distribution, and therefore a resistance distribution,
which was proportional to the expected heat-removal capabilities of the
air stream when the temperature was uniform. Twenty-two copper-constantan
thermocouples were soft-soldered in holes drilled through the shell in a
meridian plane, with the thermocouple Jjunctions within 1/32 inch of the
outer surface. The spacing is indicated in figure 1(c). The wires ter-
minated at a selector switch outside the wind tunnel which was arranged
so that, on alternate sides of the body, succeeding pairs of the copper
wires which formed one side of each copper-constantan thermocouple cir-
cuit could be utilized as taps to measure the A.C. voltage drop existing
along any 12° arc on the hemisphere. A simultaneous indication of tem-
perature could be obtained from the thermocouple lying within the same
interval but displaced 180° about the axis. The stations on the afterbody
were spaced the same distance apart as were those on the hemisphere. To
prevent heat generated in the nose from flowing by conduction into the
3/4-inch-diameter copper feeder bus bar, an independently controlled elec-
trical heating coil, wound on an aluminum spool, surrounded the bus bar.
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The temperature within the bus bar was monitored with iron-constantan
thermocouples, and the power supplied to the heater was adjusted to mini-
mize the temperature gradient in the bus bar between the shell and the
heater.

A photograph of the heat-transfer model installed in wind tunnel
No. 1 is shown in figure 1(d).

Instrumentation and Accuracy

The experimental data leading to evaluation of the recovery factors
consisted of pressure and temperature measurements. Static and total
pressures were measured by conventional methods with a relative error of
+1 percent in the worst case. Temperatures were obtained from thermo-
couple voltages sensed on either indicating or recording potentiometers
that were accurate to +0.25° F. However, in wind tunnel No. 1 an addi-
tional uncertainty, due to a ragged temperature distribution in the set-
tling chamber, limits the probable accuracy of the temperature determina-
tions in this wind tunnel to 11.50 F. In the worst case the relative
error of the temperature determination was *0.5 percent. Heat transfer
due to radiation was estimated and found to be negligible.

The evaluation of Nusselt number required, in addition to pressures
and temperatures, the measurement of the local voltage drops along the
model surface and the total current flowing in the electrical heating
circuit. Local voltage drops, which ranged from 0.0025 to 0.03 volts,
A.C., were measured with an electronic voltmeter having a relative error
of +3 percent. The current, which varied from 650 to 900 amperes, was
measured with a relative error of *1 percent.

The actual centers of the measuring stations on the test bodies cor-
responded to the nominal locations (fig. 1) within *0.005 inch. Surface
areas of the segments on the heat-transfer body were calculated using the
nominal nose radius of 2 inches and the nominal station locations. The
fluid properties of viscosity and thermal conductivity corresponding to
the calculated local static temperatures were taken from curves prepared
from the tables of reference 26.

The probable error of the principal parameters, based on the probable
error with which each individual component could be determined, can be
summarized as follows:

Percent
Mach number, M E il
Reynolds number, Re =20
Recovery factor, Cp 1.5

Nusselt number, Nu +15
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The precision of the recovery-factor measurement, which is somewhat less
than that possible on a constant-pressure surface, includes an uncertainty
due to heat conduction in the shell of the test body. Likewise, the
accuracy of the Nusselt number measurement includes an allowance for
slight nonuniformity of the heated-surface temperature.

Tests

Each test body was oriented in the wind tunnels so that the meridian
plane containing the instrumentation coincided with the vertical plane of
the test sections. All bodies were adjusted to an angle of attack of 0°
+0,1°, Axial location in the tunnels was selected on the basis of wind-
tunnel-calibration data to minimize effects of local-pressure-gradient
and stream-angle variations. Observations with schlieren optical systems
indicated that the boundary layers on the hemispheres were laminar for
all test conditions in both wind tunnels. Wind-tunnel conditions for
each series of tests are given in table I.

Pressure-distribution tests.- Static-pressure distributions obtained
in wind tunnels No. 1 and No. 2 were converted to local Mach number varia-
tions about the body. Isentropic flow was assumed to exist behind the
bow shock wave in the stream tube just outside the boundary layer; the
static pressure across the boundary layer was assumed to be constant so
that pg = p;. To check the isentropic-flow assumption, an impect tube
formed from stainless-steel tubing was soldered into the rearmost orifice
on the afterbody. This tube was situated so that the mouth was normal
to, and one-eighth inch from the body surface, and at the same station as
the preceding static orifice. Schlieren-system observations verified that
the opening was Jjust outside the boundary layer at all Reynolds numbers.
The impact and static-pressure measurements at this station allowed, with
the aid of Rayleigh's pitot-tube equation, independent determinations of
local Mach number which agreed well with those obtained with the isentropic
flow assumption.

A check run in wind tunnel No. 1 with the pressure orifices in the

horizontal plane (l-foot dimension in wind tunnel) revealed no flow asym-
metries.

Temperature-distribution tests.- In wind tunnel No. 2, the surface-
to-stagnation-temperature ratios at all stations ceased to change as a
function of elapsed testing time after an interval of about seven minutes.
This was taken as an indication that the starting transient had died away
and that a quasi-steady state of thermal equilibrium existed on the test-
body surface. No data which were considered valid could be obtained at
a test Mach number of 3.8 because the duration of run did not exceed 5
minutes. The possible errors due to the small but finite heat transfer
which accompanied the stagnation-temperature drift were evaluated at
M, = 1.97 by comparing the constant values of the surface-to-stagnation-
temperature ratios obtained in the intermittent-operation wind tunnel
(No. 2) with those obtained under steady-state conditions in the
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continuous-operation wind tunnel (No. 1) at nearly the same test Reynolds
number. This comparison disclosed that the agreement was good except
close to the nose of the test body.

In wind tunnel No. 1 the steady-state value of the surface-to-
stagnation-temperature ratio at the stagnation point of the hemisphere
did not reach unity. To determine if this were caused only by heat losses
in the shell (conduction and internal free convection), or could possibly
be due also to nonadiabatic compression along the stagnation streamline,
the constantan wire at the stagnation point was replaced with a sleeve of
l/l6—inch—O.D. stainless steel tubing having a length of approximately
1/2 inch. The sleeve was flush with the outer surface and provided sup-
port for a 30-gage, glass-insulated, iron-constantan duplex thermocouple
wire which was slipped through from the interior of the model. The 1/32-
inch-diameter junction, which was approximately spherical, was cantilevered
upstream on a l/H-inch-long bared portion of the 0.010-inch-diameter
thermocouple wires. The axial location of the Junction could be varied
by sliding the insulating sheath in the sleeve. The temperature obtained
from this thermocouple was closer to the wind-tunnel stagnation temperature
than it was to the temperature measured by the thermocouples imbedded near
the nose of the model shell, showing that due to heat conduction, the true
recovery temperatures were not obtained near the stagnation point.

Heat-transfer tests.- The heat-transfer experiments were carried out
under steady-state conditions in wind tunnel No. 1. The heating current
which produced the most uniform surface temperature was found experimen-
tally at each test Reynolds number, at which time the local voltage drop
and surface-temperature distributions were recorded. The local Nusselt
number was formed from the measured quantities as follows:

hx _ g _Q//xN_ 1 ‘B(.’E_)(_l_
ki (Ts - Tr)ky dA\k1/Ts - T  OA\kp Ts -~ Tp

5

Nu

s kIAE <_x_ (11)
DA(Tg - T) \ k1

Because it was the purpose of this investigation to isolate the
effect of pressure gradient upon the local heat-transfer parameter from
the nonuniform temperature effect, considerable effort was expended in
obtaining a constant surface temperature. Four trials were required to
achieve a heating distribution which yielded a reasonably isothermal sur-
face. The thickness distribution (resistance distribution) of the shell
and the method of joining the feeder bus bar to the nose were improved
between trials on the basis of the experimental results of each previous
test. The shape of the inner surface in the vicinity of the stagnation
point (fig. 1(c)) was a contour with the equation of a streamline obtained
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from the solution of a well-known problem in potential flow - the flow
inside the sphere obtained when a space doublet is combined with a uniform
stream. The soft-soldered joint between the copper bus bar and the
stainless-steel shell was made on the equipotential surface passing through
the stagnation point.

Because the inner surface of the shell could not be machined to the
desired contour with the required accuracy, the resistance was corrected
to within *#10 percent of the desired distribution by a process of selective
electroplating with copper. The technique employed was as follows: After
chemical cleaning, the inaccurately contoured model was supported nose
down, and the interior, unobstructed except for the feeder bus bar, was
electroplated with a flash-coat of nickel, followed immediately by a flash
of copper deposited from a cyanide electrolyte. Provision was then made
for filling the interior to any desired level with carbon tetrachloride
supporting a film of copper sulphate solution approximately 1/8 inch deep.
With a washer-like anode of copper suspended in the electrolyte, an annular
band of copper could be deposited or removed from any desired elevation on
the inner surface of the model. When a small current was passed through
the heating circuit, plating progress could be observed and controlled by
measuring the change in voltage drop between externally mounted taps.

RESULTS AND DISCUSSION

The results of the local static-pressure, recovery-temperature, and
heat-transfer measurements on the 4-inch hemisphere-cylinder are presented
in figures 2 through 4 with the distance along the surface in a meridian
plane (arc length) as the independent variable. The arc length x is
normalized with respect to the body diameter D. The test Mach number
M, 1is that of the free stream; the test Reynolds numbers Rep are based
on conditions in the free stream, with the body diameter as the reference
length. Local parameters, (My, Re, Nu, etc.) are based on conditions in
the local flow Jjust outside the boundary layer. The reference length,
where required, is the arc length x.

Pressure Distribution

The static-pressure distributions measured about the hemisphere-
cylinder at test Mach numbers of 1.97, 3.0&, and 3.80 in wind tunnel No. 2
are presented in coefficient form in figure 2(a). The pressure coeffi-
cients about a sphere for inviscid incompressible flow, and for compres-
sible flow at a Mach number of infinity according to Newtonian theory
(ref. 27) are included for comparison. The measured pressure coefficients
were independent of Reynolds number throughout the range covered. The
size of symbols at each station (fig. 2(a)) outlines the extent of the
experimental scatter and variation with Reynolds number. Although not
evident from the figure, orifices lying between locations from x/D = .03




NACA TN 334k 13

to x/D = 0.45 encompassed the sonic zone on the hemisphere and tended
to give erratic pressure indications unless each hole was carefully
cleaned of minute deposits of foreign matter. The values of pressure
coefficients obtained from the tests in wind tunnel No. 1 fall within
the symbols drawn around points obtained at the same Mach number in wind
tunnel No. 2. The pressure distribution obtained in wind tunnel No. 1
with the orifices in a horizontal plane agreed with that obtained with
the orifices in a vertical plane.

The local Mach number distributions derived from the pressure-
coefficient data and the Newtonian theory (ref. 27) are presented in
figure 2(b). Also included are the results of the determination of local
* Mach numbers (at x/D = 1.16) by impact and static-pressure measurements.
The two methods of measurement agree within 1.5 percent in the worst case.

A tendency is noted in figure 2(b) for the increase in local Mach °
number at a given station x/D to become progressively less as the Mach
number of the oncoming stream M, is increased by an approximately fixed
increment. This trend is in accordance with the theory of reference 28,
which predicts that the entire flow pattern about an arbitrary body tends
to become stationary as the free-stream Mach number is increased. More-
over, because the significant (hypersonic similarity) parameter is a
function of the product of the thickness ratio and the Mach number, the
flow pattern about a bluff body "freezes" at a lower value of the Mach
number than is the case for a slender body. Because in the case of the
hemisphere-cylinder the local Mach number curves are similar in shape,
the pressure-gradient parameter m (eq. (7)) is a function principally
of the arc length, x/D, and depends but little upon the Mach number of
the oncoming stream. Hence, any dependence of the local heat-transfer
coefficient upon the free-stream Mach number and upon the pressure-
gradient parameter would be expected to become smaller and smaller as Mg
increases.

Temperature Distributions and Recovery Factor

Typical temperature distributions obtained from the recovery-
temperature model in wind tunnel No. 1 at a test Mach number of 1.97 are
presented in figure 3(a). The temperature measured with an isolated
thermocouple projecting 1/16-inch upstream of the stagnation point
(plotted at x/D = 0; Ty/Ty = 1.0000 +0.0013) indicates that the reduced
temperature near the nose of the unheated surface is due to conduction
in the model shell. The two experimental distributions shown correspond
to the two highest test Reynolds numbers and, accordingly, the least
serious conduction effects. They illustrate the extent to which conduction
influenced the equilibrium temperatures near the stagnation point under
the two most favorable test conditions. The coalescence of these two
curves at values of x/D greater than 0.35 was taken as an indication
that the equilibrium-temperature distribution beyond this point was a
close approximation to the recovery-temperature distribution. Also pre-
sented in figure 3(a) are temperature distributions obtained from the
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heat-transfer model with power inputs adjusted to produce the most uni-
form surface temperatures.

The temperature-recovery factors (fig. 3(b)) computed from the
equilibrium-temperature data (fig. 3(a)) and the local Mach number data
(fig. 2(b)) are inaccurate for values of x/D less than about 0.35 for
the reasons outlined above. The recovery factors measured at a Mach
number of 1.97 in the intermittent-operation wind tunnel (No. 2) agree
well with those obtained from measurements in the continuous-operation
wind tunnel (No. 1) for values of x/D between 0.35 and 0.90. The
recovery factors on the hemisphere have, for x/D greater than 0.35, a
mean value of 0.823 #0.012 which rises on the afterbody to a mean of 0.8L40
+0.012 in the case of wind tunnel No. 1. The increasing recovery factors
measured on the cylindrical afterbody at values of x/D greater than about
1.1 in wind tunnel No. 2 are believed to signify the onset of transition
to turbuplent flow. The recovery factor at Mg = 3.04 is lower than that
at Mg = 1.97. This decrease may be due to the slightly more severe pres-
sure gradient at M, = 3.04; however, the difference is of the same order
of magnitude as the probable accuracy of the measurements.

Also included in figure 3(b) are the recovery-factor predictions for
a Mach number of 1.97 of constant-pressure variable-property theory, and
of an empirical combination of constant-pressure theory and pressure-
gradient theory for laminar flow derived below. The curve representing
the constant-pressure theory was obtained from a graph prepared from the
recovery-factor information given in references L4 and 5. Values of the
recovery factor were selected from the graph to correspond with the known
stagnation and local static temperatures of the test. This method, cor-
responding to the dashed curve (fig. 3(b)), predicts a slight increase of
recovery factor with arc length on the hemisphere-cylinder, and it agrees
well with the data for the cylindrical afterbody, but lies slightly above
the data for the hemisphere. Although the recovery factor defined by a
mean line passed through the valid portion of the data on the hemispher-
ical nose is not more than 2 percent below the recovery factor for the
cylindrical afterbody, and, consequently, the effect of pressure gradient
can probably be disregarded in practice, the decrease in level can be
predicted very closely, at least in the case of the hemisphere at
Me = 1.97, by an empirical method which was used to compute the solid
curve presented in figure 3(b). This latter recovery-factor curve, which
was subsequently utilized to calculate recovery temperatures (eq. (10))
for the reduction of heat-transfer data, was obtained as follows: Recovery
factors computed for a constant-pressure surface were assumed to differ
from those for the same flow conditions but with arbitrary pressure
gradient by a factor depending only upon the pressure-gradient parameter m
(eq. (7)). Further, the recovery factors tabulated in reference 21,
which apply to two-dimensional incompressible flow, were assumed to vary
linearly with the incompressible pressure-gradient parameter @ between
the tabulated values for @ = O and @ = 1. The empirical equation embody-
ing these assumptions is written:
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Cr = Cry_o(1 - bf)
where
Cr
b =1 - AB=L) (12)
(o)

The recovery factors predicted for the hemisphere-cylinder at M, = 1.97
by equation (12) are shown as the solid curve on figure 3(b). A value

of b = 0.023, corresponding to the calculations of Levy and Seban

(ref. 21) was used. The appropriate values of m were obtained from the
local Mach number distribution (fig. 2(b)) and equation (6).

The recovery factors measured at a Mach number of 1.97 lie slightly
above the predicted curve in the interval from x/D = 05258660 X/D = (05740}
This local maximum can be traced to a bulge faintly discernible in the
corresponding equilibrium-temperature distributions (fig. 3(a)) which
covers the same interval of arc length. Although the reason for this
bulge is not known, it was characteristic of all the equilibrium-
temperature data, and, as will be seen later, corresponds to the zone on
the heated hemisphere where the heat-transfer rate is a maximum. It can
be concluded from figure 3(b) that the local recovery factor on the
hemisphere-cylinder may be predicted within *1 percent by the foregoing
method.

Heat Transfer

The measure of* success realized in obtaining an isothermal surface
on the heat-transfer model has already been indicated in figure 3(a).
The maximum variation of the measured surface temperatures about a mean
line representlng a constant temperature is about £2. 5 F at Mg = 1.97
and Rep = 2. 3x108. The maximum gradient of surface temperature, which
extends over about one-tenth of the instrumented length is about 80° F per
foot. The temperature potential, Tg - Ty, varies continuously on the
hemisphere from a minimum of 35° F at the stagnation point to a maximum
of about 72° F at the shoulder. The heat-transfer data taken under the
conditions of nonuniform surface temperature, which existed during the
first three attempts to achieve an isothermal surface, yielded heat-
transfer parameters which departed considerably from those obtained with
the final shell configuration. The reasons for this are two-fold: First,
the nonuniformity of surface temperature was accompanied by heat conduction
within the shell which rendered invalid the assumption that heat gener-
ated locally was transferred into the stream locally (eq. (11)). This
can be considered to be an experimental error. Second, as has been dis-
cussed in reference 6, the heat-transfer parameters for nonisothermal
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surfaces are significantly different from those on constant-temperature
surfaces because local conditions depend upon boundary-layer history;
hence, the measurements contain large contributions due to the temperature
nonuniformities. Although the results of the final attempt to obtain a
uniform surface temperature are not entirely free from the foregoing
effects, the surface temperature is believed to have been sufficiently
uniform that valid conclusions can be drawn from the heat-transfer data.

The distribution of the local heat input along the surface of the
shell which was built into the body is presented in figure L4(a). The
incremental voltage drop across equal intervals of arc (normalized with
respect to the voltage drop at the shoulder) is plotted as a function of
x/D. The points represent the distribution measured in wind tunnel No. 1
at Mg = 1.97 throughout the Reynolds number range; the scatter is due to
voltage-reading errors. The curve represents the theoretical variation
which it was desired that the model should possess. It is emphasized
that the experimental heat-input distribution was invariant (i.e., it
could be reproduced under no-wind conditions and could not be altered
during a run) and accurately defined the heat-transfer rate at a given
location only when power input and exterior cooling conditions yielded
an isothermal surface.

The measured local heat-transfer-parameter distribution, Nu/vrﬁg,
corresponding to the most uniform surface temperature conditions on the
body, is compared in figure 4(b) with the distribution predicted by the
present theory. The data depart from the predicted curve by values of
*+18 percent at most. However, due to the approximations employed in its
development, the theory is subject to errors of unknown magnitudes. The
experimental results, on the other hand, have a known uncertainty of about
+15 percent. Upon comparison of the theoretical with the experimental
distribution, it appears probable that the theoretical distribution pro-
vides a closer representation of the local isothermal heat-transfer param-
eter on the hemisphere-cylinder than does the experimental distribution
because the data deviate from the predicted distribution both in magnitude
and sense in a manner which is easily explained upon examination of fig-
ures 3(a) and 4(a). The data tend to lie above the predicted curve in
zones where the built-in heat production was too great (fig. 4(a)) and the
measured temperature potential was too low due to internal conduction
(fig. 3(a)); and they tend to lie below the theoretical curve where the
converse was true. For these reasons, and as a result of careful analysis
of figure 4(b), it is believed that the theoretical curve contains an
uncertainty of not more than *7 percent.

The increasing scatter of the data at values of X/D less than 0.25
is caused by the decrease in local Nusselt number and local Reynolds
number as the stagnation point is approached, while the absolute error
of measurement remains fixed. Within the accuracy of measurement, however,
the heat-transfer-parameter distribution on the hemisphere-cylinder is
independent of test Reynolds number throughout the range covered.




NACA TN 334k 19

Also shown in figure 4(b) are the theoretical isothermal-surface,
local heat-transfer parameters for the stagnation point of a sphere
(ref. 22), a cone-cylinder in supersonic flow (refs. 2 and 6), and a flat
plate (ref. 6). The stagnation-point prediction of reference 22 agrees
well with the data and is in excellent agreement with the forecast obtained
by the present method. The comparison between the cone-cylinder theory
and the hemisphere-cylinder theory illustrates the effect of favorable
pressure gradient upon the local heat-transfer parameter, and indicates
that the local heat-transfer parameter on the hemisphere decreases from
a value at the stagnation point about 27 percent greater than that on
the cone to a value at the shoulder about 20 percent less than on the
cone. The conical tip selected for this comparison has a half-angle, a,
of 39.50, so that the shoulders of both bodies occur at x/D = n/h. The
theoretical heat-transfer parameters on the cylindrical afterbody approach
the flat-plate value asymptotically.

The tendency for the local flow pattern about the hemisphere-cylinder
to become stationary as the free-stream Mach number is increased has
already been noted. On the basis of this observation it was inferred
that the distribution of isothermal local heat-transfer parameter about
the hemisphere-cylinder also tends to become stationary as the free-
stream Mach number is increased. The experimental results at a Mach
number of 1.97 are for this reason expected to be representative of all
higher free-stream Mach numbers, provided that temperatures do not exceed
that of dissociation. Furthermore, because the local Mach numbers are
not arbitrarily large, it appears that any theory capable of predicting
boundary-layer characteristics for an arbitrary but constant Prandtl
number can be applied with good results to the flow about a bluff body
throughout a wide range of free-stream Mach numbers.

CONCLUSIONS

To determine the effects of strong pressure gradient upon aerodynamic
heating and heat transfer, distributions of static pressure, recovery
temperature, and isothermal-surface heat-transfer rate have been measured
on a hemisphere-cylinder with laminar boundary layer in supersonic flow.
Analysis of these data and comparison of the results with predictions of
various theories prompt the following conclusions:

l. In accordance with the hypersonic similarity theory of
Oswatitsch, the local flow pattern about the hemisphere tended to become

stationary as the free-stream Mach number was increased to 3.8. Since the

corresponding maximum local Mach number was only about 2.5, it appears
that boundary-layer characteristics for bluff bodies in hypersonic flow
can be adequately predicted by theories in which the Prandtl number is
an arbitrary constant.
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2. Although the recovery temperature did not exist close to the
stagnation point of the test body, due to longitudinal heat conduction
within the model shell, the results show that the strong favorable 3
pressure gradient tends to decrease the laminar recovery factor, based
on local flow conditions just outside the boundary layer, from the
constant-pressure value of 0.840 *#0.012 on the afterbody to a value of
about 0.823 +0.012 on the hemisphere. This decrease could be predicted
within *] percent by an empirical expression which combines the constant-
pressure variable-property calculations of Young and Janssen and of
Klunker and McLean with the constant-property wedge-flow calculations
of Levy and Seban. This result suggests that the usual approximation
of the laminar recovery factor by the square root of the Prandtl number
is conservative in flows having strong pressure gradients.

3. The isothermal heat-transfer parameter, Nu/~/Re, based on local
flow conditions Jjust outside the laminar boundary layer, was independent
of Reynolds number and agreed within about *18 percent with a method
of approximate prediction developed herein. This method, which requires
foreknowledge only of the pressure distribution about a body of revolu-
tion, predicts a distribution of local isothermal heat-transfer parameter
on the hemisphere-cylinder believed to be in error by not more than
' percent. Because of the tendency for the local flow pattern to become

| independent of the free-stream Mach number, it is believed that these
| results are representative of all free-stream Mach numbers greater than =
about 2 and at temperatures less than that of dissociation.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Sept. 1, 1954
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APPENDTIX A
NOTATION
A area, -sq ft
a speed of sound, ft/sec
B constant, £t A
b constant
c constant
Cr recovery factor, Ei—:—gi , dimensionless
= A
Cp constant-pressure specific heat, ftz/secz, OF
Cy constant-volume specific heat, ftZ/sec2, °rF
D diameter, ft
E electrical potential, volts A.C. rms
f boundary-layer stream function, dimensionless
G constant
g acceleration of gravity, ft/sec2
h heat-transfer coefficient, Es_%—T_r s Thilunisec, rte, O
i electrical current, amp. A.C. rms
K thermal conductivity coefficient (body), ft-lb/sec, 15 CK
k thermal conductivity coefficient (air), ft-1b/sec, °F, ft
M Mach number, %, dimensionless
m pressure -gradient parameter, %E% 5% » dimensionless
Nu Nusselt number,-%f , dimensionless
1

P pressure, lb/ft2
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C
Prandtl number, —%— , dimensionless

average heat-transfer rate, fqu, ft-lb/sec

heat-transfer rate per unit area, <;k %i , ft-1b/sec, sq ft
Y/ s
Prur X .
local Reynolds number, , dimensionless
Al
PgoooD

test Reynolds number, , dimensionless

Hoo
gas constant, ft2/sec2, °F
distance from axis of revolution to body surface, ft
radius, ft
boundary-layer temperature function, dimensionless
boundary-layer temperature ratio, é% , dimensionless
absolute temperature, i
shell thickness, ft
velocity, ft/sec
velocity in transformed coordinate system, ft/sec
velocity normal to surface, ft/sec
distance from nose along body generator, ft
transformed variable normal to surface, secl/2
space coordinate normal to body surface, ft

transformed coordinate parallel to surface, ft

cone half-angle, deg

1-m
constant, vy
) i Cp i
specific heat ratio ( &= = 1.4) , dimensionless
v

indicates finite-difference approximation to differential operator
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n boundary-layer coordinate normal to surface, dimensionless
K constant, ft-lb/watt, sec
A exponent in surface-temperature-distance relation, dimensionless
M absolute viscosity, lb-sec/ft2
v kinematic viscosity, %, £t2/sec
[¢] mass density, slugs/ft8
s stream function, ft/sect/?
Subscripts
t stagnation condition
0 main-stream condition
0 reference condition
al local condition just outside boundary layer
S local condition on body surface
e equilibrium, surface-temperature conditidn
T recovery, surface-temperature condition

Quatities provided with two bars refer to two-dimensional incompres-
sible flow; quantities provided with one bar refer to two-dimensional
compressible flow; unbarred quantities refer to axisymmetric compressible
flow.
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APPROXIMATE CALCULATION CF LAMINAR HEAT-TRANSFER PARAMETERS

ABOUT BODIES OF REVOLUTION IN SUPERSONIC FLOW

The purpose of this appendix is to describe an approximate means for
calculating the local heat-transfer-parameter distribution about any iso-
thermal body of revolution with laminar boundary layer. This method was
used to obtain the theoretical curve given in figure 4(b) and to design
the hemisphere-cylinder model employed in the present heat-transfer
experiments. The method can best be described as a synthesis of existing
laminar-boundary-layer theories and empirical observation which leads to
a rapid estimate of the heat-transfer - parameter distribution for any iso-
thermal body of revolution about which the local flow pattern is known.

The problem consists of evaluating equation (2) of the text by employ-
ing the transformations of Mangler and Stewartson, so that the heat-
transfer parameter in axisymmetrical compressible flow can be handled in
terms of known incompressible-flow solutions in plane two-dimensional flow.
Certain inconsistencies arise in the analysis because (a) Stewartson's
transformation between the two-dimensional compressible and the two-
dimensional incompressible flows does not hold exactly for Prandtl numbers
other than unity and nonzero heat transfer, and (b) the pressure-gradient
parameters of the wedge-flow solutions which are employed to specify the
incompressible heat-transfer parameters become, in general, functions of
the streamwise coordinates as a result of the transformations. The nature
of the former inconsistency is examined below, and limits are tentatively
proposed within which Stewartson's transformation may be expected to be
useful. Justification for ignoring the latter inconsistency can be found
in the fact that the incompressible heat-transfer-parameter distribution
on bodies other than wedges can be predicted closely by local applications
of wedge-flow solutions, and there is no a priori reason to expect the
contrary for compressible flows.

The laminar-boundary-layer equations for compressible flow about a
body of revolution alined with the stream are:

continuity:
d o)
S (prou) + S (Prvi) =@ (Bla)

momentum:

3 o) d 3 (.9
e i) 22, 3 (3) (510)
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energy:
pcpé§+vg—3 —u%:% k-§—§>+u %)2 (Ble)
state:
p = PRT (B1d)

The equations for two-dimensional compressible flow are equivalent to
equations (Bl) with ry = r = constant; and the equations for two-

dimensional incompressible flow embrace, in addition, the stipulations
that the density, p, viscosity, u, and thermal conductivity, k, are
invariant, and that the temperature is independent of the pressure.

Relation Between Axisymmetric Compressible Flow and
Two-Dimensional Compressible Flow

Mangler (ref. 2) has shown that equations (Bl) can, by means of the
coordinate transformation

p'e

T o« [ r2(x)dx (B2a)
Xo

y < ro(x)-y (BQb)

be cast into the equations for two-dimensional compressible flow. By
utilizing equation (1) of the text and appropriate definitions given in
Appendix A in econjunction with Mangler's transformation it is not diffi-

cult to discover that

Nu

Equation (B3) provides a representation of the axisymmetric compressible
heat-transfer parameter in terms of a corresponding plane two-dimensional
compressible parameter which is exact within the scope of boundary-layer

theory.
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Two limiting cases can be calculated for any body of revolution having

a cylindrical afterbody and a bluff forebody such that rp increases
monotonically with x. Sufficiently near the stagnation point the fore-
body approximates a disc normal to the stream so that rg = x. An evalu-
ation of the radical on the right-hand side of equation (B3) for this
condition gives the result that the heat-transfer parameter at the stag-
nation point is 3 times the heat-transfer parameter for a certain
corresponding body in a two-dimensional compressible flow. On the cylin-
drical afterbody, ro = r = constant, and equation (B3) yields the result:

x=F(r) X

MR [4 wofax+ S yriax ==
X

Nu/s/Re r2x E

One can show by use of the mean value theorem for integrals that:

F(r)
f;u/\ rotdx < F(r)
o

Thus:

G = constant < O

Hence, the heat-transfer parameter on the cylindrical afterbody approaches
the flat-plate (constant—pressure) value asymptotically from above. Due
to the presence of the nose, the afterbody is subjected to a "carry-over"
of the heat-transfer parameter which amounts to a value greater than that
which would have existed had the cylinder, for instance, been hollow (open-
nosed) .

Relation Between Two-Dimensional Compressible Flow
and Two-Dimensional Incompressible Flow

In reference 25, Stewartson shows that the two-dimensional compres-
sible boundary-layer equations for laminar flow (egs. (Bl) with ro =1 =
constant) can be transformed into the two-dimensional incompressible
boundary-layer equations provided that (1) the viscosity varies as the
absolute temperature, (2) no heat is transferred, and (3) the Prandtl
number is unity. In Stewartson's transformation the new variables are
defined as follows:

(a) Independent-variable transformations

Y = —— — dy (Bla)
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Y
L I
z =d/\<§§>7 dx (Blb)
X0

(b) Dependent-variable transformations:

pu = Py W/Vg i (BSa)
Oy
oy = - poufVg ~ (B5D)
Y =1l fgy® -2
T'Tl[“ 2 <la2>]
g = “ (BSe)
Ty <i i L - : Mo;>
a
vy =2 - agy (B5d)
T
H = ——T-; (B5e)

y - 1 dTl=alda1__7~luldu1=‘)’;lidgl (B5f)

The subscript o refers to a standard state in the isentropic local free
stream adjacent to the body. For convenience, this reference is later
taken at the point where x = O.

If only the first of Stewartson's three assumptions is retained and
the remaining two are relaxed so that the Prandtl number is arbitrary
but constant and if the body is no longer thermally insulated, the
Stewartson transformations yield the following set of equations:

Py W W man

5 1+ 8) (B6a)
oY oY dYdz 9z Y2 dz
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é\_lfa_s-_a!éé-_l_éis.=<l°r-l> e {62 [.1_@)}
dY 9z Jz oY Pr oY@ Pr a2l 2 dY2 |2 \oY

(B6b)

Equations (B6) differ in form from the corresponding set appropriate to
two-dimensional incompressible flow. In contrast to their incompressible
counterparts, equations (B6) must be solved, in general, as a simultaneous
system because the momentum equation, equation (Bb6a), is not free of the
temperature variable, S. However, equation (Bfa) may be approximated by
its incompressible analogue if the stipulation is introduced that the
absolute value of the difference between the stagnation temperature and
the surface temperature shall be small when compared to the stagnation
temperature. Under this restriction the temperature variable, S, can be
shown to be small when compared to unity throughout the boundary layer
and the momentum equation is, for practical purposes, independent of the
energy equation, Jjust as in incompressible flow. It is easily seen that
the foregoing assumption leads to the requirement of an isothermal
surface.

A minor difference between the energy equation, equation (B6b), and
the corresponding incompressible form may be found in the second factor
on the right-hand side of equation (B6b). This difference can be elimi-
nated by restricting the Prandtl number to a value of unity, in which case
the right-hand sides of both the compressible and the incompressible
equation become identically zero. The assumption of unity for Prandtl
number is, however, deemed unnecessary to a solution of the heat-transfer
problem because, as has been discussed in reference 6 with regard to a
similar form of the energy equation, equation (B6b) is linear in S, and
its complete solution may be found in such a way that its particular
integral satisfies only the boundary conditions for the insulated surface
condition. Thus, the nonzero heat-transfer case for arbitrary Prandtl
numbers can be assumed to be given by the complementary solution to
equation (B6b), and the necessity for solving the extremely complicated
equations (B6) as they stand can be avoided for heat transfer at an iso-
thermal surface.

Since equations (B6) are equivalent to their incompressible counter-
parts when restricted as indicated above, the transformation of Stewartson,
equations (B4) and (B5), can be used to evaluate the second factor on the
right-hand side of equation (2) of the text, if nomenclature is changed
as follows:

SV ¥ =73 (BTa)
2 =8 % (BTDb)
Vi= (BTc)
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From equation (1) of the text, and definitions given in Appendix A, the
heat-transfer parameter for incompressible, constant-property flow is
found to be:

Nu | 1/2 ay>s 1/2
kOTS-T><x gt NN &)

And the heat-transfer parameter for two-dimensional compressible flow is:

=
c
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i b (@
<ulx>l/2 El Ts . Te)

The ratio between two-dimensional compressible and two-dimensional incom-
pressible heat-transfer parameters becomes:
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But, as a result of equations (BL4) and (B5) and the assumed temperature-
viscosity law the following equalities hold:
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It follows that
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For the same temperatures in both flows this expression can be readily
simplified to

N_u/'v 'R—é <51 é—.l -)-(->1/2
fo/WRe \ Do 8o X

And, with further reduction, equation (4) of the text results. Equa-

tion (4) can be evaluated in terms of the streamwise coordinate, x, in the
axisymmetric plane with the aid of Mangler's transformation. However,

due to the complicated expression which may result in the general case,

it has been found convenient to approximate equation (4) with another
equation which is much more amenable to calculation. The manner in which
this is accomplished will be discussed later.
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Heat-Transfer Parameter in Two-Dimensional
Incompressible Flow

For convenience, heat-transfer solutions to the incompressible wedge-
flow problem are selected to provide numerical values for the last factor
on the right-hand side of equation (2) of the text. The differential
equations which give rise to these solutions can be obtained from equa-
tions (B6) restricted to the previously discussed conditions under which
Stewartson's transformation is valid. With the aid of the following
substitutions

Vi = pz® (B8a)
1/2

v= (B e (380)
1)V 1 /2

- YI:———-—-—(m = ) l] (B8c)

S = s«Sg = sBzh (B8a)

equations (B6) can be manipulated into the following forms:

SR L S mgf 1[(1")2 « (s s)J (B9a)

s'' + Prfs?! - -E—PFA-{'—S: = (l L Pr\ (g L)%= aZ [(f')él
- &
m+ 1 g /a02+721V12dn &

(B9b)

where primes denote differentiation with respect to 1. When the tem-
perature variable, S, is assumed small compared to unity throughout the
boundary layer, and the surface temperature is accordingly taken to be
uniform (A = 0), and, furthermore, when one seeks only complementary solu-
tions to the energy equation, equations (B9) may be approximated by:
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' ooee't - mgfl [(f')2 = 1} (B10a)
s'' + Prfs' =0 (B10b)
The applicable boundary conditions are:
N = 0: £ = £ = 03 s =1 (Blla)
N —> f1o—>1; s => 0 (B11b)

Equations (B1l0) and the associated boundary conditions (egs. (B1ll))
constitute a formulation of the isothermal, incompressible, wedge-flow
problem. Heat-transfer solutions are known for a range of values of
Prandtl number and pressure-gradient parameter and are tabulated in ref-
erences 10 and 11. The incompressible heat-transfer parameter arising
from these solutions can be written:

=
=S
Al
Il
1
mU_l'll
=11l
+
i

(B12)

no

The symbol Eé is the dimensionless temperature gradient across the

surface and is tabulated in reference 10 as G& and in reference 11 as

de/dn|n=0' According to these calculations, the temperature gradient
across the surface, §é , 1s a function of the pressure-gradient parameter,

m, and the Prandtl number, Pr, but for a given wedge at a given Prandtl
number the pressure-gradient parameter and the heat-transfer parameter
are constant. Although these solutions are rigorously applicable to
wedges only, it has been shown (ref. 12, for example) that, on two-
dimensional bodies other than wedges, they adequately predict measured
distributions of the heat-transfer parameter which correspond to the
measured distributions of the pressure-gradient parameter. Thus, the
incompressible heat-transfer-parameter distribution for any body can be
estimated by means of equation (B12) and the tables of references 10 and
11 if the distribution of pressure-gradient parameter is known. To make
use of this in the present case, however, the incompressible pressure-
gradient parameter m must be related to the axisymmetric compressible
pressure-gradient parameter m.
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Relation Between Two-Dimensional Incompressible and Axisymmetric,
Compressible Pressure-Gradient Parameters

The pressure-gradient transformation factors on the right-hand side
of equation (6) of the text are evaluated by using the transformations
of Stewartson and Mangler. In a manner similar to that already used to
calculate the heat-transfer transformation factors, it is readily found
that

— 37-1 4
= e
a2 "t
_ a0 pala
m_ Xo g e Bl3a
il 37-1 <’ s il (Ei58)
— 7_1
= ?—.i>
[\ L
X
- / I'ozdx
B2 (B13b)
m >
X I'O

It should be noted that these pressure-gradient factors are functionally
related to the heat-transfer-parameter factors given by equations (3)
and (4) of the text. The factor represented by equation (BL13b) can be
evaluated for a body of revolution of given shape. The factor represented
by equation (Bl3a) can be found in terms of the given axisymmetric
streamwise coordinate x by virtue of Mangler's transformation, as was
indicated for the case of equation 4. Because this procedure usually
results in an expression of such complexity that numerical methods are
required to effect the integrations, it is convenient to approximate
equations (Bl3a) and (4) by simpler expressions which can be integrated
once and for all.

Approximation of Pressure-Gradient-Parameter and Heat-Transfer-
Parameter Transformation Factors Between Two~Dimensional
Compressible and Incompressible Flows

Because heat-transfer solutions to the incompressible wedge-flow
problem are utilized to provide numerical values for the last factor on
the right-hand side of equation (2) of the text, it is consistent to
treat the pressure-gradient parameters m and m &s constants during
integration of equations (4) and (Bl3a), even though they are subsequently
allowed to vary.
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Setting 7 equal to 1.4 and using the relations

Moz 1/2
L 5
D

o] o]

to evaluate terms in equations (L4) and (Bl3a) gives rise to the following
two integrals:

X 8 % = AN 214
R [ Mo~ _ (B xm>J -
[ aO/ _[ o 2 m/—530 . (Blua)

f—idf [i{ %m>zrd§ (B1Lb)

6)

For convenience, the lower limit of these integrals has been set equal
to zero. After evaluation of the integrals (eqs. (Bl4)), by assuming




that the pressure-gradient parameters are not functions of the coordinates, approximate values for
the factors on the right-hand sides of equations (Bl3a) and (4) are found.

e NI VOVN

Nu/+/ Re 2m + 1\ 5 lm+1\5 ém + 1\ 5 8m+ 1\ 5
- — (8158)
Nu/s/ Re < M; >

1+ -—5—

and

- L <M12>+ 6 <M12 >2_ L <M12 >s+ 1 <M12 i
<1+M12> 2m + 1 \5+M; 2/ hm+ 1\5 + M;2 6m+ 1\5 + M= 8 + 1\5 + M <

5 —
5 + M2

provided that m > - %; m > -

BlIEN

(B15Db)

|+

From equations (B15) it can be observed that the local heat-transfer parameter in two-
dimensional compressible flow with favorable pressure gradient (W,m>0) decreases with Mach number
and, except at the forward stagnation point, is less than the corresponding local heat-transfer
parameter in incompressible flow. There is no change predicted with Mach number on constant-
pressure surfaces (m,m = 0). Conversely, the pressure-gradient parameter m in the two-dimensional
incompressible flow, corresponding to a favorable pressure-gradient parameter m in the two-
dimensional compressible flow, increases with Mach number.

43
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It should be noted that equations (Bl15a) and (B15b) are equivalent,
and can be related through equations (4) and (Bl3a) as follows:

(B16)

= <1 +M12> Eig

= W=l

Application of the Method

In utilizing the foregoing method for calculating any local value
of the laminar heat-transfer parameter on a body of revolution with iso-
thermal surface in a compressible flow, a procedure may be followed as
outlined below:

1l. For a given point on a body of revolution about which the
local isentropic flow is known, the pressure-gradient parameter m

Nu/~/§g
/s Re

is computed from equation (7); and the transformation factors

and are computed from equations (3) and/or (B1l3b).

BIBI

2. After evaluating the pressure-gradient parameter m corre-
sponding to the two-dimensional compressible flow by combining equa-

tions (7) and (B13b), the transformation factor can be calculated

==

for the desired point from equation (B15b).

3. A value of the incompressible pressure-gradient parameter n

is obtained by combining equations (7), (B13b), and (B15b) as indicated

in equation (6), after which it is possible to evaluate equation (B12)
for a given Prandtl number with the aid of the tables of references 10
and 11.

4. Using the pressure-gradient parameter m equation (Bl5a) is

evaluated at the desired point for the known Mach number, M;. An alter-

nate, and quicker, method is to utilize equation (B16) in conjunction
with the results of item (2) above.

5. A combination of the results of items (1), (3), and (4) above

according to equation (2) yields the desired local value of the axisym-

metric compressible heat-transfer parameter.

Point-by-point repetition of this procedure provides a distribution
of isothermal heat-transfer parameter over the surface of the body of
revolution. Such a distribution is shown in figure 4(b) for the case of
a hemisphere-cylinder at a free-stream Mach number of 1.97.
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TABLE I.- TEST CONDITIONS
Wind |Mach number Reynolgs altuer Stagnation temperature
ieet tunnel M °D’ T, (°R)
2 million t
I 1.97 0.58 te 2.23 54l -572
FEsonas 2 L.SF 2.9l ta .6l variable
distribution 3.04 2.79 to 4.05 variable
3.80 2.84 variable
1 1.97 053 to 263 527-571
Temperature 2 il ©frr el 28t ionE variable
distribution 3.04 2285 tol 331 variable
1l 1.97 0.60 530
Heat-transfer 1lnale) 54k
distribution 173 557
2.28 570
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(b) Recovery-factor model.

Figure l.- Hemisphere-cylinder.
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(c) Heat-transfer model (electrically heated).
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(d) Photograph of heat-transfer-model installation in the Ames
1- by 3-foot supersonic wind tunnel No. 1.

Figure 1.- Concluded.
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Figure 2.~ Results of pressure measurements on hemisphere-cylinder.
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Figure 3.- Results of temperature measurements on hemisphere-cylinder.
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