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SUMMARY 

The effect of a strong, negative pressure gradient upon the local 
rate of heat transfer through a laminar boundary layer on the isothermal 
surface of an electrically heated, cylindrical body of revolution with a 
hemispher ical nose was determined from wind-tunnel tests at a Mach number 
of 1 . 97. The investigation indicated that the local heat-transfer para­
meter, Nu/~, based on flow conditions just outside the boundary layer, 
decreased f r om a value of 0 . 65 ±0 . 10 at the stagnation point of the hemi­
sphere t o a value of 0 . 43 ±0 . 05 at the junction with the cylindrical 
afterbody . Beca use measurements of the static pressure distribution over 
the hemi sphere indicated that the local flow pattern tended to become 
stationary as the free - stream Mach number was increased to 3.B, this dis­
tribution of heat - transfer parameter is believed representative of all 
Mach numbers greater than 1 . 97 and of temperatures less than that of dis­
sociation . The local heat - transfer parameter was independent of Reynolds 
number based on body diameter in the range from 0.6xI06 to 2 . 3xI06 • 

The measured distribution of heat-transfer parameter agreed within 
±lB percent with an approximate theoretical distribution calculated with 
foreknowledge only of the pressure distribution about the body. This 
method, applicable to any body of revolution with an isothermal surface, 
combines the Mangler transformati on, Stewartson transformation, and thermal 
solutions to the Falkner-Skan wedge -flow problem, and thus evaluates the 
heat - transfer rate in axisymmetric compressible flow in terms of the known 
heat - transfer rate in an approximately equivalent two-dimensional incompres ­
sible flow . 

Measurements of recovery-temperature distributions at Mach numbers 
of 1 . 97 and 3 . 04 yielded local recovery factors having an average value 
of 0.B23 ±0.012 on the hemisphere which increased abruptly at the shoulder 
to an average value of 0.B40 ±0 .012 on the cylindrical afterbody. This 
result suggests that the usual representation of the laminar recovery 
factor as the square root of the Prandtl number is conservative in the 
presence of a strong, accelerating pressure gradient. 
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I NTRODUCTI ON 

Due to the processes of fr i ction and compression, a body moving 
through the atmosphere accumulates as thermal energy a portion of its 
mechanical energy of motion . The phys iological , structural, and aero­
dynamic rami fications of this well -known fact in the realm of high-
speed flight constitute the aerodynamic heating problem. The present 
status of knowledge insofar as the aerodynamic aspects are concerned will 
be dis cussed in the following section. It is sufficient now to state on 
the basis of a review of selected literature (refs . 1 through 25) that 
the heat transfer through the surface of a supersonic vehicle can be pre­
dicted with confidence only When the heat path is through regions of 
laminar f low and small pressure gradient . Because in supersonic flow a 
constant -pressure surface has a sharp l eading edge which is difficult, 
if not imposs ible to cool (refs . 15 and 16) , the practical vehicle for 
sustained supersonic fl ight may, of necessity, be blunt. Although favor­
able to the promotion of laminar flow, the sever e pressure gradients 
associated with bluff bodie s can r esult in heat - transfer rates quite dif­
ferent from those on constant -pressure surfaces . The heat-transfer char ­
acteristics of t he compres sible boundary layer on bluff bodies are there­
fore requi red . 

The present investigat ion has as its purpose the measurement in 
supersonic flow of laminar -boundary- layer temperature-recovery factors 
and local heat- transfer coefficients on the uniformly heated surface of a 
hemisphere - cylinder . The experimental results are compared with a newly 
developed method of approximate prediction which utilizes existing solu­
tions to the boundary- layer problem, and which is applicable to any bluff 
body of revolution with an isothermal surface . 

ANALYSI S 

Status of Knowledge 

The ultimate rate of heat transfer through a given type of bounda ry 
layer (i . e . , laminar or turbulent) has been found to depend upon the fluid 
flow conditions characterized by Ma ch number and Reynolds number, the 
fluid propert i es specified by Prandtl number, the surfa ce temperature 
distribut i on, and the body shape . In order to calculate the heat - transfer 
r ate from boundary- l ayer theory, the body surface is commonly assumed to 
be a fla t plate or axisymmetric . Effects of body curvature upon the pres­
sure distribution normal to the surface are neglected, and body-shape 
effects are assumed to depend on the streamwise pressure distribution 
alone . When dealing with bodies of revolution, an additional shape param­
eter must be considered which accounts for the varia tion of circumference 
along the axis . However , because this additional shape parameter has been 
shown to relate the axisymmetric boundary- layer flow with an associated 
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two-dimensional flow (ref. 2), it is possible, without loss in generality, 
to apply two-dimensional results to axisymmetric bodies. 

A representative sample of the extensive literature dealing with 
laminar -boundary-layer heat-transfer theory is given in references 3 
through 11. The large body of analysis based upon integral methods of 
solution has been excluded from this survey partly in the interests of 
brevity, and partly because the accuracy of these integral analyses is 
judged by comparison with solutions such as those of references 3 through 
11. Fluid-property and flow-parameter effects are stressed in references 
3, 4, and 5. Nonisothermal surfaces are considered in reference 6. Pres­
sure gradient effects are studied in references 7 and 8. Effects of small 
pressure and wall-temperature gradients are investigated in reference 9. 
Both pressure-gradient and fluid-property variations are considered in 
reference 10, and pressure-gradient and wall-temperature effects are dis­
cussed in reference 11. The results of these studies suggest that fluid­
property and flow-parameter variations exert a relatively mild influence 
on the local heat-transfer coefficient . Pressure and wall-temperature 
gradients, on the other hand, can produce local heat - transfer coefficients 
which depart significantly from the isobaric and isothermal predictions. 
The influence of shape is illustrated in reference 12 - which, inciden­
tally, presents an excellent account of methods employed to predict heat 
transfer - wherein a procedure is developed for the calculation of laminar 
heat-transfer coefficients about isothermal cylinders of arbitrary cross 
section . The effect of nonuniform temperatuIe upon the heat-transfer 
coefficient in an application of practical interest is assessed in refer­
ence 13, which is a study of transient heating in a flat plate. 

Accurate experimental verification of the laminar heat-transfer 
theory has been obtained in cases where the surface temperature and pres­
sure were nominally uniform (refs. 14 through 17). Heat - transfer meas ­
urements under conditions of nonuniform temperature are discussed in 
reference 18 . References 19 and 20 describe experiments in which local 
heat - transfer coefficients were measured in supersonic flow on nominally 
isothermal bodies with negative pressure gradients. In the former case 
the pressure gradient was mild and the heat - transfer coefficient did not 
depart significantly from the theoretical prediction for a constant­
pressure surface. On the other hand, in the latter experiment, the heat­
transfer coefficient was a strong function of the relatively severe pres ­
sure gradient; however, since the data of reference 20 were obtained under 
transient conditions in the presence of a surface temperature tending to 
become nonisothermal, the validity of these results is uncertain. 

Heat Transfer 

According to the Newtonian Law of heat transfer) the thermal flow 
through a unit area of the fluid in contact with an isothermal surface 
is proportional to the difference between the actual skin temperature 
and the skin temperature corresponding to no heat flow. The factor of 
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proportionality, called the local heat-transfer coefficient, depends, 
in cases of forced convection, upon the boundary-layer type, and the 
flow, fluid-property, and pressure-gradient parameters mentioned pre- ~ 

viously. For laminar flow, the local Nusselt number formed from the 
local heat - transfer coefficient, the length of boundary-layer run, and 
the local free-stream thermal conductivity can be combined with the local 
Reynolds number into a local heat - transfer parameter, defined as the ratio 
of the Nusselt number to the square root of the Reynolds number: 

( 1) 

(For Notation, see Appendix A. ) 

On the basis of available theory for isothermal surfaces, moderate 
Mach number, and small temperature differences, one can reason that the 
local laminar heat - transfer parameter on the blunt nose of a body of 
revolution should lie within the interval 0.662:Nu/JRe2:0.30. The higher 
value (at the stagnation point of a sphere) is predicted (for a = 0.7) 
in reference 22 by neglecting compressibility; the lower figure is appli­
cable to a flat plate or a hollow cylinder with surface parallel to the 
air stream. 

No exact, simple expression can be written to predict the local heat­
transfer parameter for points on the surface of a body lying in regions 
of arbitrary pressure gradients, although a number of approximate methods 
are available (refs. 12, 23, and 24 for example). Another approximate 
method - an adaptation of a technique described in reference 12 - which 
1s easy to apply to any body of revolution and promises to be fairly 
accurate for uniform surface temperatures not greatly different from the 
stagnation temperature - was developed in conjunction with the present 
experimental investigation. This method has the advantage that no knowl­
edge is required of the velocity or temperature profiles in the boundary 
layer; only the pressure distribution about the body need be known. The 
main results of this analysis are summarized in the following paragraphs; 
the details can be found in Appendix B. 

Briefly, the method makes USe of the transformations of Mangler, 
(ref. 2) and Stewartson (ref. 25) to remove the problem from the axisym­
metric compressible plane to the approximately equivalent two-dimensional 
incompressible plane. The local heat - transfer parameter on the axisym­
metric body in compressible flow, Nu/~, is expressed in terms of the 

corresponding parameters in two-dimensional incompressible flow, ~/~, 
and two-dimensional compressible flow, NU/~, as follows: 
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Nu 

JRe (
Nul ./Re) (Nu/~) Nu 

NU/ .IRe NU/ J Ire ffe 
(2) 

The factor relating axisymmetric and two -dimensional compressible 
flows (Mangler's transformation, ref. 2) is : 

NU/,fRe 

NU/,f'Re 

xr02 

This factor is specified completely by the shape of the body of revolu­
tion . 

The factor arising from Stewartson ' s transformation (ref. 25) between 
two -dimensional compressible and incompressible flows is: 

3)'-l 

x (i~) ),_l 

( 4) 

This factor involves not only the streamwise body coordinate but also 
changes in the local speed of sound just outside the boundary layer and 
is rigorously valid only for vanishingly small heat transfer, Prandtl 
number of unity, and viscosity proportional to temperature. The conse­
quences of relaxing the first two of these restrictions and the evaluation 
of this factor in terms of known conditions in the axisymmetric compres­
sible f l ow are discussed in Appendix B. 

To make practical use of equation (2) it is necessary to specify an 
incompressible heat - transfer parameter which corresponds to some known 
characteri stic of the axisymmetric compressible flow. An approximate 
correspondence can be established if the boundary-layer model of Fage 
and Falkner i s assumed for the incompressible plane. This wedge-flow 
model, in which both the local free - stream velocity and the surface 
temperature are proportional to arbitrary powers of the streamwise coor­
dinate so that velocity and temperature profiles through the layer at all 
streamwi se locations are Similar , has been studied extensively. The local, 

incompressible heat-transfer parameter, NU/~ has~een calculated for 
the wedge flows ove~wide ranges of Prandtl number Pr, temperature­
gradient parameter X, and pressure-gradient parameter ffi (refs. 10 and 
and 11). According to this theory, the pressure-gradient parameter 
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and the temperature-gradient parameter are constant over the wedge and 
are related to the local flow, streamwise coordinate , and local surface 
temperature as follows : 

It has been shown (ref. 12 , for example) that even though. the pressure ­
gradient parameter m varies as a funct i on of the coordinate , x, the 
Fage and Falkner model can be applied locally t o predict a corresponding 
variation of local heat - transfer parameter. The agreement with experiment 
is good , even though the t heory is not rigorously applicable . The assump ­
tion is therefore introduced that the last factor on the r i ght - hand side 
of equation (2) is defined on a l~cal basis for a gi ven Prandtl number 
and uniform surface temperature (~= 0) by local values of the incompres­
s ible pressure-gradient parameter , m. For convenience and consistency 
it is further assumed that the incompressible pressure - gradient parameter 
has its anal ogues in the two-dimens i onal compressible and the axisymmetric 
compress ible flm-rs . The relati on between pressure -gradient parameters in the 
respect i ve flows i s taken t o be : 

m ( 6) 

where 

dMl X =--
dx Ml 

The right - hand side of equation (7) can be evaluated as a function of the 
coordinate x for a body of revolution about which the local isentropic 
flow is known . The transformat i on factors (film) and (m/m) on the right ­
hand side of equation (6) can be calculated approximately in terms of 
the local flow about the body of revolution, as is shown in detail in 
Appendix B. Thus a correspondence is established between the known 
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pressure - gradient parameter, m, i n t he axisymmetric compressible plane 
and the analogous parameter, m, in the incompressible two -dimensional 
plane . One is therefore able to determine the last factor on the right ­
hand side of equation (2) by recourse to the tables of references 10 
and 11 ; and, consequently, the distribution of axisymmetric compressible 
heat - transfer parameter Nu/~ can be established. 

I n the present investigation, the local heat - trans fer-parameter 
distribution on the surface of a hemi sphere - cylinder is calculated using 
the experimentally determined pressure -gradient parameter, m, according 
to the foregoing method . 

Recovery Temperature and Recovery Factor 

When a body moves through the atmosphere the surface tends to assume 
a temperature distribution, called the equilibrium temperature distribu­
tion, such that the local heat transfer at each point is a minimum. In 
the absence of radiation and internal heat flow the minimum heat transfer 
is zero ; this eqUilibrium distribution is called the recovery-temperature 
distribution, and the body is said to be insulated. Since a spot on the 
surface can assume a temperature no greater than its local recovery tem­
perature , the question of how hot a body can possibly become for given 
flight velocity and ambient temperature can be answered by investigating 
the properties of insulated bodies . 

The recovery temperature at a point on an insulated body is specified 
by the sum of the local free - stream temperature just outside the boundary 
layer and the temperature rise across the boundary layer . The temperature 
rise across the boundary layer depends upon the boundary-layer type and 
the dimensionless flow, fluid property, and body- shape parameters mentioned 
previously . I t is convenient to compare the actual temperature rise 
across tile boundary layer with the rise which would occur if the local 
free stream were brought to rest adiabatically . In the notation of 
Appendix A, the ratio so obtained can be written 

(8) 

The factor Cr is called the temperature -recovery factor and has a dif ­
ferent value for laminar than for turbulent boundary layers. 

With the aid of analogue computers and numerical integrations, the 
local laminar recovery factors on an insulated flat plate in air have been 
deduced (ref . 3, 4, and 5) for a wide range of local fre e -stream velocities 
and temperatures . I t is interesting to note that one can correlate these 
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recovery factors as a function of the sum of the local free - stream tem­
perature Tl and the stagnation temperature Tt , provided the air does 
not dissociate . The flow parameters (Mach number and Reynolds number) 
do not enter the correlation explicitly. If the sum of Tl and Tt does 
not exceed about 20000 Rankine, the recovery factors predicted in refer ­
ences 4 and 5 can then be approximated within 1 percent by the fol l owing 
equation : 

where Pr(Tt+Tl / 2 ) is the Prandtl number evaluated at the arithmetic mean 

of the loca l free - stream and the stagnation temperatures . If the sum of 
Tl and Tt is greater than 20000 Rankine, equation (9) does not hold, and 
it is desirable to utilize the predictions of references 3, 4, and 5 
directly . 

Although the influence of pressure gradient on the local laminar 
recovery factor has been calculated theoretically for two - dimensional, 
constant -property wedge flows, slight disagreement exists among the 
numerical results of four independent determinations of the recovery fac ­
tor at a stagnation point (ref . 21) . The extremes of the various computa ­
tions range from a prediction of no change to a prediction of a 5 -percent 
decrease in recovery factor from the constant -pressure value . Thus, the 
validity of equation (9) in regions of nonzero pressure gradient can best 
be determined by experiment . 

In the present investigation the equilibrium- temperature distribu­
tion on the surface of a hemisphere with a cylindrical afterbody was 
measured, assumed to be the recovery- temperature distribution, and com­
bined with the local free - stream temperature and the stagnation tempera ­
ture according to equation (8) to test the applicability of equation (9) 
in a strong pressure gradient . For reasons to be discussed later, the 
equilibrium temperature close to the stagnation point of the test body 
was significantly different from the recovery temperature . Hence , in this 
region the recovery factor was estimated by combining the theoretical 
results of references 4 and 5 with that of reference 21 which produced 
the best fit with the valid portion of the data . Once the recovery factor 
was known, the recovery temperature (necessary for reduction of heat ­
transfer data) was found from equation (8) rewritten : 

(10) 
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APPARATUS AND PROCEDURE 

Wind Tunnels 

The present experimental investigation was conducted in the Ames 
1- by 3- foot supersonic wind tunnels No . 1 and No.2 . Wind tunnel No . 1 
is of the closed-circuit, continuous - operation, variable-pressure type 
and is equipped with a flexible -plate nozzle that provides a range of 
Mach numbers from 1 . 2 to 2 . 5 . The absolute pressure in the tunnel set ­
tling chamber can be varied from one -fifth of an atmosphere to three 
atmospheres to provide changes in the test Reynolds number. The absolute 
humidity of the air is maintained at less than 0 . 0001 pound of water per 
pound of dry air so that the effects of water vapor on the supersonic 
flow are negligible . The No. 2 wind iunnel is of the intermittent­
operation, nonreturn, variable -pressure type and uses the dry air at high 
pressure (six atmospheres absolute) from the Ames 12 - foot wind tunnel . 
The air is expanded to atmospheric pressure through the 1- by 3-foot te s t 
section, which is structurally identical to that of wind tunnel No.1 . 
The Mach number can be varied from about 1 . 2 to 3 . S . The steady running 
time available for each test depends largely on the test Mach number and 
varies from about lS minutes at a Mach number of 2 . 9 to 5 minutes at a 
Mach number of 3 . S . The total pressure in the wind-tunnel settling chamber 
is controlled by means of a butterfly throttling valve in the supply pipe. 
Because the air in the supply system expands during each test, the stag­
nation temperature decreases with time j the maximum rate of decrease is 
about 40 F per minute. Although thermal equilibrium is never achieved, 
it is possible t o obtain valid temperature data under certain operating 
conditions . Wind tunnel No.2 was used for some of the tests because it 
provides higher Mach numbers and Reynolds numbers than wind tunnel No . 1. 

Test Body 

A hemi spherical nose shape was selected for the test body in the 
present investigation . Considerations of experimental convenience (such 
as ease of construction, mounting, and testing) and the precedent of con­
siderable theoretical background dealing with flow about spheres combined 
to suggest the hemisphere as the test body. The 4- inch diameter hemi ­
spherical nose had a cylindrical afterbody with a length limited to 3 
inches to avoid intersecting the reflection of the bow shock wave from 
the wind- tunnel walls. Three sting- supported models of the test body 
were constructed, each having the same external size and shape, and sur ­
face roughnesses (less than about 20 microinches). The instrumentation 
housed in each and the sting- support details, however, were different . 

Pressure-distribution model .- The pressure-distribution model 
(fig. lea)) made from aluminum, had a wall thickness of one-half inch . 
Twenty-two 0 .03l-inch-diameter static -pressure or i f ices were placed on 
the surface in a pl ane passing through the axis of revolution (meridian 
plane) . Brass plugs containing the drilled orifices were pressed 
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into 3/16- i nch- diamet er , 3! 8 - inch-deep holes in the aluminum . Copper 
tubing att ached to the plugs pas s ed radially through 0 . 064-inch- diameter 
holes into the mode l cav i ty and emerged through a 2 - inch- diameter holl ow 
sting threaded i nto the base . Each p lug and tube was coated with an 
alkyd resin befor e insertion to prevent leaks between the cavity and the 
surface . 

Recovery- t emperature model .- The recovery-te~perature model 
(fig . l(b)) , made from stainles s steel, had, except for the afterbody, 
a nominal wall thickness of 0 . 020 i nch . The thickness of the cylindrical 
portion increased linearly f rom 0 . 020 inch at its junction with the hemi ­
sphere (shoulder) to 1/8 i nch at the point of attachment of the 1/2- i nch­
thick base r i ng . The t h i n wall served to minimize both the heat capacity 
of the model and the longitudi nal heat conducti on within the shell . 
Stainless s t eel was used because of its low thermal conductivity relat i ve 
to other meta ls . Twenty- four constantan wires were soldered into holes 
in the surface lying in a meridi an plane, as shown in figure l(b) . A 
single stai nless - steel wire connected to the inside of the shell near 
the base completed the retur n circuit for the twenty- four stainless ­
steel - constantan thermocouples . The thermocouple wires were brought into 
the 2 - inch- di ameter hollow sti ng through a pressure - tight fitting in the 
base . The assembly was calibrated in a liquid bath . A copper tube com­
municating wi th the model cavity was provided so that the internal a i r 
pressure could be reduced to l ess than 400 microns (0 . 016- inch Hg) abso ­
lute to mini mi ze internal heat transfer due to free convection . 

Heat - transfer model .- The heat - transfer model (fig . l(c)) was a 
stainless - steel shell which formed the resistance element of the low­
voltage, high -amperage electrical circuit used to heat the body . The 
circuit was arranged so that a 60 - cycle alternating current could be passed 
longitudinally through the shell, entering through a copper bus bar imbed­
ded in the nose, and leaving through a copper collector ring which formed 
the base . The interior surface of the shell was contoured to provide an 
eff ective thickness distribution, and therefore a resistance distribution, 
which was proportional to the expec t ed heat - removal capabilities of the 
air stream when the temperature was uniform . Twenty- two copper - constantan 
thermocouples were soft - soldered in holes drilled through the shell in a 
meridian plane , with the thermocouple junctions within 1/32 inch of the 
outer surface . The spacing is indi cated in figure l(c) . The wires ter ­
minated at a selector switch outside the wind tunnel which was arranged 
so that, on alternate sides of the body, succeeding pairs of the copper 
wires which formed one side of each copper - constantan thermocouple cir ­
cuit could be utilized as taps to measure the A. C. voltage drop existing 
along any 120 arc on the hemi sphere . A simultaneous indication of tem­
perature could be obtai ned from t he thermocouple lying within the same 
interval but di splaced 1800 about the axis . The stations on the afterbody 
were spaced the same distance apart as were those on the hemisphere . To 
prevent heat generated in the nose from flowing by conduction into the 
3/4-inch- di ameter copper feeder bus bar, an independently controlled elec ­
trical heating coil, wound on an aluminum spool, surrounded the bus bar. 
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The temperature within the bus bar was monitored with iron- constantan 
thermocouples, and the power supplied to the heater was adjusted to mini­
mize the temperature gradient in the bus bar between the shell and the 
heater. 

A photograph of the heat - transfer model installed in wind tunnel 
No.1 is shown in figure l(d). 

Instrumentation and Accuracy 

The experimental data leading to evaluation of the recovery factors 
consisted of pressure and temperature measurements. Static and total 
pressures were measured by conventional methods with a relative error of 
±l percent in the worst case. Temperatures were obtained from thermo ­
couple voltages sensed on either indicating or recording potentiometers 
that were accurate to ±0 . 25° F. However, in wind tunnel No.1 an addi ­
tional uncertainty, due to a ragged temperature distribution in the set­
tling chamber, limits the probable accuracy of the temperature determina­
tions in this wind tunnel to ±1. 5° F. In the worst case the relative 
error of the temperature determination was ±0.5 percent . Heat transfer 
due to radiation was estimated and found to be negligible. 

The evaluation of Nusselt number required, in addition to pressures 
and temperatures, the measurement of the local voltage drops along the 
model surface and the total current flowing in the electrical heating 
circuit . Local voltage drops, which ranged from 0 . 0025 to 0.03 volts , 
A.C ., were measured with an electronic voltmeter having a relative error 
of ±3 percent . The current, which varied from 650 to 900 amperes, was 
measured with a relative error of ±l percent . 

The actual centers of the measuring stations on the test bodies cor­
responded to the nominal locations (fig . 1) within ±0.005 inch. SurfRce 
areas of the segments on the heat - transfer body were calculated using the 
nominal nose radius of 2 inches and the nominal station locations. The 
fluid properties of viscosity and thermal conductivity corresponding to 
the calculated local static temperatures were taken from curves prepared 
from the tables of reference 26 . 

The probable error of the principal parameters, based on the probable 
error with which each individual component could be determined, can be 
summarized as follows: 

Mach number, M 
Reynolds number, Re 
Recovery factor, Cr 
Nusselt number, Nu 

Percent 

±l 
±l 
±1.5 

±15 
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The preclslon of the recovery-factor measurement , which is somewhat less 
than that possible on a constant -pressure surface, includes an uncertainty 
due to heat conduction in the shell of the test body . Likewise, the 
accuracy of the Nusselt number measurement includes an allowance for 
slight nonuniformity of the heated- surface temperature. 

Tests 

Each test body was or i ented in the wind tunnels so that the meridian 
plane containing the instrumentation coincided with the vertical plane of 
the test sections. All bodies were adjusted to an angl e of attack of 00 

±O.lo . Axial location in the tunnels was selected on the basis of wind­
tunnel - calibration data to minimize effects of local -pressure - gradient 
and stream- angle variations. Observations with schlieren optical systems 
indicated that the boundary layers on the hemispheres were laminar for 
all test conditions in both wind tunnels . Wind - tunnel condi tions for 
each series of tests are given in table I. 

Pressure -distribution tests .- Static-pressure distributions obtained 
in wind tunnels No . 1 and No . 2 were converted to local Mach number varia­
tions about the body . Isentropic flow was assumed to exist behind the 
bow shock wave in the stream tube just outside the boundary layer; the 
static pressure across the boundary layer was assumed to be constant so 
that ps = p~ . To check the isentropic - flow assumption, an impa~t tube 
formed from stainless - steel tubing was soldered into the rearmost orifice 
on the afterbody . This tube was situated so that the mouth was normal 
to, and one - eighth inch from the body surface, and at the same station as 
the precedi ng static orifice . Schlieren- system observations verified that 
t he opening was just outside the boundary layer at all Reynolds numbers. 
The impact and static -pressure measurements at this station allowed, with 
the aid of Rayleigh ' s pitot - tube equation, independent determinations of 
local Mach number which agreed well with those obtained with the isentropic 
flow assumpt i on . 

A check run in wind tunnel No . 1 with the pressure orifices in the 
horizontal plane (l- foot dimension in wind tunnel) revealed no flow asym­
metries . 

Temperature - distribution tests .- In wind tunnel No . 2 , the surface­
to-stagnation- temperature ratios at all stations ceased to change as a 
function of elapsed testing time after an interval of about seven minutes . 
This was taken as an indication that the starting transient had died away 
and that a quasi - steady stat e of thermal equilibrium existed on the test ­
body surface . No data which were considered valid could be obtained at 
a test Mach number of 3.8 because the duration of run did not exceed 5 
minutes . The possible errors due to the small but finite heat transfer 
which accompanied the stagnation- temperature drift were evaluated at 
M~ = 1.97 by comparing the constant values of the surface- to - stagnation­
temperature ratios obtained in the intermittent - operation wind tunnel 
(No.2) with t hose obtained under steady-state conditions in the 

." 
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continuous - operation wind tunnel ( No .1) at nearly the same test Reynolds 
number . This comparison disclosed that the agreement was good except 
close to the nose of the test body . 

In wind tunnel No . 1 the steady- state value of the surface-to­
stagnation- temperature ratio at the stagnati on point of the hemisphere 
did not r each unity . To determine if this were caused only by heat losses 
in the shell (conduction and internal free convection), or could possibly 
be due also to nonadiabatic compr ession along the stagnation streamline, 
the constantan wire at the stagnation point was r eplaced with a s l eeve of 
1/16-inch- O.D. stainless steel tubing having a length of approximately 
1/2 inch . The sleeve was flush with the outer surface and provided sup ­
port for a 30- gage, glass -insulated, iron- constantan duplex thermocouple 
wire which was sl~pped through from the interior of the model. The 1 /32 -
inch-diameter junction, which was approximately spherical, was cantilevered 
upstream on a 1/4- inch- long bared portion of the O. OlO-inch-diameter 
thermocouple wires. The axial location of the junction could be varied 
by s liding the insulating sheath in the sleeve . The temperature obtai ned 
from this thermocouple was closer to the wind-tunnel stagnation temperature 
than it was to the temperature measured by the thermocouples imbedded near 
the nose of the model shell , showing that due to heat conduction, the true 
recovery temperatures were not obtained near the stagnation point . 

Heat - transfer tests.- The heat - transfer experiments were carried out 
under steady- state conditions in wind tunnel No . 1 . The heating current 
which produced the most uniform surface temperature was found experimen­
tally at each test Reynol ds number , at which time the local voltage drop 
and surface - temp erature distributions were recorded . The local Nusselt 
number was formed from the measured quantities as follows: 

hx qx dQ ( x ) 1 '" D.Q (X) ( 
(Ts - Tr)kl = dA kl Ts - Tr '" 6A kl Ts 

Nu 

(~) ( 11) 

Because i t was the purpose of this investigation to isolate the 
effect of pressure gradient upon the local heat - transfer parameter from 
the nonuniform temperature effect, considerable effort was expended in 
obtaining a constant surface temperature . Four trials were required to 
achi eve a heating distribution which yielded a reasonably isothermal sur ­
face. The thickness distribution (resistance distribution) of the shell 
and the method of joining the feeder bus bar to the nose were improved 
between trials on the basis of the experimental results of each previous 
test. The shape of the inner surface in the vicinity of the stagnation 
point (fig . l(c)) was a contour with the equation of a streamline obtained 
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from the solution of a well -known problem in potential flow - the flow 
ins ide the sphere obtained when a space doublet is combined with a uniform 
stream . The soft - soldered joint between the copper bus bar and the 
stainless - steel shell was made on the equipotential surface passing through 
the stagnation point . 

Because the inner surface of the shell could not be machined to the 
des ired contour with the required accuracy, the resistance was corrected 
to within ±10 percent of the desired distribution by a process of selective 
electroplating with copper . The technique employed was as follows : After 
chemical cleaning, the inaccurately contoured model was supported nose 
down, and the interior , unobstructed except for the feeder bus bar, was 
electropl ated wi th a flash - coat of nickel, followed immediately by a flash 
of copper deposited from a cyanide electrolyte . Provision was then made 
for fil l ing the interior to any desired level with carbon tetrachloride 
supporting a film of copper sulphate solution approximately 1/8 inch deep . 
With a washer - like anode of copper suspended in the electrolyte, an annular 
band of copper could be deposited or removed from any desired e l evation on 
the inner surface of the model . When a small current was passed through 
t he heating circuit , plating progress could be observed and controlled by 
measuring the change in voltage drop between externally mounted taps. 

RESULTS AND DI SCUSSION 

The results of the local static -pressure, recovery- temperature, and 
heat - transfer measurements on the 4- inch hemisphere - cylinder are presented 
in figures 2 through 4 with the distance along the surface in a meridian 
plane (arc length) as the inQependent variable . The arc length x is 
normalized wi th respect to the body diameter D. The test Mach number 
M~ is that of the free streamj the test Reynolds numbers Ren are based 
on conditions i n the free stream, wi th the body diameter as the reference 
l ength . Local parameters , (Ml ) Re ) Nu ) etc . ) are based on conditions in 
the local flow just outside the boundary layer . The reference length) 
where requi red) i s the arc length x . 

Pr essure Distribut i on 

The stati c -pressure distr i butions measured about the hemisphere ­
cylinder at test Mach numbers of 1. 97) 3 . 04) and 3 . 80 in wind tunnel No . 2 
are presented i n coefficient form in figure 2 (a) . The pressure coeff i ­
cients about a sphere for invi sc id i ncompressible f low) and for compres ­
sible flow at a Mach number of infinity according to Newtonian theory 
(ref . 27) are i ncluded for compar i son . The measured pressure coefficients 
were independent of Reynolds number throughout the range covered . The 
size of symbol s at each stati on (fig . 2 (a)) outli nes t he extent of the 
experimenta l scatter and variation with Reynolds number . Although not 
evident from the figure) or i f i ces lying between locations from X/D = 0 . 35 

--------- - ---
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to xjo = 0 . 45 encompassed the sonic zone on the hemi sphere and tended 
to give erratic pressure indications unless each hole was carefully 
cleaned of minute deposits of foreign matter . The values of pressure 
coefficients obtained from the tests in wind tunnel No . 1 fall within 
the symbols drawn around points obtained at the same Mach number in wind 
tunnel No . 2 . The pressure di stribution obtained in wind tunnel No . 1 
with the orifices in a hor i zontal plane agreed with that obtained with 
the orifices in a vertical plane . 

The local Mach number distributions derived from the pressure ­
coefficient data and the Newtonian theory (ref . 27) are presented in 
figure 2 (b) . Also included are the results of the determination of local 
Mach numbers (at x/D = 1 .16) by impact and static -pressure measurements . 
The two methods of measurement agree within 1 . 5 percent in the worst case . 

A tendency is noted in figure 2(b ) for the increase in l ocal Mach 
number at a given station x/D to become progressively less as the Mach 
number of the oncomi ng stream Moo i s increased by an approximately fixed 
increment . This trend is in accordance with the t heory of reference 28 , 
which predicts that the entire flow pattern about an arbitrary body tends 
to become stationary as the free - stream Mach number is increased. More ­
over , because the significant (hypersonic similarity) parameter is a 
function of the product of the thickness ratio and the Mach number, the 
flow pattern about a bluff body "freezes " at a lower value of the Mach 
number than i s the case for a slender body. Because in the case of the 
hemisphere - cylinder the local Mach number curves are similar in shape , 
the pressure - gradient parameter m (eq . (7)) is a function principally 
of the arc length, x/D, and depends but little upon the Mach number of 
the oncoming stream . Hence , any dependence of the local heat-transfer 
coefficient upon the free - stream Mach number and upon the pressure­
gradient parameter would be expected t o become smaller and smaller as Moo 
i ncreases . 

Temperature Distributions and Recovery Factor 

Typical temperature distributions obtained from the recovery­
temperature model in wind tunnel No . 1 at a test Mach number of 1 . 97 are 
presented in figure 3(a) . The temperature measured with an isolated 
thermocouple projecting 1/16- inch upstream of the stagnati on point 
(plotted at x / D = OJ To / Tt = 1 . 0000 ±0 . 0013) indicates that the reduced 
temperature near the nose of the unheated surface is due to conduction 
in the model shell . The two experimental distributions shown correspond 
to t he two highest test Reynolds numbers and, accordingly, the least 
serious conduction effects . They illustrate the extent to which conduction 
influenced the equilibrium temperatures near the stagnation point under 
the two most favorable test conditions . The coalescence of these "two 
curves at values of x/D greater than 0 . 35 was taken as an indication 
that the equilibrium- temperature distribution beyond this point was a 
close approximation to the recovery- temperature distribution . Also pre ­
sented i n figure 3(a) are temperature d i stributions obtained from the 
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heat - transfer model wi th power i nputs adjusted to pr oduce the most uni­
form surface temperatures . 

The temper ature - r ecovery factors ( f ig. 3(b) ) computed from the 
equilibrium- temperature data (fig . 3(a)) and the local Mach number data 
(fig . 2(b)) are i naccurate for values of x/D l ess t han about 0 . 35 for 
the reasons outl ined above . The recover y factors measured at a Mach 
number of 1 . 97 i n the i nter mi ttent - oper ation wind tunnel (No . 2) agree 
well with those obtai ned from measurements in the cont i nuous-operat i on 
wind tunne l (No . 1) for values of x/D between 0 . 35 and 0 . 90 . The 
recovery factors on t he hemi sphere have , for x/D greater than 0.35, a 
mean value of 0 . 823 ±0 . 012 which r i ses on the afterbody to a mean of 0 . 840 
±0.012 in the case of wi nd t unnel No . 1 . The increa s i ng recovery factors 
measured on the cylindrical afterbody at values of x/D greater than about 
1.1 in wind tunnel No . 2 are beli eved to signify the onset of transition 
to turb~lent flow . The recover y factor at Moo = 3 . 04 is lower than that 
at Moo = 1 . 97 . This decrease may be due to the slightly more severe pres ­
sure gradient at Moo = 3 . 04; however , the difference is of the same order 
of magnitude as the probable accuracy of the measurements . 

Also included in figure 3(b) are the recovery-factor predictions for 
a Mach number of 1 . 97 of constant -pressure variable -property theory, and 
of an empirical combi nation of constant -pressure theory and pressure ­
gradient theor y for l aminar flow derived below. The curve representing 
the constant -pressure theory was obtai ned from a graph prepared from the 
recovery- factor informati on given in references 4 and 5 . Values of the 
recovery factor were selected from the graph to correspond with the known 
stagnation and local static temperatures of the test . This method, cor ­
responding to the dashed curve (f i g . 3(b)), predicts a slight increase of 
recovery factor with arc length on the hemisphere - cylinder, and it agrees 
well with the data for the cyli ndrical afterbody, but lies slightly above 
the data for the hemisphere . Although the recovery factor defined by a 
mean line passed through the valid portion of the data on the hemispher ­
ical nose i s not more than 2 percent bel ow the recovery factor for the 
cylindrical afterbody, and, consequently, the effect of pressure gradient 
can probably be disregarded in practice , the decrease in level can be 
predicted very closel y , at least in the case of the hemisphere at 
Moo = 1 . 97, by an empirical method which was used to compute the solid 
curve presented in figure 3(b) . This latter recovery- factor curve~ which 
was subsequently uti l i zed to cal culate recovery temperatures (eq. (10)) 
for the reduction of heat - transfer data, was obtained as follows: Recovery 
factors computed for a constant -pressure surface were assumed to differ 
from those f or the same flow conditions but with arbitrary pressure 
gradient by a factor dependi ng only upon the pressure - gradient parameter m 
(eq . (7)) . Further , the recovery factors tabulated in reference 21, 
which apply to two -dimensional incompressible flow, were a ssumed to vary 
linearly with the incompressible pressure - gradient parameter m between 
the tabulated val ues for m = 0 and m = 1. The empirical equation embody­
ing t hese a ssumptions is written : 
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Cr Crm=o(l - bID) 

where 

= 
Cr (= ) 

b 1 m=l ( 12) -
Cr (= ) m=o 

The recovery factors predicted for the hemisphere-cylinder at Moo = 1.97 
by equation (12 ) are shown as the solid curve on figure 3(b) . A value 
of b = 0 . 023 , corresponding to the calculations of Levy and Seban 
(ref . 21) was used . The appropriate values of ill were obtained from the 
local Mach number distribution (fig . 2(b) ) and equation (6). 

The recovery factors measured at a Mach number of 1.97 lie slightly 
above the predicted curve in the interval from x/D = 0 . 525 to x/D = 0 .70 . 
This l ocal maximum can be traced to a bulge faintly discernible in the 
corresponding equilibrium-temperature distributions (fig. 3(a)) which 
covers the same interval of arc length . Although the reason for this 
bulge is not known, it was characteristic of all the equilibrium­
temperature data, and, as will be seen later, corresponds t o the zone on 
the heated hemi sphere where the heat -transfer rate is a maximum. It can 
be concluded from figure 3(b) that the local recovery factor on the 
hemi sphere - cylinder may be predicted within ±l percent by the foregoing 
method . 

Heat Transfer 

The measure of success realized in obtaining an isothermal surface 
on the heat - transfer model has already been indicated in figure 3(a) . 
The maxi mum variation of the measured surface temperatures about a mean 
line representing a constant temperature is about ±2 . 5° F at Moo = 1. 97 
and ReD = 2 . 3xI0 6 • The maximum gradient of surface temperature, which 
extends over about one - tenth of the instrumented length is about 800 F per 
foot . The temperature potential, Ts - Tr , varies continuously on the 
hemisphere from a minimum of 350 F at the stagnation point to a maximum 
of about 720 F at the shoulder . The heat - transfer data taken under the 
conditions of nonuniform surface temperature , which existed during the 
first three attempts t o achieve an isothermal surface, yielded heat ­
transfer paramet ers which departed considerably from those obtained wi th 
the f inal shell configuration. The reasons for this are two-fold: First , 
the nonuniformity of surface temperature was accompanied by heat conduction 
within t he shell which rendered invalid the assumption that heat gener ­
ated locally was transferred int o the stream locally (eg . (11 ) ) . This 
can be considered to be an experimental error . Second, as has been d i s ­
cussed in reference 6, the heat - transfer parameters for nonisothermal 

J 
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surfaces are s ignificantly different from those on cons tant - temperature 
surf aces b ecause l ocal conditions depend upon boundary- l ayer h i s t ory; 
hence , the measurements contain large contributions due t o the temperature 
nonuni formities . Although the results of the final attempt to obtain a 
uni f orm surfa ce t emperature are not entirely free fr om the fore going 
effects , the surface t emperature is b elieved to have been sufficiently 
uniform that va lid conclus i ons can be drawn from the heat - transfer data . 

The distribution of the loca l heat i nput along the surface of t he 
shel l which was built into the body is presented in fi gure 4(a) . The 
incr emental voltage drop across e qual intervals of arc (normalized with 
respec t t o the vol t a ge drop a t the shoulder) i s plotted a s a function of 
x / D. The points represent the distribution mea sured i n wind tunnel No .1 
at Moo = 1 . 97 throughout the Reynolds number range ; the scatter is due t o 
volta ge - r eadi ng error s . The curve represents the theoretical variati on 
which it was desired that the model should possess . I t i s emphasized 
that the experimental heat - input di s tr i bution wa s invariant (i . e ., it 
could be reproduced under no -wind conditions and could not be altered 
dur i ng a run) and accurately defined the heat - transfer rate at a gi ven 
l ocation only when power input and exterior cooling conditi ons yielded 
an i sother mal surface . 

The measured local heat - transfer -parameter distribution, Nu/~, 
corr esponding to the most uniform surface temperature conditions on the 
body, is compar ed in fi gure 4(b) with the d i stribution predicted by t he 
present theory . The data depart from the predicted curve by values of 
±18 percent at most . However , due to the approximations empl oyed i n its 
development , the theory i s subj ect to errors of unknown magnitudes . The 
experimental r esults , on the other hand, have a known uncertainty of about 
±15 percent . Upon comparison of the theoret i cal with the experimental 
distribution, it app ears probable that the theoret i cal distribution pro ­
vides a closer r epresentat i on of the l ocal isothermal heat - transfer param­
eter on the hemisphere - cyl inder than doe s the experimental distribution 
because the da ta deviate from the predicted distribution both in magnitude 
and s ens e in a manner which is ea s ily explained upon examination of fi g­
ures 3( a) and 4(a) . The data tend to lie above the predicted curve in 
zones where the buil t - in heat production was too gr eat (fig . 4(a)) and t he 
measured t emperature potential was t oo l ow due to i nternal conduct i on 
(fig . 3(a)) ; a nd they tend to lie b e low the theoretical curve wher e the 
converse wa s t rue . For these rea sons , and as a r esult of careful analys i s 
of figure 4(b), it i s believed tha t the theoretical curve contains an 
uncertainty of not more than ±7 p ercent . 

The incr ea sing s catter of the data a t values of x/D l ess than 0 . 25 
is caused by the decrease in l ocal Nusselt number and l ocal Reynolds 
number a s the stagnation poi nt is approached, while the ab solute error 
of measurement remains fixed . Within the accuracy of measurement, however, 
the hea t - transfer -parameter distribution on the hemisphere - cylinder is 
independent of test Reynolds number throughout the range covered. 
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Also shown in figure 4(b) are the theoretical isothermal - surface , 
local heat-transfer parameters for the stagnation point of a sphere 

19 

(ref. 22) , a cone - cylinder in supersonic flow (refs. 2 and 6) , and a flat 
plate (ref . 6) . The stagnation-point prediction of reference 22 agrees 
well with the data and is in excell ent agreement with the forecast obtained 
by the present method . The comparison between the cone - cylinder theory 
and the hemisphere - cylinder theory illustrates the effect of favorable 
pressure gradient upon the local heat-transfer parameter, and indicates 
that the local heat - transfer parameter on the hemisphere decreases from 
a value at the stagnation point about 27 percent greater than that on 
the cone to a value at the shoulder about 20 percent l ess than on the 
cone. The conical tip selected for thi s comparison has a half-angle, a, 
of 39 . 50

, so that the shoulders of both bodies occur at x/D = n/4. The 
theoretical heat - transfer parameters on the cylindrical afterbody approach 
the flat -plate value asymptot i cally . 

The tendency for the local flow pattern about the hemisphere-cylinder 
to become stationary as the free - stream Mach number is increased has 
already been noted. On the basis of this observation it was inferred 
that the distribution of isothermal local heat-transfer parameter about 
the hemisphere - cylinder also tends to become stationary as the free­
stream Mach number is increased . The experimental results at a Mach 
number of 1. 97 are for this reason expected to be representative of all 
higher free - stream Mach numbers, provided that temperatures do not exceed 
that of dissociation . Furthermore , because the local Mach numbers are 
not arbitrarily large, it appears that any theory capable of predicting 
boundary- layer characteristics for an arbitrary but constant Prandtl 
number can be applied with good results to the flow about a bluff body 
throughout a wide range of free - stream Mach numbers. 

CONCLUSIONS 

To determine the effects of strong pressure gradi ent upon aerodynamic 
heating and heat transfer, distributions of static pressure, recovery 
temperature, and isothermal-surface heat -transfer r ate have been measured 
on a hemisphere - cylinder with laminar boundary layer in supersonic flow. 
Analysis of these data and comparison of the results with predictions of 
various theories prompt the following conclusions : 

1. In accordance with the hypersonic similarity theory of 
Oswatitsch, the local flow pattern about the hemisphere tended to become 
stationary as the free-stream Mach number was increased to 3.8 . Since the 
corresponding maximum local Mach number was only about 2 .5, it appears 
that boundary- layer characteristics for bluff bodies in hypersonic flow 
can be ade quately predicted by theories in which the Prandtl number is 
an arbitrary constant . 
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2 . Although the recovery temperature did not exist close to the 
stagnation point of the test body, due to longitudinal heat conduction 
within the model shell ) the results show that the strong favorable 
pressure gradient tends to decrease the laminar recovery factor) based 
on local flow conditions .just outside the boundary layer) from the 
constant -pressure value of 0 . 840 ±0 . 012 on the afterbody to a value of 
about 0 . 823 ±0 . 012 on the hemisphere . This decrease could be predicted 
within ±l percent by an empirical expression which combines the constant ­
pressure variable -property calculations of Young and Janssen and of 
Klunker and McLean with the constant -property wedge -flow calculations 
of Levy and Seban . This result suggests that the usual approximation 
of the laminar recovery factor by the square root of the Prandtl number 
is conservative in flows having strong pressure gradients . 

3 . The isothermal heat - transfer parameter) Nu/~Re) based on local 
flow conditions just outside the laminar boundary layer) was independent 
of Reynolds number and agreed within about ±18 percent with a method 
of approximate prediction developed herein . This method) which requires 
foreknowledge only of the pressure distribution about a body of revolu­
tion ) predicts a distribution of local isothermal heat - transfer parameter 
on the hemi sphere - cylinder believed to be in error by not more than 
±7 percent . Because of the tendency for the local flow pattern to become 
independent of the free - stream Mach number) it is believed that these 
results are representative of all free - stream Mach numbers greater than 
about 2 and at temperatures less than that of dissociation . 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field) Calif . , Sept . 1 , 1954 
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APPENDIX A 

NOTATI ON 

A area, sq ft 

a 

B 

b 

C 

D 

E 

f 

G 

g 

h 

I 

K 

k 

M 

m 

Nu 

p 

speed of sound, ft/sec 

constant, ft - A 

constant 

constant 

Tr - Tl 
recovery factor, , dimensionless 

Tt - Tl 
constant -pressure specific heat, ft 2 /sec2 , of 

constant -volume specific heat, ft 2 /sec 2 , of 

diameter, ft 

electrical potential, volts A. C. rms 

boundary- layer stream function, dimensionless 

constant 

a cceleration of gravity, ft/sec2 

heat - transfer coeffiCient, q ,ft-lb/sec , ft 2 , of 
Ts - Tr 

electrical current , amp . A. C. rms 

thermal conductivity coefficient (body), ft - lb/sec, ft, of 

thermal conductivity coefficient (air), ft - lb/sec, of, ft 

u Mach number , -, dimensionless a 

dUl x 
pressure -gradient parameter, dx Ul ' dimensionless 

hx Nusselt number , -- , dimensionless 
kl 

pr essure, Ib/ft2 
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Pr 
Cp~ 

Prandtl number , 
k 
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dimensionless 

Q average heat - transfer rate , j qdA, ft - lb/sec 

q 

Re 

R 

r 

S 

s 

T 

t 

u 

v 

v 

x 

y 

y 

z 

a 

heat - transfer rate per unit area, 

P 1 U 1 X 

( -k dT) , ft - lb/sec , s q ft 
dy s 

local Reynolds number, , dimensionless 
~l 

PoP .,)) 
test Reynolds number , ----- , dimensionless 

~oo 

distance from axis of revol ution to body surface , ft 

radius, ft 

boundary- layer temperature function, dimensionless 

b d 1 t t t · S d · . 1 oun ary- ayer empera ure ra 10 , Ss ' lmenSlon ess 

absolute temperature , OF 

shell thickness , ft 

veloc i ty , ft/sec 

velocity in transformed coor dinate system, ft/sec 

velocity normal to surface, ft/sec 

di stance from nose along body generator, ft 

transformed variable normal to surface, sec1
/

2 

space coordinat e normal to body surface, ft 

transformed coordinate parallel to surface , f t 

cone half - angl e , deg 

f t 1 - m 
constant , ---sec 

specific heat rati o ( ~~ = 1. 0 ' dimensionl ess 

i ndi cates f i nite -differ ence approxi mation to differential operator 
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~ boundary- layer coordinate normal to surface , dimensionless 

K constant, ft - lb/watt, sec 

A exponent in surface - temperature - distance relat ion, dimensionless 

~ absolute viscosity, lb - sec/ft2 

V k inematic viscosity,~, ft 2 / sec 
p 

p mass density, slugs/ft 3 

W stream function , ft/sec 1 / 2 

Subscripts 

t stagnation condition 

00 main - stream condition 

o reference condition 

1 l ocal condition just outside boundary layer 

s local condition on body surface 

e equilibrium, surface - temperature conditi6n 

r recovery, surface - temperature condition 

Quatities provided with two bars r efer to two - dimensional incompres ­
sible f low; quantities provided with one bar refer t o two - dimensional 
compress i ble flow j unbarred quantities refer to axisymmetric compress ible 
flow . 
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APPENDIX B 

APPROXIMATE CALCULATION OF LAMI NAR HEAT -TRANSFER PARAMETERS 

ABOUT BODI ES OF REVOLUTI ON I N SUPERSONI C FLOW 

The purpose of this appendix is to describe an approximate means for 
calculating the local heat - transfer -parameter distribution about any iso ­
thermal body of revolution with laminar boundar y layer . This method was 
used to obtain the theoret i cal curve gi ven in f i gure 4(b) and to de s i gn 
the hemi sphere - cyli nder mode l employed in the present hea t - transfer 
experiments . The met hod can best be described a s a synthesis of existing 
laminar -boundary- l ayer theor i es and emp i r i cal observati on which leads to 
a r apid estimate of the heat - transfer - parameter distribution for any i so ­
thermal body of revolution about which the l ocal flow pattern i s known . 

The problem consists of evaluating equation (2 ) of the text by employ­
ing the transformations of Mangler and Stewartson, so that the heat ­
transfer parameter i n axi symmetr i cal compressible flow can be handled in 
terms of known incompress ible - flow solutions in p l ane two - dimensional f l ow . 
Certain inconsistencies arise i n the analysis because (a) Stewartson ' s • 
transformation between the two - dimensional compressible and the two -
dimensional incompressible flows does not hold exactly for Prandtl numbers 
other than unity and nonzero heat transfer, and (b) the pressure - gradient 
paramet ers of t he wedge - flow solutions which are employed to specify the 
incompress ible heat - transfer parameters become , in general, functions of 
the streamwis e coordinates a s a result of the transformations. The nature 
of the former incons i s t ency is examined below, and limi t s are tentati vely 
proposed within whi ch Stewartson ' s transformat i on may be expected to be 
useful . Justification for ignoring the latter inconsistency can be found 
in the fact that the i ncompressible heat - transfer - parameter distribution 
on bodies other than wedges can b e predicted closely by local applications 
of wedge - flow solutions , and there i s no a pr i ori reas on to expect the 
contrary for compressible flows . 

The l ami nar -boundary- layer equations for compres s ible flow about a 
body of revolution alined with the stream are : 

continuity : 

o (Bla) 

momentum : 

C dU dU) p u - + v -dX dy (Blb) 
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energy : 

(Blc) 

s tate : 

p = PRT (BId) 

The equa t i ons f or two- dimensiona l compressible flow are equivalent t o 
equations (BI) with ro = r = constant j and the equat i ons for two­
dimensional i ncompressible flow embr ace , in addition, the stipulations 
that the denS i ty, P, viscosity, ~ , and thermal conductivity, k, are 
invar iant, and that the temperat ure i s independent of the pressure. 

Rela t i on Between Axisymmetric Compressible Flow and 
Two-Dimensional Compressible Flow 

Mangler (ref . 2) has shown that equations (BI) can, by means of the 
coordina te transformati on 

x oc (B2a ) 

(B2b) 

be cast i nto the equations for two -dimensional compressible flow. By 
utilizing equation (1) of the text and appropriate definitions given in 
Appendix A in conjunction wi th Mangler ' s transformation it is not diffi ­
cult to discover that 

Nu Nu 

.[Re Fe (B3) 

Equat i on (B3) provides a representation of the axisymmetric compressible 
heat - transfer parameter in terms of a corresponding plane two-dimensional 
compressible parameter which is exact within the scope of boundary-layer 
theory . 
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Two limiting cases can be calcula ted for any body of revolution having 
a cylindrical afterbody and a bluff forebody such that ro increases 
monotonicall y with x . Suf ficiently near the stagnation point the fore ­
body approximates a disc normal to the stream so that ro = x . An evalu­
ation of the radical on the right -hand side of equation (B3 ) for this 
condition gives the result that the heat - transfer parameter at the stag­
nation point is ~ times the heat - transfer parameter for a certain 
correspondi ng body i n a two -dimensional compressible flow . On the cylin ­
drical afterbody, ro = r = constant , and equation (B3) yields the result: 

Nu/ffe 
Nu/5e = 

One can show by use of the mean value theorem for integrals that: 

F ( r ) l J r02dx ~ F(r) 
r 2 

o 

Thus : ~ 

G = constant ~ 0 

Hence , the heat - transfer parameter on the cylindrical afterbody approaches 
the fla t -plate (constant -pressure) value asymptotically from above . Due 
to the presence of the nose , the afterbody is subjected to a "carry-over" 
of the heat - transfer parameter which amounts to a value greater than that 
which would have existed had the cylinder, for instance, been hollow (open­
nosed) • 

Relation Between Two -Dimensional Compressible Flow 
and Two-Dimensi onal I ncompressible Flow 

In reference 25, Stewartson shows that the two- dimensional compres­
sible boundary- layer equations for laminar flow (eqs . (Bl) with ro = r 
constant) can be transformed into the two-dimensional incompressible 
boundary- layer equati ons provided that (1) the viscosity varies as the 
absolute temperature , (2) no heat is transferred, and (3) the Prandtl 
number is unity . In Stewart s on ' s transformation the new variables are 
defined as follows : 

(a) Independent -variable transformations 

y (B4a ) 
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(b) Dependent -variable transformations : 

s 

r - 1 dTl -- cp --
2 dx 
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(B4b) 

(B5a) 

(B5b ) 

(B5c) 

(B5d) 

(B5e) 

(B5f) 

The subscript 0 refers to a s tandard s t ate in the isentropic local free 
stream adjacent to the body . For convenience) this reference is later 
taken at the point where x = o. 

If only the first of Stewartson ' s three assumptions is retained and 
the remaining two are relaxed so t hat the Prandtl number is arbitrary 
but constant and if the body is no longer thermally insulated) the 
Stewartson transformations y ield the fo llowing set of equations: 

(B6a) 

- --,---
_J 
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Pr oy2 

(B6b) 

Equations (B6) differ in form from the corresponding set appropriate to 
two-dimensional incompressible flow. In contrast to their incompressible 
counterparts, equations (B6) must be solved, in general, as a simultaneous 
system because the momentum equation, equation (B6a), is not free of the 
temperature variable, S . However, equation (B6a) may be approximated by 
its incompressible analogue if the stipulation is introduced that the 
absolute value of the difference between the stagnation temperature and 
the surface temperature shall be small when compared to the stagnation 
temperature. Under this restriction the temperature variable, S, can be 
shown to be small when compared to unity throughout the boundary layer 
and the momentum equation is, for practical purposes, independent of the 
energy equation, just as in incompressible flow . It is easily seen that 
the foregoing assumption leads to the requirement of an isothermal 
surface . 

A minor difference between the energy equation, equation (B6b), and 
the corresponding incompressible form may be found in the second factor 
on the right -hand side of equation (B6b). This difference can be elimi­
nated by restricting the Prandtl number to a value of unity, in which case 
the right -hand sides of both the compressible and the incompressible 
equation become identically zero . The as sumption of unity for Prandtl 
number is, however , deemed unnecessary to a solution of the heat -transfer 
problem because, as has been discussed in reference 6 with regard to a 
similar form of the energy equation, equation (B6b) is linear in S, and 
its complete solution may be found in such a way that its particular 
integral satisfies only the boundary conditions for the insulated surface 
condition . Thus, the nonzero heat - transfer case for arbitrary Prandtl 
numbers can be assumed to be given by the complementary solution to 
equation (B6b) , and the necessity for solving the extremely complicated 
equations (B6) as they stand can be avoided for heat transfer at an iso­
thermal surface . 

Since equations (B6) are equivalent to their incompressible counter­
parts when restricted as indicated above, the transformation of Stewartson, 
equations (B4) and (B5), can be used to evaluate the second factor on the 
right-hand side of equation (2) of the text, if nomenclature is changed 
as follows: 

Fa = y = y (B7a) 

Z :::: X (B7b) 

= 
Vl. = Ul. (B7c) 

) 
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From equation (1) of the text , and definitions given in Appendix A, the 
heat - transfer parameter for incompressible, constant -property flow is 
found to be: 

Nu 
(dT) 

dy s 

He 

And the heat - transfer parameter for two -dimensional compressible flow is: 

Nu 

J Re 
(--)1/2 V1x 

ih 

The ratio between two-dimensional compressible and two -dimensional incom­
pressible heat - transfer parameters becomes: 

Nu/JRe _ 
Nu/ff. -

But, as a result of equations (B4) and (BS) and the assumed temperature ­
viscosity law the following equalities hold : 

Pl. To --

I 
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It fol lows that 

iU/Fe 
NU/Pe 

d 1 d 
dY == Jvo dY 
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For the same temperatures in both flows this express i on can b e readily 
simplified to 

And, with further reduction, equation (4) of the text results . Equa-
tion (4) can be evaluated in terms of the streamwise coordinate, x, i n the 
a xisymmetric plane with the aid of Mangler ' s transformation . However, 
due to the compli cat ed express i on which may result i n t he general case, 
it has been found convenient to approxi mate equa t i on (4) with another 
equation which i s much more amenable to calculation . The manner in which 
t his is accomplished will be discussed l ater . 
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Heat- Transfer Parameter in Two-Dimensional 
I ncompressib l e Flow 

31 

For convenience, heat - transfer solutions to the incompressible wedge ­
flow problem are selected to provide numerical va lues for the last factor 
on the right -hand side of equation (2 ) of the text . The differential 
equations which give rise to these solutions can be obtained from equa­
tions (B6) restricted to the previously discussed conditions under which 
Stewartson ' s transformation is valid . With the aid of the following 
substitutions 

(
_2 Z_V_I _ ) l /

2
• f ( 11 ) 

m + 1 

== y[(m + l)VI J1/2 
T) 2z 

S 

equations (B6) can be manipulated into the following forms : 

f ' r, + ff " ~[(f')2 - (1 + S)] m + 1 

(B8a) 

(BBb) 

(B8c) 

(B8d) 

(B9a) 

2PrAf ' s 
S 'I + Prfs ' -

m + 1 ( 
1 - pr) ~ ('I' - 1) V I 2 J d: [( f I ) 2l 

Ss a 2 + ~ 2 dT) 2 j 
o 2 VI 

(B9b) 

where primes denote differentiation with respect to T) . When the tem­
perature variable, S, is assumed small compared to unity throughout the 
boundary layer , and the surfa ce temperature is accordingly taken to be 
uniform (A = 0), and, furthermore, when one seeks only complementary solu­
tions to the energy equation, equa tions (B9 ) may be approximated by : 
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f ' ,t + ff t , (B10a ) 

s " + Prfs ' o (BlOb) 

The applicable boundary condit i ons are : 

0 : f f ' == OJ s 1 (Blla) 

f ' --? I j s --;. 0 (Bllb) 

Equations (BIO) and the associated boundary conditions (eqs . (Bll)) 
constitute a formulation of the isothermal, incompressible, wedge - flow 
problem . Heat - transfer solutions are known for a range of values of 
Prandtl number and pressure - gradient parameter and are tabulated in ref ­
erences 10 and 11 . The incompressible heat - transfer parameter arising 
from thes e solutions can be written : 

(B12) 

=, 
The symbol Ss is the dimensionl ess temperature gradient across the 
surfa ce and is tabulated i n r eference 10 as e~ and in reference 11 as 

de/d~ I~==o . According to these calculations, the temperature gradient 
a cross the surfa ce , s~ , is a function of the pressure - gradient parameter, 
m, and the Prandtl number , Pr, ' but for a given wedge at a given Prandtl 
number the pressure - gradient parameter and the heat - transfer parameter 
are constant . Although these solutions are rigorously applicable to 
w~dges only, it has been shown (ref . 12 , for example) that, on two ­
dimensional bodies other than wedges, they adequately predict measured 
distributions of the heat - transfer parameter which correspond to the 
measured distributions of the pr essure - gradient parameter . Thus, the 
incompressible heat - transfer -parameter distribution for any body can be 
estimated by means of equation (B12 ) and the tables of references 10 and 
11 if the dis t ribution of pressure - gradi ent parameter is known . To make 
use of this in t he present case , however, the incompressible pressure ­
gradient parameter ill must be related to the axisymmetric compressible 
pressure - gradient parameter m. 
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Relation Between Two -Dimensional Incompressible and Axisymmetric, 
Compressible Pressure-Gradient Parameters 

33 

The pressure - gradient transformation factors on the right-hand side 
of equation (6) of the text are evaluated by using the transformations 
of Stewartson and Mangler . In a manner similar to that already used to 
calculate the heat - transfer transformation factors, it is readily found 
that 

SY- l 

JX(t?=> dx 

(1 +~) m Xo 
== 

iIi SY-l 
(B13a ) 

X (~~) Y-l 

x 
f r 2 dx 

iIi Xo 0 

m x r 2 
0 

(B13b) 

It should be noted that these pressure - gradient factors are functionally 
related to the heat-transfer-parameter factors given by equations (3) 
and (4) of the text. The factor represented by equation (B13b) can be 
evaluated for a body of revolution of given shape. The factor represented 
by equation (B13a) can be found in terms of the given axisymmetric 
streamwise coordinate x by virtue of Mangler's transformation, as was 
indicated for the case of equation 4. Because this procedure usually 
results in an expression of such complexity that numerical methods are 
required to effect the integra tions, it is convenient to approximate 
equations (B13a) and (4) by simpler expressions which can be integrated 
once and for all. 

Approximation of Pressure-Gradient -Parameter and Heat-Transfer­
Parameter Transformation Factors Between Two-Dimensional 

Compressible and Incompressible Flows 

Because heat-transfer soluti ons to the incompressible wedge-flow 
problem are utilized to provide numerical values for the last factor on 
the right - hand side of equation (2) of the text, it is consistent to 
treat the pressure-gradient par ameters ill and m as cons tants during 
integration of equations (4) a nd (B13a), even though they are subsequently 
a llowed to vary . 
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Setting y equal to 1. 4 and using the relations 

~ M 2 0 
+ --

al 

\~ 
5 

ao Ml2 
+ 

5 

~ 
M02) 4 1 + --

__ ----"5:..- dx 
M 2 

1 + _ l _ 

5 

= )a02 
Uo 

2 2 Ul 
al + --

5 5 

= 
--m =-m 

Ml ~ f3 x 
a l ao 

to evaluate terms in equations (4) and (B1 3a) gives rise to the fol l owing 
two integrals : 

o f3 x d-M 2 c-- m ) 2J4 + -- - ---- x 
5 '/5ao (B14a) 

(B14b) 

For convenience , the lower limi t of thes e integrals has been set equal 
to zero . After evaluation of the integrals ( eqs . (B14)), by a ssuming 



that the pressure -gradient parameters are not functions of the coordinates, approximat e values for 
t he factors on the right - hand ' sides of equations (BI3a ) and (4) are found. 

and 

Nti/ ffe 
Nu/Fe 

I 4 CM12) + - -- + 
2m + 1 5 

_ 6 ( M_ l 2)2 + 4 (M_ 1
2)3 + I ( M_12)4 

4m + I \ 5 6iii + I 5 8m + I \ ' 5 

( 
M12)4 

1+ -
5 

(B15a) 

(1 + M~2)[1 4 ( 2 ~ ( 2 )2 4 Ml + 6 Ml 
m 2m + I 5 + Ml 2 4m + I 5 + M12 6iii + ( M 2 \3 1 ( M 2 )4 

I 5 +lM1 2) + 8m + 1 5 +lM~ 2 
m 

provided that I m > - "E3i iii > -! 
8 

( M 2 )4 
I - 5 +lM12 

(BI5b ) 

From equations (BI5) it can be observed that the local heat -transfer parameter in two ­
dimensional compressible flow with favorable pressure gradient (m,ill> O) decreases with Mach number 
and, except at the forward stagnation point, is less than the corresponding local heat-transfer 
parameter in incompressible flow. There is no change predicted with Mach number on constant­
pressure surfaces (m,m = 0) . Conversely, the pressure - gradient parameter ill in the two-dimensional 
i ncompressible flow, corresponding to a favorable pressure - gradient parameter ill in the t wo-

~ 
(") 

» 
~ 
w 
w 
~ 
~ 

dimensional compressible flow, increases with Mach number. w 
~ 

:-1 
I 

I 
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It should be noted that equations (B15a) and (Bl5b) are equivalent, 
and can be related through equations (4) and (B13a) as follows: 

iii 

Iii 
(1 + Ml 2) (~/ ~)2 

5 Nu/ffe 

Application of the Method 

(B16) 

In utilizing the foregoing method for calculating any local value 
of the laminar heat - transfer parameter on a body of revolution with iso­
thermal surface in a compressible flow, a procedure may be followed as 
outlined below: 

1. For a given point on a body of revolution about which the 
local isentropic flow is known, the pressure-gradient parameter m 

is computed from equation (7) ; and the transformation factors 

and m are computed from equations (3) and/ or (B13b). 
m 

NU/ ,fRe 

Nu/jIf; 

2 . After evaluating the pressure-gradient parameter m corre­
sponding to the two -dimensional compressible flow=by combining equa-

tions (7) and (B13b), the transformation factor m can be calculated 
m 

for the desired point from equation (B15b). 

3. A value of the incompressible pressure-gradient parameter ill 
is obtained by combining equations (7), (B13b), and (B15b) as indicated 
in equation (6), after which it is possible to evaluate equation (B12) 
for a given Prandtl number with the aid of the tables of references 10 
and 11. 

4. Using the pressure - gradient parameter m equation (B15a) is 
evaluated a t the desired point for the known Mach number, Mlo An alter­
nate, and quicker, method is to utilize equation (B16) in conjunction 
with the results of item (2) above. 

5. A combination of the results of items (1), (3), and (4) above 
according to equation (2) yields the desired local value of the axisym­
metric compressible heat-transfer parameter. 

Point -by-point repetition of this procedure provides a distribution 
of isothermal heat - transfer parameter over the surface of the body of 
revolution. Such a di stribution is shown in figure 4(b) for the case of 
a hemisphere - cylinder at a free - stream Mach number of 1.97. 
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TABLE 1. - TEST CONDITIONS 

Wind Mach nwnber Reynolds nwnber 
Stagnation temperature 

Test tunnel ReD ' 
Tt(OR) Moo million 

1 1. 97 0. 58 to 2 .23 544-572 
Pressure 2 1.97 2.91 t o 6. 61 variable 

distribution 3.04 2 .79 to 4. 05 variable 
3.80 2.84 variable 

1 1.97 0. 58 to 2. 3 527 -571 
Temperature 2 1.97 3.12 to 4.16 variable 

distr i but i on 3.04 2 .85 to 3· 31 variable 

1 1. 97 0. 60 530 
Heat - transfer 1.19 544 
distribution 1. 73 557 

2.28 570 
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(a) Pressure-distribution model. 
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(b) Recovery- factor model. 

Figure 1.- Hemi sphere -cylinder. 
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(c) Heat-transfer model (electrically heated). 

A-18536 

~ 

(d) Photograph of heat - transfer-model installation in the Ames 
1- by 3- f oot supersonic wind tunne l No.1. 

Figure 1 .- Concluded. 
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Figure 4. - Results of heat-transfer measurement s on hemisphere - cyl inder . 
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