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SUMMARY

The effects of heat sources and frictional heating on the laminar
fully developed channel flow subject to a body force between two paral-
lel plates oriented in the direction of the body force are amalyzed.
Solutions are obtained for combined forced- and natursl-convection flows
for the cases in which the wall temperature varistions are linesr and
(1) the wall temperatures are specified, (2) the walls are both insu-
lated, and (3) the net mass flow in the channel is zero. These solu-
tions depend on the Rayleigh numbexr which was previously found to be
the factor determining the stability and type of flow for horizontal
and vertical layers of flulds heated from below but without heat sources-
or frictional heabting. Similar stability characteristics are displayed
in the present problem, and the heat sources affect the flows only in &
quantitative manner.

When the effects of frictional heating are considered, two distinct
solutions are obtained for each set of parametric velues. Solutions
neglecting frictional heating correspond to a different exact solution
for values of the Raylelgh number smaller and lesrger than the criticsl.
The related approximate and exact solutions are essentially coincident
vhen the frictional-heating parameter is small but differ for unit order
values of this parsmeter. The approximate solubtions (i.e., those neg-
lecting frictional heating) are shown to be always invaelid for Rayleigh
numbers neaxr critical.

INTRODUCTION

Considerable theoretical work (refs. 1 to 5) has recently been done
on problems dealing with internal natural-convection flows because of
the many new practical applications of this phenomenion. The heat-
transfer results of reference 5 are experimentally verified 4n reference
6. All this work is concerned with flows in vertical enclosures.
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One of the many interesting aspecls of the naturel-convection proc-
ess, which was originally studied theoretically by Rayleigh in 1916
(ref. 7) for horizontel rather than vertical layers of fluid, is the in-
stabllity of the flow associated with heating a fluld at rest from be-
low. When & stabtionary fluid has same layer with a density greater than
others lying below it, its equilibrium becomes unstable in the sense that
even a small disturbance may result in a completely altered regime.
Bénard (ref. 8) and others had previously shown experimentally that such
a configurstion leads to & cellular type of flow. Numerous theoretiecal
and experimental investigations have been performed to substantiate,
clarify, and extend the early findings, but these works were restricted
to horizontal layers of fluld. These studles, which are briefly summs-
rized in reference 9, were essentislly of the stability type in which
eigen relations of the physical and cell-shape parameters were deter-
mined for neutral stability, and the details of the flow were usually
not investigated further.
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The resulls of this work on horlzontal layers indicate that the
flow regimes depend on & dimenslonless parsmeter sometimes referred
to as the Rayleigh number, which is the product of the Prandtl and
Grashof numbers. It has been demonstrated experimentally that there
are egsentially two different laminar types of flow: (1) a columnar k4
type (ref. 10), occurring after a relatively low value of the Rayleigh
pumber is attained, and (2) the cellular typeléobserved first), occur-
ring for larger values of the Rayleigh number/(approximately 1700 for L s
two horizontal parallel plates). — - :

- —’~E;’¥eference 5, 1t was pointed out that heating from below might be
expected ect the stability of vertical as well as horizontal lsy-
er spite the differences between the two configurations. As a metter
of fact, heating from below in vertical enclosures is often actually en-
countered; a discussion of such a configuration in an atomic power unit
1s presented in reference 11. Configurations of this type can also be
found in many other fields besides that of atomic power; for example,
this phenomenon can also be found in conjunction with the cooling of
turbine blades by natural convection. (The writer is unawere of any
previous presentation of this connection.) Accordingly, the problem
treated in reference 5 (namely, the fully developed flow with temper-
ature increasing linearly upward in & vertical channel) was reconsid-
ered in reference 12, with the modification that the heating was from
below; that is, the temperature was specified to decrease linearly
upwaxrd.

In reference 12, 1t was found that the stability characteristics
and the critical values of the Rayleligh number for the vertical filuld <
layers were simlilar to those for horizontal layers. Representative
velocity and temperature distributlons for various sets of boundary
conditlions were determined from explicit expressions in reference 12 w
neglecting frictional heating. It was shown that, in certain ranges
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of the parametric values, the flow and heat transfer associated with
heating froam below are appreciably different from the corresponding
quantities for the identical configuration in waich heating is not
from below. .

The analysis of reference 12 1s extended herein to include the ef-
fects of uniform internal heat sources in the fluid and of frictional
heating. The importance of frictional heating in the natural-convection
phenomenon was first dlscussed in reference 1 and later in references 5
and 13. The solutions obtained with frictional heating are exact, so
that the assumption of the negligibility of frictional heating in refer-
ence 12 can be checked.

ANATYSIS
Basic Equations

The fully developed laminar flow of viscous fluids subject to a
body force between two plane vertical parallel surfaces open at both
ends (see fig. 1) is considered herein, as in references 1 and 5.

(More generally, the surfaces could be taken to be oriented in the 4i-
rection parallel to any generating body force.) In contradistinction
to the work in references 1 and 5, the fluid here is heated from below,
80 that the axial (vertical) temperature gradient is specified as nega-
tive. It is further assumed that the physical properties of the fluids
are constants, except that the essential influences of density changes
on the flow are taken into account insofar as they modify the effects
of the body forces. This last assumption is usually employed in prob-
lems of this nature, . and its Justification is discussed in references
1 and 14. -

Under the conditions stated (which are essentially those for
Poiseuille flows together with the specific thermal conditions), the
temperature can be expressed as the sum of a linesr function of the
vertical coordinate and arbitrary function of the horizontal coordinste:

T# = AX + T(Y) (1)

Further, the continuity equation is identically satisfied, and the mo-
mentum and energy equations in dimensionless form are

u' + T = -CK _ (2)
™ +Rau+ (u')2 +ak =0 (3)

(A1l symbols are defined in the appendix.) The primes denote differen-
tiation with respect to the dimensionless horizontal coordinate ¥. The
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terms in equation (2)(from left to right, respectively) denote the vis-
cous, buoyancy, and axial-pressure forces, and the terms in equation (3)
denote the conduction, convection, frictiopsl heating, and heat sources.
The details of the development of these equetions are essentislly pre~
sented in reference 5, the only medification in the present work being
that the longitudinel (vertical) temperature gradient OTH/JX = A is
taken as negative. Note that the Rayleigh and Grashof numbers are modi-
fied herein in that the characteristic temperature is Ad rather than &
temperature difference as is conventional.

The constant € which appears as & paremeter in the problem merely
specifies the tempersture level (see eq. (2)) and is defined by (see

ref. 5)
1 |prad (ap
¢=% '\ICP;-A;:K: (’é‘}'{' + pwofx) (4)

This parameter must in some way be related to the physics of the prob-
lem. From equation (4) it can be seen that C could be determined from
the longitudinal pressure gradient; that is, C 1s essentially connected
with the end conditions to which the channel is subject. The parameter
¢ can also be related to the end condltions by the mass flow in the
channel, which remains invariant over the entire channel length. Such

a relation will be developed subsequently. The solutions of equations
(2) and (3), together with appropriate boundary conditions, will,
through the parameter C, gspply to both naturel-convection and combined
natural- and forced-convection flows. The foreced-convection pressure
gradient merely alters the magnitude of C.

The system of equations (2) and (3) can, by eliminating <, be
written as a single fourth-order nonlinesr ordinary differential
egquation:

WiV - Re u - (u')? - X ; o} (5)

Equations of the ssme form as in reference 5 are obtained by letting

v =25 (Ba u + oX) (6)
T]:szy—l (7)
R = Ra (8)

- 16
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where equation (7) is merély for convenience. Equation (5) becomes, for
v(ﬂ) )

2
N SR A L (9)

R

Boundary Conditions

The present problem will be considered for two different sets of
thermal-boundary conditions at the channel surfaces, namely, (1) that
the wall temperatures are specified and (2) that both walls are insu-
lated. Another case, which was essentially a combination of the sbove
conditions, was treated in reference 12; but, since no basically new
results were indicated, this case 1s not discussed herein.

For both sets of thermal conditions, the no-slip condition of vis-
cous fluids must be satisfied; that is,

v(-1) = v(1) = A (10)

where

A= (11)

&

Specified side-wall temperastures. - For the first set of thermal
conditions the side-well temperatures are specified. The temperature
varies linearly along the walls (equal slopes on both walls), but the
wells may each be at different temperatures. Thus, equation §lg im-
plies uniform heat flux across each surface. When equations (2), (6),
and (7) are used, this condition can be written as

v'(-1) = 3\’ (12)

v(1) = nT VR (13)
where
1/2
_ _ Ra~/°CK
J= - =ar= (14)
and
e
W
n=1+ L (15)
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where n 1s essentlally a measure of the difference between the two
wall temperatures.

Both side walls insulated. - In order to simulate more closely the
conditions used in the study of the horizontal layers where the side
wells were taken to be insulated surfaces of symmetry in the fluid, the
second set of thermsl conditions chosen herein is that both side walls
are insulated; that is,

—

(am%/ay)wo,wl =0

or P (18)

'V"”(—l) = .V.nl(l) = O__J

Solutions

The nonlinear term in equation (9) is associated with frictionsl
heating. If the effects of frictional heating are neglected, the prob-
lem then consists in solving the equation

vg' - Rvg =0 (17)

together with the proper boundary conditions. For no internal heat
sources (@ = 0), this problem is solved in reference 12 for three

sets of boundary conditions. The solutions of equation (17), identi-
fled by the subscript zero, are hereinsfter referred to as the approx-
imate solutions. The effects of a uniform dlstribution of heat sources
(o # 0) are determined herein.

In the present paper the effects of frictional heating are deter-
mined from a direct solution of the complete equation (5), by means of
a forward integration technigue on & high-speed computing machine (Card-
Programmed Calculator).l

The effects of frictlional heating are clearly discernible by com-
paring the solutions of the complete and the spproximate equations (eqs.
(5) ana (17), respectively). The solution of equation (17) also repre-
sents an extension (including heat sources) of the work in reference 132.
The general solution of equation (17) is of the form

vg = C1 cos Rl/én + Co sin Rl/4n + Cz cosh Rl/4n + Cy4 sinh Rl/4n
0 1 2 3 4

1The effects of frictional heating could also be determined by an
iteration procedure as described in reference 5, however, this procedure
will not be used herein.

LYV
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For each given set of boundary conditions, the solutions are presented
in the succeeding sections in terms of Vg, and the corresponding tem-

perature differences T can be obtained by use of equation (2).

Specified side-wall temperatures. - The solution of equation (17)
subject to the boundary conditions (egs. (10), (12), and (13)) is

Jg - l! J! + l!
Vo = 7\VOO + o > VoL + L 5 Vo2 (18)
where
1/4 1/4
l{cosh R/®n , cos R q)
Voo = 5 + (19)
00 2(jcosh Rl/4 cos Rl/Z

o = Afsinn RY/4n  sin 31/411) (20)
oL Z2\ginh Rl/4 sin Rl/4

S lf{cosh Rl/éq _ cos Bl/4ﬁ) (21)
02 ™ 2\cosh R1/4 cos RL/4

The solution given by equation (18) is a function of the parameter
C. In order to relaste this solubtion to & given physical problem, C can
either be determined Trom the channel pressure gradient through equation
(4) or from the dimensionless mass flow through the expression

1
M=J\uody (22)
0

Equation (22) is particularly convenient in the case of no net mass flow
through the channel, for then C can be directly related to the param-
eters o, n, and BRa. ' .

Examination of the solution neglecting frictional heating (eqs.
(18) to (21)) shows that there are critical values of the Rayleigh
number Rg for which the solutions become infinite. These values,
namely, Rap = (kx)4, where k denotes integers, obtained herein con-
sidering heat sources are identical with those given in reference 12
for no heat sources. It is significant that these critical wvalues of
the Rayleigh number when k =1 and 2 (Ral==97.4l and Ra2==1558.55)
correlate closely with the critical wvalues found for horizontal layers
heated from below (see ref. 9). Purther discussion of all the solutions
and their physical simplications is given in the next section.
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Both side walls insulated. - The sclution of the boundary-value
problem specified by equations (17), (10), and (16) is

k(51n Rl/écosh 31/4 - sinh Rl/4cos 31/4 ) (23)
sin Rl/4cosh 3174 - sinh Rl/écos 31/4

Vo =

The critical values of Ra for egquation (23) are those which satilisfy

4
tan RL/4 = tanh BY/4 or Rey 21]?k + %)%] . For k= 1, Ray & 3803.22.

Note that the boundary-velue problem as gtated for this case (both
walls insulated) by equations (5), (6), (10), and (16) defines T to
within an arbitrary constant. Therefore, in order that 7 wvanish at
the wall (y = 0), which it must by its definition, C must be so speci-
fled as to accomplish this. Hence, for this case, T 1s determined
from (see eq. (2)) 7 = u"(0) - :

Solutions Ffor special case simulating an enclosed chsnnel. - In or-
der to simulate.a completely enclosed channel, that 1s, one in which the
ends are closed, the net mass flow as given by equation (22) can be
specified as zero. For the case of linear side-wall temperatures, no
net mase flow will be obtained 1f L

C{n +1) . o tanh RL/4 4+ tan RY/4 - 2gl/4
2 /2 tenn BL/4-- tan RL/4

Por the case wherein both walls are insulated, the condition of no
net mess flow can be cobtained only if there is no heat due to heat
sources (a = 0). The situation for o = O is as described in reference
12; that is, no flow except for certain specific values of Ra (those

(24)

4
satisfying cos Ral/ 4cosh Ral/ 4.1 or Rey = [(k + %)n‘] as glven in
ref. 12).

MECHANICAT, ANAL.OGY

Equation (17), obtained from the mathematical formulstion of the
problem treated herein, i1s identical with that describing the vibra-
tions of uniform beams or of rotating shafts (see ref. 15). The case
wherein both walls are insulated is analogous to the vibration problem
if the ends of the shaft are fixed with no shear. The critical values
of the Rayleigh number correspond to the criticel or whirling speeds
of the shaft.

.\. -
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If the shaft has initial deflections or bending mcments at the
ends, the rotating shaft becomes dynamically unstable and the solu-
tions become infinite at the critical speeds. This situation has its
counterpart in the present problem wherein the slde-wall temperatures
are specified.

RESULTS AND DISCUSSION

The discussion of the results is dlvided into two main sectlons
according to the thermal boundary conditions. The main sections are
further subdivided by first neglecting the frictional heating effects
and then ineluding them in order to demonstrate clearly the effects
of heat sources and of frictional heating.

The primary effect of heating from below, namely, the instability
of the flow, is demonstrated by comparing the present results with those
for the stable case (A > 0) reported in reference 5. In this regard, it
should be noted that, since CK, oK, CA, and K/A are all independent
of A, the problem treated herein (for A < 0) differs from that in ref-
erence 5 (for A > 0) only in the sign of the convection term. There-
fore, in order to compare- the two cases properly, the boundary condi-
tions must be identical in the two problems. Choosing C with opposite
gigns in the {two problems meskes them identicael. Since C = -1 for the
present calculations, the corresponding cases for A > 0 are computed
with the use of reference 5 for C = 1.

The results are all presented in dimensionless form, with the phys-
lcal quantities related to the dimensionless ones by

i /c_P—__l(,;A;_.d u (25)

0 = (-A)a T (28)
Y = yd (27)

Linear Side-Wall Temperatures

No frictional heating. - In order to investigate closely the flow
and heat transfer, including the effects of heat sources for values of
Ra different from the critical, calculations of the velocity and tem-
perature distributions were made from the approximate solutions for
@ = 10, K = 10, and the two side walls either at the same temperature
(n = 1) or at different temperatures (n = 0, for convenience) and
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Ra = 10, 81, 100, 1000, and 1800, so that the criticel velues of the

Rayleigh number are straddled. The calculations of reference 12 for no L
heat sources (o = 0) were also extended herein over the larger range of

Rayleigh number values. All these campubtations are presented in figures

2 and 3 for the symmetric case (n = 1) and in Pigures 4 and 5 for the

asymmetric case (n = 0) and are labeled with ug and Tg to denocte

that they are the solutions obtalned neglecting frictional heating.

Fram the solutions (egs. (18) to (21)), it can be seen that the
only critical value of Ra for n =1 in the renge 0O < Ra £ 1800
(for which the calculations were made) is Ra = x4 = 97.41. Com-
parison of the velocity profiles (fig. 2) for each fixed o and both
walle at the same temperature shows & different flow direction on el-
ther side of this critical point, the distributions remaining essen-
tielly the same shape except for boundary-layer effects as Ra is
further increased to 16800. This behavior can be clearly observed in
figure 6, where the velocity extrema are presented as functions of
Ra for o = O. The temperature distributions (see fig. 3) for =0
are of opposite curvature on either side of Ra = 97.41; but for o = 10
there is no such change, but merely a gradual decrease of the maximum
values followed by an lncrease for large Rayleigh numbers.

35735

For the wells at different temperatures (n = 0), the two critical

velues of Ra in the range up to 1500 sre =% = 97.41 and

EZx)4 = 1558.55. For this case, it can be seen from figures 4(a) and -
b) that agsin the velocity changes direction across Ra = 97.41 for
a =90 and o = 10. For values of Ra > 100, the flow 1s no longer
entirely in one direction but is in opposite directions in adjacent
sections of the channel (see fig. 4(c)). Beyond the second critical
point, Ra = (2n)% = 1558.55, the flow directions in the adjacent sec-
tions are reversed. The temperature distributions (fig. 5) are also
appreciably eltered in passing the critical values of the Rayleigh
number .

The effects of heat sources in the fluld can be determined by com-
paring the curves for a = 0 wlth those for o = 10 in figures 2 to 5.
For Ra = 10 (figs. 2(a) and 4(a)), the addition of the heat (o = 10)
for these computations) causes the flow direction to be reversed essen-
tially (with different magnitudes). Near the first critical point, the
heat sources greatly reduce the velocity megnitudes. The addition of
hest sources, of course, alters the temperature distributions and,
hence, alters the hest transfer greatly.

In order to study the effect of heating from below, calculations
made for the stable case (A > 0) from reference 5 are superposed on 2
figures 2 to 5. The boundary conditions are specified to be identical
for both problems, so that the two cases correspond except for the
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heating from below. Comparison of the velocity and temperature profiles
shows that the heating from below changees the flow and hest-transfer di-
rections and magnitudes in some ranges of Ra values. In all cases,
greater velocities result with heating fram below. 8Since, as has been
previously discussed, the heat sources can also change the flow and
heat-transfer magnitudes and directions from the o = 0 case, the ef-
fect of the heat sources in this comparison is merely to shift some of
the ranges of Ra values for which the stable and unstable flows and
heat transfers are unidirectional.

Representative velocity and temperature profiles for the case simu-
lating a fully enclosed region (i.e., zero net mass flow) are presented
in figures 7 and 8 for Rayleigh numbers of 10, 100, and 1600 and for
heat-source perameters of O and 10. For small Ra (see figs. 7(a) and
8(a)), the velocity profile with no heat sources (a = 0) is antisymmet-
ric and the temperature profile 1s essentially linear. For heat sources
in the fluid (a = 10), the velocity profile is symmetric about the chan-
nel axis and the temperature profile shows the effects of the increased
convection by its aelmost parabolic shepe. For large Raylelgh numbers
(figs. 7(c) and 8(c)), both the velocity and temperature profiles for
both =0 and o = 10 are antisymmetric, but for each different o
the directions are opposite. Further, since Ra = 1558.55 is the first
critical value due to heating from below fox* this case, the direction
change from that for smell Rae is also clearly evident. Note that the
peremeter n for no net mass flow and fixed C changes with o, and
the appropriate values are Indicated in the figures.

Frictional hesating. ~ In reference 5, it was poinfted out that, in
general, the effects of frictional heating could be important if the ra-
tio K/Ra 1s of unit order or larger. Therefore, in order to see how
well the solutions neglecting frictional heating spproximate the exmct
solutions (eq. (5)), the complete equation including the effects of
frictional heating was solved for several cases by means of a Card-
Programmed. Calculator. A forward integration technique similsr to that
described in eppendix B of reference 16 was employed. The results of
these calculations, denoted by u and T with no subscripts but with
superscripts to Indicate the exact solutions, are presented in tables I
and IT and also in figures 2(a) and (d), 3(a) and (d), 4(a) to (d), and
5(a) to (d). The significance of the superscripts will be discussed
subsequently.

The approximste sclutions deviate somewhat from the exact solutions
for K/Ra = 1 and essentially coincide with them for K/Ra << 1. How-
ever, near the critical values of Ra vwhere the epproximate solutions
become infinite, there are, of course, very great discrepancies between
the two solutions. Therefore, solutions were computed from the exact
equations for values of Ra at and on either side of the critical.
These results are presented in figures 9 and 10 for the case of unequal
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wall temperatures (n = 0). It should be recalled that in reference 1
it was first pointed out that solutions of the exact eguations (taking
into account the effects of frictional heating) were not unique. In
fact, two distinct solutions were found for each given set of parame-
ters up to a limiting set in the only problems which have been solved
exactly (see refs. 1 and 5). Beyond the certain limiting set of pa-
rametric values, no exact solutions could be found. The conjecture

is that this corresponds to a choking condition.

The two sets of exmct solutions for several Rayleigh numbers (see
table II) at and near the first critical value of Ra, shown in figures
9end 10 for a=0 and n = 0, are denoted by ul{l) and u(2). mme
superscripts are used merely to ldentify a given exact solution, and
the (1) is used to denote that solution with the algebraically smaller
initial slope. Computations from the corresponding approximate solu-
tions are included in figures 9 and 10. For the case of equal wall
temperatures {n = 1), the velocity extrems of both exact solutions are
superimposed on figure 6. It can be seen from figures 6, 9, and 10
that the flows computed from the approximate solutions correspond to
different exact solutions on either side of the flrst critical Ra.

Beyond the first critical Ra, separste consideration must be
given to the symmetric case (n = lj and the asymmetric case (n = 0).
For n = 1, recall that Ra = n¢ ig the only critical Rayleigh num-
ber (in the range computed, i.e., from Ra = 10 to 1600) indicated by
the approximate solutions. Thus, for 97.41 < Ra < 7890.13 (the latter
being the second critical point (3x)%4 for n = 1), the approximate so-
lutions indicate flows of the seme general character. However, the
exact solutions of the superscript (l) type for n =1 appear to be
discontinuous at approximately Ra = 1579 (see fig. 6). The change

in flow type indicated thereby for the larger (than 97.41) Ra mmy
imply thet the frictional heating delays (in a Rayleigh number sense)
the instability. Note that the approximate solution alwsys corresponds
to that exact solution with the lower velocities.

Exact (see table IT) and approximate solutions near the second
eriticel value of Re ((2¢)%) for a =0 and n =0 are shown in
figures 11 and 12. The two exact solutions ere shown only for
Ra = 1758.55. Although the flow 1n adjecent sectlons of the channel
'is in opposite directions, the qualitative effects are essentlally
the same as those nesr the first critical Ra. No unusual behavior
of the exact solutions for n = 0 was found, but not as many of these
solutions for n = O were obtained as for n = 1.

Near the critical points there are appreciable quantitative and
qualitative differences between the exact and spproximate solutions,
go thet the exmet solutions or higher-order approximations should be
used there for reasoneble accuracy. Therefore, 1t appears that near
the critical Re the effects of frictional heating are very important.

3373
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It has been pointed out (figse. 6 and 9 to 12} that on either side
of the critical points the solutions neglecting frictional heating cor-
respond. to diffevent exact solutions but always those with the smaller
velocity extremum. The question then arises: Since the exact solutions
do not display a discontinuity (with Re) at the values indicated by the
approximate solutions, is the actusl flow really of a different type on
either side of the criticel Ra as 1s indicated by the linearized solu-
tions? Although a more genersl study of the present configuration would
be necessary (perhaps relaxing the condition of fully developed flow) to
ansver thls question conclusively, it seems reasonable that the actual
flow does 1in fact change charscter in accord with the linesrized solu-
tions and the exact solutions for n = 1. The reason for this statement
is that the approximste solutions are approximate only in that friction-
al heating is neglected. In starting a flow, the frictional heating ef-
fects are not of primary importance until velocities of appreciable mag-~
nitude are encountered. Therefore, it 1s felt that the larger veloclty
flows, indicated by one of the two exmct solutions, result from a regen-
erastive action of the Prictional heating (see ref. 5) and thet for a
given set of conditions the flow first established would be that with
the smaller velocities. Also, the changes in the character of the flow
on either side of the critical Ra 1in the experiments with unstable
horizontal fluid layers seem to lend further support to this contention.

Neer the critical points themselves, however, the velocities are
always large; and, therefore, the frictional heating may pley an impor-
tent role in the transition from one type of flow to the other.

The velocity and tempereture distributions for the case of no net
mass flow in the channel will be affected by frictional heating in ex-
actly the ssme manner as was discussed gbove.

Both Side Walls Insulated

No frictional heating. - The effect of heat sources in the fluid
for no frictional heating and with both side walls insulated can be
studied by comparing equation (23) with the solution for o =0 sas
given In reference 12. TFor example, in reference 12 it was shown that
for no heat sources flow does not ensue except for values of Ra that
satisfy the equation cos Ral/4cosh Ral/4 = 1. However, when o # 0,
the present results indicate that the flow and heat transfer are much
the same as for the linesr surface temperature cases, except that the
critical values of Ra are higher (the first is 3803.22). A repre-
sentative set of profiles for a = 10, K= 10, and Ra = 10, 74 s and
84, with both walls insulated, is shown in figures 13 and 14. Again,
the different regimes on opposite sldes of the critical Ra are
evident.
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Frictional heating. ~ Solubtions includlng the effects of frictlonsal
heating obtained by means of the high-speed computing machine for
Re = 74 and 8¢ are presented in figures 15 and 14. The initial values
of the exact solutions are presented in table IIT. These solutions co-
incide with those computed neglecting frictional heating, as is expected,
since the ratio K/Ra << 1. At the critical Reyleigh number (3803.22),
no solution could be obtained with frictional heating. This insolvabil-
ity mey be the result of the "choking condition” previously mentioned
and discussed in reference 1.

CONCLUDING REMARKS

An enalysis of the flow subject to a body force between two paral-
lel plane surfaces oriented parallel to the body force direction with
heating from below and including the effects of heat sources and fric-
tional heating shows that the basic physical characteristics are similar
to flows in horizontal fluid layers with heating from below. The prime
characteristics in this respect are the existence of critical Rayleigh
numbers and the difference in the flow and heat transfer on opposite
sldes of critical Rayleigh number.

Detalled velocity and temperature distributions were computed for
linearly verying wall temperatures when the wall temperatures were spec-
ified or when both walls were insulated, and also for the special case of
no net mass flow in the channel. The critical Rayleigh numbers are the
same for corresponding flows with and without heat sources for the spec-
i1fied well temperatures but are different when both walls are insulated.
Comperison of two identical configurations, in one of which, however,
the fluild was heated from below, indicated that the flow and hesat trans-
fer can be appreciebly affected by heating from below.

The effects of frictional heating were once again found to be im-
portant when K/Ra is of unit order and are also important in the vi-
cinity of the critical Ra. Two distinet solutions were obtained for
each set of parametric velues when frictional heating is considered.
The solutions obtained neglecting frictional heating correspond to one
of the two sets of exact solutions except near the critical regions.
The approximate solutions on one side of a critical region correspond
to one of the two distinct solutlon types obtained with frictionsal
heating but on the other side of the critical region correspond to the
other type exact solution. Hence, the approximate solutions indicate
completely altered regimes on opposite sides of the critical Rayleigh
number, analogous to the situation experimentally found for horizontal
layers heated from below. However, close to the critical region the

3573
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approximate solutions are invelid; and, hence, the question as to which

of the two exact solutions properly describes the flow in this region
can be snswered perhaps by & more general analysis.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronsutics
Cleveland, Ohio, April 29, 1955
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APPENDTX - SYMBOLS
The following symbols are used in this report:
longltudinel temperature gradient, JT¥*/dX
parameter defined by eq. (4)
constants, i =1, 2, 3, 4
specific heat at constant pressure
distance between parallel plates
negative of X-component of body force per unit mass
modified Grashof number, Bfk(-A)d4/$z
constant, -Ral/Z0K/64 —

prgd  p2pPrg(-a)a®

frictional-heating parameter, PrGr

°p X
Integers
dimensionless mass flow N
Oy
wall-temperature parameter, 1 -+ Et—z%a

pressure
Prandtl number, cph/x

heat due to heat sources
constant, Ra/16

modified Rayleigh number, % PrGx
temperature

velocity

dimensionless veloclty

dimensionless velocity defined by eq. (6)

3573
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X longitudinal or axial (vertical) coordinate
Y transverse (horizontal) coordinate
Y dimensionless transverse coordinate, Y/a
o dimensionless heat-source parameter, Qdi/(-A)x
B volumetric expansion coefficient, p[é(%ée-l:\la
T ratio of specific heats
| dimensionless coordinate, 2y - 1
] temperature difference, T - TWo ar -(—_%E T
x coefficient of thermal conductivity
A constant, oK/64
K absolute viscosity coefficient
v kinematic viscosity coefficient
p density
T dimensionless temperature difference, Ko/{-A)d
Subscripts:
e extremunm value
L0o) conditions at y =0
wy conditions at y=1
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TAELE T. - EXACT SOLUTIONS FOR WALLS AT SAME TEMPERATURE
[o=1),K=10,C= -1

(a) Ra = 10, aa = O (b) Ra = 10, a =.10
¥ a2} w@) L@ (e y af1) MCO LI PG OLAN BN S BRLL
0 0 ~5.205 10.00 |-0.2362 (o} o -0.8240 10.00 {-50.06
10| -.e704 -4.202 10.09 | 1.742 .10| -.04033 -.08760 5.494 |-40.07
.20! -.s399 -3.183 10.31 | 2.452 .20] -.02488 3081 1.986 |-30.10
.30 -1.106. -2.140 10.54 | 2.189 30 .o1126 . .3729 ~.5240]~20.09
.40} -1.267 -1.076 10.72 | 1.262 40| .04300 .2367 -2.032 |{-10.05
50| -1.321 .0001010|10.79 | -.002926 .50{ .05526 .00004873| ~2.534 -.001518,
.60l-1.267 1.077 10.72 |-1.267 .60 .04301 ~.2366 -2.032 | 10.05
70| -1.106 2.141 10.54 |-2.194 .70]  .0l128 -.3728 ~-.5246] 20.08
.80} -.8399 3.183 10.30 |~2.457 .80l -.02486 -.3082 1.985 | 30.10
.S0| -.4704 4.202 10.08 |-1.748 .90| -.04032 .05746 5.493 | 40.06
1.00{ -.1986}10~%| 5.204 9.997| .2300 1.00] -.1445%10-4| .8237 9.998 { 50.08
(c) Ra = 100, e = 0 (d) Ra = 1600, o = O
v | @ u(2) B @ s T ey Tae Jaaee
0 0 15.5¢ 10.00|-227.2 o |o .8000 [ 10.00 -31.05
101,547 15.25 -11.27|~195.6 .10 -.03526 .04072 6.745 | -34.98
.2bl2.985 13.22 -28.72 }-152.0 .20 -.003506 .5321 3.017 | -38.72
.30]4.140 9.666 -41.48|-102.8 .30] .05839 L6431 -.7247 | -34.44
.40|4.88¢ 5.090 ~49.18 |-51.42 4ol 1138 4182 -3.538 | -20.33
.50(5.141 . B354x10-3]-51.75 .008483 | .50| .1354 -.004572 | -4.574 A771
.6014.885 -5.089 -49.18| 51.44 .60} .1130 -.4256 -3.505 20.61
.70(4.140 ~9.665 -41.47 {102.7 .70| .05689 ~.6461 -.6719 | 34.5¢
.80|2.986 -13.22 -28.71[152.0 .80 |~ .004927 -.5297 3.068 58.59
.90]1.548 -15.25 ~11.26 |195.6 -80(-.03622 ) -.03424 6.773 | 34.65
1.00] .6819%x10~3]-15.34 10.01 [227.3 1.00]-.2323x107°] .8073 9.988 | 30.63

(e) Ba = 16800, o = 10

¥ u(l) u(l)! u(l)” u(l)rn
o |o 0.9800 §10.00  [-39.61
.10{-.05422 -.1666 | 6.342 {-35.00
.20 -.04503 .204¢ | 2.900 |-33.58
.30|-.006514 4236 | -.2216 [.27.8¢
40| .03053 .2800 |-2.449 |-15.71
.50| .04432 -.017114-5.213 .6815
.60| .02733 -.3076 (-2.321 | 16.81
.70|-.01168 -.4341 | -.01617] 28.25
.80{-.05018 -.2857 | 3.104 | 33.11
.90{-.05745 .1942 | 6.464 | 33.87
1.00| .2669x10-5{1.013 | g.991 | 38.22 )

r-v'rv'n
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TABLE IT. - EXACT SOLUTIONS FOR UNEQUAL WALL TEMPERATURES
[p=0,K=10,C= -1.]
[}
B (8} Ra = 10, @ = 0 (b) Ra = 10, a = 10
o z
y u(2) uf2)’ uf2)*rful2) ' ¥ u{2) u(2)' {w(@)'r (u(@)'r
o} o] ~3.500 ]10.00 -3.160 0 o] 1.172 [10.00 -63.56
.10]-.3015 2.544 | 9.129 -8.402 .10} .1571 1.872 | 4.157 -53.24
.20]-.5116 ~1.673 8.296 -8.368 .20} .3566 2.039 -.6361 |-42.58
.30} -.6389 -.8858] 7.441 -8.783 .30] .5507 1.780 |-4.354 =31.75
40} -.6917 -,1866| 6.532 ~9.422 40| .7021 1.204 |-6.985 -20.89
.50}-.6793 .4182] 5.555 -10.11 50| .7846 .4195|-8.532 =10.086
.80]=.6215 .9221} 4.513 -10.71 .60] .7827 ~.4660|-8.999 7.345
.70} -.4985 1.319 3.419 -11.14 .70 .6916 -1.344 }-8.384 11.57
80}-.3514 1.6058 | 2.292 -11.35 .801 5177 -2.107 |-6.682 22.49
.90|-,1813 1.777 1.157 «11.33 .80] .2778 -2.644 [-3.885 335.47
1.00 .3222!10'3 1.837 .03429] -11.09 1.00| .3038x10~4{ -2.847 009144 | 44.38
{(c) Ra = 77.41, o= O
d Yy U(l) u(z) u(l) ! u(z) ! u(l) v u(z) e u(l)l ' u(z) v
[s) ) o] -8.150 20.90 10.00 10.00 32.42 |~297.1
10} -.7594 2.092 -6.980 | 20.48 [13.44 =-17.24 35.18 |~245.2
- .20]-1.384 4.017 -5.464 | 17.64 [|16.79 -38.75 30.71 |-184.3
«30)=1.842 5.560 ~3.647 | 12.95 19.39 -54.08 20.23 |-122.9
.40}-2.107 6.567 ~1.630 7.027 §20.70 -63 .45 5.551] -65.17
.50}1-2,166 6.944 .4405 A4475)20.43 -67.23 =-11.05 -10.67
.60]-2.023 6.653 2.401 ~6.239 [118.51 -65.59 -27.15 43.61
.7T0[~1.695 5.710 4.092 {-12.49 15.09 =-58.40 -40.55 101.1
.801-1.218 4.18% 5.381 |-17.72 10.54 -45.22 -49.62 163.1
.90| -.B6353 2.221 6.179 |-21.32 5.343 -25.71 ~53.45 227.0
1.00 .3330ML0~S .8538x30~3 6.446 j-22.65 03330 -.020291-51.88 | 285.0
(d) Ra = 97.41, a = 0
¥ ed) o{(2) 2 u@ @) w23 w@yrrriy(e)
o} o] 0 =13.45 10.83 10.00 10.00 73.30|-162.4
.10}-1.282 1.107 ~12.06 11.04 17.97 w5 .451 83.39]|-144.8
.20}j-2.384 2.160 -9.849 9.816 [}26.15 =-18.64 77.55}-117.6
,301-35.226 3.031 -6.876 7.417 }32.99 -28.78 57.14] -84.54
40 -3;741 3.616 -3.340 4.176 {37.20 -35.44 25.67| -48.39
.850!-3.886 3.850 4481 .4518137.93 -38.42 <11.45} =11.06
.601-3,65%5 3.702 4.1221 -3.383 ||54£.94 -37.65 -47.83 26.37
.70 [=3.077 3.182 7.323 | -6.955 [128.59 ~33.17 ~TT.46 63.01
.80 -2.216 2.332 9.760| -9.898 {|19.82 ~25.12 -95.97{ 97.39
.90}-1,157 1.235 11.25 }-11.87 9.843 ~13.85 -101.3 | 127.0
1.00 .1560I10'4 .2910%10-5|} 11.73 12.58 -.003217 .7480%10~3 -93.57| 148.3
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TABLE II. - Continued. EXACT SOLUTIONS FOR UNEQUAL WALL TEMPERATURES
[p=0,K=10,C=-1.]

(e) Re = 100, o = Q

v u(l) u(l)v u(l)ll u(l)lvv
0 0 9.877 | 10.00 -150.7
.10[1.013 10.14 4,395 -135.4
.20[1.984 9.065 | -16.77 -110.9
.30|2.789 6.883 | -26.37 -80.33
.40(3.334 3.889 |-32.73 -46.42
.50(3.554 .4525| -35.61 -11.12
.60|3.420 -3.105 (-34.95 24.34
.70[2.941 -6.420 |-30.78 58.81
.80]2.156 -9.149 |-23.27 S0.74
.9011.141 -10.97 |-12.79 117.7
1.00] .1563%10°3{-11.63 -.2000x10°3| 136.5
(f) Ra = 117.41, a = O
y u(l) u(z) u(l)l u(g)r u(l)“ u(z)” u‘l)'” u(z)"'
o] o} o} -22.65 5.400 f 10.00 10.00 129.2 |-98.41
.10| -2.192 .5738 -20.93 5.916 || 24.95 .4285 164.3 [~91.80
.20| -4.132 1.153 -17.60 5.520 |! 41.69 -8.128 164.6 |-78.27
.30|-5.657 1.652 -12.65 4.345 || 56.70 -15.04 130.1 |-59.1¢9
.40{ -6.620 2.002 -6.427 | 2.582 || 66.74 -19.84 66.97|-36.31
.50(-6.921 2.156 .4536| .4578(l 69.56 -22.24 -11.89{-11.42
.60 -6.533 2.090 7.217 |-1.781 || 64.40 -22.11 ~89.65| 13.81
.70{-5.507 1.805 13.10 |-3.882 }| 52.21 -19.52 -150.1 | 37.73
80| -3.963 1.326 17.50 |-5.608 || 35.34 -14.87 -182.1 | 58.59
.90|-2.087 .7023 20.11 |-6.753 |f 16.88 -7.962 -181.7 | 74.51
1.00] = .4120x10-3] .8901x10~%)| 20.935 |-7.159 - 002140 .007880|| -151.% | 83.61
(g) Rs = 1000, o = O (b} Ra = 1000, o« = 10
y u(1) u(1)® u(1yr ey y u(1) w1 | ()| p(@)rer
o} o) -2.040 [(10.00 8.015 o] 0 ~2.412 [10.00 2.010
.10|-.1528 -1.007 |[10.52 -.2448 .10(-.1906 -1.394¢ h036 2.002
.20(~.2017 .01490| 9.608 |-18.79 .20{-.2783 -.3673( 9.927 |[-12.22
.30{-.1561 .8490 | 6.762 [-37.35 .30(-.2682 .5339{ 7.733 |-30.29
401-.04417 1.317 2.419 |-47.82 .40]-.1815 1.137 | 4.045 |[-43.20
.50| .09160. 1.319 |-2.330 |-45.07 .50]-.05509 1.317 | -.4729 |-45.02
.80| .2048 .8815 |-6.165 |-29.75 .60] .08701 1.057 |4.528 |-54.06
.70| .2581 .1536 |-7.995 | -5.961 .70| .1452 .4665]-6,941 |-12.89
.80| .2336 ~-.6327 |-7.308 | 19.29 .80| .1s80 - .2500)-6.955 12.78
.90{ .1379 -1.231 |-4.340 | 38.47 .90 .09944 -.8405{-4.465 36.09
1.00 [~.1136x10~%[-1.455 |-.01511] 45.74 1.00{ ~.1579%10~5]-1.077 | -.009459 51.35

‘glse



3573

NACA TN 3458 23
v
-
TARIE IT. - Concluded. EXACT SOLUTIONS FOR UNEQUAL WALL TEMPERATURES
[n=0,%X=10,C=-1.]
(1) Ra = 1358.55, a= Q (3) Ra = 1558.55, a = 0
v ul2) a1} | @) ) v w(1) AR NS AL NGO A
0 0 -4.660 | 10.00 109.4 o] o -64.10| 10.00 2081
.10{-.3982 -3.135 | 20.04 az2.18 .20f -6.005 -52.45| 221.0 1959
.20]-.6003 -.8246| 25.00 12.18 .20| -9.854 -22.06| 367.9 839.9
.30(-.5592 1.598 | 22.09 -69.28 .30(-10.15 16.32] 372.7 -755.5
.40|-.3035 3.346 | 11.87 -129.2 .40| -6.837 47.44 | 228.8 -2002
50| .08772 3.841 | -2.237 |[-l44.4 .50 -1.309 59.33 3.164 -2345
60| .4174 2.934 |-15.31 -109.2 .60 4.262 48.52 {-209.8 -1789
.70 .6188 .9675 |-22.79 -36.11 .70| 7.80% 20.29]-336.3 -679.4
.80| .5991 -1.343 [-22.11 49.30 .80 8.096 -14.59 (-339.6 616.7
.90 .3650 -3.188 |-13.52 117.5 .90 5.094 -43.41]-217.3 1779
1.00|-.7953%107%4|-3.887 -.01161] 144.4 1.00| =.1463x10-3|-54.84 -.008320( 2452
(k) Ra = 1600, a = O (1) Ra = 1600, @ = 10
¥ uf2) u(2)" uf2)' Ju(2)rrr v ul2) u(2)! w(@)r u(2)'"!
- o o] la.e8 10.00 -854.1 0 o 18.81 10.00 -866.8
.10} 1.800 15.79 | -68.70 -673.5 .10 1.791 15.68 | -69.51 -677.1
.20} 2.938 €.165[-117.1 -267.8 .20| 2.913 5.959{-117.9 -264.3
. .30] 2.94¢ -6.076}-119.5 220.5 .30| 2.896 -6.334|-219.7 228.2
.40] 1.795 -16.18 | -65.74 627.3 .40 1.721 -16.42 | -75.12 635.7
.50| -.08615 -20.20 -1.733 804 .9 .50 -.1793 -20.34 -.3720 810.6
.60}-1.982 -16.44 74.70 670.5 .60(-2.082 -16.42 76.38 670.8
.70]-3.155 -6.210| 123.0 260.4 .70(-3.244 -6.030| 124.4 2s55.2
.A0)-3.140 6.530] 123.1 -259.0 .80(-3.204 6.821| 123.8 -266.5
.00|-1.934 16.78 75.15 -663.2 .90(-1.967 17.11 75.23 -667.8
1.00| -.7300x10-3| 20.64 ~.01997|-785.5 1.00| -.1390x10"%| 20.97' -.9340x10~3|-781.5
(m} Re = 1758.55, a = O
y | @ a(2) o1 ful@d @) w2 g @)@
o o o] 3.210| 163.9 10.00 10.00 -200.7 | -9719
.10! 3381 14.95 3.233 | 121.7 -9.026 -792.1 -169.8 | -6090
.20| .5909 22.32 1.604 18.91j -22.14 -1196 -85.07) -2029
.30| .6309 18.05 -.8534 -104.3 || -25.15 -1200 26.06] 2012
.40} .4286 2.146 -3.062 | -20€.8 || -17.41 -775.1 122.9 | 6559
.50} .05856 -21.13 -4.085 | -244.3 -2.286 91.46 168.7 |10378
.60|-.3334 -43.32 -5.481 | -181.8 13.99 1145 145.1 | 9578
.70|-.5902 -54.42 -1.47¢ | -29.47] 2¢.72 1777 61.66| 2188
.80 |- .6084 -48.51 1.124 | 143.5 25.45 1535 -47.51{-6518
.90}-.3809 -27.78 3.266 | 256.9 15.87 690.6 -137.1 |-8983
1.00}-.6685%10"4 .2300%10-% || 4.084 | 287.0 -. 08536 -.005290| -170.4 |-3740




TABLE IIT. - INITIAL VALUES OF EXACT SOLUTIONS FOR BOTH WALLS INSULATED

{ok = 0.01)
(2) Ra = 2401
(10| u{®) (o) «(1)"(0) u(2)v(0) 2D oy (0) 2 o) a2 o)
0 0 ~0.000035| 166.0 |}-0.0004495| -3172 0 0
(b) Ra = 4096
s 0){u® (o] u)" (0){a @ ()| D) (0)]u(®) (o) || ¥V (0)|u (B o)
0 0 -50 |-0.00028 387.1 |0.002085 0 0

slsg
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Figure 1. - Schematic sketch of configuration considered.
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