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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 3348 

A SYSTEM FOR MEASURING THE DYNAMIC LATERAL STABILITY 

DERIVATIVES IN HIGH-SPEED WIND TUNNELS 

By Henry C. Lessing, Thomas B. Fryer, 
and Merrill H. Mead 

SUMMARY 

A two-degree-of-freedom system, in which rolling oscillations are 
forced, is described. Details of the system, the theory, and the method 
of operation are discus sed . It is shown that, although the system is 
characterized by nonlinear equations of motion, linearization of the 
equations by assuming small perturbations and constant coefficients yields 
sufficiently accurate results . 

The accuracy of the system was first investigated in tests under 
idealized conditions in which the aerodynamic derivatives were simulated 
by the action of gyroscopes and magnetic dampers. Later, the system was 
investigated in a high-speed wind tunnel using a simple model for which the 
aerodynamic derivatives could be estimated. 

The results of the tests showed that the quantities relating to the 
primary mode of operation of the system, that is, the rolling velocity 
derivatives, could be obtained satisfactorily. The same is true of the 
directional stability and the damping- in-yaw derivatives. Results obtained 
from the data-.ceduction equations for the rolling moment due to yawing 
velocity and due to sideslip angle were unreliable, however, and prevented 
the evaluation of these derivatives. 

I NTRODUCTION 

The increaSing emphasis placed on studies of the dynamic stability 
of aircraft has intensified the need for satisfactory methods for predict 
ing the dynamic stability derivatives. Most theoretical methods evolved 
to date are subject to limitations imposed to reduce the mathematical 
task to reasonable proportions . In order to obtain experimental checks 
of these methods and to provide sources of information in those areas in 
which theoretical methods are not yet available, there exists a need for 
experimental research on the stability derivatives. 

The experimental Gtudy of dynamic stability derivatives in wind tun
nels is, of course, not new. Many systems have been evolved for this 
purpose. References 1, 2, and 3, for instance, discuss early British 



2 NACA TN 3348 

systems in which the relative motion of the model and the air stream is 
generated by model motion . A dynami c system recently developed at Ames 
Aeronaut i cal Laboratory is descr ibed i n reference 4; again the relative 
motion of the model and the air stream is generated by model motion . 
The roll ing- and curved- flow wind tunnels now in use at the Langley Aero 
nautical Laboratory of the NACA, for instance (refs . 5 and 6), are examples 
of other systems in which the model is held rigidly and the air flow gen
erates the relative steady yawing and rolling motion • . 

In the present case , a sys t em in which the model executes forced 
oscillations with two degrees of freedom was developed . The details of 
its design and development are published herewith since they may prove 
useful to others who desire t o develop dynamic systems . 

SYMBOLS AND COEFFI CIENTS 

The aerodynamic coefficients defined herein are referred to the 
system of body axes or i ginating at the model center of gravity . The 
symbols and coefficients are defined as follows : 

b 

f 

body l ength, ft 

• ( 2V ) 
lep qSb 2 

N ' (~) 
ep cb 2 qQ 

N* (q~~2) 
Hp (q~b) 

NS (q~~2) 
frequency, cps 
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Ix 

I yz 

L 

Lcp 

L" cp 

L{3 

M 

N~ 

N\jr 

N" \jr 

Nfj 

moment of momentum about space- fixed axes 

moment of momentum about body axes 

moment of inertia about x axis, ft - lb sec2 

moment of inertia about z axis, ft - lb sec2 

product of iner tia with respect to x and z axes, ft-lb 

product of inertia with respect to y and z axes, ft-lb 

rolling moment , ft - lb 

absolute value of spring constant of roll flexure pivots, 
ft - lb/radian 

rate of change of aerodynamic rolling moment with rolling 
angular veloc ity, ft - lb/radian/sec 

sec2 

sec2 

equivalent viscous damping factor due to internal friction in 
roll flexure pivots , ft - lb /radian/sec 

rate of change of aerodynamic rolling moment with yawing 
angular velocity, ft - lb/radian/sec 

rate of change of roll ing moment with sideslip angle, 
ft - lb/radian 

rate of change of roll ing moment per unit rate of change of 
sideslip angle, ft - lb/radian/sec 

pitching moment, ft - lb 

applied moments about space - fixed axes, ft - lb 

yawing moment, ft - lb 

rate of change of aerodynamic ym.;ring moment with rolling 
angular velocity, ft - lb/radian/sec 

absolute value of spring constant of yaw flexure pivots, 
ft - lb /radian 

rate of change of aerodynamic yawing moment with yawing 
angular velocity, ft - lb/radian/sec 

equivalent viscous damping factor due to internal friction in 
yaw flexure pivots, ft - lb / radian/sec 

rate of change of yawing moment with sideslip angle, 
ft -lb/radian 
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q 
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T 
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X,Y,Z 
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f3 

cp 
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w 

P 

NACA Tn 3348 

rate of change of yawing moment per unit rate of change of 
sideslip angle, ft - lb/radian/s ec 

rolling angular velocity, radians / sec 

dynamic pressure, lb/sq ft, lpv2 

2 

maximum body radius, ft 

yawing angular velocity, radians/sec 

maximum cross - sectional area of body, sq ft 

roll input torque, ft - lb 

time, sec 

free - stream velocity, ft/sec 

space- fixed axes 

axes fixed with respect to the model (boay axes) 

angle of attack, radians 

angle between free - stream velocity and longitudinal axis of 
support housing 

angle of sideslip, radians 

angle of roll, radians 

angle of yaw, radians 

phase angle between roll and yaw angles, positive f or yaw 
leading roll, deg 

phase angle between roll angle and roll-input torque, positive 
for input ' torque leading roll, deg 

angular frequency, 2nf, radians/sec 

mass density of air, slugs/cu ft 

amplitude of oscillation or out-of-phase component 

initial condition or in-phase component 

£U 
dt 

1 
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ANALYS I S AND DESCRIPTION 

Coordinate System 

The coordinate system for which the equations of motion will be 
written is shown in figure 1 . The x,y,z axes are f ixed with respect 
to the model and are therefore body axes. The X,Y,Z axes are alined 
with the equilibrium position of the model and remain fixed in space. 

In order to illustrate the possible modes of motion of the model, 

5 

a schematic drawing of the mechanical apparatus is shown in figure 2 (a). 
As shown i n this diagram, the main shaft (torque tube) of the apparatus 
is driven in a constant - amplitude oscill atory rotation about the X axis 
which is transmitted directly to the model. The axis of rotation of the 
torque tube is defined by the roll flexure pivots and ball bearing which 
support the tube within the support housing . Attachment of the model to 
the torque tube is through the yaw flexure pivots which allow the modei 
a second mode of motion, that of angular rotation about the z axis. 

Equations of Motion 

In accordance with the Newtonian laws of motion, the time rate of 
change of the moment of momentum about axes fixed in space is equal to 
the summation of the externally applied moments about those axes: 

I: MX 
dHX 

dt 

I: My = 
dRy 

dt 

I:MZ 
dRZ 

dt 

Since the model is rigidly constrained in pitch, the second of equa
tions (1) need not be considered . 

( 1) 

The time rate of change of the moments of momentum about fixed 
space axes in terms of the rate of change about the body axis sys tem may 
be written (see, i.e., ref. 7) : 
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dRx dhx 
dt dt - hy 1jr 

(2) 

dHZ dh z 
hy = -- + cp 

dt dt 

where 

. . 
h z CPlxz + 1jrl z 

The appli ed moments and i nertial reactions can then be expressed in terms 
of the body axis variables 

2: L 

2: N 

Substituting the externally apflied moments f or the left - hand s ide of 
equations (4) gives 

. 
rr ,os 1jr + l~s~ os 1jr + LcpCP cos \jr - LcPcP + L~1jr + L~r:l + Lpp 

( 4) 

Ix~ + Ixz1jr + ( Ix~~ + Iyz~2) (5) 

A geometr ical relationship exists between the angle of sideslip p 
and the roll and yaw angles cp and 1jr as follows : Let the angle between 
the f r ee - stream velocity and the X axis be a l · 

l 

_J 
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From sketch (a), 

w = V sin al 

and from sketch (b) , 

v w s in cp=V sin cp 

From sketch (c), 

Vl V cos \jr = V sin a l s in cp cos \jr 

The angle of sideslip is then given by 

The true angle of attack is also a 
function of the roll angle : 

a 

Substitution of equati on (6) and its 
time rate of change in equations (5) 
yields the equations of motion, and 
it can be seen that nonlinear terms 
will appear both in the aerodynamic 
moments and the inertial reactions . 

/ 

z 

Sketch (a) 

---x 
' z 

( 6) 

Sketch (b) 

Sketch (c) 

In order that they be of practical value for use with experimental 
wind-tunnel data, linearization of the equations is necessary. If the 
approximation is made that 

7 

I 

j 
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sin cp = cp sin 1jr 

cos cp = cos 1jr = 1 

tten the angle of attack becomes a = al, and the sideslip angle is given 
by 

cp sin a - 1jr cos a (8) 

In general, the angle of attack is sufficiently small so that equation (8) 
may be written as 

~ :; acp - 1jr 

and tte time rate of change of sideslip angle is given by 

. ,.. p :; acp - 1jr ( 10) 

For large angles of attack for which thes e approximations are not valid, 
equat i on (8) and it s time derivative may be used. 

If, in addition to the approximations made in equations (9) and (10), 
the second-order inertial terms in equations (5) are neglected, the equa
tions of motion may be written 

IxCP + Ixz1jr 

( ll) .. 
I z1jr + IxzCP 

The question immediately arises as to the a curacy with which equa
tions (11) r epresent tte physical system. In order to answer this 'question, 
transient solutions of both the nonlinear and linearized equations of 
motion for a pUlse -type roll disturbance T were obtained on the Reeves 
Electronic Analog Computer for conditionG expected to be encountered in 
wind- tunnel operation . Comparison of the solutions showed that the only 
discernible effect of linearization was a negligible difference in the 
roll and yaw accelerations . From this result it was concluded that the 
use of equati ons (11) would be a justifiable approximation, and that their 
use would yield data of sufficient accuracy . Further experimental veri
fication of t he validity of these equations is given in a later section. 
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Solution of Equations of Motion 

In the following development the solution of the equations of motion 
will be gi ven and arranged in a manner which will permit the determination 
of the desired aerodynamic parameters in terms of measured quantities . 

Yaw equation . - The second of equations (11) may be rearranged and 
written 

- Ixz~ + (N~ + aN~)~ + aN~~ (12) 

Equation (12) is a linear second- order differential equation, the solution 
for which is well known . The roll angle ~ is forced to vary harmonically 
with time ; ~= ~o sin wt . Then the solution, in general, consists of tWQ 
parts : first, the complementary function, uniquely determined by the 
initial yaw angle ~ and the initial yawing velocity ~j and second, the 
particular integral, sometimes called the steady- state or frequency 
response, which is independent of the initial conditions, and is deter 
mined only by the applied disturbance, the right -hand side of equation (12) . 

The amplitude rati o and phase angle given by the particular integral 
are , 

(13) 

E ( 14) 

Equation (14) may be manipulated to give 

2 
aN~ + IxzW 

w (N~ + aN~)[(N~ + N~ - Izw2)cos E + (N~s + N* - N~)W sin ~ 

(N~ + N~ - I zw
2

) sin E - (N*s + N* - N&)w cos E 

(aN~ + Ixzw2) [(N~ + N~ - I zw2)sin E - (N*s + ~ - N~)w cos ~ 
(N~ + N~ - Izw2 )cos E + (~s + N* - N~)w sin E 

f'-- __ _ J 
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Substitution of these equations into equation (13) l eads to two funda 
mental relationshi ps : 

"'0 ( N~ + aN~) w 

Cpo (N", + Nj3 - I zw2 ) sin € - (N~s + N~ - N~) w cos € 
( 15) 

"'0 aNI3 + I xzw 
2 

( 16) 
CPo (N", + NI3 - Izw2) cos € + (N*s + N* - N~)w sin € 

The geometrical meaning of equations (15) and (16) 
concept of the r otat i ng vector diagram (see, e . g . , 
is a harmonicall y varying function cP = CPo sin wt, 
of equation (12) represents a harmonically varyi ng 
with components proportional t o the roll position, 
tion . The vector diagram is shown in sketch (d) . 

is apparent from the 
ref . 8) . Since cP 
the right -hand s ide 
yawing moment No 
velocity, and accelera 
The magnitude of the 

(N".~: ____ , . 
., a ";J,p. ! 4.,p. 01' 

Sketch (d) 

resulti ng yawing moment i s 

and the angle S is given by 

The part icular i ntegral shows that '" is also a harmonic function , 
and equat i on (12) states that the sum of the moments R, resulting from 

-- -- ~ ,..,' \ 
--------'!"'-O::------- - -+- ;. 

p 

N. 

Sketch ( e) 

and the angle ~ is given by 

the motion '" must be equal and 
opposite to No . The vector diagram 
is shown in sketch (e) . The magnitude 
of the resulting yawing moment No 
(which is equal to R) is 

(N~S + N* - N~) w 
N", + Nj3 - Izw2 

- - ---

1 
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The amplitude ratio and phase angle given by equations (13) and (14) may 
then be written 

Equation (12 ) may now be represented 
by combining the vector diagrams shown 
in sketches (d) and (e). It can be 
seen that equations (15) and (16) 
represent the summat i ons of the out
of-phase and in-phase components of 
the vector diagram of sketch (f). 

(NjI' +N,8)jI'. 

Sketch (f) 

The quantities in equations (15) and (16) measured during operation 
of the dynamic apparatus are ~o, *0' w, and E. At any discrete frequency 
these are insufficient data to solve the equations; however, use of the 
apparatus as a free-oscill ation system provides additional data from the 
complementary solution of equation (12): 

{ [ (N~~ + N.j, - W)t]}{ [ (N· + N~ - N~) ] 
* = exp ~ Vi cos wat - *s sin wat + 

21 z 21 zwa 

. 
*i 
wa sin 

where the angular frequency of oscillation is given by 

( 18) 

For wind- off conditions, equations (17) and (18) may be written 

where 

(
N*S,\2 
21 z) 

(20) 
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The contribution of t he system damping to the oscillati on frequency is 
negligible, and equation (20) may be written 

The moment of iner t ia may t hen be evaluated : 

( 21 ) 

The system damping may be det ermined as 

2 I z 2n (\jrT) 
T \jrt wi nd off 

(22) 

where \jrT and \jrt a r e or dinates of t he envelope curve a time interval T 
apart ; similarly, the aerodynami c damp ing becomes 

N~ - N& = 2~ z 2n (\jrT) - N~ s 
\jrt wind on 

and t he directional s t abil i ty parameter N~ may be deter mi ned from 
equation (18) : 

(TIl ~ + N~ - N,~ ) 2 
4 21 f 2 - ·~ s ~ N n z a + - \jr 4I z 

( 23 ) 

(24) 

Sufficient data are now available t o sol ve equati ons (15) and (16) for 
wind- on condi t i ons : 

Ixz (26) 
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I t should be noted that the product of inertia Ixz may be obtained 

for wind- off conditions by elimination of the damping term in equa-
tions (15) and (16) to give 

*0 (~ - I zw
2

) 

q:Jo c.u2cos € 

However ) it was found that) for wi nged models at angle of attack) the 
slight elastic deformations of the model and support structure were suf
ficient to necessitate the use of equation (26) . 

Roll equation.- The first of equations (11) may be rearranged and 
written as follows : 

T 

Before proceeding with the total equati on (27)) we will consider the case 
of single - degree - of- freedom roll motion) defined by equation (27) when * 
and its derivatives are identically zero . We proceed directly from the 
vector diagram given in sketch ( g) . 
Summation of the out - of -phase and in
phase vector components gives 

o (28) 

Sketch (g) 

For wind- off conditions) equations (28) and (29) may be solved for 

Ix 

For wind - on conditions) 

(30) 
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Sketch (h) 
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at zero angle of attack ; however , 
another express i on for LS may be 
obtained from the more general equa 
tion (27) which we now consider . 
The vector diagram representing 
equation (27) is shown in sketch (h) . 
Summation of the out - of -phase and 
in -phase vector components gives 

o (34) 

Multiplying equation (34) by sin €, equation (35) by cos €, and adding 
and solving for L(3 gives 

L(3 
1 

[ (Lcp - I xw2)cpo 
acpo cos E - Wo 

(L~s + Lq3 + aLi) CPoW sin € ] (36) 

where the product of inertia Ixz is given by equation (26) . Multiplying 
equation (34) by cos €, equation (35) by sin €, and subtracting and 
solving for (L ~ - L~) gives 

L~ - L~ 

To sin(L'> - €) ] 

Description of Apparatus 

A physical description of the drive apparatus and its various com
ponents is presented below . The next section deals with the functions of 
the instrumentation . 
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In discussing the drive apparatus, it is convenient to refer to the 
pictorial representation of the system presented in figure 2(b) . The 
model is allowed two angular degrees of freedom (rolling and yawing), is 
subjected to constant -amplitude forced oscillations in roll, and is free 
to respond in yaw. It is rigidly restrained in pitch (at a constant 
angle of attack from 00 to 150 ), and all externally applied pitching 
moments, lift, drag, and side forces are transmitted directly to the 
wind- tunnel structure . The apparatus is powered by a three-phase induc
tion motor mounted vertically over the support - strut housing at the rear 
of the apparatus. Rotary motion of the motor shaft is converted to an 
approximate harmonic motion of the main drive shaft (torque tube) by means 
of the eccentric block and drive flexure indicated in the figure. An 
enlarged drawing of these components is shown in sketch (i) to aid in 
visualizing the principle involved . 
Amplitude of the oscillatory rolling 
motion is determined by the amount of 
eccentric i ty in the eccentric block, and 
with the present system is 40 • The 
torque tube, which transmits the oscil 
latory motion to the model, is supported 
within the stationary support sting by 
the roll flexure pivots at the forward 
end and by a ball bearing at the rear . 
Rigidly attached to the front end of the 
torque tube ar.e the yaw flexure pivots 
on which the model is mounted . The only 
contact between the model and the appa
ratus is through the mounting at the for 
ward end of the yaw flexures; sufficient 

I • 

Sketch 

clearance exists between model body and support sting to allow the model 
to yaw approximately 2 0 about the flexure axis . The maximum operating 
frequency of the system is approximately 20 cycles per second. 

To obtain accurate results with the system, it is necessary that 
rapid variations in oscillation frequency of the apparatus be eliminated . 
This purpose is served by the small flywheel shown mounted over the drive 
motor in figure 2 (b) . 

The use of flexure pivots in the apparatus resulted primarily from 
the need for avoiding the often undes irable damping characteristics of 
ball bearings . The flexures used were designed in accordance with infor 
mation presented in reference 9, and were found to b e entirely satisfactory 
from the standpoint of defining a rigid axis of rotation . 

Characteristics of flexure pivots .- The flexure pivots are designated 
as compensating type in reference 9 because, theoretically, the spring 
constant is essentially independent of load . The desirability of this 
feature in the present application is obvious, and the experimental veri 
fication is shown in figure 3 for the case of the yaw flexur e pivots sub 
jected to lift loads of 0, 100, and 200 pounds. The invariance of the 
roll-flexure-pivot spr i ng constant was equally good. 
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The internal damping in the yaw flexure pivots was obtained by means 
of the well -known oscillation- decay method . It was found that the rate 
of decay was not logarithmi c but , instead, was a function of both ampli 
tude and frequency . However , equat i on (22) was applied to the data in 
order to obtain an equivalent viscous damping factor N~s . It was found 
that, as shown in f igure 4, the data could be represented by an equation 
of the form 

a + bt 

f 
(38) 

Justificati on for this type of expression can be seen by converting to 
the form given in reference 10 where the internal damping is presented 
in terms of a "damping capacity" 6.w, the damping work per cycle per unit 
volume . This quantity was found to be independent of frequency and to 
vary as the third power of the stress amplitude . Consider the case of 
constant - amplitude oscillation, W = to sin wt . Then the damping capacity 
may be written (see , e . g ., ref . 7) with the flexure -pivot cross - sectional 
area A and length h , 

6.w 

• 211 
N ,lr ,Ir 2W

2 J-'f s 'f o W 

Ah 0 

or, 

6.w 

Although 6.w was found to vary in reference 10 primarily as the third 
power of the stress amplitude (which is directly proportional to the 
oscillation amplitude), examination of the results therein indicates that 
at the lower amplitudes the data may be approaching a second power vari
ation as indicated by equation (39) . Likewise, the damping capacity 
given by equation (39) is independent of frequency , and it is felt , there 
fore, that the use of the equivalent viscous damping factor represented 
by equation (38) is justified . The data presented in figure 4 also show 

pulley 

y/ 
x 

z 
Sketch 

internal damping for the case of the yaw 
flexure pivots subjected to lift loads of 
0 , 100, and 200 pounds . The application 
of an external load which produces no addi
tional damping is essentially impossible. 
However , it was found that the additional 
damping of a lift load simulated as shown 
in sketch (j) was negligible, and the data 
were obtained in this manner . Again it can 
be seen that there was essentially no effect 
of lift load. 

J 
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No successful method was devised for the application of a lift load 
which provided no additional damping about the roll axis. Consequently, 
the internal damping of the roll flexure pivots was assumed to be invariant 
with lift load, an assumption justified by the yaw-flexure results, and 
the fact that any small change that might occur would be a negligible 
percent of the aerodynamic roll damping . The equivalent viscous damping 
factor L~s for the roll flexure pivots was obtained by operating the 
apparatus under wind-off, tunnel - evacuated conditions, and it was found 
that these results could also be represented by an equation of the form 
of equation (38). 

The values of 1$s and N*s were found to be approximately 20 percent 
and 12 percent, respectively, of the aerodynamic values obtained in the 
wind- tunnel investigation to be described later in the report. It should 
be noted, however, that the aerodynamic roll damping measured for the 
body- fin model used in the wind- tunnel test is much smaller than would be 
the case for a complete airplane model . 

Instrumentation 

Three quantities are measured by the system: angular roll and yaw 
positions of the model, and the roll-input torque applied to the model 
to maintain the forced oscillations in roll. These quantities are measured 
by means of resistance - type strain gages mounted on suitable beams, the 
locations of which are indicated in figure 2(b). The amplitudes and 
phase angles of the oscillating strain- gage signals are obtained by pass 
ing each of the signals through a sine - cosine resolver located at the 
drive motor and gear driven by the motor shaft (see fig. 2(b )) . The two 
output signals of each resolver are then directly proportional to the 
in-phase and out -of -phase components of the respective strain-gage signals 
referenced to the resolver rotor position . By the vectorial summations 
of these quantities the required amplitudes of oscillation are obtained, 
as well as the phase relationships necessary to establish the roll-input 
torque and yaw-position phase angles with respect to the model roll posi 
tion . Oscillation frequency is measured by means of an electronic counter 
driven by a portion of the oscillating roll -position strain-gage signal. 

Ci rcuits .- It was noted in the preceding section that it is necessary 
to know the amplitudes of the roll angle, roll - input torque, and yaw angle, 
and the phase angles of the roll - input torque and yaw angle with respect 
to the roll angle . The desired quantities were measured by means of three 
identical electronic circuits, the essential features of which are shown 
in sketch (k) . 
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d.C . • o~age 

----L-

B- 400rv 
ballery L...-_;---Chopper 

L--~_I gal.an
omet., 

.totic defl e ction 
_~==~~~~mN~====r=\;. tjr~\71=======!i===== reference ijf1j1'1 v .;; f 

Sketch (k) 

The principle of operation of the circuits is as follows: A direct 
voltage is impressed on the strain-gage bridge which is to provide a 
measurement of the desired quant i ty. The resulting output is an alternat
ing voltage whose frequency is that at which the system is operating and 
whose magnitude is directly proportional to the amplitude of the desired 
quantity . This output is used to modulate a 400-cycle wave; the result 
is amplified and then passed through the resolver which reduces it to 
components in phase and out of phase with the position of the resolver 
rotor. These components are then demodulated and used to drive the gal
vanometers as shown in the sketch. 

Resolvers . - The resolvers utilized in the apparatus were of the 
standard induction type, commercially available. Two coils are accurately 
positioned at 900 with respect to each other on the stator and, with a 
l-to-l transformer ratio, produce two harmonic signals also phased 900 

when the rotor is turned at a constant angular speed. 

!. cos 
2 

Asin 6 
2 

-L 
I 

T 
i 

I ,-
-. 

A -LI-__ ~ _ _ __ ¥ _ _ 

resolver output signals 

Sketch (7.) 

The action of the resolver 
may be explained as follows: 
Assume the quantity to be measured, 
as represented by the oscillating 
strain-gage signal (hereafter 
referred to as the basic signal), 
has an amplitude of oscillation, A, 
and phase angle, 5, with respect 
to the resolver rotor. This sig
nal is then defined as A sin(wt+5). 
The resolver may be considered to 
provide two reference signals of 
unit amplitude, sin wt, cos wt as 
shown in sketch (7.). Transmission 
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of the basic signal through the resolver effectively results in multipli 
cation of the basic signal with the two reference signals: 

Vi ; A sin(wt + 5)sin wt 

A cos 6 - ~ cos(2wt + 6) 
2 2 

( 40) 

Vo A sin(wt + 6)cos wt 

A A sin 6 + - s in( 2wt + 6) 
2 2 

( 41) 

Thus the amplitudes of the resolver output signals are one half that 
of the basic s i gnal, the frequencies are twice the frequency of operati on 
of the system, and each of the resultant signals has been displaced, the 
first by an amount equal to one half the product of the basic signal and 
the cosine of the phase angle, the second by one half the product of the 
basic signal and the sine of the phase angle. 

Equations (40) and (41), which represent the components of the basic 
strain- gage signal in phase and out of phase with the resolver rotor 
position, also represent the time - varying voltages used to drive the 
galvanomet ers as shown in sketch (k). 

Gal vanometers .- A galvanometer element i s essentially a single
degree - of - freedom system, and its amplitude and phase -angle responses to 
a harmonically varying forc i ng function are well known . If the frequency 
given in equations (40) and ( 41) is much greater than the undamped natura l 
frequency of the galvanomet er element, t he response of the element to that 
porti on of the s igna l will be essentially zero . The first term on the 
right -hand s ide of each of equations (40) and (41) represents a voltage 
which is independent of time, however, and the galvanometer is capable 
of responding with a deflection G which is directly proportional to 
the static signal . The results , as shown i n sketch (k), are stati c indi
cations of the in -phase and out - of -phase components of the harmonicall y 
varying quantity . 

App l icati on of the proper calibration constants Co and Ci now per 
mits the computation of the amplitude and phase angle of the desired 
quantity, the amplitude being equal to the s quare root of the sum of the 
s quares of the in-phase and out - of -phase components, and the tangent of 
the phase angle being given by the ratio of the out-of-phase to in-phase 
components : 

( 42) 
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The phase angle thus obtained are those between the resolver rotors 
and each of the measured quantities; roll positioL, yaw position, and 
rOll - input torque . It will be recalled, however, that the desired phase 
angles are those between the yaw position and roll positions, and between 
the roll - input torque and roll position . It is clear that these quantities 
are immediately obtainable from the above information if the relative phase 
angles of the three resolvers with respect to each other are known . Since 
it is convenient to the operation of the system to maintain these relative 
phase differences at small values, the resolvers are first alined with each 
other as accurately as possible . A calibration is then made from which the 
remaining phase angles are obtained . 

Effects of harmoni cs .- When the principle of operation of the resolver 
circuits was i l lustra ted, it was assumed that the basic signal was a pure 
harmonic function . I n general , the quantities to be measured are not pure 
harmonic functions, but may be distorted due to extraneous disturbances 
from support vibration and other sources, one of which was the slightly 
impure harmonic motion of the model produced by the eccentric block and 
drive flexure in converting the rotary mot i on of the motor into an oscil 
latory motion of the t orque. tube . In addition, the voltage output of the 
strain- gage bridge may have a mean value other than zero due to initial 
unbalance of the bridge . The voltage output may then be represented by 
the Fourier series 

00 

Ao + ~ (~ cos nwt + bn sin nwt) 

n=l 

or, in a more convenient form, 

00 

Aa + I An sin( nwt + on) 

where n=l 

An J an2 + bn2 

on tan - l bn 
an 

( 43) 

In a similar manner, the resolver reference signals may not be pure har 
monic functions ; if, in addition, the two reference signals are not phased 
exactly 900 with respect to each other, but have some other phase angle y, 
the Fourier series representing the two signals may be written 

00 

I Bm sin mwt 
m=l 

( 44) 
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I Bm s i n (mwt + y) 

m=l 

Then t he in-phase and out -of -phase voltages used to drive the galvanometers 
will be given by the product s of equat i ons (43) and (44)) and (43) and 
(45)) respectively : 

00 
(Xl (Xl 

Vi Ao I Bm sin mwt + I L AnBm sin( nwt + Cn)sin mwt 
m=l n=l m=l 

00 (Xl 00 

Ao I Bm s i n mwt + L L AnBm 
{ cos [ (n - m) wt + cn J -

2 
m=l n=l ill=l 

( 46) 

00 

Ao L Bm sin (mwt + y) + I I AnBm sin(nwt + Cn) sin(mwt + y ) 

m=l n=l ill=l 

00 00 00 

{cos [(n - m)wt + 6n - yJ -Ao L Em s in(mwt + y) + L L An:m 

m=l n=l m=l 

cos [( n + m) wt + Cn + Y ] } ( 47) 

Exami nation of equati ons (46) and (47) reveals t hat time -independent 
voltages occur only when n = m) that is) for products of equal harmonics . 
Then t he effective voltages) those t o which the galvanometers will respond) 
may be written 

00 

Vi L cos cn AnBn 2 (48) 
n=l 

00 

cos (c n - y) 
Vo L = AnBn 

2 
n=l 
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These equati ons show that the i n -phase and out -of -phase components of 
each measured quantity may be in error by an amount equal to the sum of 
the products of equal harmonics contai ned in the quantity to be measured 
and in the resolver signals . I f eit her of the signals has no harmonic 
content , but consists only of the f undamental (n = 1) , no error is caused 
irrespective of the distorti on present in the other . Under normal wind
tunnel operati ng conditions it would be expected that, due to previously 
mentioned disturbances , some distort i on would be present in the basic 
Signals, and it is necessary that the resolver signals be fre e of all 
comparable harmonics in order t o eliminate this possible source of error . 
For this r eason the resolvers were dr i ven by 90 - tooth gears . A remaining 
possible source of low- fre quency harmonic content in the resolver signals 
was slip ring "noise "; a v i sual exami nat i on of the resol ver reference 
signals by means of an oscill oscope revealed no distort i on, however . 
One other possible error due to t he resolvers is indi cated in equa-
tion (49) : the phas i ng of t he resol ver reference Signals with respect 
t o each other by some angle 1 other than 900 • For the resolvers used 
in the present investi gation the angle 1 was accurate to 900 , ±1/2° , 
and the error from this source was , therefore, negligible . Now, since the 
fundamental amplitude, El , of the resol ver reference signals is unity, 
equations ( 48 ) and (49) simplify to 

Vi = Al cos 5 1 
2 

Vo 
Al sin 01 2 

The galvanometer deflect i ons Gi and Go are directly related to the i n 
phase and out - of -phase voltages by the appropriate calibration constants 
Ci and Co . The amplitude and phase angle are given by 

CoGo 
tan- l 

( 50) 

Equations (50) are identical with equations (42) which were developed 
for the case of no distorti on in t he quantities to be measured . It can be 
seen that the system, in effect, filters out the unwanted harmonics and 
provides a measure only of the des i red response . 
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Frequency characteristics .- Mention was made of the alinement and 
calibration necessary to determi ne the final phase relationships of the 
resolvers . The method of ali ning the resolvers is as follows: While 
the oscillati on frequency is maintained at some constant value, each of 
the three ci rcuits i s, in turn, connected to the output of the roll 
position gage . In each case the appropriate resolver housing is then 
rotated unt i l the out - of -phase component indicated on the galvanometer 
is approximately zero and is locked in this position . In. conjunction with 
these operations a check was also obtai ned on the frequency characteristics 
of the measuring circuits . I t should be recall ed that the phase angles 
necessary for data reduction are measured with respect to the roll posi 
tion . Then it is clear that the absolute value and frequency dependence 
of the phase angles indicated by the resolver circuits is immaterial if 
these characteristics are ident i cal for each c i rcuit . The procedure was 
as follows : After alining the resolvers, each of the circuits was, in 
turn, connected to t he output of the roll-position gage, and the ampli
tude and phase angle were computed for discrete frequencies covering the 
available range of operation . I t was found that the phase shift varied 
slightly for the three circuits , the phase angle differences varying in 
a manner l inear with frequency . The phase shift difference was then used 
as a calibration for correcting the phase angles obtained during testing . 

Operation of the System 

The operational procedures followed in conducting wind-tunnel 
tigati ons with the testing apparatus are described briefly below. 
should be noted that the procedures are essentially identical when 
apparatus is used for calibrat ion tests such as are described in a 
section . 

inves 
I t 
the 
later 

(1) With the model rigidly restrained in yaw, measurements of roll 
position ~, roll - input torque T, and the roll - input - torque phase angle 
6 are obtained for single - degree - of - freedom roll oscillations, at dis
crete frequencies throughout the available range, by means of the resolver 
circuits previ ously descr i bed . Data thus obtained, for both wind-off 
tunnel - evacuated, and wind - on conditions, and the calibrated roll-flexure 
spring constant, L~, provide L~s and Ix from equations (30) and (31), 
L~ + aL& from equat i on (32) , and, for angle of attack other than zero, 
L~ from equation (33) . 

(2) With the model free to yaw, the model is driven in roll at the 
yaw natural frequency . When the model has attained sufficient yawing 
ampli tude , the drive motor providing the oscillatory rolling motion is 
stopped abruptly, resulting in a single - degree - of - freedom free -yaw osci1 -
lation . A time hi story of the decaying yawing motion is obtained by 
means of a recordi ng osc i l l ograph . Again these data are obtained for 
both wi nd- off tunnel - evacuated and wind- on conditions, and with them and 
the calibrated yaw- flexure spring constant, N~ , equations (21) through 
(24) yie l d I z ' N~s ' N~ - N~, and N~} respectively . 
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(3) With the model free to yaw, the apparatus is operated as a two 
degree - of- freedom system at discrete frequencies throughout the operat ing 
range . At each frequency measurements of the roll position ~,yaw posi 
tion ~, roll - input torque T, and the phase angles E and 6 are obtained 
by means of the resolver circuits . Use of these data in conjunction with 
those obtained from (1) and (2) above ~rovides N~ + aN~ and Ixz from 
equations (25) and (26) , L~ and ~ - L~ from equations (36) and (37) . 

EVALUATI ON OF SYSTEM 

It should be noted that the aerodynamic moments produced by angular 
velocities are, in general , much smaller than the moments produced by 
angular displacements, and the disturbances inevitably present in any 
wind tunnel may be of the order of magnitude of the quantities to be 
measured . An analysis of the manner in which the effects of these dis
turbances are eliminated in the present system has been discussed in the 
section on instrumentation . The results of such analyses are not suf
ficient information to determine completely the over -all accuracy; however, 
a reliable indication of the accuracy can be obtained where it is possible 
to simulate the quantities to be measured with known inputs to the system. 
The results of tests of this type will b e discussed . A further check of 
the system accuracy when operating under wind-tunnel conditions was obtained 
through the testing of a simple configuration for which, it was felt, cer 
tain of the aerodynamic derivatives could be calculated fairly accurately . 
The results of these tests are discussed at the end of this section . 

Evaluation of the System With Simulated Aerodynamic Derivatives 

Cross derivatives Np and L* .- Tests with the simulated aerodynamic 
derivative-s were made in order to assess the accuracy of the system and 
the validity of the assumptions made in the linearization of the equat i ons 
of motion . The aerodynamic cross derivatives N~ and ~ were simulated 
by means of a variable - speed gyroscopic motor as indicated in sketch (m). 

'I 

I 

Sketch (m) 

The torque due to precession of a gyroscope is 
well known (see, e . g ., ref. 8), and it is this 
property which was utilized in the present appli 
cat i on . The gyroscope was mounted in place of 
the model, and, with the rotor oriented as shown, 
the simulated cross derivatives provided by the 
gyro are given by 

-N~ In 
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where 

I rotor moment of inertia 
n angular velocity of rotor 

The results of the gyroscope calibration are shown in figure 5 where 
the range of values given is expected to cover all possible wind-tunnel 
results . It can be seen from figure 5 that the accuracy with which N~ 
is determined is entirely satisfactory . It was found that the values 
of L~ obtained from equation (37) were unreliable) however) and these 
results are not presented . This was also found to be true for the calcu
lation of L0 from equation (36) and a re - examination of the method of 
determining these derivatives will be necessary. 

Damping - in- roll derivative L$.- The results of tests in which the 
aerodynamic roll damping L$ was simulated are shown in figure 6. This 
derivative was simulated in the manner indicated in sketch (n). A moment 
proportional to the angular velocity ~ 

~ was produced about the x axis 
by means of a magnetic damper acting 
through a flexure -pivot universal 
joint on an arm connected rigidly to y 
the roll torque tube . The damping 
moment was generated by operating 
the system with a direct - current 
field excitation and a short - circuited 
armature . If the current generated Z 
in the armature and the armature 
resistance are designated as I and R) 
respectively) the simulated aerodynamic 
derivative may be expressed) for small 
angular displacement ~) as Sketch (n) 

L~ 

where c is the conversion from joules to inch-pounds . With the damper 
inoperative) an equivalent damping factor was obtained for the internal 
friction in the roll flexure pivots ) universal joint) and flexible mount 
ing of the damper armature . Thi s quantity was subtracted from the damper 
on data to give the results shown in figure 6. These results show the 
accuracy with which the system measures the simulated aerodynamic deriv
ative L~ in the absence of tunnel disturbances. 

Damping in yaw and directional stability derivatives Cnr - CnB and 

Cn~ '- No sati sfactory method was f ound for introducing simulated values 

of aerodynamic yaw damping and dir ectional stability into the system 
during the previ ously descr i bed tes t s) and it is) therefore) necessary 
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to analyze the results of the wind- tunnel tests, described in the follow 
ing sections, to determine the accuracy with which these derivatives were 
obtained . The procedures for obtaining and reducing free-oscillation data 
are well known, as are the factors affecting the accuracy of these data . 
The uncertainties in each of the measured quantities present in the equa
tion defining Cnr - Cn~ and Cn~ have been calculated . The square root 
of the sum of the s quares of these uncertainties indicated over-all 
uncertainties of the order of ±O. 055 and ±O. 057 for single values of 
Cnr - Cn~ and Cn~, respectively . Not accounted for in these values, 
however, are possible effects of random air- stream disturbances and support 
vibrations which would appear as scatter in the data . The standard devia
tion of a number of observations at a given Mach number was, therefore, 
calculated; this wa s found to be of the order of ±O.127 for Cnr - Cn~ . 

and ±o . o28 for Cn~ . 

Evaluation of the System in the Wind Tunnel 

The tests described previously, in which the system accuracy was 
assessed from the standpoint of ability to measure simulated aerodynamic 
moments, were necessarily conducted under somewhat idealized conditions. 
It is, of course, impos s ible to simulate all of the loading conditions 
and disturbances to which the model is subjected in the wind tunnel, and 
these tests provide a measure of the accuracy of the system when there 
are essentially no extraneous disturbances present . It has been shown 
in the analysis of the previous section that these disturbances, theoret 
ically, cause no error ; however , it is desirable to check the capabilities 
of the system operating in the wind- tunnel environment for which it was 
designed . 

An evaluation of the system in the wind tunnel necessarily depends 
on testing a model for which the aerodynamic derivatives may be calculated 
accurately . It is, of course , realized that an exact check on the system 
accuracy is not possible by this means since present theoretical knowledge 
is insufficient to permit exact calculations of the lateral dynamic sta
bility derivatives of fin -body combinations; a serious decrease of the 
system accuracy due to tunnel disturbances should, however, be evident . 

For the tests described below, a simple model was constructed for 
which , it was felt , the rolling-velocity derivatives C2p and Cnp could 
be estimated with a fair degree of accuracy. The model, which consisted 
of a vertical triangular fin mounted on a cylindrical body with an ogival 
nose (see fig . 7), was tested with the dynamic system in the Ames 6- by 
6-foot supersonic wind tunnel over a range of subsonic and supersonic 
Mach numbers at zero angle of attack . 

Estimation of stability derivatives.- Estimation of the stability 
derivatives was based on existing theoretical methods adapted to the 
particular model used in the wind- tunnel tests. The following is a brief 
description of the methods by which the derivatives were estimated. 
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In determi ning the roll-velocity derivatives, CZ p and Cnp' it was 
assumed that the fin acts as a por t i on of a rolling triangular wing as 
indicated in sketch (0). The soluti on for the resulting pressure dis 
tributi on i s well known (see, e . g ., ref . 11) and was used directly to 
calculate the damping- in -roll der ivat i ve CZp and the contribution of 
the fin to the cross derivati ve Cnp ' Pressures induced on the body by the 
l oading on the fin of course provide ~ 
no roll ing moment, but contr i bute --- ... , ... 
di rectly to the yawing moment , and , ','~ "" 
therefore , must be considered i n '" ~ '" 

combinati on . ~ethods are available ""'" --~ 
est i mat i ng Cn for the f i n -body ""', '~'" 

for comput i ng the interference l oad " ':~ 
distribution for f i n -body combinat i ons '~~ '1 
at supersoni c speeds ( refs . 12 , 13, ,,~~, .. ~ 
and 14) but these are , i n general, \ I 
very labor i ous and for this reason ', I 4l 
the method described below was appli ed 4 

in the present case . 

I t was assumed that the pressures 
culated as though the body were a flat 
adjacent to the fin . Reference 15 
gi ves the solution for a case s i mi lar 
to thi s , namely the pressure distribu
tion induced on a flat plate at zero 
angle of attack adjacent to a tri 
angular sect or at a const ant angl e 
of att ack . The angle - of -attack dis 
tributi on on the fin may be repre 
sented as the sum of a constant angle 

of at t ack (a = P:) and one which 

incr eases l inearly in the spanwise 

d " t " ( pZ h " lrec l on a = V ) as s own ln 
sketch (p) . 

The pressure i nduced on the 
body by the constant angle - of - attack 
distributi on is given directly by the 
soluti on i n reference 15 . The induced 
pr essure resulti ng from the effecti ve 
twist due to rolling velocity may be 
found by i ntegrating across the span 
of the wing . This integration cor 
responds to the superposition of an 
infinite number of the l i fting sectors 

Sketch (0) 

induced on the body 
plate at zero angle 

(Z a· ~ 
V 

a 

a 

pr a :-
V 

p (z- r) a :..:..-.~-

V 

could be cal
of attack 

Sketch (p) 

along the span, each sector havi ng an i nfini tesimal angle of attack . The 
yawi ng moment due to the induced pressures on the body was added to that 
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due to the loading on the fin to obtain the total yawing moment due to 
roll velocity . Because of the approximations necessary in the above 
estimate, the yawing moment due to rolling velocity was also calculated 
using the slender -body theory of referenc e 16 in order to provide a 
check of the order of magnitude . 

In estimating the yawing derivatives it was assumed (a) that, in 
lieu of a more exact theory, the yawing moment of the body is that given 
by slender -body theory which, of course, is known to be incorrect at the 
higher supersonic Mach numbers and (b) that the yawing moment of the fin 
due to yawing velocity is that given by the moment, about the appropriate 
axiS, of the loading on a portion of a pitching wing . Sketch (q) shows 
the portion of the wing referred to as a cross -hatched area and the 

Sketch (q) 

pitching axis as the axis of yaw . The load
ing was calculated according to reference 17 
for the arrangement as shown to determine 
the yawing moment due to yawing velocity . A 
similar method was used for estimating the 
yawing moment due to sideslip angle. The 
slender -body-theory results were obtained 
from reference 18 . The above methods, of 
course, applied only to the derivatives for 
supersonic Mach numbers . No methods were 
available of sufficient accuracy to permit 
the estimation of the derivatives at subsonic 
Mach numbers. 

Comparison of es timated stability derivatives with measured values .
During the wi nd- tunnel tests the rolling derivatives Clp and Cnp were 

obtained over a range of frequencies from 7 to 20 cycles per second . No 
significant variation of these quantities with frequency was found, and 
the values which are presented in figures 8 and 9 are the arithmetic 
mean of the values obtained . The values of Cnr - Cn~ and Cn~ are those 
which were ob tained at a single frequency through free - oscillation tests. 
A comparison of the est imated and measured rolling derivatives is given 
in figures 8 and 9 for the supersonic Mach numbers investigated. The 
measured values are also shown for the subsonic Mach numbers. The agree 
ment between the experi mental and estimated values indicates that there 
were no serious effects of wind- tunnel disturbances on the system accuracy . 
Figure 10 shows the measured and estimated damping in yaw . Here the 
agreement is poor, particularly at the highest Mach number . The same is 
true of the directional stability parameter CnS' shown in figure 11, 
where the agreement is satisfactory except at the highest Mach number. 
The methods used in estimating the theoretical values of the derivatives 
may not be reliable and have not been adequately checked experimentally. 
A large part of the discrepancy between theory and experiment is believed 
to be due to deficiencies in the theory. 
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CONCLUSI ONS 

A study of a system designed to measure the static and dynamic 
lateral stability derivatives has lead to the following conclusions: 

29 

1 . Tests in which aerodynamic derivatives were simulated have shown 
that the apparatus correctly measures known inputs of the order of magni
tude anticipated for airplane models . 

2 . The investigation has shown that the aerodynamic derivatives 
as sociated with the primary mode of operation of the system, that is the 
rolling derivat i ves, and the directional-stability and damping-in-yaw 
parameters may be obtained with sat i sfactory accuracy. The data-reduction 
equations from which the rolling moment due to yawing velocity and due 
to sideslip angle were determi ned yielded results which were unreliable 
and prevented eval~ation of CZ r - CZ~ and CZ~ . 

3. Tests of the apparatus utilizing a simple model showed that the 
wind- tunnel environment apparently had no deleterious effects on the 
system accuracy . 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif ., Sept . 24, 1954. 
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Figure 1 . - Illustration of coordinate system. Displacements and moments are shown in the positive 
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Figure 2 .- Illustration of dynamic testing apparatus . 

• 

""'eo 1/ beoring 

~ 

LV 
I\) 

s; 
o 
:t> 

!;1 
LV 
LV 

&; 



NACA TN 3348 33 

. 
tlO . 
s:::: 'd 
·rl Q) 

~ 'd 
::l 

H r-I 
'd C) 

s:::: 
r-I 0 
ell 0 
·rl 
H 
0 
+> C\J 
C) 

·rl Q) 
p... 

~ 
tlO 

.0 ·rl 
rx. 



<.!) 

w 
0 

~ 
w 
..J 
<.!) 

Z 
q: 

~ 
q: 
>-

1.5 

/ / / 
1.0 / / / 

IP IP IP 
/ / / 

V V V 
. 5 / / / 

V V V 
0 

.V .V V 
/ V / 

- .5 / V/ V 
/ 

V/ V V 
/ / 

-1.0 
V~ V V I~ ¢ d 

V V V 0 80 LIFT: 200 L B 

-1.5 
1/ 1/ 1/ 0 80 160 LIFT: 100 L B. 

- 240 -160 - 80 0 80 160 LIFT: 0 LB. 

YAWING MOMENT, INCH POUNDS 

Figure 3.- Effect of simulated lift load on yaw flexure pivot spring constant . 

LAJ 
-F 

s; 
o 
:x> 

~ 
LAJ 
LAJ 

<5; 



~ 

) . 

-.5 

-.4 

o 
UJ 
CJ) ,. - 3 0'. 
<l 

~ 
CD 
...J 

I . 

Z 

1/1 

"?
Z 

-.2 

-.1 

o 
o 

, 
\ 

\ 

'e 
\ 

4 8 

OSCILLATION AMPLITUDE 10 i 

LIFT LOAD 
0 0 LOAD WIRE OFF 

I!l 0 LOAD WIRE ON 

\ ~ 100 , 
A 200 , , 

N · - -1.207-145.50/ 
'~ 

------ 'Its - f 
, 
" " , 

" ~~ ... ..... 
.......... 

' ... --.... ~ "'-
~--~-. -- I--

~ 
12 16 20 24 28 32. 

FREaUENC~ CYCLES PER SECOND 

Figure 4. - Effect of simulated lift load on the internal damping of the yaw flexure pivots . 
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Figure 5.- Comparison of gyroscope input and measured output of the simulated aerodynamic cross 
derivative NcP. 

W 
0'-

~ 
~ 

~ 
w 
w 
~ 
()) 



; 

0 
w 
(/) 

"d-
e:( 
a::: 
"'-CD 
.J 

I 
Z 

'-e-
...J 

3.2 

2.4 

1.6 

0.8 

o 
6 

~ -- ---4 

-~ ") .~ --

8 

, 

------ MAGNETIC-DAMPER INPUT 
<:) MEASURED OUTPUT 

e ~ ( .) ~ <:) 
e 

~_.a. ---0 --0<:). ... --- Go -(;j ---- --- --- --- --_. ~---

~-- ~<:)--- -c:>-- --- ~-- ~_ ..1:). ---~-- .)--- ~-- ~-~ 

~ 

10 12 14 16 

FREQUENC~ CYCLES PER SECOND 

18 20 

Figure 6.- Comparison of magnetic-damper input and measured output of the simulated aerodynamic 
damping-in-roll derivative L~. 
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Figure 7.- Model used for wind- tunnel tests . 
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