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SUMMARY

The flow about a body of revolution at high supersonic airspeeds is
investigated analytically with the aid of the generalized shock-expansion
method. With the assumption that flow at the vertex is conical, approxi-
mate solutions for the flow field are obtained for values of the hyper-
sonic similarity parameter (i.e., the ratio of the free-stream Mach number
to the fineness ratio of the body) greater than about 1 and for angles of
attack less than the semivertex angle of the body. Surface streamlines
are approximated by meridian lines and the flow field is calculated
in meridian planes. Simple explicit expressions are obtained for the
surface Mach numbers and pressures in the special case of slender bodies.

In the case of lifting cones, algebraic solutions defining the entire
flow field are obtained when the hypersonic similarity parameter has a
value of about 1.4 or greater.

Surface pressures and shock-wave shapes were obtained experimentally
at Mach numbers from 3.00 to 5.05 and angles of attack up to 15° for two
ogives having fineness ratios of 3 and 5 and for two cones having the
same vertex angles as the ogives. The predictions of the methods of this
paper are found to be in good agreement with experiment at values of the
hypersonic similarity parameter in the neighborhood of 1 and greater,
when the ratio of angle of attack to semivertex angle is about one-half,
or less. For increasing values of this ratio, agreement deteriorates but
may still be considered fair for values slightly less than 1.

INTRODUCTION

It was suggested in reference 1 that flow over the surface of a non-
lifting body of revolution could be treated as two-dimensional in type
downstream of the vertex when the hypersonic similarity parameter (i.e.,
the ratio of the free-stream Mach number to the fineness ratio of the body)
was greater than about 1. This point was substantiated by comparing predic-
tions of two-dimensional (Prandtl-Meyer) expansion theory with those of
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characteristics theory for the Mach numbers and pressures on the surfaces
of ogives. The two-dimensional theory has the advantage, of course, of
being relatively simple by comparison to characteristics theory and is
about as simple as the recently proposed hypersonic small disturbance
theory of Van Dyke (ref. 2).

It was also suggested in reference 1 that the two-dimensional approach
might be extended to the calculation of flow at the surface of slightly
inclined bodies of revolution. This thought led to a study (ref. 3) of
three-dimensional hypersonic flows which revealed that such flows may
often appear locally two-dimensional. It was concluded that at hypersonic
speeds the entire flow field about a three-dimensional body may, under
certain conditions, be calculated with a shock-expansion method similar
to that employed for calculating two-dimensional flow about airfoils
(ref. 4). The conditions of when and how this generalized shock-expansion
method can be applied to calculate three-dimensional flows were determined
in reference 3.

The principal objective of the present paper is to apply the general-
ized shock-expansion method to obtain expressions yielding the Mach number
and pressure distributions throughout the entire flow field about an
inclined body of revolution. In order to apply the shock-expansion method,
it is necessary to know initial conditions at the vertex of a lifting
body. These conditions can be taken to be the same as those agbout a cone
tangent to the body at the vertex. One objective of this paper, then, is
to develop a conical flow theory for lifting cones over the range of free-
stream Mach numbers and apex angles not treated in the M.I.T. tables

(refd 5%

NOTATION
a local speed of sound, ft/sec
Cn normal-force coefficient, normal'force

qon(d“/h)

Cp specific heat at constant pressure, ft—lb/slug ORr
Cy specific heat at constant volume, ft-1b/slug °R
da maximum diameter of body of revolution, in.
E entropy, ft-1b/slug °R
H total pressure, 1b/sq in.
K Lypersonic similarity parameter, M, %
U characteristic body length (measured from vertex to most for-

ward point of maximum diameter), gl
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Mach number (ratio of local velocity to local speed of sound)
static pressure, 1b/sq in.

dynamic pressure, 1b/sq in.

D - Po

pressure coefficient, q
o}

gas constant, ft-1b/slug °R

velocity component parallel to ray passing through vertex of
cone, ft/sec

velocity component normal to u in a meridian plane, ft/sec

velocity component normal to a meridian plane, ft/sec

resultant velocity, th + v2 + w2, ft/sec

maximum velocity obtainable by expanding to zero temperature,
ft/sec

distance along axis of body measured from vertex, in.
distance normal to axis of body, in.

angle of attack, radians unless otherwise specified

Mach angle, arc sin i , radians unless otherwise specified

M

c
ratio of specific heats, EE
o

angle of flow inclination in meridian plane measured with respect

to body axis, radians unless otherwise specified

angle of inclination of axis of conical shock with respect to
free-stream direction, radians unless otherwise specified

angle of inclination of axis of conical shock with respect to
axis of body, radians unless otherwise specified

mass density, slugs/cu ft

angle of merdian plane with respect to plane of symmetry,
radians unless otherwise specified (see fig. 1)

angle between axis of caone and ray passing through vertex of cone,

radians unless otherwise specified
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Subscripts

free-stream conditions

(0]

é’ﬁ’ }» conditions at different points in the flow field

@ conditions on the surface of a cone
e conditions at the external surface of the vortical layer
N conditions on the surface at the vertex of a body
S conditions immediately behind the shock wave at the vertex of a
body
THEORY

This investigation is concerned with the theoretical and experimental
characteristics of the flow about bodies of revolution traveling at high
supersonic airspeeds and at small angles of attack. It is assumed through-
out the analysis that the disturbed flow is everywhere supersonic and,
hence, the body has a pointed nose or vertex. With these restrictions
on the free-stream Mach number, angle of attack, and body shape, the bow
shock wave will lie elose to the surface of the body. The procedure for
determining flow conditions in such flow fields is analogous to that
employed in reference 1 for the case of axially symmetric flow fields;
namely, the flow field is studied in two parts - flow at the vertex and
flow downstream of the vertex. The combined results of these two phases
of the investigation will then be applied to the determination of the
whole flow field and, in particular, to the determination of flow prop-
erties on the body surface and the resulting shock-wave shape.

Flow at the Vertex of a Lifting Body

It follows from the assumptions basic to this analysis that the flow
at the vertex will be the same as for a cone tangent to the body at the
vertex and immersed in the same free stream. All derivatives with respect
to radial distance vanish for these conditions, and the equations of motion
and continuity in spherical polar coordinates become (a schematic diagram
of the polar coordinate system is shown in fig. 1)
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du + M ou _ VB Rl s S0y (1a)
dw sin w 3¢
v QX gl éX + i éB + uv - wecot w = O (1b)
dw sin wdp P dw
aW w a_W+__]:___§E+uW+vwcotw=O (lc)

V3 T sin w dp p sin w AP

and

2pu sin w + vsin w=—= + psin W— + Vp COS W+ W — + p —

dw aw ) o

respectively. Since the total energy in the flow is constant, the fol-
lowing relations must be satisfied:

% 1 0p P dp Ju dv QE
<08<p 02 30 Bq)+vécp+waq>

_1_<;@__P_a_o> <_+v_+w5—w (3)

P 3w p2d

The entropy at any point in the flow may be expressed as

L SR p (PoY
2h e 2 B il

Equations (1), (2), and (3) together with the relation

a2 mad é (e

may be combined (by eliminating the pressure and density terms) to obtain
the general equation of motion
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-1
4 B (62 - V2)<%u + v cot w + A §E> - uv2 - uw2 -

dw sin w 0

dw sin w 0P sin w O 3w

which, when combined with the appropriate shock-wave relations, defines
the flow about a circular cone immersed at an angle of attack in a super-
sonic stream.

Conditions at the shock wave.- In order to obtain algebraic solutions
for flow at the vertex, it is necessary to make some simplifying assump-
tions regarding the flow field. To this end, the conical shock is assumed
to be circular but inclined at an angle € to the free stream.® Then,
the .angular difference between the cone axis and the shock axis is

i (6)

Now, the shock-wave angle measured from the cone axis, wg, is referred

to the free-stream direction by ws + o cos ®. The shock-wave angle
measured from the shock axis, (Wg)g—o + M, is referred to the free-stream
direction by (ws)®=o + 7 + € cos ¢, Hence,

wg + @ cos @ = (ws)®=o + 1M + € cos Q

and by virtue of expression (6) the resulting equation for the shock
angle may be written®

ws = (Ws)p=o + (1 - cos ?) (7)

where (ws)®=o is the shock angle in the plane of symmetry on the windward

lgxperimental results indicate (as will be shown later) that for small
angles of attack the conical shock does, in fact, remain nearly circular.
Other investigators (notably Stone, see, e.g., ref. 6) have made a similar
assumption. It should be noted, however, that the additional assumption
commonly employed, nemely, that the conical-shock apex angle is the same
as in the nonyaw case, 1is not made here.

2Tt should be noted that all angles are measured with respect to the
body axis. The procedure of developing all pertinent expressions in the
body coordinate system will be employed throughout the analysis.
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side of the cone (see fig. 1). Similarly, the meridian angle ¢g, measured
with respect to the shock axis, may be related to the meridian angle D,
measured with respect to the cone axis, by

sin @; = sin @(1 - n cot w cos o)
and

cos pg = cos ¢ + T cot w sinp

The shape of the conical shock having been specified, the velocity com-
ponents at the shock may be obtained from the oblique-shock-wave relations

ug = Vocos[wg + a(cos @ + 1 cot wgsinZp) ] (8)
wg = Ve sin o(1 - n cot wgcos o) (9)
1 <u852 i (Vsjf
S e 9) "3 X
it 7y +1ly
¥ -2 sin[wg + a(cos ® + 1 cot wgsin®p) ]
v

If the shock angles in the plane of symmetry were known, flow conditions
around the entire shock could be determined since the shock-wave angle

in any plane could be determined from equation (7). In order to determine
these shock-wave angles, it is necessary to determine the crossflow
component of velocity, w, throughout the flow field. Attention is there-
fore turned in this direction.

Determination of crossflow component of velocity.- Recalling the
basic assumption to this analysis, namely, that flow fields of the type
under consideration are characterized by the bow shock lying close to
the surface of the body (i.e., w - 8 < < 1), it is reasoned that the
variation of w with ww should be small and it is assumed that

w = wy(w)wa(o) (11)

Now wx(p) is given by equation (9). There remains, then, the determina-
tion of wj(w) in any meridian plane. To this end, consider equation (la).
Differentiating this equation twice with respect to ® and once with
respect to w yields, in the plane of symmetry,

B ) B e abel . - 4 . Merr SN
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2 2
g;% = sin w <;;§7 + %ﬁ cot Q> (12)
P=0 w

Now, if we let
>y
acp2

equation (12) becomes, upon integration with respect to w,

= F(w) (13)

%ﬁ sin w = <§§) sin wg -\/FNSF(w)dw (14)

‘g W

Consider now the integral term in the above equation. At the surface of
the body (v = 0)

Flw) =0

Since it seems reasonable that F(w) will be a monotonic function between
the surface and the shock wave, it is assumed that this function will
attain its maximum value at the shock and may be written (from egs. (8),

(9), (10), and (13))

20y~ (Vo€)Mge
F(w)g = _i_————l Vocos(wg + @) (e - 20m cot wg) + oo -
Ak Mosin(wg + @)
Yi=alt s
LR g (e - 2an cot wg)Vecos(wg + @)
7+1 T My sin®(wg + )

Z

Now, according to the above expression, F(w) is a maximum when

Mosin(wg + @) is a minimum. Since Mosin(wg + a) >1 for attached shock
waves, the maximum value of F(w) can be determined by setting

Mosin(wg + @) equal to 1 in the above expression. Hence, since Mg€ ~ 1,
there results

oy - 1)
Y + 1

Flw) < VeE - s_iT% Vocos(wg + a) (e - 2un cot wg)
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Hence,
[F(w)l < E

and it follows that

W w
J[ SF(w)dw <L/“ se dw = e(ws - we)

Therefore the integral term in equation (14) is, at most, second order
and can be neglected in this analysis. Equation (14) now can be written

ow by éﬂ) sin wg
0P/ g

oL} sin w

Henee,
sin Wg
wi(w) = sin w

and it appears that expression (11) is a logical assumption since the
variation of w with w is, in fact, small. Combination of the above
expression with equations (9) and (11) yields, then,

sin wg

AT o(1 - n cot wgcos @) (15)

w =Voe

defining the crossflow component of the velocity anywhere in the flow
field relative to the cone axis.

Having determined an expression for w throughout the flow field,
one can now obtain a solution to the flow in the plane of symmetry in a
manner analogous to that presented in reference 1 for the case of axially
symmetric conical flows. Since the calculation of the flow in this plane
requires simultaneous solutions of the conical flow equations and the
oblique shock-wave relations, the procedure is somewhat involved and,
hence, is given in Appendix A, After (wg) —o and € have been determined
from Appendix A, conditions around the entire shock front can be deter-
mined from equations (6) through (10). Determination of flow conditions
around the cone surface will now be considered.

Flow conditions on the surface.- It has been shown by Ferri in refer-
ence 7 that to the first order in o the entropy remains constant in a
meridian plane (having the value that exists at the shock in that plane)
until a vortical layer is reached at the surface of the body across which
a variation of entropy occurs. Since the entropy on the surface is
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constant, it must have the same value that exists in the plane ¢ = O.

Now the thickness of the vortical layer being of the order of o2, the

pressure remains constant through the layer to the first order of « *
and the component of velocity normal to the surface can be considered

zero on the external side of the layer. Hence, across this vortical

layer

pc = pe
Ve = Ve =0
and
EC = (E)(pzo

where the subscripts c¢ and e refer to quantities inside and outside the
layer, respectively. Consider now an expression relating u and w on
the surface of the cone which may be obtained from equation (la); namely,

ég = w sin 8,
P
or
m *
u = (VC)¢=0 + sin SC\/p w do (16)
o «

Since the thickness of the vortical layer is proportional to a2, the
normal component of the velocity is zero through the layer and the above
expression holds on either side of the vortical layer. An expression for
the velocity and, hence, the Mach number externally adjacent to the vorti-
cal layer may then be easily determined as follows. The expression for
the crossflow at the vortical layer may be written in the form (from

eq. (15))

Ve Vo sin wg

= € sin (1 - n cot wgcos ) (17)
(Vc) A0 (VC) . Sil’l SC
=0 P=0

Substituting this expression in equation (16) yields, upon integrationm,

- =1 + 7. € sin ws<i —lcosEDE=

g 8 -
zg;j;:; (Vc)¢=o cot w351na$> (18)

o=
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The Mach number at the external side of the vortical layer, Me, may be
determined from the relation

2 Vo 1°
(Mc)@=o [?szgzg]

# (19)
f e A 2 Ve :]2_ 1
1 - 2 (MC)q>=O ‘j(vc)q:):O

where, of course,

P
e v W
] ST
(VC)®=O (Vc)q)=0

The velocity and the Mach number in the ¢ = O plane are given by (see
Appendix A)

B¢c-Bg
wg=Bg
<V' cos(wg ~ Bg)
Vs /p=0 i [(SC - 8) (wg - SS)J
cos
80‘63

and

<Ms>§=o(v"s—>:=o

2
Vo= il 2 vV
R

respectively, where




. -
o )2 (y + 1)2M04sin2{(ws)@=o + a] - h~{Mozsin2[(ws)@=o + aJ - }’{}Mozsina[(ws)w=o + a] i %} i
5 &

@=0
{é?Mozsinz{(ws)¢=o + aJ - (y - 1)}-{k7 - l)MoasinE[(ws)®=o - a] + é}

If one employs the condition that the pressure is constant across the vortical layer, an
expression defining the Mach number directly on the surface of the body, Mc, in terms of the Mach
number at the vortical layer, may be obtained; namely,

Ee-Ec
2 o\
MC2 :< = 1+Me >e 7CV _7_?1: (20)
where (since E¢ = (E)mzo)
Ee-EC 2 .2 2 o
e Mo sin [(ws)®=o + a]-{(7 - 1)My sin"|wg + a(cos @ + n cot wssinzm)] + 2

Mozsinz[ws + a(cos ¢ + n cot wssinzm):r{(y - l)Mozsinz[(ws)(p_O + a] +-2}

2
v
2yMoZsin®[wg + a(cos @ + 1 cot wgsin2p)] - (¥ - 1)

(21)
27Mozsin2[(ws)®=0 + a} - (y - 1)

b—

Since the flow is isentropic in the ¢ = O plane (downstream of the shock wave) and around the
surface of the body inside the vortical layer, the pressure coefficient anywhere on the surface
may, of course, be obtained by the expression

6HEE NI VOVN
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P. = -1 (22)
(] 2 P
Mo S
where
2 2
M i - =1
(el Mo 880 ey + 0] - (7 - D)
Py b et
1+ 222 () %
P r ] 2 Mg P=0
B - 1
(ps)q)=o 1 4 Y ) M2

and MZ is given by equation (20).

Flow conditions off the surface.- Flow conditions in the plane of
symmetry, on the surface of the cone, and at the conical shock having
been determined, the flow throughout the remainder of the flow field may
now be calculated. Since only high Mach number flows are considered in
this analysis, the variation of the magnitude of the resultant velocity
in a meridian plane will be small. Hence, the variation of u and v will
be small and may be represented by a power series in (w - 8,) where the
coefficients are determined by the requirements

u = ue at w =3,

]
£
7]

u = ug at w

and

aV éf) at Ut — SC
aw Bw e
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Thus,
L a )y - sg) G;’i'—s‘(‘j—) + (ug - ue)<g's':7§'§_g>2 (23)
and
@ > ok <ws - >+ Vg (:S'_5§c> (2k)
where

wg, Us, Vs, and ue are given by equations (1), (8), (10), and
(18) , respectively.

There remains now the determination of (Bu/ w) o

and
(0v/dw) ¢. To this end, consider equation (1b). Just outside the vortical
layer this equation reduces to
op >
<% 0 = we“cot B, (25)

Tt will be recalled that the entropy was assumed constant between the
shock and the vortical layer in each meridian plane. Now Euler's equa-

tion for compressible flow along a stream tube may be written
(p = constant)

10p_ 4NV
P dw Jw

Combination of this expression with equation (25) yields

ov >
= - We-cot D
< aw e e

from which may be obtained (noting that at the surface V2 = il w2)

d ow
g(%)e i <%>e[ a"">e Sy SC} e

where we 1is given by equation (17) and

5 Ys oot 8e5in @(1 - n cot wgcos P)
sin SC

(27)
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Now from equation (5) there results (setting v = 0)

O foms @A ) e

where Me 1is known from equation (19) and from equation (15)

<§#> a9 % (cos @ - n cot wgcos 20¢) (29)

sin &,

The components of the local velocity anywhere in the flow field external
to the vortical layer are now known from equations (15), (23), and (2L).
Hence, the magnitude and direction of the resultant velocity and, con-
sequently, the Mach number may easily be determined. If the Mach number
is known, the local pressure (in coefficient form) may be obtained any-
where in the flow field with the aid of the expression

2 (ts Bl

where

B 27Mo2sin2[ws + a(cos @ + 7 cot wssinzw)] - (y - 1)

B (31)

and, of course,

B4 2 (32)

The Mach number and pressure distribution (as well as the orientation of
the conical shock) are now known throughout the flow field around a 1lift-
ing circular cone.

The range of applicability of the results of this analysis is con-
sidered to be the same as that of the nonlifting cone solutions presented
in reference 1. This results from the fact that when o = 0, equation (A7)
in Appendix A reduces identically to the equation defining the deflection
angle in reference 1. As was pointed out in this reference, when
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Ms(ms - 5c) > 1/2 an imaginary value of &g is obtained. If o >0,

equation (A7) yields a real value of B8g, (for Ms(wg - 8¢c) >1/2), how-

ever, it would not be expected that the range of applicability of this -
equation (in terms of My and 8.) would be increased for finite a.

Figure 2 shows the boundary line (given by Mg(wg - 8.) = 1/2 for o = O

above which the present conical flow solutions are applicable. The dashed

line represents the boundary below which the results of Stone's second-

order solution (ref. 5) are available.

The flow around circular cones traveling at small angles of attack
and at high supersonic airspeeds can be calculated by means of the fore-
going algebraic expressions. As was pointed out previously, these expres-
sions can be employed to determine fluid properties at the vertices of
pointed bodies of revolution other than cones. Investigation of flow
downstream of the vertices of such bodies is now undertaken.

Flow Downstream of the Vertex

In this study we exploit the finding of reference 3 that many three-
dimensional hypersonic flows may be treated by a generalized shock-
expansion method which is analogous to that employed in reference 4 for
two-dimensional flows. Specifically, this treatment is permissible when
disturbances associated with the divergence of streamlines in planes
tangent to a surface can be considered negligible compared to those
associated with the curvature of streamlines in planes normal to the sur-
face. For the case of noninclined bodies of revolution which are curved
in the stream direction, this requirement is satisfied when the hyper-
sonic similarity parameter is greater than about 1 (see ref. 1). For -
inclined bodies, an additional restriction is imposed. This point is per-
haps best clarified by considering the problem of calculating flow at the
surifiaces

Tt follows from reference 3 that when the generalized shock-expansion
method applies in the region downstream of the vertex, surface streamlines
can be approximated by geodesic lines. The only geodesics on the surface
of a body of revolution which, like streamlines, do not intersect each
other are the meridian lines. In addition, the meridian lines are the
only geodesics which, like the streamlines, pass through the vertex. When
the shock-expansion method is applied, then, surface streamlines are
approximated by meridian lines. Strictly speaking, however, this can be
the case only when o < < 1. (It should be noted that this is always
true, independent of a, for the extreme windward and leeward streamlines.)
Evidently, then, the generalized shock-expansion method should be appli-
csble to curved bodies of revolution only at small angles of attack in
flows characterized by a value of the hypersonic similarity parameter -
greater than about 1.
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The procedure for determining flow conditions at the surface of a
lifting body is entirely analogous to that employed in the application
of the shock-expansion method to the nonlifting body (ref. 1). For
example, the Mach number on the surface at the vertex is obtained with
the aid of equation (20). The variation of Mach number downstream of
the vertex is then obtained by means of the isentropic expansion relation
(see ref. 1)

8 - 83 = sin~1 s gaarlnl o
Mp Mg

7 i gaE il 2 Y + 1
7 fw-l)(MBz A /(7-1)(MA BT
(33)

where A and B are different points on the same meridian line (or stream-
line). If the Mach number distribution is known, the pressure distribu-
tion (in coefficient form) on the surface is readily obtained with the

aid of equation (22). It should be noticed that when Mg is employed,
equation (33) yields the Mach number distribution on the body under the
vortical 1ayer.3 This result materially reduces the net labor associated
with carrying out the calculations to determine the pressure distributions
around the body downstream of the vertex since the pressure rise across
the shock need be considered only in the plane ¢ = O (E%e eq. (o8) . Tt
results, too, that a relatively simple expression for EEE i the initial
slope of the normal-force-coefficient curve, can be obtained. The devel-
opment of this expression follows.

The expression for the normal-force coefficient on a body of revolu-
tion may be written

L AT
Cy = ———— r cos @ dp dx (3%)
N 7M021d2 Po

where d is the diameter of the base and r is the local radius of the
body. Differentiating expression (34) with respect to a and employing
the condition of constant entropy on the surface results in

31t is reasoned that since a vortical layer exists around the body
surface at the vertex, then a vortical layer must exist downstream of
the vertex as well.
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LT
ac sl a
don =__1_6_ff<p£;>if—2@_@>rcos@d¢ax (35)
do |g=0 7M02ﬂd2 /) J N/ sin 28 da \Pq

This expression may be rewritten in terms of the initial normal-force-
curve slope for a cone tangent to the body at the vertex; namely,

2
7\~ dCy & sin 2By
Q=0 <d> do [ ey ay N'O <pN> (sin 2p ><Z> d<1> el

where the subscript TCN refers to a cone tangent at the vertex. The
calculations necessary to determine the initial normal-force-curve slope
dCry
da |TCN
be obtained from Stone's first-order theory (ref. 6) or from chart 8 in
reference 8. The Mach number and pressure distribution along the body

may be obtained by the conical shock-expansion method presented in refer-
ence 1.4 Having determined these distributions, one may easily evaluate
the integral term in equation (36) by numerical integration or by graphical
methods.

dCy
da

for a body of revolution are relatively simple, since may easily

In order to determine fluid properties in the flow field other than
on the surface, it is necessary to know flow conditions just outside the
vortical layer downstream of the vertex. These conditions may be deter-
mined in the same manner as before except that now initial flow condi-
tions externally adjacent to the vortical layer at the vertex are
employed. For example, the Mach number at the vertex 1is determined by
means of equation (19). Equation (33) is then employed, as before, to
obtain the Mach number distribution downstream of the vertex. When flow
conditions along this layer in a meridian plane have been established,
fluid properties throughout the plane may be calculated after the manner
described in reference 4. Application of the generalized-shock-expansion
method for determing the flow field in any meridian plane is discussed
in Appendix B.

Simplified Expressions for Slender Lifting Bodies

In the case of slender bodies traveling at very high Mach numbers
(agedin ' o << 1) the calculations of fluid properties at the surface
become relatively simple and, hence, merit special attention. As in the
case of the nonlifting body, a hypersonic slender-body theory yielding

4Tt is clear that the shock-expansion method discussed previously in
the present paper may also be used since the expressions developed herein
reduce identically to those of reference 1 when a = O.
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explicit solutions for the Mach number and pressure at any point on the
surface of the body can be obtained. These solutions may be summarized

(from Appendix C) as follows. The local Mach number at any point is given

by the relation

(37)

where

2 <Ms>§=o{l+7'l<Ms6N>2[l+ln<) &) -8 - )l

YT Ec = Ee 1

{ (M )qz) 0[2‘% (1 - cos @) + <——> sin CDJ}
2 2
Os - SN LI }
L CER I
- 2
(7 + 1)3M, [(w5)¢=o + a}

of 2
™| (e)gog + @] = (7 - D)

2yMoZ(wg + @ cos )% - (7 - 1)

2
MyZ(wg + @ cos @)2{(7 £ l)Mo2':(ws)cp=o + G':' ¥ 2}

2
2 2
{(ws)cp — ] [(7 - 1)M, (wg + @ cos @) + QJ
Unless otherwise designated, wg 1in the above expressions is given by

wg = (Wg)yy + (L - cos o)

p=0
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and (wS)m=o is determined from equation (C7) in Appendix C. Now
e}
¥l s L
L 9N )\
n —-—
Y + 1 g
1+ 1 -2
L < 5N
where
85 MOSN

" and, of course,
& = (ah,.o 0

The pressure coefficient at any point on the surface may be obtained from
the expression

(Mg) = e

2 Pg SUp=0 d \[7-1

1 e CESN (S (R ED
®=0

Tt is interesting to note that equations (37) and (38) predict the ratios
of local to free-stream Mach numbers, and local to free-stream static
pressures to be the same at corresponding points on related bodies, pro-
vided that the flow fields about these bodies are related by the same
respective values of the hypersonic similarity parameters Mgdy and Moa.
These predictionss are identical to those of reference 9 for inviscid
flow about slender three-dimensional shapes. Hence, these expressions
readily lend themselves to solutions in terms of Mo8y and Moaw in tab-
uwlar form. Calculations over a range of Mydy from 0.6 to 3.0 and a/SN
from O to 1 were carried out for flow at the vertex of a body of revolu-
tion and the results of these calculations for the flow parameters

(MS)CD=O (pS/pO)cp=o

My T (Modw)Z s
increments of @ from 0° to 180°. Thus, for a given Mody and Mga, the
Mach number on the surface of a body downstream of the vertex is readily
obtained with the aid of these tabulated parameters when used in conjunc-
tion with equation (37). The pressure coefficient anywhere on the surface
of the body is easily calculated by means of equation (38).

, and (Mgdy) are tabulated in table I for 30°

S1In the case where o = 0, the expressions developed in the present
paper reduce identically to those presented in reference 1L
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The results from table I may also be used to good advantage in deter-
mining the initial normal-force-curve slopes for slender bodies of revolu-
tion. For example, from Appendix C there is obtained

Vtsals
2 ac 8l
= L N e T e d =z
RLIOLE - R (R SIGONY

o (39)
where

dCy
da

dCy
da

TCN

Mg 7%% 14243 (M5 )%}{ e Sy (M5 )%H} (M5y) 2| (X 2 <§S:f( ) )%}
w) | T e ® [ 25 (otm) L+ iow) | () - (52) (b

oo T2 @b o

Hence, the pertinent flow parameters necessary to determine the initial
slope of the normal-force-coefficient curve by means of the above expres-
sions may be obtained from table I for the case of d/BN = 0.

EXPERIMENT

In order to obtain a check on the predictions of the preceding
theoretical analysis, the pressures acting on the surfaces of lifting
bodies of revolution corresponding to values of the hypersonic similarity
parameter K from 0.60 to 1.68 at Mach numbers from 3.00 to 5.05 were
determined experimentally. The bodies were tested at angles of attack
up to 150. A brief description of these tests follows.

Test Apparatus

Tests were conducted in the Ames 10- by lh-inch supersonic wind
tunnel. A detailed description of the wind tunnel and auxiliary equip-
ment may be found in reference 10. The pressures acting on the model sur-
faces were measured with a mercury U-tube manometer or by means of McCleod
gages when the pressures were low enough to be recorded on the latter.

Pressure-distribution models were mounted on a 0° model support and
on 50, lOo, and 15° bent supports. The test model$ were two tangent ogives
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having fineness ratios 3 and 5 and two cones having the same vertex angles
as the ogives. The dimensions of these models and location of the pres-
sure orifices are shown in figure 3.

Tests and Procedure

i Pressures on the model surfaces were measured at 0°, 5°, 10°, and
15" angles of attack at test Mach numbers of 3.00, .25, and 5.05, The
Reynolds numbers (based on maximum diameter of the ogives) were 1.09
million at Mach numbers 3.00 and 4.25, and 0.52 million at Mach number

BI015)

The pressures around the cone surface (OO to 3600) at meridian sta-
tions h5o apart were recorded simultaneously at each Mach number and
angle of attack. In the case of the two ogival models, the pressures
were recorded at meridian stations 90O apart. Each model was then rotated
45° about its longitudinal axis (except at 0° angle of attack) and the
process repeated.

Schlieren photographs of the bow shock waves in three meridian planes
were also obtained.

Accuracy of Test Results

The variation in Mach number from the nominal value did not exceed
+0.02 in the region of the test section where the models were located.

The precision of the computed pressure coefficients was affected by
inaccuracies in the pressure measurements, as well as uncertainties in the
stream angle and the free-stream dynamic pressure. The resulting errors
in the pressure coefficients were generally less than £0.005 throughout
the Mach number range for all angles of attack. The meridian angles at
which the pressure coefficients are plotted are considered accurate to
Wi Bhsdineie

COMPARISON OF THEORY WITH EXPERIMENT AND DISCUSSION OF RESULTS

Flow at the Vertex

Tt will be recalled that one of the fundamental assumptions in the
development of the conical flow theory was that the conical shock remains
circular when the cone is inclined. It is appropriate to examine the
validity of this assumption before proceeding with a comparison of the
theoretical and experimental surface pressures. To this end, schlieren
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evidence on the shapes of the conical shocks for the two test cones at
Mach number 5.05 is presented in figures 4 and 5 for angles of attack of
0%, 5°, 10°, and 15°. The data shown in the figures were obtained by
measuring the angle of the shock in the schlieren photographs at various
meridian stations. Theory is compared with experiment in a cross-sectional
plane at an arbitrary distance downstream of the vertex. It is observed
in figure U4 that the conical shock attached to the slender cone remains
nearly circular for angles of attack up to 10°. At a = 150, the angle
of attack is greater than the cone half-angle and, as might be expected,
the shock is no longer circular. However, in the case of the blunt cone
(fig. 5), the conical shock remains essentially circular for all angles
of attack up to and including 15°. It would appear, then, that at least
for moderate cone angles, so long as the angle of attack is less than the
semivertex angle of the cone, the assumption of a circular conical shock
made in the analysis is justified.

The second basic assumption employed in the development of the conical
flow theory of this paper is that w - 8 << 1. It is apparent that this
condition is best satisfied for blunt cones and for high Mach numbers.

The accuracy of the theory might be expected, therefore, to improve both
with increasing cone angle and increasing Mach number. The predictions
of theory and the results of the pressure-distribution tests for the two
test cones (8¢ = 11.42° and 8¢ = 18.92°) are shown in figures 6, 7, and 8.
The data are plotted in the form of surface pressure coefficient as
a function of the meridian angle @.® It is observed in these figures
that the predictions of theory, when applicable, are in good agreement
with experiment for the Mach numbers and angles of attack presented. It
is evident also that at the highest angle of attack (a = 150) the theory
is less reliable on the leeward side of the body. Although this result
is due in part to the limitations of the theory, it is also clear that
the viscous effects of the flow are influencing the pressures to a greater
extent over the leeward portion of the body. It can also be deduced from
these figures that agreement between theory and experiment is better for
the blunter cone, particularly at the higher angles of attack. It is
indicated, therefore, that the predictions of the conical flow theory of
this paper will yield more reliable results when the parameter a/Sc < ks
In the lower range of My and 3. (fig. 6) where the present conical flow
theory is not applicable (see fig. 2), Stone's second-order solution
(ref. 11) applied in the manner described in reference 12 yields results
which are in good agreement with experiment.” It is observed in figure 7
8Tt will be noted in these and subsequent figures that the data are
often plotted at meridian stations slightly different from 0°, 45°, 90°,
etc. This resulted from inaccuracies in rotational positioning of the
model.

"Due to the limited range of the results presented in the tables of
reference 5, comparison can be made only for the slender cone and then only
for Mach numbers 3.00 and k.25 without resorting to extrapolation. Although
the agreement between Stone's results and experiment appears to be better
at a = 10° than at o = 59, this result must be attributed to the manner
in which the flow parameters presented in reference 5 were interpolated.
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that both methods yield comparable results over the angle-of-attack range
at Mach number 4.25. Hence, it appears that the two theories tend to
overlap in regards to their usefulness over the range of My and 8.

It should be mentioned here that the treatment of inclined cone flow

as presented by Ferri in references 7 and 13 was applied to the cases

under discussion in the present paper. Ferri's method did not yield
results as good as either Stone's second-order theory (where applicable)

or the conical flow theory of the present paper. In fact, inconsistent
results were obtained when the method was applied according to references 7
and 13. This discrepancy may be traced to what appears to be an inconsist-
ency between equation (55) in reference 7 and equation (55) in reference 13.

From the preceding comparisons of the experimentally determined sur-
face pressures and shock-wave shapes with the predictions of the conical
flow solutions of this paper, it is indicated that the latter solutions
may be employed to predict the flow properties about a lifting cone at
high supersonic airspeeds with good accuracy when the angle of attack is
less then the cone half-angle (i.e., when /8, < 1)." It is therefore
suggested that these solutions may be particularly useful for determining
conical flow fields about lifting cones over the range of My, and 5, not
treated in the M.I.T. tables (ref. 5).

Flow Downstream of the Vertex

Tt remains now to determine the accuracy with which the solutions
for flow about 1ifting cones in combination with the isentropic expansion
equations predict the flow about bodies of revolution other than cones.
The pressure distributions on the surfaces of two ogives (having fineness
ratios 3 and 5) at Mach numbers 3.00, 4,25, and 5.05 and at angles of
attack of 0°, 5°, 10°, and 15° were calculated using the methods of this
paper. These distributions are presented in figures 9, 10, and 11 for
values of the hypersonic similarity parameter, K, varying from 0.60 to
1.68. Also shown are the results of the pressure-distribution tests for
the two ogival models.

Comparing first the predictions of theory with experiment for the
case of zero 1lift (fig. 9), we observe that the accuracy of the shock-
expansion method generally improves with increasing K. This trend is,
of course, the same as was observed in reference 1 for comparisons of the
predictions of the shock-expansion method with those of the method of
characteristics. The results of a characteristics solution for the
Z/d = 3 ogive at My = 3.00 (from ref. 14) are also shown for comparative
purposes. Characteristics solutions are not available for the other cases;
however, the results of Rossow (which were obtained by correlating the
pressures obtained by characteristics solutions according to the hypersonic
similarity law and presented in ref. 15) are shown. As might be expected,
Rossow's results are generally in good agreement with experiment although
there is a slight underestimation of the pressures near the base of the
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body at Mg = 5.05. This is attributed to the viscous effects of the flow
which are probably influencing the pressures at this Mach number. In any
event, it is evident that the predictions of Rossow and the shock-expansion
method are in good agreement at the highest value of K (K = 1.68).

It is of interest now to determine the reliability of the predictions
of the shock-expansion method for lifting bodies. As shown in figure 10,
the theory yields good agreement with experiment for the fineness-ratio-5
ogive on the windward side of the body except at My = 3.00 (K = 0.60).°%
Some disagreement is evident, however, on the leeward side of the body
at all Mach numbers. In the case of the fineness-ratio-3 ogive (fig. 11),
agreement is generally better over the entire body at each angle of attack,
particularly at the higher values of K (K > 1). It will be recalled from
fdlgure 9 that at o = 0° the longitudinal pressure distributions on both
ogives indicated that the accuracy of the shock-expansion method increased
as K increased. It is indicated in figures 10 and 11 that, as would be
expected, this trend carries over to the case of lifting bodies.

It appears in figures 10 and 11 that the most important factor
influencing the accuracy of the method is the reliability of the conical
flow theory at the vertex, since the inaccuracies at the vertex appear
to be reflected strongly in the pressures downstream of the vertex. The
question naturally arises, then, how good are the predictions of the
shock-expansion method when experimentally determined initial conditions
at the vertex are employed? To answer this question, the pressure coef-
ficients on the surfaces of the two ogives under discussion were deter-
mined in the following manner. Initial conditions at the vertex were
determined from the measured static pressures around a cone (corresponding
to the vertex angle of the body) in conjunction with the measured shock-
wave angle (in the plane @ = O) obtained from schlieren photographs of
the conical flow field. The pressure coefficients downstream of the ver-
tex were then calculated as before. The results of these calculations
for Mach numbers 3.00, h.25, and 5.05 are compared with experiment in
figures 12 and 13 for. o = 15°. Results for a = 150 are presented because
at this angle of attack the applicability of the conical flow solutions
is most marginal. It is observed from figure 12(a) that the theory yields
results which indicate an underexpansion of the flow on the sides of the
body (¢ = L45° and ¢ = 90°). This result is not surprising since, at this
low value of K (K = 0.60), it would be expected that the true streamlines
would deviate considerably from a meridian line. In other words, flow
disturbances in planes tangent to the body at the surface are no longer
small compared to those in axial planes. Hence, the flow along a true
streamline travels through a greater resultant angle than that represented
by a meridian line. It can be seen from figures 12(b) and 12(c) that as
the Mach number and, hence, K, is increased, better agreement is obtained.

8Tt should be noted in figure 10(a) that Stone's second-order solution
is employed at the vertex since the conical flow theory of the present paper
is not applicable for these conditions (i.e., Mo = 3.00 and B¢ = ll.th;
see fig. 2).
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This is attributed to the fact that the streamlines of the flow deviate
less from meridian lines as K is increased. The same general trend may
be noted in figure 13 for the fineness-ratio-3 ogive. However, in this
latter case, over-all agreement appears to be better. 1In fact, good
results are obtained for values of K > 1 except on the extreme leeward
side of the body where it is probable that viscous effects are influencing
the pressures. There may be some separation of flow over this portion of
the body although no evidence of this could be determined from the schlie-
ren photographs. In the case of the fineness-ratio-5 ogive, schlieren
evidence indicated flow separation on the leeward side of the body for all
Mach numbers at o = 15°. It may be deduced from these figures that the
application of the shock-expansion method will yield better results when
the initial conditions at the vertex are determined from cone tests

rather than from presently available cone theory.

There now remains the determination of the accuracy of the predic-
tions of the generalized shock-expansion method for the flow field (other
than the surface) about a lifting body of revolution. To this end, flow
in the plane of symmetry (¢ = 0° and ¢ = 180°) was calculated (after the
manner discussed in Appendix B) for each ogive traveling at a Mach number
5.05 and at an angle of attack of 10°.) Flow in a side meridian plane
(p = 90°) was also calculated for the fineness-ratio-3 ogive. The result-
ing shock-wave shapes are compared with the actual shapes (obtained from
schlieren photographs) in figure 14. The theoretically determined conical
shocks are also shown for contrast. In the case of the fineness-ratio-3
ogive (K = 1.68 and a/8y = 0.53), theory and experiment are observed to
be in excellent agreement in the plane of symmetry. The same observations
may be made for the side meridian plane. In this latter comnection, it
is of interest to point out that essentially the same result would have
been obtained if the shock were assumed circular in cross-sectional planes
and its location determined from the calculations in the plane of symmetry.
In view of the agreement between theory and experiment, it is indicated
that when K 1is greater than 1 and a/SN is about 1/2 or less, the shock
is essentially circular in cross-sectional view of the flow field about
a pointed body of revolution. In the case of the fineness-ratio-5 ogive,
the poor agreement on the leeward side of the body might be expected since
not only is K marginal for the application of the theory but, more
important, a/8y is relatively large (a/8y = 0.88). It should be pointed
out that if experimentally determined initial conditions are employed,
good agreement with experiment downstream of the vertex is obtained.

Although the predictions of the generalized shock-expansion method
have been checked only at the inner and outer boundaries of the flow
field, it is expected that equally good results would be obtained at
intermediate points in the flow field. This conclusion is based on the
fact that the bow shock waves were obtained as a result of the calcula-
tions of these intermediate points.
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Hypersonic Slender-Body Theory

The gredictions of the hypersonic slender-body theory for o = O
and a = 5° are compared with experiment in figures 15 and 16. It appears
from a comparison of figures 9 and 15 that the slender-body theory will
yield more accurate drag coefficients than the more general theory at

a = 09, particularly at the lower values of K. This result, although
doubtlessly fortuitous, is the same as that found in reference 1. In the
case of lifting bodies, it appears that the slender-body theory yields
results which are somewhat less satisfactory at all values of K. However,
the theory displays sufficient accuracy for many engineering purposes

even at K = 1. This is particularly evident for the more slender of the
two bodies as indicated in figure 16(b). 1In view of its simplicity, the
slender-body method should prove useful and its application is further
facilitated by the presentation in this paper of tabulated values of the
pertinent flow parameters for selected values of Mydy and u/&N (see

table I).

Normal-Force Coefficients

It is appropriate now to consider briefly the forces experienced by
the ogives. To this end, normal-force coefficients were obtained by
integrating the theoretical pressure distributions for the two ogives at
a Mach number of 5.05. The results of these calculations are compared
with those obtained from integrated experimental pressure distributions
in figure 17 for values of K of 1.01 and 1.68. It is observed that
theory yields values of Cy which are, in general, higher than those
obtained by experiment. However, agreement improves with increasing K.
Equation (36), as well as the hypersonic slender-body solution (eq. (39)),
appears to yield satisfactory initial normal-force-curve slopes at values
of K as low as 1. Axial forces have also been obtained for these ogives
and the shock-expansion method is found to apply with essentially the same
accuracy.

CONCLUDING REMARKS

The flow about a lifting body of revolution at high supersonic air-
speeds was investigated analytically. With the assumptions of conical
flow at the vertex, high supersonic Mach numbers, and low angles of attack,
simple approximate solutions were obtained which yield the Mach number
and pressure distributions on the surface of the body. Surface stream-
lines were approximated by meridian lines and the flow field in meridian
planes was calculated by means of the generalized shock-expansion method.
In the special case of slender bodies, simple explicit expressions were
obtained for the Mach number and pressure distributions on the surface.
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Surface pressures and shock-wave shapes were obtained experimentally
at Mach numbers from 3.00 to 5.05 for two ogives having fineness ratios 3
and 5 and for two cones having the same vertex angles as the ogives. The
predictions of the methods of this paper for the surface pressures were
found to be in good agreement with experiment at values of K about 1,
or greater, when a/SN (the ratio of angle of attack to semivertex angle)
was less than about 1/2. For increasing values of this parameter, agree-
ment deteriorates but may still be considered fair for values of a/8y
up to about 1. The generalized shock-expansion method yielded very good
agreement with experiment for the shape of the bow shock at K = 1.68 and
a/SN = 0.53. It was further indicated that the bow shock remains essen-
tially circular in cross section for angles of attack up to approximately
one half the semivertex angle when K is greater than 1.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Jan. 13, 1955
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APPENDIX A

DETERMINATION OF FLOW CONDITIONS AT THE VERTEX IN THE PLANE OF SYMMETRY

Due to the symmetry of the flow in the plane of symmetry,

Now from the flow geometry

u=YV cos(w - d)
v = -V sin(w - 8)
and from equation (1la)
S
dw

The flow is therefore irrotational and the following relation holds

— = - tan(w - 8)dd (A1)

Substituting the above expressions in equation (5) results in

7-1 <> :H%tw—5)1+—-—cmuwkmmw-6)§-+

]

csc(w - 8) éﬂ} - tan(w - ®) LI (A2)

V sin w 3 dw

Equation (A2) is not amenable to algebraic solution. However, since it
differs only in the term containing Ow/dp from the equivalent equation
defining the axisymmetric flow field, a solution analogous to that employed
in reference 1 is suggested. Consistent then, with the restrictions
imposed on the flow field in this analys1s, namely, (w - 8) << 1 radian,
equation (A2) reduces to
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. ¥ O BEP ATk Nl VT g
1-(w-23)cot w + 5 [1 - M¥(w )2] + gl 0 (A3)

where M and, hence, the magnitude of V are considered constant (see
ref. 1). Now from equation (15)

sin Wg
= iVOE m (l = cot ws) (A)-l-)

&

where Ow/O0p is positive at @ = O and negative at ® = x. Hence, near
the surface of the cone, equation (A3) reduces to the linear equation

%% (1 +'0)
or
w=-5%=(w-98:)(2 + o) (A5)

where (since 1 << 1)

Vo _ sin wg

\ 1058

Combining this relation with equations (A3) and (A5) results in

d (w -8c)(2+ o)eot w -1 o sin®d¢
W "1 - MB(w - 80)2(2 + 0)°  sinfull - MB(w - 80)2(2 + )2

(46)

which can be integrated to yield (substituting in the boundary conditions)




8 = 8o =0 sinzsc(cot w - cot Gc)<l -% sinaﬁc{csca[ac - ——2‘——] + csc2|:8c + ——L—j,}> +
M(2 + o) M(2 + o)

(2 + o)tan Bpsec®se

In[1 + (w - 8¢c)cot 8c] +
(2 + 0)*M=an®6s - 1

. ik
31n2[8c - ERE——-—T]{}an 8c + M[1 + 0 + (2 + o)M tan SC]}'- o sin®S.M[1 - (2 + o)M tan 8¢]
+ 0

2 sinz[ac - ERE?%_;3}(2 + c)Mz[l - (2 + o)M tan 8,]

In[1 + (2 + o)M(w - 8o)] +

sinz[Sc 3 ERE—l__T]{%an B¢ + M[(2 + 0)M tan d¢c - (1 + c)]}‘+ oM sin®8.[1 + (2 + o)M tan Scl
+ 0

2 sina[sc + &RE'%'ET}(E + 0)MZ[1 + (2 + o)M tan 8c]
In[1 - (2 + o)M(w - 8c)] (A7)

If M in equation (A7) is taken as the Mach number Just downstream of the shock, then flow
conditions at the shock (i.e., Mg, wg, and 8g) can be obtained by the simultaneous solution of equa-
tions (6), (7), (A7), and the oblique shock-wave relations

6HEE NI VOVN

B
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2
oo Mo *s1in® (wg + @) - 4H[MoZsin®(ws + @) - 1] [/Mo2sin®(ws + o) +1]

Ma e
s [27Mo2sin®(ws +a) - (7 -1) 1[ (7 - 1)MoZsin®(wg + o) + 2]
(A8)
and
v | cot(wg + a)[M 2sinz(u) + a) - 1]
By ealtaniiE = 2 (A9)

5— Mo~ - [Mgsin®(ws * @) - 1]

To apply these equations, a value for € 1is chosen slightly less than
a. Then 7 is fixed by equation (6) and the relationship between the
shock-wave angles is obtained by setting ¢ = m in equation (7), namely,

(ws)@zﬂ = (ws)@=o = 21 (AlO)

NOW’(wS)mzo is determined by solving equations (A7), (A8), and (A9)
simultaneously where o > 0 in equation (A7) and the positive sign is

used in equations (A8) and (A9). Then (ws)mzﬁ is determined in the

same manner as (wg)y-, Wwhere now o <O in equation (A7) and the negative
sign is used in equations (A8) and (A9). If the resulting value of ¢
(calculated from egs. (6) and (Al0)) differs from that originally chosen,
the procedure is repeated using the calculated value of €, and so forth.
Although the foregoing procedure is somewhat tedious, the number of itera-
tions can be reduced to two or three in most cases by carefully choosing

e and (wg) —o- In this connection, it has been found useful to choose a
value for (wg)g=o which is less than the corresponding shock-wave angle

of the nonlifting body by m, the latter angle being approximately 10 to
15 percent of a at the higher Mach numbers (Mg > 4) and 15 to 30 percent
of « at the lower Mach numbers (Mg < 4). It should be remembered that

K is always approximately 1.4 or greater in this analysis.

It is clear that equation (A7) should give a better representation
of the flow field in the ® = O plane than in the ® = x plane since
(w - 8) is always less on the high pressure side of the body. In fact,
there are cases when the combination of My, 8., and @ is such that
equation (A7) no longer applies on the leeward side of the body. For
example, if the body is slender such that the angle of attack approaches
the half-cone angle, |o| can be 1 or greater. Since o < O in this half-
plane (p = x), 35/dw > O for these conditions and equation (A7) will no
longer represent O as a monotonically decreasing function of w. Hence,
it is possible that no simultaneous solution of equations (A7), (A8), and
(A9) will exist in the ¢ =  plane. It is necessary, then, to obtain




another expression relating & and w in this plane. The development of such a relationship by
imposing the restriction that & < <1 radian but w remains arbitrary will now be considered.?

With the restriction that & < <1 radian, equation (A2) may be reduced to the form

6cotw+—a-§[l-M251nw(l-6cotu) -——-l—%-=o (A11)
V sin w O

where M is again considered constant. Near the surface of the cone, the above expression reduces
to

8—5 + 83 cot w+ o0 =0
dw
which has the solution
O =0 cot w + k csec w (A12)

Combining equations (All) and (Al2) and integrating the resulting expression yields (to the order
of accuracy of this analysis)

ol (4 +20 - 02)MZsin®sc - (5inZ60 + o) ]

1+
MZsinZs, (¢ - 02) - 20
c
R oM (o + 1) (sinzﬁc - sin®w) B — —
1+ = B o 2~/(1+ Msin 8c)° +4M sin“dc
5 1+J(1+ MPsin®s,) + lMBsin, - oMsin’s,
50 14 M2 (o + 1) (8in®8e - sin®w)
1 ‘J(l+ M25in28.)Z + IM2sin®s, - oM2sinS,
o(o +sin®s,)
20 -M?sin®3 (4 - o®)
2

[2 -sin2w(1l + 0 cse2B8e) ]

(2 -(0+sin®8.) ] {:ig 6‘” [1+(2+0)M®sin®8c - (1 + 0)MZsinZw] —Mesinzsc}

(A13)

1The method of development is similar to that presented in reference 1.
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where M 1is again chosen as the Mach number just downstream of the shock.
Hence, conditions at the shock can be determined by the iteration pro-
cedure mentioned earlier except that now equation (A13) is used in place
of equation (A7). Although the former equation may be employed to deter-
mine the shock angle at © = O as well as at @ = n for slender bodies,
it is suggested that equation (A7) be used to determine flow conditions
on the windward side of the body and equation (Al3) for flow conditions
on the leeward side of the body only when equation (A7) cannot be solved
simultaneously with equations (A8) and (A9). If the shock angles in the
plane of symmetry, are known, the variation of & with w is known from
equation (A7). For the case where this equation does not apply in the
plane ¢ = n, this variation is given by equation {ALS )

The determination of the small variations in the local velocity in
the plane of symmetry is identical to that presented in reference 1 for
the case of (w - 8) < <1 radian. Hence, the expression for the velocity
may be written

50'68
ws—as
N cos(wg - 8g) i
Vs [(Sc - 8) (wg - as)}
cos
Sel 0

If the velocity is known, the Mach number may, of course, be deter-
mined from the relation
2

l_

[( el

and the pressure coefficient may be obtained with the aid of the expres-

sion
P=—-—-22<E§-—P—-l> (416)
7Mo pO pS
where
2 e
Py _ 2Mo sin“(wg + ) - (7 - 1)
B y + 1
and
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APPENDIX B
DETERMINATION OF FLOW IN A MERIDIAN PLANE

Flow about a lifting body of revolution may be calculated in any
meridian plane by the generalized shock-expansion method in much the same
manner as the procedure employed in reference L4 for flow about airfoils.
However, the application of the method is somewhat more complicated for
the case of a body of revolution since now the influence of the conical
flow in the region of the vertex must be considered.

The determination of axially symmetric flow in the region of the
vertex of a body of revolution (K > 1) was described in reference 16.
Expressions were developed which yield the shock-wave curvature as well
as flow conditions along a line a short distance downstream of the vertex.
An analysis entirely analogous to that in reference 16 was carried through
for the 1lifting body and it was found that more general expressions can be
obtained which take into account the effects of angle of attack. Thus,
it can be shown that the expression for the ratio of the shock-wave cur-
vature to body curvature near the vertex is (consistent with the assump-
tions of the present paper)

Ks 29MoZsin2[wg +acos @+1 cot wgsin®p)] - (¥ -1)

1
- 1 - tan(wg -8y)cot By |2V
Ky MoZsin®ysin 2[ws +a(cos @+n cot wgsin?p) ] [ faliy N]

where (Bl)

wg = (wg) + n(l - cos @)

P=0

The function  1is defined by the expression

i ( vSullsNaQ[l‘M‘?(”

and is evaluated at the surface outside the vortical layer by means of

the previously developed conical-flow expressions. Similarly, expressions
for flow conditions along a line normal to the axis of the body a short
distance downstream of the vertex may be obtained. For example, the
variation of flow inclination, 8, along this line is given by

2

¥ sin Bpcos By ¥ sin dpcos dp Yy -Ya
§ 25) - o (v -ya) +| 85 -84+ 7 (vg -¥a) ¥p -4

(B2)
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where A and B are points on the line corresponding to the surface and
the shock, respectively. The relations for the static pressure and total
pressure remain unchanged and may be written (in the notation of the
present paper)

[27pKNcos(B + 6{]
e sin B sin 28 A(y " ya)

! 2ypKycos(B + 5)] < yé;>2
B Thp [ sin B sin 2P A(yB ya) Y8 - ¥ (33)

and

OH
= Kgcos d

= HB ck _—_—sin(w = 5) B(y - yB) S
OH
=— Kgcos B
dw S <y - ¥B
Hin = iHp il - oF
i B sin(w - 8) e B> G

respectively. It should be noticed that expressions (Bl) and (B2) reduce
identically to those given in reference 16 for axially symmetric flow.

Knowing the flow conditions in any meridian plane in the region of
the vertex, it is now a relatively simple matter to construct the entire
flow field downstream of the vertex., To illustrate, consider the sketch
(flow in a meridian plane ¢ = constant):

4

MacHRo08 “i”‘7 Streamlines
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With the oblique-shock-wave, conical-flow, and expansion equations, all
fluid properties at points M, A', A, C, and so forth, on the body surface
may be calculated in the manner described previously in the present paper.
Hence, flow conditions along the line AB may be determined from expres-
sions (Bl) through (BY). It will be recalled that the basic condition
employed in constructing flow fields about airfoils by the generalized
shock-expansion method is that the pressure is constant along Mach lines
emanating from the surface. 1In the case of flow about bodies of revolu-
tion, this condition must be relaxed to account for the variation in pres-
sure due to the influence of the conical flow in the region of the vertex.
This may be accomplished in the following manner. The Mach line A'B is
constructed from the known conditions in the region MAB shown in the
sketch. The net pressure change along this Mach line (i.e., Pga pA')

is thus determined. This pressure difference is then assumed to represent
the net pressure change between the body surface and the shock along each
Mach line emanating from the surface downstream of the vertex. The flow
field is then constructed using this criterion in conjunction with the
isentropic expansion relations for flow along streamlines. Once the
shapes of the streamlines are calculated, the fluid properties along these
lines are, of course, determined in the same manner as those along the
surface.
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APPENDIX C

FLOW AT THE SURFACE OF A SLENDER BODY TRAVELING AT HIGH

SUPERSONIC AIRSPEEDS AND AT SMALL ANGLES OF ATTACK

If a slender body (i.e., a body on the surface of which the slopes
are everywhere small compared to 1) is traveling at free-stream Mach
numbers very large compared to 1 (again, of course, K > 1) and at angles
of attack very small compared to 1, the local Mach numbers will likewise
be large compared to 1. It follows, then, that the inclination of the
nose shock wave will be small and, consequently, that w«w will always be
small. In this case, the relation between & and w at the vertex (in
the plane © = 0) is relatively simple and may be obtained by integrating
the expression (see egs. (A4) and (A1l))

oy T hl.
ow W w2
which yields
2
B €W Oy
Loy SaN ey S il I
\ il e Bt (c1)

Combining this expression with equation (Al), the relation

2 )
v RN %(az—sszheal\](-t—s)
L. (w—s> - (c2)

defining the velocities in the plane ¢ = O is easily obtained. Hence,
the surface Mach number in this plane at the vertex, My, may (to the
order of accuracy of this analysis) be related to Mg by combining
equation (Al5) with equation {C2) to yield

r -1 B o
My = MgZ{1 + (MSSN)Z[l i 111@1:) § <§%> e 5%(% § >} e

Now the oblique shock-wave relations for flow of the type under
consideration reduce to (at ¢ = 0)

1
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Mg™ =

and

MO ( ws+CL)

cOoSs

2 7t
3<¥o@+ 5

and

= cac

30
2 4 2
2(7 + 1) M (wg + @) (ch)
[2Mo2(ws + @) = (7 = D17 - )Mo= (wg + )2 + 2]
Mo®(ws + @)% - ZEL MoP(us + @) (Bg + o) - 1 =0 (c5)
Ps 2y .2 I Nk
BE kT Mo (ws + a)” - T (c6)
Combining equations (6), (Cl), and (C5) results in
2 7+1 < 7+ 2
= 3 <#Oa&—§—Mon> +3[;+—§}MO (6N+a)(8N-n)J
5 3
2009 Moo= Mon>[1+%Mo (Sy+ar) (B~ n)J (vlomZ-E—MOD
S
2
2 (#OG+Z%lMOn> +3[l+z%lMo2(6N+a)(6N-n)]
1}@ (c7)
SRR

There remains now the determination of 1, which defines the position
of the conical shock, in order to determine the shock-wave angle in the
To this end, the assumption of a circular conical shock is
again employed, but now it is deemed sufficiently accurate for the purposes
of this analysis to assume a linear variation of N with a; namely

plane O =
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Now from equation (A10) there results

dn 1 /dwg

= e— —_—

doe 2\ da

d.u)s
q):ﬂ i dCL

e (c9)

Consider for the moment, flow in the plane ¢ = n. The angle of attack
o and, therefore, € are both negative in this plane. Hence, equa-
tion (C5) may be written

2 )2 Yy + 1

Mo (wg - @ Moz(ws -a)(8s - a) -1 =0

and the conical-flow expression (see eq. (Cl)) becomes (at w = wg)

Bgg = 5= + €(wg - BN)

Differentiating these expressions with respect to o and combining the
resulting expressions yields in the limit as o = O

2ug égs - %) 2 ; = [gi (wg - By) - (ws + Ss)] =0 (c10) :

Proceding in the seme manner for flow in the plane ¢ = O (see egs. (Cl)
and (C5)) there is obtained

o) i
2wg ‘%i N i) - ; [" %% (wg - 8w) + (ws + 55)] =0 (c11)

Combining equations (6), (C9), (C10), and (Cll) results in

7 + 8
d <§N S\
dn i b g 8/
do a=0 e )i 1 Ay = 8N>
3 Wg k.

At o =0 (see ref. 1)
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Sg MoB

N ] + 1
1 + "7—__ (Mo&N 2

and (c12)
Y PRk 2
Mowg = 1+ 5 (MOSN)
J
Hence,
7 i LB B §§
I &y
§ = (c13)

E0D

where B8g/8y is a function of Mo®yy only and, of course, is given by
equations (C12). The shock-wave angle at ® = O can now be determined for
given values of My3y and Mpoa by means of equations (C7) and (C13).
Hence, the shock angle around the entire conical shock front may easily
be determined with the aid of the expression

ws = (wg) + (1 - cos o) (c1k)

@=0

Surface conditions around the body at the vertex may now be deter-
mined after the manner described in the more general analysis of flow
about cones. For example, consistent with the assumptions basic to the
present analysis, equations (17) and (18) reduce to

We

Ws s
—— =— ¢ sin @ (€15)
(MW= B

and

fVﬁ§§Z; =1 + ewg(l - cos @) (C16)

respectively. Hence, the surface velocity external to the vortical layer
at the vertex may be written
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2

[L] =1 + 2ewg(1l - cos @) + <f—w£> sin%p (c17)
( oN

VN) q) =0

and the corresponding Mach number, Mg, may be related to (MN)m=o by
combining equation (19) with this expression to yield

2

(MN) = = 2
=0 e e 2 Ws & Ws) . o
————Me e (MNe)cpzo[e e (1 - cos @) + <_8N> sin cp} (c18)

Consistent with the assumptions basic to the present analysis, the Mach
number directly on the surface at the vertex (i.e., inside the vortical
layer) may be obtained from the relation (see eq. (20))

cFe
= 7CV v
<¥N/ e (C19)
where
Ec-Ee
Y Cv

e

1
2742 (g + Wm0 - (7-1) |7 | MoP(ws + o cos ) [(7 = 1)M2(us + a)geo +2)
2yMo2 (ws + o cos @) - (7 - 1) Mo (wg + a);=0[(7 - 1)MoZ (wg + @ cos @) 2+ 2]

(c20)
Equations (C3), (C18), and (Cl9) may now be combined to yield
,opfe T wewTae @) ()2 G-k
My Ec-Ee
( (g >{l 7— (MN€) [2 — (1-cos Q) <—> sin q):l}
(CQl)

The expressions just derived provide the Mach number on the surface
at the vertex. If My is known, the Mach number anywhere on the surface
of the body may be obtained by means of the expression (see ref. 1)

M
N
M = (ce2)

Ll 5 108
i 5— (Mydy)( 1 3
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Now the pressure coefficient is given by the expression

o O el (o2

The pressure rise across the shock is given by equation (C6) and the ratio
of the pressure anywhere on the surface to the pressure at the shock at

@ = O can be expressed (to the order of accuracy of this analysis) in

the form

2y
[<Ms>®=o] 71
= M

®=0

(Ps)

This expression may be combined with equation (C22), and equation (C23)
can be written

2y

(Mg 7ol
. e =0 y -1 8 % )
o (;O e, —— (M8 pes ( e 1} (cak)

yielding the pressure coefficient at any point on the surface of the body.
The initial normal-force-curve slope for slender bodies of revolution

may easily be determined in the following manner. To the order of accuracy
of this analysis, equation (36) may be reduced to the form

BRLOLEBYE 16 ()

Consistent with the assumptions basic to the present analysis, the fol-
lowing relations may be obtained; namely,

dCN
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and

2y
o [EaYT
T\ M

These expressions may be combined with equation (C22) and (C25) to yield

?_ii
oo R [T - 152 v - ] @) 10

There remains now the determination of the initial normal-force-curve
slope for a cone tangent to the body at the vertex. This slope may be
expressed as

dCN

dCy
do

2 T a N .
TCN WMOZSN[ da GTQ S, et

Now the ratio of the static pressure anywhere on the surface of a lifting
cone (o < < 1) to the free-stream static pressure may be expressed in the

form
Py /1 - Ve 71<>
—= ce8
B4 (1-v> Hy (gad) 2

where Ve is the local velocity externally adjacent to the vortical layer
and

7

ool

H [ (y + 1)MoZ(wg + o cos 9)2 ]7‘1[27}402(&,5 +a cos @) - (y- 1)] 7-1
Ho [ (7 -1)M2(wg +a cos @)% + 2 7+ 1

(c29)

Differentiating equation (C28) with respect to o« and retaining only
terms which are functions of ¢, we obtain in the limit as o —> 0

4
<90> . P de £ cosp <__> (MoByy) .
Py MoZwg ¢ L

(Mows) [l +L-2-l (MoByy) 2} {l +7(Modyy) 2]

(C30)

§
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From equations (6) and (C13) there may be obtained

0]
: lTZ;—:L(l 51\>

Combining this expression with equation (C30) and noting that (see ref. 1)

27

—_—

Mg\
G%) = [1 + y(MBy)2] M—;)
a=0

equation (C27) may finally be written

2oy ( >7 1{ 12520000y )H[“_(MOSN Ml”(MOSN) KM) <5N/ (MoP) }

TCN 2[7+5 8y [ y=-1 2
M~O M
( O N) [7+ l SS ]] —1 + P> ( OSN)

(C31)

where My, Mg, and 85 may be determined from reference 1 or by setting
= 0 in the pertinent expressions previously derived in the present
paper.
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Figure I.— Schematic diagram of polar coordinate system for determining supersonic flow
around a lifting cone,
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