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By Raymond C. Savin 

SUMMARY 

The flow about a body of revolution at high supersonic airspeeds is 
investigated analytically with the aid of the generalized shock- expansion 
method. With the assumption that flow at the vertex is conical , approxi ­
mate solutions for the flow field are obtained for values of the hyper­
sonic similarity parameter (i . e ., the ratio of the free-stream Mach number 
to the fineness ratio of the body) greater than about 1 and for angles of 
attack less than the semivertex angle of the body. Surface streamlines 
are approximated by meridian lines and the flow field is cal culated 
in meridian planes. Simple explicit expressions are obtained for the 
surface Mach numbers and pressures in the special case of slender bodies . 

In the case of lifting cones, algebraic solutions defining the entire 
flow field are obtained when the hypersonic similarity parameter has a 
value of about 1.4 or greater. 

Surface pressures and shock-wave shapes were obtained experimentally 
at Mach numbers from 3.00 to 5 . 05 and angl es of attack up to 150 for two 
ogives having fineness ratios of 3 and 5 and for two cones having the 
same vertex angles as the ogives. The predictions of the methods of this 
paper are found to be in good agreement with experiment at values of the 
hypersonic similarity parameter in the neighborhood of 1 and greater, 
when the ratio of angle of attack to semivertex angle i s about one-haJf, 
or less . For increasing values of this ratiO, agr eement deteriorates but 
may still be considered f air for values slightly less than 1. 

INTRODUCTION 

It was suggested in reference 1 that flow over the surface of a non­
lifting body of revolution could be treated as two-dimensional in type 
downstream of the vertex when the hypersonic similarity parameter (i.e . , 
the ratio of the free - stream Mach number to the fineness ratio of the body) 
was greater than about 1 . This point was substantiated by comparing predi c ­
tions of two -dimensional (Prandtl -Meyer) expansion theory with those of 



2 NACA TN 331+9 

characteristics theor y f or the Mach numb ers and pressures on the surfaces 
of ogi ves . The two - d i mens i onal theory h as the advantage, of cours e , of 
be ing relatively simple by comparison t o ch ar acteris tics theory and is 
about as simpl e as the r ecently pr opos ed hypers onic small disturbance 
theor y of Van Dyke (ref . 2) . 

I t was a l so s ugge sted in r efer ence 1 that the two - dimensional approach 
might be extended to the calculation of flow at the s urface of slightly 
inclined bodies of r evolution. This thought led to a s tudy (ref . 3) of 
three - dimensional hypers onic f l ows which r eveal ed that such flows may 
often appear locall y two - dimensiona l . I t was concluded that at hypersonic 
speeds the entire flow field about a three -dimensional body may, under 
certa in conditions , be calculated with a shock- expans i on method similar 
to that employed for calculating two - dimens iona l flow about a irfoils 
(ref . 4). The conditions of when and how t his gener ali zed sho ck- expansion 
method can b e appli ed to cal culate three-dimensional flows wer e determined 
in r eference 3. 

The princ i pal objective of the present paper i s to apply the general ­
ized shock- expansion method to obtain expressions yielding the Mach number 
and pressure distributions throughout the entire flow field about an 
inclined body of r evolution. In or der to apply the shock- expansion method, 
it is ne ces sary to know initia l conditions at the vertex of a lifting 
body . These conditions can b e t aken to be the same as those about a cone 
tangent to the body a t the vertex . One objective of thi s paper , then, i s 
to deve l op a conica l flow theory for lifting cones over the r ange of free­
stream Mach numbers and apex angles not t r eated in the M.I. T. tables 
(ref. 5) . 

a 

cp 

Cv 

d 

E 

H 

K 

NOTATION 

local speed of sound , f t/sec 

normal - for ce coeffi cient , 
normal force 

specific heat at constant pressure , ft - lb/ s lug ~ 

specifi c h eat at constant volume, ft -lb/slug oR 

maximum diameter of body of r evolution , in . 

entropy , ft - lb/ s lug ~ 

total pr essure, lb/s q in . 

d 
hyrer soni c s imilarity parameter, Mo T 

characteristic body l ength (measured from vertex to most f or ­
ward po i nt of maximum diameter), in . 

- I 
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M 

p 

q 

p 

R 

u 

v 

w 

v 

" V 

x 

r 

5 

€ 

p 

cp 

w 

Mach number (ratio of l ocal velocity to local speed of sound) 

static pressure , lb/sq in. 

dynamic pressure, lb/sq in. 

p - Po 
pressure coefficient , 

qo 

gas constant, ft -lb/slug oR 

velocity component parallel to r ay pasqing through vertex of 
cone , ft/sec 

velocity component normal t o u in a meridian plane, ft/sec 

ve locity component normal to a meridian plane , ft/sec 

r esultant velocity, Ju2 + v2 + w2 , f t/ sec 

maximum velocity obtainabl e by expanding to zero temperature , 
ft/sec 

distance a l ong ax i s of body measured from vertex, in. 

di stance normal to axis of body, in. 

angle of a ttack , r adi ans unless otherwise specified 

Mach angle , arc s in ~ , r adians unless otherwise specified 

r at i o of specific heats, ~ 
Cv 

angl e of flow inclination in meridian pl ane measured with respect 
to body axi s , radians unless otherwise specified 

angl e of inclination of axis of conical shock with respect to 
fr ee - stream direction, radians unless otherwis e specified 

angle of inclinat i on of axis of conical shock with respect to 
axis of body, radians unless otherwi se specified 

mass density, slugs/cu ft 

angle of merdian plane with r espect to plane of symmetry , 
radians unless otherwise specified (see fig. 1) 

angle between axis of cQne and r ay passing through ver tex of cone , 
r adians unless otherwise specified 
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Subscripts 

o free - stream conditions 

A,B , } conditions at different points in the flow field 
C , D ... 

c 

e 

N 

s 

conditions on the surface of a cone 

conditions at the external surface of the vortical layer 

conditions on the surface at the vertex of a body 

conditions immediately behind the shock wave at the vertex of a 
body 

THEORY 

This investigation is concerned with the theoretical and experimental 
characteristics of the flow about bodies of revolution traveling at high 
supersoni c air speeds and at small angles of attack . It is assumed through ­
out the analysis that the disturbed f low is everywhere supersonic and, 
hence , the body has a pointed nose or vertex . With these restrictions 
on the free - stream Mach number , angle of attack, and body shape , the bow 
shock wave will lie close to the surface of the body. The procedure for 
determining flow conditions in such flow fields is analogous to that 
employed in r eference 1 for the case of axially symmetric flow fields; 
namel y , the flow field is studied in two parts - flow at the vertex and 
flow downstream of the vertex . The combined results of these two phases 
of the investigation will then be applied to the determination of the 
whole flow field and , in particular, to the determination of flow prop ­
erties on the body surface and the r esulting shock-wave shape . 

Flow at the Vertex of a Lifting Body 

It follows from the assumptions basic to this anal ysis that the flow 
at the vertex will be the same as for a cone tangent to the body at the 
vertex and i mmersed in the same f r ee stream . All derivatives with respect 
to radial distance vanish for these conditions , and the equations of motion 
and continuity in spherical polar coordinates become (a schematic diagram 
of the polar coordinate system is shown in fig . 1) 
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v dU + _ w_ dU _ v2 _ w2 

dw sin w dCP 
o 

dV w dV 1 dP 2 v - + -- - + - - + uv - w cot w = 0 
dW s in w dCP P dW 

dW w dW 1 dp uw + vw cot w = 0 v - + - + -+ 
W s in w dcp P s in W dCP 

and 

2pu s in s in W dP + sin 
dV w dP + W + v P w-+ VP cos W + 

dW dw dCP 

5 

( la) 

( lb) 

( lc) 

P dW = 0 
dCP 

( 2) 

respectively . Since the total energy in the flow is constant, the fol ­
lowing r elati ons must be satisfied: 

Y (1 dP P dP 
Y - 1 \p dCP - p2 dcp 

Ow 
w -

Ow/ 

The entropy at any point in the flow may be expressed as 

E - E= _ R_ 
a -y - 1 

ln [x.. (Po YJ 
Po P ) 

Equations (1) , (2), and ( 3) together with the relation 

( 4) 

may be combined (by eliminating the pressure and density terms) to obtain 
the gener a l equation of motion 
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y - 1 (V2 _ V2 ) t;u + v cot w + dv + __ 1_ dW) _ uv2 - uw2 _ 
2 \' dw sin w dCP 

ov v 2 
OW 

w2 

sin w 
ow 
ocp 

vw 

sin w 
ov 
ocp 

whi ch , when combined with the appropriate shock- wave r e l ations , define s 
the flow about a circular cone immersed at an angle of attack in a super­
soni c str eam . 

Conditions a t the shock wave .- In order to obtain algebr aic sol utions 
for flow at the vertex , it i s necessar y to make some simplifying assump ­
tions r egarding the flow fi e ld. To thi s end, the conical shock i s assumed 
to be circular but inclined at an angle € to the fr ee stream. l Then, 
the ·angular difference between the cone axis and the shock axi s i s 

a, - € ( 6) 

Now, the shock-wave angle measured from the cone axis , ws, is referred 
to the fr ee - stream direction by Ws + a, cos cp o The shock-wave angle 
measured from the shor.k axis, (ws)cp=o + ~, is r eferred to the fre e - stream 
direction by (ws) cp=o + ~ + € cos cp o Hence , 

Ws + a, cos cp 

and by virtue of expression (6) the r esulting equat i on for the shock 
angle may be written2 

wher e (ws)cp =o is the shock angl e in the plane of symmetry on the windward 

lExperimental r esult s indicate (as will be shown l a t er) that for small 
angles of attack the conical shock does, in fact, remain nearly circular . 
Other investigators (notably Stone , see , e . g ., r ef . 6) have made a simil ar 
assumption . I t should be noted , however, that the additiona l assumption 
commonly employed , namel y , that the conical - shock apex angle is the same 
as i n the nonyaw case , is not made here . 

2I t should be noted that ail angles are measured with r espect to the 
body axis . The procedure of developing all pertinent expre ssions in the 
body coordinat e system will b e employed throughout the analysis . 

• 
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side of the cone (see fig . 1) . Similarly, the meridian angl e ~s, measured 
with r espect to the shock axis , may be r e lated to the meridian angle ~ , 

measured with r espect to the cone axis , by 

sin <l's sin <p(l - ~ cot w cos <p) 

and 

cos cp s = cos cp + 11 cot w s in2cp 

The shape of the conical shock havi ng been spe cified , the velocity com­
ponents at the shock may be obta ined from the oblique - shock-wave relations 

( 8) 

1 _ (~s 2 _ (~s )2 
= - ----- ---------------~------~--------------

1 - 1 (10) 
" V I + 1 Vo 

A sin[ws + a (co s ~ + 11 cot wssin2~)] 
V 

If the shock angles in the plane of symmetry were known, flow conditions 
around the entire shock could be determined since the shock-wave angle 
in any pl ane could be det ermined from equation (7). In order to determine 
these shock- wave angl es , i t is necessary to determine the crossflow 
component of velocity , w, throughout the flow field . Attention is there ­
for e turned in this direction . 

Determination of cr ossfl ow component of velocity. - Recalling the 
basic assumption to this analysis , namely , that flow fields of the type 
under consideration are char acteri zed by the bow shock lying close to 
the surface of the body (i . e ., w - 5 < < 1) , it i s r easoned that the 
variation of w with w should be small and it is ass umed that 

( 11) 

Now W2(~) is given by equation (9) . There r emains , then, the determina­
tion of Wl (W) in any meridian pl ane . To this end, consider equation (la) . 
Differentiating this equation t wice with r espect to cp and once with 
r espect to w yields , in the plane of symmetry, 
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( 12) 

Now, if we let 

F( w) 

equation (12) becomes, upon integration with respect to w, 

Consider now the integral term in the above equation . At the surface of 
the body (v == 0) 

F(w) = 0 

Since it seems r easonable that F(w) will be a monotonic function between 
the surface and the shock wave, it is assumed that this function will 
attain i ts maximum val ue at the shock and may be written (from eqs . (8), 
(9), (10), and (13)) 

(VoE)MoE J 
M--o-s-i -n-(-w-

s
--+--a-) -

r - 1 11 
r+1l 

+ _______ 1 _ ____ ] (e _ 2aT) cot ws)Vocos( ws r - 1 2 2 
~-2-- Mo s i n (ws + a) 

+ a) 

Now , accor ding to t he above 
Mosin( ws + a) is a minimum . 
waves , the maximum value of 
Mos in( ws + a ) equa l to 1 i n 
there resul ts 

expr ess i on , F(w) is a maximum when 
Si nce Mosin(ws + a) > 1 for attached shock 
F(w) can be determined by setting 

t he above express i on . Hence, since MOE - 1 , 

• 
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Hence, 

/F( w) / < E 

and it follows that 

J
ws 

F(w)dw dw 

w 

Therefore the integral term in equation (14) is, at most , second order 
and can be neglected in this analysis. Equation (14) now can be written 

Hence , 

s in ws 
s in w 

sin Ws 
sin w 

and it appears that expr ess ion (11) is a logical assumption since the 
variation of w with w i s , in f act , small. Combinati on of the above 
express ion with equations (9) and (11) yields, then, 

sin Ws 
w = VOE sin w sin ~( l - ~ cot ws cos ~) 

defining the crossflow component of the velocity anywhere in the flow 
field relat ive to the cone axis . 

Having determined an expression for w throughout the flow field , 
one can now obtain a solution to the flow in the plane of symmetry in a 
manner analogous to that presented in reference 1 for the case of axially 
symmetric coni cal flows. Since the cal culation of the flow in this plane 
reqUires simultaneous solutions of the conical flow equations and the 
oblique shock-wave relations, the procedure is somewhat involved and, 
hence, is given in Appendix A. After (ws)~=o and E have been determined 
from Appendix A, conditions around the entire shock front can be deter­
mined from equations (6) through (10). Determination of flow conditions 
around the cone surface will now be considered. 

Flow conditions on the s urface.- It has been shown by Ferri in refer­
ence 7 that to the first order in ~ the entropy remains constant in a 
meridian plane (having the value that exists at the shock in that plane) 
until a vortical layer i s r eached at the surface of the body across which 
a variation of entropy occurs. Since the entropy on the surface is 
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constant , it must have the same value that exists in the plane ~ = o. 
Now the thickness of the vortical layer being of the order of a 2 , the 
pressure remains constant through the layer to the first order of a 
and the component of velocity normal to the surface can be considered 
zero on the external side of the layer . Hence , across this vortical 
layer 

Pc = Pe 

and 

Ec = (E)~ =o 

where the subscripts c and e refer to quantities inside and outside the 
l ayer , respectively . Consider now an expression relating u and w on 
the surface of the cone which may be obtained from equation (la)j namely, 

dU 
dcp 

= w sin 0c 

or 

( 16) 

Since the thickness of the vortical l ayer is proportional to a 2 , the 
normal component of the velocity is zero through the layer and the above 
expression holds on either side of the vortical layer. An express ion for 
the velocity and , hence, the Mach number externally adjacent to the vorti­
cal layer may then be eas ily determined as follows . The expression for 
the crossflow at the vortical layer may be written in the form (from 
eq . (15)) 

sin Ws 
sin ~(l - ~ cot wscos ~) 

sin 0c 

Substituting this expression in equation (16) yields, upon integration, 

1 + Vo € sin WS(l - cos ~ - ~ cot ws Sin2ql) 
(V c)~=o 

( 18 ) 

• 
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The Mach number at the external side of the vortical l ayer , Me , may be 
determined from the r e l ation 

where, of course , 

ue
2 

+ we2 

(V c):""o 

The velocity and the Mach number in the ~ "" 0 pl ane ar e given by (see 
Appendix A) 

and 

respect i vely, where 

11 



2 
(Ms) cp =o 

(I + 1)2Mo4s i n2[( ws)cp=o + ~J -4 { Mo2sin
2
[( ws )cp=o + ~J -l} {IMo

2
sin

2
[( ws )cp=o + ~J + l} 

{ 21Mo
2sin2[(ws )cp=o + ~J -(I - l) } {(l - 1 )Mo

2sin2[(Ws )cp=o + ~J + 2} 

I f one employs the condition that the pressure i s constant across the vor tica l layer , an 
express i on defining the Mach number directly on the surface of the body, Mc , in t erms of the Mach 
number at the vortical l ayer, may be obtained; namely , 

M 2 _ ( 2 ) Ee -Ec c _ --- + 2 --­Y _ 1 Me e ycv 2 
~ 

where (since Ec = (E)cp =o) 

e 

Ee -Ec 
l Cv Mo2sin2[ (ws)cp=o + ~J { (l - 1)Mo2sin

2
[ws + ~(cos cp + ~ cot Ws s in2cp) ] 

Mo2sin2[ws + ~(cos cp + ~ · cot ws sin2cp ) ] { ( y - 1) Mo2sin2[( ws)cp=o + ~J +2} 

2lMo2sin2 [ws + ~( cos cp + ~ cot ws sin2cp)] - (I - 1) 

21Mo
2
sin

2
[(ws )cp =o + ~] - (y - 1) 

1 

Y 

( 20 ) 

( 21) 

Since the flow is isentropic in the cp = 0 plane (downstream of the shock wave) and ar ound the 
surface of the body inside the vortical l ayer , the pressure coefficient anywher e on the surface 
may , of course, be obt a ined by the expr ess ion 

• 

I-' 
f\) 

s; 
(") 

~ 

~ 
w 
w 
$ 



• 

NACA TN 3349 13 

( 22) 

wh ere 

(Ps)P"O ~ 27Mo2sin2[(ws)~"O + a] - (7 - 1) 

Po Y + 1 

and M2 i s gi ven by equati on ( 20) . 

Fl ow conditions off the surface .- Flow conditions in the plane of 
symmetry, on the surf ace of the cone, and at the conical shock having 
been determi ned , the flow throughout the remainder of the flow field may 
now be cal culated. Si nce onl y h i gh Mach number flows are considered in 
t his analysis , the variation of the magnitude of the resultant velocity 
in a meridian plane wi ll be small . Hence, the variation of u and v will 
be small and may be represented by a power series in (w - Bc) where the 
coeffic i ents are determined by the requirements 

u ue at w Bc 

u = Us at w = Ws 

dU 
= (~~e at w Bc = 

dw 

and 

v 0 at w Bc 

v = vs at w = Ws 

cv 
= (~;)e at 

dW 
w = °c 
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Thus, 

and 

(
Ws - W ) + 
Ws - Oc (

w - Oc )2 
Vs Ws - Oc ( 24) 

where ws, us, vs, and Ue are given by equations (7), (8) , (10), and 
(18), r espectively. There remains now the determination of (dU/ d W)e and 
(dV/ d W) e . To this end , consider equation (lb) . Just outside the vortical 
layer this equation reduces t o 

It will be r ecalled that the entropy was assumed constant between the 
shock and the vort i cal layer in each meridian plane . Now Euler ' s equa­
tion for compressible flow along a stream tube may be written 
(cp = constant) 

! ~ = -v dV 
P dw dW 

Combination of this expr es sion with equation (25) yields 

from which may be obtained (noting that at the surface V2 

where we i s given by equation (17) and 

( 26) 

• 
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Now from equation (5) there results (setting v = 0) 

(28) 

where Me is known from equation (19) and from equation (15) 

~~) = VOE 
e 

The components of the local velocity anywhere in the flow field external 
to the vortical layer are now known from equations (15), (23), and (24). 
Hence, the magnitude and direction of the resultant velocity and, con­
sequently, the Mach number may easily be determined. If the Mach number 
is known, the local pressure (in coefficient form) may be obtained any­
where in the flow field with the aid of the expression 

where 

21Mo2sin2 [ws + a(cos ~ + ~ cot wssin2~)] - (1 - 1) 

1 + 1 

and, of course, 

~ 
1 - 1 2)-L ...E.. = 1 + 2 Ms 1- J. 

ps 1 - 1 2 
1 + 2 M 

The Mach number and pressure distribution (as well as the orientation of 
the conical shock) are now known throughout the flow field around a lift­
ing circular cone. 

The r ange of appl icability of the results of this analysis is con­
sidered to be the same as that of the nonlifting cone solutions presented 
in reference 1. This results from the fact that when a = 0, equation (A7) 
in Appendix A reduces identically to the equation defining the deflection 
angle in reference 1 . As was pointed out in this reference , when 
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Ms (ws - 0 c) > 1/2 an imaginar y value of Os i s obtained . If ~ > 0 , 
equat i on (A7) yi elds a r eal va l ue of os , (for Ms( ws - oc) > 1/2) , how­
ever, it would not be expected that the range of appli cability of this 
equation ( in ter ms of Mo and 0c) would be incr eased f or f ini te ~ . 
Figure 2 shows the boundary line (given by Ms(ws - 0 c) = 1/2 for ~ = ° 
above wh i ch the pr esent conical f l ow sol utions ar e applicabl e . The dashed 
line repr esents t he boundary below which the r esults of Stone ' s second­
order sol uti on (ref . 5) ar e ava i labl e . 

The flow ar ound cir cular cones traveling at smal l angles of attack 
and at h i gh s uper s oni c airspeeds can be calculated by means of the fore ­
gOing algebr a i c expr ess i ons . As was pointed out pr evi ous l y , these expres ­
sions can be empl oyed to det er mi ne flui d properties at the vertices of 
pointed bodi es of r evolut i on other than cones. Investigation of flow 
downstream of the ver tices of s uch bodies is now undertaken . 

Flow Downstream of the Vertex 

I n this study we expl oi t t h e finding of reference 3 that many three ­
dimensional hyper sonic f lows may be t r eated by a gener alized shock­
expansion method whi ch i s analogous to that employed i n r efer ence 4 for 
two - dimens i onal flows . Specifically , this treatment is permi ssible when 
disturbances associated with the di ver gence of streamlines i n planes 
tangent to a surface can be considered negligible compared to those 
associated with the curvature of s treaml i nes i n p l anes normal to the sur ­
face . For the case of noni ncl ined bodies of revol ution which are curved 
in the stream directi on , this r equir ement is sat i sfied when the hyper ­
soni c similari ty parameter i s greater than about 1 (see ref . 1) . For 
inclined bodies , an addi t ional restr i ction is imposed . This point is per ­
haps best clari fied by considering the problem of calculating flow at the 
surface . 

It f ollows from r ef er ence 3 that when the generali zed shock- expansion 
method applies i n the r egi on downstr eam of the vertex , surface streamli nes 
can be approxi mated by geodesic lines . The onl y geodesics on the surface 
of a body of r evoluti on wh ich , like str eamlines , do not i ntersect each 
other are the meridian lines . I n addition , the meridian lines are the 
only geodesics whi ch , like the str eamlines, pass through the vertex . When 
the shock- expansion method is appl ied, then , surface streamlines are 
approximated by mer idian lines . Stri ctly speaking , however , this can be 
the case only when ~ < < 1. (It should be noted that this is always 
true , independent of ~,for the extr eme windward and leeward streamlines . ) 
Evi dently , then , t h e gener alized shock- expans i on method should be appl i ­
cable to curved bodies of r evolution only at small angles of attack in 
flows char acterized by a value of t he hypersoni c simi larity parameter 
greater than about 1 . 

• 
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The procedure for determi ni ng flow conditions at the surface of a 
l i fting body is entirely analogous to t h at employed in the application 
of t he shock- expansion meth od to the nonlifting body (ref. 1). For 
example , the Mach number on t he s urface at the vertex is obtained with 
the aid of equation (20) . The var i ation of Mach number downstream of 
the ver tex i s then obtained by means of the isentropic expansion r elation 
(see ref . 1) 

. - ~ 1 _ sl' n -~ 1 S l n -- -- + 
MA MB 

where A and B are differ ent po i nts on the same meridian line (or stream­
line) . If the Mach number distribution is known, the pressure distribu­
tion ( i n coeffi ci ent form) on the surface is readily obt ained with the 
aid of equation (22) . It should be noticed that when Mc is employed, 
equation (33) yi elds the Mach number distribution on the body under the 
vortical layer .s This r esul t materially r educes the net labor associated 
with carrying out the calculations t o det ermine the pressure distributions 
around the body downstream of the vertex since the pressure rise across 
the shock need be considered only in the plane ~ = 0 (see eq . (22)). It 

results, t oo , that a r elatively simple expression for ddCNI ,the initial 
a, 0.,=0 

slope of the normal- force - coeffi ci ent curve, can be obtained . The devel ­
opment of this expression f ollows . 

The expression f or the normal - f or ce coefficient on a body of revolu­
tion may be written 

~ r cos ~ dqJ dx 
Po 

(34) 

where d is the diameter of the base and r is t he l ocal radius of the 
body . Di fferentiating express i on (34) with r e spect to a, and empl oying 
the condi tion of constant entr opy on the surface r esults in 

SIt is reasoned that since a vort i cal layer exists around the body 
surface at the vertex, then a vortical layer must exist downstream of 
the vertex as well. 
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f LJn(p) sin 2f3N d ~N) 
PN -s-i -n-2f3-= -da,- '" P-P-o r cos cp d.cp dx 

o 0 

This expression may be rewritten i n terms of the initial normal-force­
curve slope for a cone tangent t o the body at the vertex; namely, 

( 36) 

where the subscript TCN refers to a cone tangent at the vertex. The 
calculations necessary to determi ne the initial normal - force-curve slope 

dCN/ for a body of revolution are relatively simple, since ---d may easily 
a, TeN 

be obtained from Stone 's first - order theory (ref . 6) or from chart 8 in 
reference 8. The Mach number and pressure distribution along the body 
may be obtained by the conical shock- expansion method presented in refer­
ence 1 . 4 Having determined these distributions, one may easily evaluate 
the integral term in equation (36) by numerical integration or by graphical 
methods . 

I n order to determi ne fluid properties in the flow field other than 
on the surface, it is necessary to know flow conditions just outside the 
vortical layer downstream of the vertex. These condit i ons may be deter ­
mined in the same manner as before except that now initial flow condi ­
tions externally adjacent to the vortical layer at the vertex are 
employed. For example, the Mach number at the vertex is determined by 
means of equation (19). Equat ion (33) is then empl oyed, as before, to 
obtain the Mach number distribution downstream of the vertex . When flow 
conditions along this l ayer in a meridian plane have been established, 
fluid 'properti es throughout the plane may be calcul ated after the manner 
descri bed in reference 4. Application of the generalized-shock- expansion 
method for determing t h e flow field in any meridian plane is discussed 
in Appendix B. 

Simplified Expressions for Slender Lifting Bodies 

I n the case of s l ender bodies traveling at very high Mach numbers 
(again a, < < 1) the calcul ations of fluid properties at the surface 
become r elatively simple and , hence, merit special attention . As in the 
case of the nonlifting body, a hypersonic slender -body theory yielding 

4It is cl ear that the shock- expansion method discussed previ ously in 
the pr esent paper may also be us ed since the expressions developed herein 
reduce identically t o thos e of r eferenc e 1 when a, = o. 

• 
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explicit solutions for the Mach number and pressure at any point on the 
surface of the body can be obtained . These solutions may be summarized 
(from Appendix C) as follows. The l ocal Mach number at any point is given 
by the r elation 

M 
y - 1 

1 - ---
2 

where 

2 { Y - 1 
2[ G5N)2 (Ms)~ =o 1 + 2 (MsDN) 1 + In Ws 

and 
2 

(~~)~=o 

Ec - Ee 

{I YCv y - 1 ( ) 2 [2WS e 2 MNE cP=o -E-

2YM02[CWS)cp=O + ~J2 - (y - 1) 

2YM02CwS + ~ cos cp) 2 - (y - 1) 

1 

Y 

M02 (WS + ~ cos cp ) 2{(y - 1)Mo
2

[(Ws )cp =o + ~J2 + 2} 

M0
2[(ws)cp =o + ~J2[( y - 1)Mo

2
(ws + ~ cos cp) 2 + 2J 

Unless otherwi se des ignated , Ws in t h e above expressions is gi ven by 
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and (WS)~=o is determined from equation (C7) in Appendix C. Now 

1 + ~ (1 _ Os) 
4 ON 

where 

. and, of course , 

The pressure coeffi cient at any poi nt on t he surface may be obtained fr om 
the expres sion 

It is interesting to note that equations (37) and (38) predict the ratios 
of local to fr ee - stream Mach number s , and l ocal to free - str eam stati c 
pressures t o be the same ~t corresponding points on r e l ated bodies , pro­
v ided that the flow fi elds about these bodi es ar e related by the same 
respective values of the hypersonic similarity parameters MooN and Moa . 
These predictions S are identical to those of r ef er ence 9 for invisc id 
flow about s l ender three - dimensional shapes . Henc e , these expressions 
readily lend themselves to solutions in terms of MooN and Moa in tab­
Ular form . Calculati ons over a range of MoON from 0 . 6 to 3. 0 and a/ oN 
from 0 t o 1 were carr.i ed out for fl ow at the vertex of a body of revolu­
tion and the r esults of these calculat i ons for the flow parameters 
(Ms)cp =o (Ps/po)~ =o 

MN ' (MoON) 2 ,and (MsON)cp =o are tabulated in table I f or 30
0 

incr ements of cp from 0 0 to 1800
• Thus, for a given MooN and Moa , the 

Mach number on the surface of a body downstr eam of the vertex is readily 
obtained with the aid of these tabulated parameters when used in conjunc­
tion with equat i on (37) . The pr essure coeffi cient anywhere on the surface 
of the body is easily calculated by means of equation (38) . 

SIn the case wher e a = 0 , the expr ess i ons developed in the pr esent 
paper r educe ident i cally to thos e presented in r ef er ence 1. 
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The results from table I may also be used to good advantage in deter­
mining the initial normal-foree - curve slopes for slender bodies of revolu­
tion. For example, from Appendix C there is obtained 

dCNi 
da. a.=o 

where 

deN I 
da. TCN 

....3L 

(~)r-l~+~ (Mo5N) 2J{~+7 (Mo5N)J~+ r(Mo5N)2J~)2 _(~)2(Mo5N)2} 

Hence , the pertinent flow parameters necessary to determine the initial 
slope of the normal - foree -coefficient curve by means of the above expres ­
sions may be obtained from table I for the case of a./cN = O. 

EXPERIMENT 

In order to obtain a check on the predictions of the preceding 
theoretical analysis, the pressures act ing on the surfaces of lifting 
bodies of revolution corresponding t o values of the hypersonic similarity 
parameter K from 0 .60 to 1.68 at Mach numbers from 3. 00 to 5 . 05 were 
determined experimentally. The bodies were tested at angles of attack 
up t o 150

• A brief description of these tests follows. 

Test Apparatus 

Tests were conducted in the Ames 10- by 14-inch supersonic wind 
tunnel. A detailed description of the wind tunnel and auxiliary equip­
ment may be f ound in r eference 10. The pressures acting on the model sur­
faces were measured with a mercury U-tube manometer or by means of McCleod 
gages when the pressures were low enough to be recorded on the latter . 

Pressure-distribution models were mounted on a 00 model support and 
on 50 , 100 , and 150 bent supports. The test model~ were two tangent ogives 

- ----------''-----
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havi ng fineness ratios 3 and 5 and two cones h aving t he same vertex angles 
as the ogives . The dimensions of these models and l ocation of the pres­
sure orifices are shown in figure 3 . 

Tests and Procedure 

Pressures on the model surfaces were measured at 00 50 100 and o ' , , 
15 angles of attack at test Mach numbers of 3. 00 , 4.25, and 5. 05. The 
Reynolds numbers (b ased on maximum diameter of the ogives) were 1. 09 
million at Mach numbers 3 . 00 and 4.25, and 0 .52 million at Mach number 
5 . 05 . 

The press ures around the cone surface (00 t o 3600) at meridian sta­
t i ons 450 apart were recorded simultaneously at each Mach number and 
angl e of att ack . In the case of the two ogival models, the pressures 
wer e r ecorded at meridian stat i ons 900 apart. Each model was then r ot at ed 
450 about its l ongitudinal axis (except at 00 angle of att ack) and the 
pr ocess r epeated. 

Schlieren phot ographs of the bow shock waves in three meridian planes 
were also obtained. 

Accuracy of Test Result s 

The variation in Mach number fr om the nominal value did not exceed 
±0 . 02 in the r egion of the test s ection wh er e the models were l ocat ed . 

The precision of the computed pressure coefficients was aff ect ed by 
inaccuracies in the pressure measurements, as well as uncertainties in the 
stream angle and the free - stream dynamic pressure. The r esulting errors 
i n the pressure coefficients were generally l ess than ±0 .005 throughout 
t he Mach number range f or all angles of attack . The meridian angles at 
which the pressure coefficients are plotted are considered accur at e t o 
within ±lo . 

COMPARISON OF THEORY WITH EXPERIMENT AND DI SCUSSION OF RESULTS 

Flow at the Vertex 

It will be recalled that one of the fundamental ass.umptions in the 
devel opment of the coni cal flow theory was that the conical shock remains 
circular when the cone is inclined. It is appropri at e to examine the 
validity of this assumption before proceeding with a comparis on of the 
theoretical and experimental surface pressures. To this end, schlieren 

.. 
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evidence on the shapes of the conical shocks for the two test cones at 
Mach number 5 . 05 is presented in figures 4 and 5 for angles of attack of 
0°, 5°, 100 , and 15°. The data shown in the figures were obtained by 
measuring the angle of the shock in the schlieren photographs at various 
meridian stations. Theory is comp·ared with experiment in a cross-sectional 
plane at an arbitrary distance downstream of the vertex. It is observed 
in figure 4 that the conical shock attached to the slender cone remains 
nearly circular for angles of attack up to 100 • At ~ = 150 , the angle 
of attack is greater than the cone half - angle and, as might be expected, 
the shock is no longer circular. However, in the case of the blunt cone 
(fig . 5) , the conical shock remains essentially circular for all angles 
of attack up to and including 15°. It would appear, then, that at least 
for moderate cone angles, so long as the angle of attack is less than the 
semivertex angle of the cone, the assumption of a circular conical shock 
made in the analysis is justified. 

The second basic assumption employed in the development of the conical 
flow theory of this paper is that w - B < < 1. It is apparent that this 
condition is best satisfied for blunt cones and for high Mach numbers. 
The accuracy of the theory might be expected, therefore, to improve both 
with increasing cone angle and increasing Mach number. The predictions 
of theory and the results of the pressure-distribution tests for the two 
test cones (Bc = 11 . 420 and Bc = 18.920 ) are shown in figures 6, 7, and 8. 
The data are plotted in the form of surface pressure coefficient as 
a function of the meridian angle ~.B It is observed in these figures 
that the predictions of theory, when applicable, are in good agreement 
with experiment for the Mach numbers and angles of attack presented. It 
is evident also that at the highest angle of attack (~ = 150

) the theory 
is less reliable on the leeward side of the body . Although this result 
is due i n part to the limitati ons of the theory, it is also clear that 
the viscous effects of the flow are influencing the pressures to a greater 
extent over the leeward portion of the body. It can also be deduced from 
these figures that agreement between theory and experiment is better for 
the blunter cone, particularly at the higher angles of attack. It is 
indicated, therefore , that the predictions of the conical flow theory of 
this paper will yield more reliable results when the parameter ~/Bc < 1. 
In the lower range of Mo and Bc (fig . 6) where the present conical flow 
theory i s not applicable (see fig . 2) , Stone's second-order solution 
(ref. 11) applied in the manner described in reference 12 yields results 
which are in good agreement with experiment. 7 It is observed in figure 7 

BIt will be noted in these and subsequent figures that the data are 
often pl otted at meridian stations slightly different from 00 , 450 , 900 , 

etc. This resulted from inaccuracies in rotational positioning of the 
model . 

7Due to the limi ted range of the results presented in the tables of 
reference 5, compari son can be made only for the slender cone and then only 
for Mach numbers 3.00 and 4.25 without resorting to extrapolation. Although 
the agreement between Stone's results and experiment appears to be better 
at ~ = 100 than at ~ = 50 , this result must be attributed to the manner 
in which the flow parameter s presented i n reference 5 were interpolated. 
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that both methods yield comparabl e results over the angle - of- attack range 
at Mach number 4 . 25 . Hence , i t appears that the two theories tend to 
overlap in regards to t heir usefulness over the range of MQ and oc . 

It should be mentioned here that the treatment of inclined cone flow 
as presented by Ferri i n r efer ences 7 and 13 was applied to the cases 
under discussion in t h e pr esent paper. Ferri's method did not yield 
results as good as e ither stone ' s second - order theory (where applicable) 
or the conical flow theory of the present paper . In fact , inconsistent 
results were obtai ned when the method was applied according to references 7 
and 13 . This discrepancy may be traced to what appears to be an inconsist­
ency between equat ion (55) in r eference 7 and equation (55) in reference 13. 

From the preceding compari sons of the experimentally determined sur­
face pressures and shock-wave shapes with the predictions of the coni cal 
flow solutions of this paper , it i s indicated that the latter solutions 
may be employed to predict the flow properties about a lifting cone at 
high supersonic ai rspeeds with good accuracy when the angle of att ack is 
less than the cone half - angl e (i.e., when ~/o c < 1). It i s ther efore 
suggested that these solut i ons may be particularly useful for determining 
conical flow fi elds about lifting cones over the range of MQ and Oc not 
treated in the M. I. T. tables (ref . 5) . 

Flow Downstream of the Vertex 

It r emains now to determine the accuracy with which the solutions 
for flow about lifting cones in combination with the isentropic expans ion 
equations predict the flow about bodies of revolution other than cones . 
The pressure dis tributions on the surfaces of two ogives (having fineness 
rat ios 3 and 5) at Mach numbers 3 . 00 , 4 .25, and 5 . 05 and at angles of 
attack of 00 , 50, 100 , and 150 were calculated us ing the methods of this 
paper . These distributions are pr esented in figures 9 , 10, and 11 f or 
values of the hypersonic s i milarity parameter, K, varying from 0 .60 to 
1.68 . Also shown are the r esults of the pressure-distribution tests for 
the two ogival models . 

Comparing first the predictions of theory with experiment for the 
case of zero lift (fig. 9), we observe that the accuracy of the shock­
expansion method gener ally i mpr oves with increasing K. This trend is, 
of course , the same as was observed in reference 1 for comparisons of the 
predi ctions of the shock- expansion method with those of the method of 
characterist ics. The results of a characteri stics soluti on for the 
lid = 3 ogive at Mo = 3. 00 ( from ref . 14) are also shown for comparative 
purposes . Char acteristics solutions are not avail able for the other cases ; 
however, the r esults of Rossow (which wer e obtained by correlating the 
pressures obtained by characteristics solutions according to the hypersonic 
similarity law and pr esented in ref . 15) are shown . As mi ght be expected , 
Rossow ' s r esults ar e generally in good agreement wi th experiment although 
ther e is a sli ght underest i mat i on of the pressures near the base of the 
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body at Mo = 5.05. This is attributed to the viscous effects of the flow 
which are probably influencing the pressures at this Mach number. In any 
event , it is evident that the predictions of Rossow and the shock-expans ion 
method are in good agreement at the highest value of K (K = 1.68). 

It is of interest now to determine the reliability of the predictions 
of the shock-expansion method for lifting bodies. As shown in figure 10, 
the theory yields good agreement with experiment for the fineness-ratio-5 
ogive on the windward side of the body except at Me = 3.00 (K = 0.60) .8 
Some disagreement is evident , however, on the leeward side of the body 
at all Mach numbers. In the case of the fineness-ratio-3 ogive (fig. 11), 
agreement is generally better over the entire body at each angle of attack, 
~articularly at the higher values of K (K > 1). It will be recalled from 
figure 9 that at ~ = 00 the longitudinal pressure distributions on both 
ogives indicated that the ~ccuracy of the shock-expansion method increased 
as K increased. It is indicated in figuroes 10 and 11 that, as would be 
expected, this trend carries over to the case of lifting bodies . 

It appear s in figures 10 and 11 that the most important factor 
influencing the accuracy of the method is the reliability of the conical 
flow theory at the vertex, since the inaccuracies at the vertex appear 
to be r eflected strongly in the pressures downstream of the vertex . The 
question naturally arises , then, how good are the predictions of the 
shock- expansion method when experimentally determined initial conditions 
at the vertex are employed? To answer this que stion, the pressure coef ­
ficients on the surfaces of the two ogives under discussion were deter ­
mined in the following manner . Initial conditions at the vertex were 
determined from the measured static pressures around a cone (corresponding 
to the vertex angle of the body) in conjunction with the measured shock­
wave angle (in the plane ~ = 0) obtained from schlieren photographs of 
the conical flow field. The pressure coefficients downstream of the ver­
tex were then calculated as before. The results of these calculations 
for Mach numbers 3.00, 4.25, and 5.05 are compared with experiment in 
figures 12 and 13 for ~ = 150

• Results for ~ = 150 are presented because 
at this angle of attack the applicability of the conical flow solutions 
is most marginal. It is observed from figure 12(a) that the theory yields 
results which indicate an underexpansion of the flow on the sides of the 
body (~ = 450 and ~ = 900 ) . This r esult is not surprising since, at this 
low value of K (K = 0.60), it would be expected that the true streamlines 
would deviate considerably from a meridian line. In other words, flow 
disturbances in planes tangent to the body at the surface are no longer 
small compared to those in axial planes. Hence, the flow along a true 
streamline travels through a greater resultant angle than that represented 
by a meridian line. It can be seen from figures 12(b) and 12(c) that as 
the Mach number and , hence, K, i s increased, better agreement is obtained . 

8It should be noted in figure 10(a) that Stone ' s second-order solution 
is employed at the vertex since the conical flow theory of the present paper 
is not applicable for these conditions (i.e., Mo = 3.00 and Oc = 11.420

; 

see fig. 2). 



26 NACA TN 3349 

This is attributed to the fact that the streamlines of the flow deviate 
less from meridian lines as K is incr eased . The same general trend may 
be noted in figure 13 for the fineness - ratio - 3 ogive. However, in this 
l atter case, over - al l agreement appears to be better . In fact, good 
r e sul ts are obtained for values of K > 1 except on the extreme leeward 
s ide of the body where it is pr obable that viscous effects are influencing 
the pressures . There may b e some s ep~ration of flow over this portion of 
the body although no evi dence of this could be determined from the schlie ­
r en photographs . I n the case of the fineness - ratio - 5 ogive, schlieren 
evidence indicated flow separat i on on the leeward side of the body for all 
Ma ch number s at ~ = 15 0 • It may be deduced from these figures that the 
application of the shock- expansion method will yield better results when 
the i nitial conditions at the vertex ar e determined from cone tests 
r ather than from pr esently available cone theory . 

There now remai ns the determination of the accuracy of the predic ­
tions of the gener ali zed shock- expansion method for the flow field (other 
than the surface) about a l ifting body of revolution . To this end, flow 
in the plane of symmetry (~ = 00 and ~ = 1800

) was calculated (after the 
manner discussed i n Appendi x B) for each ogive traveling at a Mach number 
5 .05 and at an angl e of attack of 100 . ) Flow in a side mer idian plane 
(~ = 90 0

) was a l so calculated for the f i neness - ratio - 3 ogive . The result ­
ing shock -wave shapes are compared wi th the actual shapes (obtained from 
schli eren photographs) i n f i gure 14 . The theoreticall y determined conical 
shocks are also shown for contrast . In the case of the fineness - ratio- 3 
ogive (K = 1 . 68 and ~/ON = 0 . 53), theor y and experiment are observed to 
be in excell ent agr eement i n t h e plane of symmetry . The same observations 
may be made for the s i de mer idi an pl ane . In this latter connection , it 
is of interest to point out that essentially the same result would have 
been obtained if the shock wer e assumed circular in cross - sectional planes 
and its location determi ned f r om the calculations in the pl ane of symmetry. 
In view of the agreement between theor y and experiment, it is indicated 
that when K is greater than 1 and ~/ON is about 1/2 or less, the shock 
is essent i all y circular i n cr oss - sectional view of the flow field about 
a po i nted body of revol ution . I n the case of the fineness - ratio -5 ogive, 
the poor agreement on t he l eeward side of the body might be expected since 
not only is K margi nal for the appl i cation of the theory but, more 
impor tant, ~/oN i s r el atively l arge (aj 0N = 0 . 88) . It should be pointed 
out that i f experimentally deter mined i nitial conditions are employed, 
good agreement wi th exper iment downstream of the vertex is obtained . 

Although t h e pr edi ctions of the generali zed shock- expansion method 
have been checked onl y at the i nner and outer boundaries of the flow 
field, it is expected that eqUall y good results would be obtained at 
intermediat e poi nts i n the f l ow fi eld . This conclusion is based on the 
fact that the bow shock waves wer e obtai ned as a result of the calcula­
tions of t h ese i nter mediate points . 
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Hypersonic Slender -Body Theory 

The gredictions of the hypersonic slender-body theory for a = 00 

and a = 5 are compared with experiment in figures 15 and 16. It appears 
from a comparison of figures 9 and 15 that the slender -body theory will 
yield more accurate drag coefficients than the more general theory at 
a = 00 , particularly at the lower values of K. This result, although 
doubtlessly fortuitous, is the same as that found in reference 1. In the 
case of lifting bodies, it appears that the slender -body theory yields 
results which are somewhat less satisfactory at all values of K. However, 
the theory displays sufficient accuracy for many engineering purposes 
even at K = 1. This is particularly evident for the more slender of the 
two bodies as indicated in figure 16(b). In view of its Simplicity, the 
slender-body method should prove useful and its application is fUrther 
facilitated by the presentation in this paper of tabulated values of the 
pertinent flow parameters for selected values of MoON and ~/ON (see 
table I ) . 

Normal - Force Coefficients 

It is appropriate now to cons ider briefly the forces experienced by 
the ogives. To this end , normal - force coefficients were obtained by 
integrating the theoretical pressure distributions for the two ogives at 
a Mach number of 5.05. The results of these calculations are compared 
with those obtained from integrated experimental pressure distributions 
in figure 17 for values of K of 1 . 01 and 1 . 68. It is observed that 
theory yields values of CN which are , in general, higher than those 
obtained by experi ment . However, agreement improves with increasing K. 
Equat ion (36) , as well as the hypersonic slender-body solution (eq. (39)) , 
appears to yield sati sfactory initial normal - force-curve slopes at values 
of K as l ow as 1. Axial forces have also been obtained for these ogives 
and the shock- expans ion method is found to apply with essentially the same 
accuracy. 

CONCLUDING REMARKS 

The flow about a lifting body of revolution at high supersonic air ­
speeds was investigated analytically. With the assumptions of conical 
flow at the vertex , high supersonic Mach numbers, and low angles of attack , 
simpl e approximate solutions were obtained which yield the Mach number 
and pressure distributions on the surface of the body. Surface stream­
lines wer e approximated by meridian lines and the flow field in meridian 
planes was calculated by means of the generalized shock- expansion method . 
In the special case of slender bodies, simple explicit expressions were 
obtained for the Mach number and pressure distributions on the surface . 
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Surfac e pressures and shock-wave shapes were obtained experimentally 
at Mach numbers from 3 . 00 to 5 . 05 for two ogives having fineness ratios 3 
and 5 and for two cones having the same vertex angles as the ogives . The 
predictions of the methods of this paper for the surface pressures were 
found to be in good agreement with experiment at values of K about 1, 
or greater , when ~/5N (the ratio of angle of attack to semivertex angl e) 
was less t han about 1/2. For incr easing values of this parameter, agree ­
ment deteriorates but may still be considered fair for values of ~/5N 
up to about 1 . The generalized shock - expansion method yielded very good 
agreement with experiment f or the shape of the bow shock at K = 1. 68 and 
~/5N = 0 . 53. I t was further i ndicated that the bow shock remains essen­
tially circular i n cr oss section f or angles of attack up to approximately 
one half the semi vertex angle when K is greater than 1 . 

Ames Aeronautical Laborator y 
National Advi sory Committee for Aeronautics 

Moffett Fi eld, Calif ., Jan . 13,1955 
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APPENDIX A 

DETERMINATION OF FLOW CONDITIONS AT THE VERTEX I N THE PLANE OF SYMMETRY 

Due to the symmetr y of the flow in the plane of symmetry, 

Now from the flow geometry 

and from equation (la) 

ov = 0 
ocp 

u = V cos(w - 5) 

w 0 

v = -V sine w - 5) 

ou 
v = Ow 

The flow is ther efor e irrotational and the following relation holds 

dV 
- == - tan( w - 5 )d5 
V 

Substituting the above expr essions in equation (5) results in 

1 - 1 
2 

- cot w + tan(w - 5) 00 + 
ow 

(Al) 

CSC(w - 5) ow] _ tan(w _ 5) 05 = 0 (A2) 
V sin w ocp ow 

Equat i on (A2) i s not amenabl e to algebr aic solution. However, since it 
differs only in the term containing ew/ CJcp from the equivalent equation 
defining the axi symmetric flow field, a solution analogous to that employed 
in r efer ence 1 i s suggested . Consistent, then, with the restrictions 
imposed on the flow field in this analysis, namely, (w - 5) < < 1 radian , 
equation (A2) reduces to 
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1 dW = 0 
sin W dCP 

wher e M 
ref. 1). 

and, hence , the magnitude of V 
Now from equat i on (15) 

are considered constant (see 

dW sin Ws 
= ± VOE (1 - 11 cot ws ) 

CXp sin W 
(A4) 

where dW/dcp i s positive at cp = 0 and negative at cP = rt. Hence , near 
the surf ace of the cone , equati on (A3) r educes to the linear equat i on 

or 

dO 
= - (1 + a) 

dW 

W - 5 

wher e (since 11 < < 1) 

Combining this r elation with equations (A3) and (A5) results i n 

dO 
dW 

(W - oc)(2 + a) cot W - 1 

1 - ~(w - oc)2(2 + 0') 2 

( A6) 

which can be integrated t o yi eld (substitut ing in the boundary conditions) 



o - Oc a sin20c( cot W - cot oc)(l - ~ sin20c{csc2[oc - 1 ] + csc2[oc + 1 J}) + 
M( 2 + a ) M(2 + a) 

2 

(2 + a)tan oc
sec 

oe In[l + (w _ oc)eot Oe] + 

(2 + a) 2M2tan2oc - 1 

s in2[Oc 1 Jft an Oc + M[l + a + (2 + a)M tan oe J} - a sin2ocM[1 - (2 + a)M tan ocJ 
M( 2 + a) l 

2 sin2[oc - 1 J(2 + a)~ [l - (2 + a)M tan Bc] 
M( 2 + a) 

In[l + (2 + a)M(w - oc ) ] + 

sin2[oc + M( 2 ! a) J{tan Oc + M[(2 + a)M tan oc - (1 + a)]} + aM sin
2
oc[1 + (2 + a)M tan oc] 

2 sin2[oc + M(2 ! a)J(2 + a)M
2

[1 + (2 + a)M tan oc] 

In[l - (2 + a)M(w - oc)] (A7) 

If M in equation (A7) is taken as the Mach number just downstream of the shock, then flow 
conditions at the shock (i.e., Ms , ws, and os) can be obtained by the simultaneous solution of equa­
tions (6), (7) , (A7), and the oblique shock-wave relations 

s;: 
o 
~ 

f-3 
~ 

w 
w 
\5 

W 
I-' 
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Ms 2= 

and 

(/, + 1 ) 2MO 4 sin2(ws ± a) - 4[ Mo 2s in2 (ws ± a) - 1] [/,Mo2sin2 (ws ± a) 

[2/,Mo2s in2(ws ± a) - (/, - 1 ) ] [ ( /' -1 )Mo2sin2 (ws ± a) + 2] 

+ 1] 

(AS) 

To apply these equat i ons , a value f or E i s chosen slightly l ess than 
a . Then ~ is fixed by equation (6) and the r elationship between the 
shock-wave angl es is obtained by setting ~ = n in equation (7) , namely, 

(A10) 

Now (ws)~ =o i s determined by solving equations (A7) , (A8) , and (A9) 
simultaneous ly where a > 0 in equation (A7) and the positive sign is 
used in equations (AS) and (A9) . Then (ws)~=n is determined in the 
same manner as ( ws)~=Q where now a < 0 in equation (A7) and the negat ive 
sign i s used in equat i ons (AS) and (A9 ) . If the r esulting value of E 

(cal culated fr om eqs . (6) and (AlO)) diffe r s from that ori ginally chosen , 
the procedure i s repeated using the calculated value of E , and so forth. 
Although the foregoing procedure is somewhat tedious , the number of iter a ­
tions can be reduced to two or three in most cases by carefull y choosing 
E and (ws)~=o ' In this connection, it has been found useful t o choose a 
value f or (ws)~=o which is l ess than the corresponding shock-wave angle 
of the nonliftlng body by ~, the l atter angle being approximately 10 to 
15 per cent of a at the higher Mach numbers (Mo > 4) and 15 to 30 percent 
of a at the l ower Mach numbers (Mo < 4) . It should be r emembered that 
K is always approximat el y 1 . 4 or great er in this analys i s . 

It is clear that equation (A7) should give a better r epresentation 
of the flow field in the ~ = 0 plane than in the ~ = n plane since 
(w - 0 ) is always l ess on the high pressure side of the body. In fact, 
ther e are cases when the combination of Mo , 0c, and a is such that 
equation (A7) no longer applies on the l eeward side of the body . For 
example , if the body is slender such that the angl e of attack approaches 
the half - cone angle , lal can be 1 or greater. Since a < 0 in this half ­
pl ane (~ = n), o%w > 0 for these conditions and equation (A7) will no 
l onger r epr esent 0 as a monotonically decr eas ing function of w. Hence, 
it is possible that no s i multaneous solution of equations (A7) , (AS), and 
(A9) will exist in the ~ = n plane . It i s necessar y , then, to obtain 



~~~~--~~--~-----~~------~------~------~------~------~--------------------~~~~~ 

another express i on relating 
i mposing the restriction that 

8 and W in this plane. 
8 < < 1 radian but w 

The development of such a relationship by 
remains arbitrary will now be considered . 1 

With the r estriction that 8 < < 1 radian , equation (A2) 

o cot w + ~~ [1 - M2sin2w(1 - 0 cot W)2] 

may be reduced to the form 

= 0 
1 cw +----

V sin w ccp 
(All) 

where M is again considered constant. Near the surface of the cone , the above expression reduces 
to 

co + 0 cot w + cr = 0 
cw 

which has the solution 

o = cr cot w + k csc w (A12) 

Combining equations (All) and (Al2) and integrating the resulting expression yields (to the order 
of accuracy of this analysis) 

cr [ (4 + 2 cr - cr2 )M2sin2oc - (sin2oc + cr) ] 
1+ 2 2 

M sin Oc (4 - cr 2) - 2cr 

o 
2J(1. + cr~sin2oc)2 + 4M2sin2oc 

~(cr + 1) (sin2oc - sin2w) 
l + --;:::===========:::;::::======::=:~ ____ --:--

l+J(l+ crM2sin2ocy2 + 4M2sin2oc - crM2sin2oc 
= 

1 + 2M2 ( cr + 1) (sin2oc - sin2 w) 

1 - J( 1 + crM2sin2oc)2 + 4M2sin2oc - crM2sin2oc 

8 c 

cr( cr + sin2oc) 

[2 - sin2w(1 + cr CSC20C)]2 
2cr - M2sin2oc ( 4 _ cr2) 

2{sin2w . .2 2 . .2 2 [2 - (cr + sin2oc) ] . 0 [1 + (2 + cr)M sin Oc - (1 + cr)M sin w] 
Sln c (A13) 

1The method of development is similar to that presented in reference 1. 

~ 

~ 
~ 
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where M is again chos en as the Mach number just downstream of the shock . 
Hence , conditions at the shock can be determined by the iteration pro ­
cedure mentioned earlier except that now equat i on (Al3) is used in place 
of equation (A7) . Although the f ormer equat i on may be empl oyed to deter ­
mine the shock angle at ~ = 0 as well as at ~ = ~ f or slender bodies, 
i t is suggested that equation (A7) be used t o determine flow condi t i ons 
on the windward side of the body and equation (A13) f or flow conditions 
on the leeward side of the body only when equation (A7) cannot be solved 
simultaneousl y with e quat i ons (AS) and (A9) . If the shock angles in the 
plane of symmetry , ar e known , the variat i on of 5 with w is known from 
equat i on (A7) . For the case wher e t his equation does not apply i n the 
plane ~ = ~, thi s variation i s given by equation (Al3) . 

The determi nation of the small variat i ons in the local vel ocity in 
the pl ane of symmetry is identical t o that pr esented in r efer ence 1 for 
the case of (w - 5 ) < < 1 radian . Hence , the expr ession for the velocity 
may be written 

v 
Vs 

(Al4) 

If t h e velocity is known , the Mach number may, ~f course, be deter ­
mined from the relation 

1 - Y 

and the pressur e coeffi cient may be obtained with the aid of the expr es-
sion 

wher e 

and 

2 . 2( ) ( ) 2yMo Sln Ws ± a - Y - 1 

Y + 1 

-L 

+ y ; 1 Msj Y-l 
L:.J: M2 

+ 2 

(Al6) 
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APPENDIX B 

DETERMINATION OF FLOW IN A MERIDIAN PLANE 

Flow about a lifting body of revolution may be calculated in any 
meridian plane by the generalized shock- expansion method in much the same 
manner as the procedure employed in reference 4 for flow about airfoils. 
However , the application of the method is somewhat more complicated for 
the case of a body of revolution since now the influence of the conical 
flow in the region of the vertex must be considered . 

The determination of axiall y symmetric flow in the region of the 
vertex of a body of revolution (K > 1) was described in reference 16. 
Expressions were developed which yield the shock-wave curvature as well 
as flow conditions along a line a short distance downstream of the vertex. 
An analysis entirely analogous to that in reference 16 was carried through 
for the lifting body and it was found that more general expressions can be 
obtained which take into account the effects of angle of attack. Thus , 
it can be shown that the express i on for the ratio of the shock-wave cur ­
vature to body curvature near the vertex is (consistent with the assump­
tions of the present paper) 

where 
(Bl ) 

The funct i on ~ is defined by the expression 

and is evaluated at the surface outside the vortical layer by means of 
the previously developed conical - flow expressions . Similarly, expressions 
for flow conditions along a line normal to the axi s of the body a short 
distance downstream of the vertex may be obtained . For example, the 
variation of flow inclination , 5 , along this line is given by 
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where A and B are points on the line corresponding to the surface and 
the shock , r espectively. The relations for the static pressure and total 
pressure r emain unchanged and may be written (in the notation of the 
present paper) 

\ 
[

2/PKNCOs(13 + o)J ( ))Cy - YA \2 
PB - P A + sin 13 sin 213 A YB - YA YB - yA) (B3) 

and 

(B4) 

respect i vely. I t should be noticed that expressions (Bl) and (B2) r educe 
identically to those given in reference 16 for axi all y symmetric flow . . ~ 

Knowing the flow .conditions in any meridian plane in the region of 
the vertex , it is now a relatively s i mple matter to construct the ent ire 
flow field downstream of the vertex. To illustrate, consider the sketch 
(flow in a meridian pl ane ~ = constant): 

Mach 

Shock 
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With the oblique - shock-wave, conical-flow, and expansion equations, all 
fluid properties at points M, AI , A, C, and so forth, on the body surface 
may be calculated in the manner described previously in the present paper. 
Hence , flow conditions along the line AB may be determined from expres­
s i ons (Bl) through (B4) . It will be recalled that the bas i c condition 
employed in constructing flow fields about airfoils by the generalized 
shock- expansion method is that the pressure is constant along Mach lines 
emanat i ng from the surface . In the case of flow about bodies of r evolu­
tion, this condition must be relaxed to account for the variation in pres ­
sure due to the influence of the conical flow in the region of the vertex. 
This may be accomplished in the following manner . The Mach line A'B is 
constructed from the known conditions in the region MAE shown in the 
sketch . The net pressure change along this Mach line (i. e ., PB - PAl) 
is thus determined. This pressure difference is then assumed to represent 
the net pressure change between the body surface and the shock along each 
Mach line ema~ating from the surface downstream of the vertex. The flow 
field is then constructed using this criterion in conjunction with the 
isentropic expansion relat ions for flow along streamlines. Once the 
shapes of the streamlines are calculated, the fluid properties along these 
l i nes are , of course, determi ned in the same manner as those along the 
surface. 
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APPENDIX C 

FLOW AT THE SURFACE OF A SLENDER BODY TRAVELING AT HIGH 

SUPERSONIC AIRSPEEDS AND AT SMALL ANGLES OF ATTACK 

If a slender body (i . e . , a body on the surface of which the slopes 
are everywher e small compared to 1) i s traveling at fr ee - str eam Mach 
numbers very large compared to 1 (aga in, of course , K > 1 ) and at angles 
of attack very small compared to 1 , the local Mach numbers will likewise 
be l arge compared to 1 . It f ollows , then , that the inclination of the 
nose shock wave will be small and, consequently , that w will a lways be 
small . In this case, the r elation be tween 0 and w at the vertex (in 
the plane ~ = 0) is r elatively simple and may be obtained by i ntegrat ing 
the expr ess i on (see eqs . (A4) and (All)) 

which yi elds 

2 
= ON ° w 

_ E Ws (1 _ Orr) 
W Ws 

Combining this expression with equation (Al) , the relation 

( Cl ) 

defining the velocities in the plane ~ = 0 is eas ily obtained . Hence , 
the surface Mach number in this pl ane at the vertex , MN , may (to the 
order of accuracy of this analysis) be r elated to Ms by combining 
equation (A15) with equation -( C2) to yield 

Now the ob l i que shock-wave r elations for flow of the type under 
consideration reduc e to ( a t ~ = 0) 
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and 

Ps 2')' 2 2 ')' - 1 
:::: -- MO (Ws + 0,) ---

Po y + 1 Y + 1 

Combining equations (6), (Cl), and ( C5) r esults i n 

Mo (ws+o,) 

cos 

and 

39 

( c4) 

( c6) 

+ 

(c8) 

There r emains now t he determinati on of ~ , which defines the position 
of the conical shock, in order to determine the shock -wave angle in the 
pl ane ~ = O. To this end , the assumpt i on of a circular coni cal shock is 
again employed, but now it is deemed suffi ci ently accurate for the purposes 
of this analysis to assume a linear var i at i on of ~ with 0,; namely 

T) = d~ I 0, 
da. a.=o 
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Now from equation (A10) there results 

Cons ider for the moment , flow in the plane ~ =~. The angl e of attack 
a and, therefore, E are both negative in this plane . Hence, equa­
tion (C5) may be written 

2 ( _ N) 2 _ Y + 1 2 ( ) ( ) Mo Ws ~ 2 Mo Ws - a 5 s - a - 1 o 

and the conical -flow expr ession ( see eq . (Cl)) becomes (at W = ws) 

Differ enti ating these express i ons with r espect to a and combi ning the 
resulting expressions yi elds in the limi t as ~ ~ 0 

Proceding in the same manner f or flow in the plane ~ 

and (C5)) ther e is obtained 

( C10) 

o (see eqs . (Cl) 

( Cll) 

Combining equati ons (6) , (C9) , (C10) , and (Cll) results i n 

dll l 
da ~=O 

At a = 0 (see ref . 1) 

1 _ ~ ~N + 5 s) 
4 \ - Ws 

= ---------
1 + _Y_+_ l (ws - 5N) 

4 \ Ws 



NACA TN 3349 41 

Os MooN 
ON Jl 1 + 1 2 

+ 2 (MoON) 

and ( C12) 

} l 
l + 1 2 

Mows + 2 (MoON) 

Hence~ 

1 _ l + 1 _o_s (1 + _o_s) 
4 ON oN 

Tj = --------- - - a, 

1 + l : 1 (1 _ ~~ 

where 0s /ON is a function of MooN only and~ of course ~ is· given by 
equations (C12) . The shock-wave angle at ~ = 0 can now be determined for 
given values of MoON and Moo, by means of equations (C7) and (C13). 
Hence~ the shock angle around the entire conical shock front may easily 
be determined with the aid of the expression 

Ws = (ws ) + Tj(l - cos cp) cp=o 
( c14) 

Surface conditions around the body at the vertex may now be deter­
mined after the manner described in the more general analysis of flow 
about cones . For example~ consistent with the assumptions basic to the 
present analysis~ equations (17) and (18) reduce to 

and 

= 1 + Ews(l - cos ~) ( c16) 

respectively . Hence ~ the surface veloci ty external to the vortical layer 
at the vertex may be written 
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and the corresponding Mach number , Me , may be related to (MN)~=O by 
comb i ning equat i on (19) with thi s expression to yield 

~MN\p=J2 = 1 

[ Me ] 

(en) 

( c18) 

Consistent with the assumption s bas i c to the present analysis, the Mach 
number directly on the surface at the vertex (i . e ., inside the vortical 
layer) may be obta ined from the r elation (see eq . (20 )) 

wher e 

1 

=[ 2YMo2(ws+a)~=o- (y-l) JY1 Mo2(ws+acos~)2[( Y - l)Mo2(WS+Q,);=o+211 
~YMo2 (WS + a cos ~) 2 - (y - l~~ M02 (WS + a) ;=o ~y - 1)Mo2 (ws + a cos ~) 2+ 2J 

(C20) 

Equations ( C3), (c18), and (C19) may now be combined to yi eld 

( C21) 

The expr essions just derived provide the Mach number on the surface 
at the vertex . If MN i s known , the Mach number anywhere on the surf ace 
of the body may be obtained by means of the expression ( see ref . 1) 

M ( C22) 
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Now the pressure coefficient is given by the expression 

(C23) 

The pressure rise across the shock is given by equation (c6) and the ratio 
of the pressure anywhere on the surface to the pressure at the shock at 
~ = 0 can be expressed (to the order of accuracy of this analysis) in 
the form 

This expression may be combined with equation (C22) , and equation (C23) 
can be writ ten 

p = ~ [CPs) tMS)~=o _ ' 
,Mo Po MN 

~=o 

( c24) 

yielding the pressure coefficient at any point on the surface of the body. 

The initial normal -foree - curve slope for slender bodies of revolution 
may easily be determi ned in the following manner. To the order of accuracy 
of this analysis, equation (36) may be reduced to the form 

I l () G) dCN 1 2 dCN P ~N r x - - 8 -0- ---d-
do, 0,=0 - Cd) N da ITeN J PN f3 1- 1-

o 

( C25) 

Consistent with the assumptions basic to the present analysis, the fol­
lowing relations may be obtainedj namely, 
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and 

2, 
J?... = ~N)y::-r 
PN \M 
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These expressions may be combined with equation (C22) and (C25) to yield 

,+1 

::La ~ 8(~)28N ~ TCN /[ 1 - r ; 1 (MNfiN{l - ~)rl(f) d(f) (c26) 
o 

There r emains now the determination of the initial normal - force-curve 
slope for a cone tangent t o the body at the vertex . This slope may be 
expr es s ed as 

dCN I 2 J1r d GN) -- = - - cos cp dq) 
do, TCN f1rMo 20N do, Po 

o 

Now the r at i o of the static pressure anywhere on the surface of a lifting 
cone (0, < < 1) t o the free -s t r eam static pressure may be expressed in the 
f or m 

( c28) 

wher e Ve is the local velocity externall y adjacent to the vortical layer 
and 

1 ---- (,-l)J ,-1 

( C29) 

Diff er entiating equation (c28) with r espect to ex, and r et aining only 
terms which are functions of cp, we ob t ain in the limit as ex, -? 0 

~ i!:!!'\ _ PN -L- dE cas J(MN)2 
do, \poJ- Po Mo2ws do, l \ MO 

(MOON) 2] [1 + ,(MooN) 2] 

( C30) 
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From equations (6) and ( C13) there may be obtained 

de 
do. 

Combining this expression with equation (C30) and noting that (see ref. 1) 

27 
7- 1 

[1 + 7(MoON)2](~:) 

equat i on (C27) may finally be written 

( C31) 

where MN , Ms ' and Os may be determined from reference 1 or by setting 
a. = 0 in the pertinent express i ons previously derived in the present 
paper . 
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TABLE I.- TABLE OF FUNCTI ONS FOR HYPERSONI C SLENDER BODY METHOD 

"p. "Po ! 
(M"Il J2 for Ql = 0 , 

Ms (l)=0 for Ql = 300 (Ms)<p=O 0 

MN MN for Ql = 120 

S ! 

MoliN 
0 0 .20 0 .40 0 .60 0 .80 1.00 

0 . 60 4.178 4.753 5·406 6 .143 6 .969 7 .817 
.80 2.963 3·517 4.161 4.898 5.732 6 .665 

1.00 2.400 2·952 3· 599 4· 343 5.188 6 .131 
1.20 2.094 2.649 3. 301 4.052 4.903 5.853 
1.40 1.910 2. 468 3 ·125 3.881 4.737 5 . 691 
1. 60 1.791 2·352 3 ·013 3 ·773 4.632 5 .589 
1.80 1.709 2.273 2.937 3·700 4.562 5 .518 
2.00 1.650 2.217 2.884 3· 648 4.512 5 ·471 
2·50 1.560 2.132 2.802 3·569 4.436 5 · 398 
3. 00 1.511 2.086 2· 759 3·529 4·396 , 5· 359 

S 0 0 .20 0 . 40 0 .60 0 .80 1.00 IS 0 0 .20 0 . 40 0 .60 MoliN MoliN · 
0 . 60 1. 021 1.021 1.020 1.019 1.017 1.014 0 .60 1.021 1.002 0.9803 0 .9556 

.80 1.021 1.019 1.017 1.014 1. 012 1.009 .80 1.021 .\1918 .9600 ·9247 
1.00 1.019 1.017 1.013 1.010 1. 007 1.004 1.00 1.019 ·9812 .9405 .8961 
1.20 1.017 1.014 1.010 1.006 1.003 .9996 1.20 1.017 ·9717 .9238 .8720 
1.40 1.016 1.012 1.007 1.004 .9998 .9964 1.40 1.016 .9638 .9102 .8527 
1. 60 1.014 1.010 1.005 1.001 .9974 .9939 1.60 1.014 .9574 .8993 .8371 
1.80 1.013 1.008 1.004 .9994 .9955 ·9919 1.80 1.013 ·9523 .8907 .8247 
2 .00 1.012 1.007 1.002 .9981 .9940 ·9903 2 .00 1.012 ·9483 .8839 .8152 
2 ·50 1.011 1.005 1.000 .9954 .9914 .9875 2·50 1.011 .9412 .8723 .7989 
3.00 1.010 1.004 .9988 .9940 .9897 .9857 3 ·00 1.010 .9369 .8656 . 7903 

MeliN for Ql = 0 I 

~ 0 0 .20 0 .40 0 .60 0 .80 1.00 

0 .60 0 .5655 0 .5577 0.5432 0 .5319 0.5203 0.5095 
.80 .7274 .7070 .6863 .6654 .6444 .6234 

1.00 .8740 .8415 .8087 .7761 .7440 .7128 
1.20 1.006 .9586 ·9120 .8665 .8229 .7815 
1.40 1.123 1.060 .9981 .9398 .8850 .8342 
1. 60 1.226 1.146 1.070 .9990 .9338 .8748 
1. 80 1.318 1.220 1.129 1.047 .9727 ·9064 
2. 00 1.397 1.282 1.178 1.086 1.004 ·9313 
2·50 1.556 1.402 1.269 1.155 1.058 .9739 
3· 00 1.670 1.483 1.328 1.199 1.091 .9996 

(Ms)q>=o &Jo (Ma)q>=o 0 
--- for q> = ~ for <p = 150 

~IN 

~ I~ 0 0 .20 0 .40 0 .60 0 .80 1.00 0 0 . 20 0.40 0.60 
MoliN MoliN 
O.?O 1.021 1.016 1.009 1.001 0 .9921; 0.9~23 0 .60 1.021 0 ·9977 0·9716 0 .9436 

.80 1.021 1. 012 1.002 .9906 .9790 .9667 .80 1.021 .9849 ·9467 .9060 
1.00 1.019 1.007 .9941 .9807 .9670 .9530 1.00 1.019 ·9720 .9228 .8709 
1.20 1.017 1.003 .9876 ·9725 ·9572 .9417 1.20 1.017 .9606 ·9021 .8408 
1.40 1.016 .9990 .9823 ·9658 .9495 ·9328 1.40 1.016 .9511 .8852 .8161 
1.60 1. 014 .9959 .9781 .9606 .9433 ·9258 1.60 1.014 .9434 .8716 .7964 
1. 80 1.013 .9935 .9747 .9565 .9384 .9203 1.80 1 .013 .9373 .8609 .7808 
2.00 1.012 .9916 ·9720 .9531 .9346 ·9159 2.00 1.012 .9324 .8525 ·7686 
2· 50 1.011 .9882 .9672 .9471 .9277 ·9086 2.50 1.011 .9241 .8379 .7481 
3·00 1.010 .9862 .9643 ·9435 .9235 ·9041 3 .00 1.010 ·9190 .8305 .7381 

MM)CP=O for Ql = 0 

~ 0 0 .20 0 .40 0 .60 0 .80 1.00 
MoliN 

0 .60 1.021 1.024 1. 025 1. 025 1.026 1.025 
.80 1.021 1. 022 1.023 1.023 1.022 1.022 

1. 00 1.019 1. 020 1.020 1 .020 1. 019 1.019 
1.20 1.017 1. 018 1. 018 1 .018 1.017 1.017 
1.40 1.016 1.016 1.016 1.016 1.016 1.016 
1. 60 1. 014 1. 015 1.015 1.015 1.015 1.015 
1.80 1. 013 1.014 1.014 1.014 1.014 1.01.4 
2 .00 1.012 1.013 1. 013 1.013 1. 013 1. 014 
2.50 1.011 1.011 1. 012 1.012 1.012 1.013 
3.00 1.010 1. 010 1.011 1.012 1.012 1.012 

(Ma)q> =<> (Ma~<p=o a 
--- for <p = 900 N for q> = 180 MN 

~ ~ 0 0.20 0 . 40 0 . 60 0 .80 1.00 0 0.20 0 . 40 0 .60 
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(a) a : 0° 

NACA TN 3349 

Theory 

o Experiment (measured 
from schlieren 
photographs) 

Figure 4.- Shock-wave shapes for an 11.42° semivertex angle 
cone at Mo = 5.05 and a = O~ 5~ /0: and /5~ 
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Mo = 5.05 and a = 0: 5~ 10~ and /5': 
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