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SUMMARY 

Experimental modes and frequencies of an unstiffened hollow beam of 
rectangular cross section are presented, and comparisons are made between 
experimental and theoretical frequencies . Theories based on rigi d cross 
sections ,.ere found to be sufficiently accurate to predict the frequencies 
of only the lowest three bending modes. For the higher bending modes and 
all the torsional modes it was necessary to include the effects of cross­
sectional distortions in the calculations. 

INTRODUCTION 

The vibration characteristics of hollow thin-walled cylindrical beams 
have been investigated theoretically in references 1 and 2 for both bending 
and torsional vibrations. In reference 1, frequency equations that include 
the influence of transverse shear deformation, shear lag, and longitudinal 
inertia are derived for the bending vibrations of cylindrical beams with 
constant wall thickness. In reference 2, frequency equations that include 
the influence of warping restraint and longitudinal inertia are derived 
for the torsional vibrations. 

In order to provide an experimental check on the theories of refer­
ences 1 and 2, vibration tests were conducted on a hollow beam of rectan­
·gul ar cross section with no bulkheads. The purpose of the present paper 
is to present these experimental results and to show the accuracies that 
can be obtained from the theories of references 1 and 2 when the effects 
of cross-sectional deformation are taken into account by the methods 
presented in references 3 and 4 . 
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EXPERIMENTAL INVESTIGATION 

Des cription of Specimen 

The specimen used in the experimental investigation (see fig . 1) was 
constructed from four aluminum sheets of equal thickness welded together 
along their lengths to form a uniform rectangular tube and contained no 
stringers, web stiffeners, or bulkheads. The beam, whose dimensions are 
shown in figure 1, had a width- depth ratio of 3.6 and a plan-form aspect 
ratio (length divided b y width ) of 13 . 3. The material from which the 
specimen was constructed, 3003 aluminum (formerly designated 3S), had a 
modulus of elasticity of 10. 1 x 106 pounds per square inch, a shear mod­
ulus of 3. 81 X 106 pounds per square inch, and a density of 0.098 pound 
per cub ic inch. 

Test Setup and Instrumentation 
.. 

The general test setup is shown in figure 2. The test beam was sup- , 
ported at each end by means of long flexible wires attached to the center 
line of the top spar web . This type of support offered only negligible 
resistance to small displacements of the beam in the horizontal direction. 
For small amplitudes of vibration in the horizontal direction, therefore, 
the specimen was considered to be essentially free-free. A fitting for 
connecting the shaker to the beam was attached to one cover of the beam 
at a point slightly off center in both the chordwise and spanwise direc-
tions so that symmetrical and antisymmetrical bending and torsional modes 
could be excited without relocating the shaker attachment point. 

An electromagnetic shaker mounted on a rigid backstop was used to 
vibrate the beam in the horizontal direction. The frequency of the 
exciting force was controlled by a continuously variable frequency audio 
oscillator which was connected to the shaker drive coil through a 500-watt 
power amplifier. The direct-current power for the shaker field was 
supplied by a motor-generator unit. The shaker system was capable of 
developing a maximum undistorted force output of 26 pounds from 20 to 
1,600 cycles per second and a maximum double amplitude of 1/4 inch. 

In order to obtain more accurate readings of the frequency values than 
were possible from the oscillator scale, a Stroboconn frequency meter was 
used to measure the frequency of the oscillator signal. In this frequency 
meter the oscillator output flashes a stroboscopic light onto a series of 
graduated disks revolving at controlled speeds. The disk speed and hence 
the frequency of vibration are known to be accurate within 0.01 percent. 

.. 
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A crystal phonograph pickup was used to study the motion of the 
vibrating beam. The pickup has a voltage output that is proportional to 
the velocity of motion and is essentially linear from 50 to 4,000 cycles 
per second. A cathode-ray oscilloscope was used to indicate the output 
of the pickup. 

Experimental Test Procedure 

The test beam and the electromagnetic shaker were mounted as shown 
in figure 2. The pickup was placed on a stand so that the probe just 
touched the beam. As a preliminary study of the vibration characteristics 
of this test beam, the force-amplitude controls of the shaker system were 
set at a constant value and the frequency was s lowly increased from 20 to 
650 cycles per second. During this study, each resonant frequency where 
the amplitude of vibration (as viewed on the oscilloscope) passed through 
a maximum was noted. As an aid in obtaining these various resonant fre­
quencies, the phase angle between the applied force and the velocity of 
the beam was observed. This phase angle was determined by viewing the 
Lissajous ellipse shown on the oscilloscope when the pickup output was 
applied to one axis and the oscillator output to the other. 

After the preliminary study was completed, each of the observed 
resonant frequencies was reestablished and held constant while a survey 
of the corresponding mode shape was made. This was done by moving the 
pickup along the beams .and noting the location of the null points and 
the phase of the motion between the null points. The type of vibration 
and the relative amplitude of the various pOints on the test beam were 
thus established. In this manner, all beam bending and torsional modes 
in the frequency range from 20 to 650 cycles per second were identified. 
Once the mode of vibration was identified, the frequency was read from 
the frequency meter. As might be expected, resonances not associated 
with beam bending and torsional modes were observed during the test. 
These resonances were presumably due to local effects and are not con­
sidered in this report. 

Experimental Results 

In the frequency range covered by the tests, the first ten natural 
beam frequencies (five bending and five torsional) were obtained, and 
these frequency values and the nodal patterns corresponding to each of 
the natural frequencies f are shown in figures 3 and 4. These patterns 
for all but the fifth torsional mode are shown only for the front cover 
since they were essentially the same in both cover sheets. In the fifth 
torsional mode the nodal patterns in the two covers were different; both 
patterns are shown in figure 4. The nodal patterns for all the symmetri­
cal modes (both bending and torsional) and for the lowest antisymmetrical 
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bending and torsional modes are definitely beam nodal patterns. For the 
remaining antisyrnmetrical modes, however, the nearness of the shaker 
attachment to the center line of the beam evidently caused a shifting of 
the nodal patterns . The tendency of the nodal lines to shift is probably 
increased by the absence of internal stiffening members in the test beam. 

Amplitude surveys made to establish the nodal shapes disclosed an 
interesting phenomenon pertaining to the distortions of the cross section. 
For the higher bending modes, the deflections at the center line of the 

cover were from 11 to 3 t i mes as great as the deflections of the corners 
2 

of the tube . No such large distortions of the covers were evident for 
the torsional modes . 

THEORETICAL CALCULATIONS AND COMPARISONS 

WITH EXPERIMENTAL RESULTS 

Bending 

A solution for the transverse vibrations of hollow thin-walled beams 
was presented in reference 1. The first five natural bending frequencies 
of the test beam were calculated from the frequency equations derived in 
reference 1 and are presented in table I along with the experimental fre­
quencies and the frequencies calculated from elementary beam theory. The 
frequency equation and the values of the parameters used for these calcu­
lations are ShOiffi in appendix A. 

Comparison of the results presented in table I shows that for all 
modes the frequencies calculated from the equations of reference 1 are in 
better agreement with experimental frequencies than with those calculated 
from elementary beam theory. For the first three modes, the agreement 
between the experimental frequencies and those calculated from reference 1 
is within 12 percent. For the higher modes, however, t he agreement is 
not very satisfa ctory. 

Examination of the assumptions used in the derivation of the frequency 
equations in reference 1 shows that, although the influence of transverse 
shear, shear lag, and longitudinal inertia are included, the results are 
applicable only to cylindrical beams whose cross sections remain relatively 
undistorted . The particular test beam used in the experimental investiga­
tion contained no bulkheads, 'stiffeners, or stringers to help prevent 
cross-sectional distortions . Furthermore, as mentioned in the preceding 
section, results of the amplitude surveys showed that, for the higher modes 
of bending vibration, the covers of the beam vibrated out of their plane 
with considerable amplitude. The fact that these local cover or panel 
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vibrations can have appreciable effect on the beam vibrations is substan­
tiated in reference 3 where it is shown that inertial coupling exists 
between the local panel vibrations and overall transverse vibrations. The 
result of this coupling is a reduction of the bending frequencies calcu­
lated for rigid cross sections . As is found in reference 3, this reduc­
tion is dependent on the uncoupled panel frequency (frequency of panel 
vibration with the overall beam vibration restrained). Methods are 
included therein for determining this uncoupled panel frequency and for 
estimating the reduction in bending frequencies due to panel vibrations. 

The method of reference 3 has been used in appendix A to correct the 
calculated beam bending frequencies of the test beam for the effects of 
panel distortions. These corrected frequency values are shown in table I. 
From the results in this table it is seen that the effects of panel dis­
tortion are negligible for the first mode but become important for the 
higher modes. Also, the corrected frequencies are seen to compare very 
well with the experimental frequencies. 

Torsion 

A solution for the torsional vibrations of a hollow thin-walled beam 
was presented in reference 2 . From the frequency equations derived in 
this reference the first five torsional frequencies of the test beam were 
calculated as shown in appendix A. These calculated frequencies are pre­
sented in table II along with the experimental frequencies. For complete­
ness the frequencies calculated from elementary torsion theory are also 
included in table II. 

Although the frequency equations of reference 2 include the effect 

of warping restraint and longitudinal inertia, examination of columns ~ 
and ~ in table II shows that the results from these equations do not 

predict the natural torsional frequencies with any degree of accuracy. 
The calculated frequency for the first torsional mode differs from that 
found experimenta lly by more than 25 percent, whereas the calculated fre­
quency for the fifth mode is almost three times as l arge as the measured 
frequency. 

Since the analysis used in reference 2 is based on the assumption 
that the distortions of the cross sections are negligible, the large dis­
crepancies between calculated and experimental torsional frequencies could 
be due to cross-section distortions. 

Reference 3 showed that panel flexibilities can have an effect on 
torsional frequencies similar to the coupling effect describe d for bending 
vibrations. For the particular test beam, however, the effects were found 
to be small - only a 3-percent reduction of the fifth torsional frequency. 
The reason for this small reduction is that, in the particular type of 
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panel vibration considered in reference 3, the corners of the beam do 
not move with respect to each other; no shearing distortions of the cross 
section are allowed . Since a beam in torsional oscillation is subjected 
to cross-sectional shearing forces, cross-sectional shear deformations 
should be considered. 

The influence of shear flexibility of cross sections on the torsional 
fre~uencies of box beams was investigated in reference 4. As could be 
expected, one of the ~uantities on which this influence is dependent is 
the effective cross-sectional shear modulus of the beam cross section Ge . 

The test beam contains no internal bulkheads; therefore, the shear stiff­
ness of the cross section is due only to the Vierendeel truss action of 
the rectangular bent formed by the walls of the tube. On the basis of 
the assumption of rigid joints at the corners, the effective shear modulus 
of a bent is determined in appendix B. From these results the value of 
Ge of 2 , 540 pounds per s~uare inch for the test beam is calculated in 

appendix A. 

On the basis of this value of Ge , the torsional fre~uencies of the 

test beam have been recalculated in appendix A by the method of reference 4. 

Examination of these results shows that, with the inclusion of shear 
flexibility of the cross section, there is a considerable reduction in the 
calculated fre~uencies. The percentage reduction, however, is still short 
of that necessary for good agreement between calculated and experimental 
fre~uencies . Since the tube consisted of aluminum sheets welded along the 
corners, a poor or incompletely penetrating weld would result in flexible 
corner joints and, conse~uently, in a reduction in the value of Ge from 
that calculated by use of t he e~uation derived in appendix B. In order to 
check the completeness of the weld, sections were cut from corners of the 
test beam and were prepared for microscopic study. A photomicrograph of 
a typical section of the weld is shown in figure 5 and it can be seen 
t hat , although the weld itself is sound, the depth of penetration is less 
than half the depth of the material. Thus, the assumption of rigid corners 
used in the calculat ion of Ge would not be expected to apply to the test 

beam, and the calculated value of Ge would be too large. 

In order to obtain a value for the effective shear modulus of the 
cross section that is appropriate for the test beam, a value of Ge . was 

determined experimentally. Several l-inch slices were cut from the test 
beam and loaded diagonally, and the change in length of the diagonals was 
measured . From the results of these tests , the measured values of Ge 
were found to range from 1,080 to 1,520 pounds per s~uare inch with an 
average value of 1,290 pounds per s~uare inch. This average value of Ge 
was then used and the calculation based on the analysis of reference 4 
was repeated. 
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Results of calculations for this measured value of Ge are shown in 
table II. It is seen that good agreement exists between these fre~uencies 
and the experimental fre~uencies. These results indicate that, once the 
effective shear modulus of the cross section is known, the results of ref­
erence 4 can predict natural torsional fre~uencies with good accuracy. 

It should be pointed out that the final results based on reference 4 
do not include the effect of longitudinal inertia. The effects, however, 
were shown in reference 2 to be negligible for the values of plan-form 
aspect ratio of the test beam. 

CONCLUSIONS 

The first ten natural beam modes and frequencies obtained from vibra­
tion tests of a hollow beam of rectangular cross section are presented. 
From comparisons made between these experimental and calculated frequencies, 
the following conclusions can be made: 

1. The frequency equation derived in NACA Rep. 1129 predicts the fre­
~uencies of transverse vibration of tubes with reasonable accuracy as long 
as the effect of panel vibrations is small. 

2. Local panel vibrations can have an appreciable influence on the 
higher transverse . modes of vibrations of tubes. The analysis of NACA 
TN 3070, however, predicts the correction for t he effect of local panel 
flexibilities very well. 

3. For beams, such as the test beam, which have very flexible cross 
sections, the t orsional fre~uency equations der i ve d in NACA TN 3206 ar e 
not directly applicabl e. 

4. The effect of local panel vibrations on the torsional fre~uencies 
of the test beam was small. The effect of shear distortion of t he cross 
section, however, was large because of the absence of bulkheads , but the 
effect of this distortion on torsional frequencies is predicted very sat­
isfactorily by the theory derived in NACA TN 3464. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics , 

Langley Field, Va., April 13 , 1955. 
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APPEND DC A 

CALCULATION FOR BEAM VIBRATION MODES 

Beam Bending Modes 

The freQuency eQuations for symmetrical and antisymmetrical free­
free beam bending modes are given by eQuations (41 ) and (52), respec­
tively, in reference 1 and a r e r epeated here for c onvenience. 

For the symmetrical modes 

k 2 
B 

00 

L 
n=1,3,5 

and for the anti symmetrical modes 

o 

whe re, for cylindrical beams of rectangular cross section, 

.2 
~11 
8k 2 S 

11 ksB.] 2 K l 

o 

.4: 2 
2 B 

In these eQuations kB is the freQuency parameter defined as . kB2 

where ~ is the natural circula r freQuency in radians per second . 

o 

(Al) 

(A2) 

(A3) 

In this sec tion and in those that follow, the eQuati ons presented 
and the symbols used are the same as i n the reference for the particular 
section . Therefore, the reader is cautioned to observe that the defini ­
tions for symbols are not interchangeable . For this reason, most of 

• 
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the symbols are defined separately in each section. The following 
symbols, however, are the same throughout: 

a half-depth of beam measured from median line, 1.00 in. 

b half-width of beam measured from median line, 3.60 in. 

s dista.nce along perimeter of cross section 

t wall thickness, 0.246 in. 

L half-length of beam, 47.86 in. 

p perimeter of cross section, 18.40 in. 

E modulus of elasticity, 10.1 X 106 lb/in. 2 

G shear modulus of elasticity, 3.81 X 106 lb/in.2 

i,n integers 

The various parameters given in reference 1 are defined and their 
numerical values for test beams are given as follows: 

A 

~I 

K 

AS 

mas s of beam per unit 

cross-sectional area, 

length, 1.15 X 10-3 Ib_sec2!in. 2 

4.52 in.
2 

4 minimum moment of inertia of cross section, 3.87 in. 

frequency coefficient, 1.2~ X 10-2 

coefficient of shear rigidity, !!!L 
1jIh;G 

~y -2 coefficient of rotary inertia, --- = 1.932 X 10 
AL2 

geometrical parameter, ---y- = 0.431 /!j6I 

AsP
2 

effective shear-carrying area, ~t sin
2e dS = 0.984 in.

2 

9 
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Fourier coefficient, 

~ f sin e sin 2~1CS ds o (n even) 

1.273 cos 1.23n (n odd) n 

e inclination of normal with vertical 

The numerical values given for the aforementioned various parameters 
were used, and the natural frequencies of bending vibration were calcu­
lated from equations (Al) and (A2) by trial. 

Local Panel Vibration 

The procedure recommended in reference 3 for estimating the effect 
of local panel vibrations on the vibrations of box beams was used to 
correct the calculated beam bending frequencies of the test beam. These 
corrections were made as follows: 

(1) The values of the "uncoupled" bending frequencies were taken as 
the values given in column CU of table I. 

(2) By using the width-depth ratio of 3.6 and the thickness ratio 
of 1, the values of the uncoupled member frequency of 833 cycles per 
second and the coupling constant of 0.58 were obtained from figures 7 
and 8 of reference 3. 

(3) The values of the coupled frequencies corresponding to the values 
of uncoupled frequency shown in column ~ of table I were then determined 
from figure 6 of reference 3. 

Beam Torsion Modes 

The frequency equations for the free-free beam torsion modes 
(eqs. (40) and (51) of ref. 2) for the symmetrical modes are 

o 

• 

(A4) 
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and for the antisymmetrical modes are 

00 K 2 L n 
n=2,4,6 Bo2 + 16n2 

1 (A5) 

In equations (A4) and (A5), ~ is the torsional frequency parameter and 

2 InL2 2 
is defined as ~ = ~ where is the natural circular frequency 

in radians per second. 

For cylindrical beams of rectangular cross section, 

(

OSh t(Bi a - b 
..l 8 a + b 
t(B· t(B· 

1 sinh __ 1 
8 

(it()2 1 + (a2 - b2 )2 ab + 
8 ab 4(a + b)2 

t(B~l cath 87 (A6) 

The various parameters appearing in equations (A4), (A5), and (A6) 
as defined in reference 2 are given as follows: 

p distance from centroid of cross section to tangent to the 
median line of wall thickness 

mass density of beam, 8 .16 X 10-3 lb_sec
2
/in.

4 

cross-sectional area enclosed by median line of wall thickness, 
4ab = 14.40 in. 2 

minimum moment of inertia of cross section about 

y-axis, 3.87 in.4 

maximum moment of inertia of cross section about 

z-axis, 27. 96 in.4 

mass polar moment of inertia per unit length, 

~(Iy + I z ) = 8.08 x 10- 3 lb - sec2 
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J 

K 

torsional stiffness constant, 
p 

coefficient of longitudinal inertia, 

parameter, JEp2 0 0 .626 
GL2 

actual wall thickness 

for i = 0 

Fourier constant, ~ f P ds 

Kn Fourier coefficient, 

~ f p cos 2r;S ds -3.304 sin 1.23n 

o 

NACA TN 3463 

11.06 in. 4 

0.227 

(n even) 

(n odd) 

The roots of the frequency equations (A4) and (A5) were obtained 
by trial. 

Shear Deformation of the Cross Section 

The analysis of the torsional vibration of box beams where the effect 
of shear distortion of the cross section is included is presented in ref­
erence 4. The appropriate frequency equation, based on a four-flange box 
beam, for symmetrical vibration is 
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and for antisymmetrical vibration is 

where 

A 

B 

C 

K 

M 

s 

parameter, 0. 829 

area of flange, t -(a + b) 
3 

0·377 

(a + b)2 
== parameter, 1.468 

4ab 

inertia coupling constant, 0· 757 

effective shear modulus of bulkheads 

(
EAFa+b restraint-of-warping parameter , 

4GL2 t 

JlpL2 
freQuency coefficient, mr -cy-

freQuency coefficient for uniform shear mode , 

parameter J 2 (1 _ AC ) = 2. 68 
1 _ C2 \ B 

2.04 X 10-3 

bulkhead stiffness parameter , 
G L2 
~ a + b ~ 7.95 

Gab t 

natural torsional freQuency of four~flange box beam 

13 

)

1 /2 

The effective shear modulus of the cross section is determined in 
appendix B of this paper for the test beam and is given by 
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3D 
ab(a + b) 

(A9) 

whe re 

D 

and v is Poisson's ratio. 

• 
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APPENDIX B 

EFFECTIVE SHEAR MODULUS OF CROSS SECTION 

In this appendix the effective shear modulus of a rectangular bent 
is determined. For the analysis, the members of the bent are assumed to 
be plate elements and the corners are assumed to remain right angles. 
The deflections and bending moments due to an applied load P are as 
shown in the following sketch: 

z 

T 
11'<:""-_--_--=""-:;...---.0::0." ~ p 

2a 

I~ 2b Y 

The strain energy for a bent of unit width is 

Pa 
2 

P 
2" 

U = g ra(p~)2d; + glb(pa~)2 d~ = p2a
2

(a + b) 
D Jo 2 D 0 2b 6D 

(Bl) 

where D Et3 
and ~ and are coordinates. In terms of the 

12 (1 - v2) 
angle r and the effective shear modulus of the section Ge , the strain 
energy for a unit width is 

(B2) 

The relation between the angular displacement 1 and the load P 
can be obtained from equation (Bl) by the use of Castigliano's theorem, 
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and their relation is 

2 
l = Pa (a + b) 

6aD 

Substituting equation (B3) into equation (B2) and equating the 
energy expressions from equations (Bl) and (B2) gives the folloWing 
expression for the effective shear modulus of the rectangular bent: 

3D 
ab(a + b) 

(B3) 

(B4) 

For the test beam, the shear stiffness of the cross section is due 
to the truss action of the rectangular bent formed by the tube walls. 
Thus, the effective shear modulus of the beam cross section is given by 
equation (B4). 
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TABLE I 

FREQUENCIES OF BENDING VIBRATIONS 

Calculated frequencies) cps 

Undistorted cross-
Coupled Percent Experimental section theory 

bending-panel difference Mode frequency) 
theory (based on cps Elementary 

Reference 1 (ref. 3) experiment) bending 

Q) ® 0) ® (2) ® 
1 68.7 71.5 70.2 70.2 2.2 
2 184 197 187 183 -·7 
3 342 385 348 328 -4.1 
4 464 638 545 474 2.2 
5 572 953 761 586 2·5 
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TABLE II 

FREQUENCIES OF TORSIONAL VIBRATIONS 

Calculated frequencies, cps 

Undistorted cross- Flexible cross- Percent Experimental section theory section theory (ref. 4) difference Mode frequency, 
(based on cps Elementary Reference 2 Calculated Measured experiment) torsion Ge Ge 

[) ® 0> ® 0) ® (j) 

1 301 376 377 343 316 5·0 
2 404 751 753 539 435 7·7 
3 455 1,128 1,133 627 485 6.6 
4 530 1,501 1,515 706 561 5.8 
5 648 1,880 1,911 825 705 8·9 
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Figure 1 .- Test specimen. 
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(0) First symmetrical mode. 
f= 68 ,7 cps. 

(b) First antisymmetrical mode. 
f= 184 cps . 

I I 
(c) Second symmetrical mode. 

f= 342 cps. 

'S: Z Z 
(d) Second antisymmetrical mode. 

f= 464 cps . 

( 1 
95.72 

(e) Third symmetrical mode . 
f= 572 cps. 
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) I 

/ l I 
~I 

Figure 3. - Nodal pattern for first five bending modes of test beam. 
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p 

I 

(a) First antisymmetrical mode. 
f= 301 cps. 

(b) First symmetrical mode. 
f= 404 cps. 

23 

~ . 
----~ 

(c) Second antisymmetrical mode. 
f= 455 cps. 

\ I \ 

(d) Second symmetrical mode. 
f= 530 cps . 

I 
-- Front cover 
---- Back cover 

P'---:--~ i _/~ :::-~ 
~~ --',L:::;..----..... ,-~-----.;;:~ -~d 

(e) Third antisymmetrical mode . 
f= 648 cps . 

Figure 4.- Nodal pattern for first five torsional modes of test beam. 
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L-87831 
Figure 5.- Photomicrograph of a typical section of corner welds . X7. 
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