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NATIONAL ADVISORY COMMITTEE FOR -AERONAUTICS 

TECHNICAL NOTE 3527	 -dw 7-t^ 

A SECOND-ORDER SHOCK-EXPANSION METHOD APPLICABLE TO 


BODIES OF REVOLUTION NEAR ZERO LIFT 

By Clarence A. Syvertson and David H. Dennis 

SUMMARY 

A second-order shock-expansion method applicable to bodies of revolu-
tion near zero lift is developed. Expressions defining the pressures on 
noninclined bodies are derived by the use of characteristics theory in 
combination with properties of the flow predicted by the generalized 
shock-expansion method. This result is extended to inclined bodies to 
obtain expressions for the normal-force and pitching-moment derivatives 
at zero angle of attack. The method is intended for application under 
conditions between the ranges of applicability of the second-order poten-
tial theory and the generalized shock-expansion method - namely, when the 
ratio of free-stream Mach number to nose fineness ratio is in the neighbor-
hood of 1. 

For noninclined bodies, the pressure distributions predicted by the 
second-order shock-expansion method are compared with existing experimental 
results and with predictions of other theories. For inclined bodies, the 
normal-force derivatives and locations of the center of pressure at zero 
angle of attack predicted by the method are compared with experimental 
results for Mach. numbers from 3.00 to 6.28. Fineness ratio 7, 5, and 3 
cones and tangent ogives were tested alone and with cylindrical afterbodies 
up to 10 diameters long. In general, the predictions of the present method 
are found to be in good agreement with the experimental results. For non-
inclined bodies, pressure distributions predicted with the method are in 
good agreement with existing experimental results and with distributions 
obtained with the method of characteristics. For inclined bodies, the 
normal-force derivatives per radian (for normal-force coefficients refer-
enced to body base area) are predicted within ±0.2 and the locations of 
the center of pressure are predicted within ±0.2 body diameters. On the 
basis of these results, the second-order shock-expansion method appears 
applicable for values of the ratio of free-stream Mach number to nose 
fineness ratio from 0.4 to 2.

INTRODUCTION 

The flow about bodies traveling at high supersonic speeds was inves-
tigated by Eggers (ref. 1). He found that under specified conditions such
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flows could be considered as locally two-dimensional and that they could 
be treated by a generalized shock-expansion method. The application of 
this method to nonlifting bodies of revolution had been given previously 
(ref. 2), and subsequently the method was applied to lifting bodies in 
references 3 and 4 It was found that the generalized shock-expansion 
method accurately predicted the flow about pointed bodies of revolution 
when the hypersonic similarity parameter (ratio of Mach number to body 
fineness ratio) was greater than about 1. This method is, therefore, 
particularly useful in the treatment of flows about bodies traveling at 
relatively large Mach numbers. At lower speeds, the second-order potential 
theory of Van Dyke (ref. 5) has been widely used. (See, also, his hybrid 
theory for slightly inclined bodies, ref. 6.) The application of this 
theory to bodies traveling at large Mach numbers is often limited, however, 
by the restriction that the maximum slope of the body must be somewhat less 
than the slope of a free-stream Mach line. 

The ranges of applicability of the generalized shock-expansion method 
and the second-order potential theory do not always overlap, and there 
remain, therefore, flows at certain combinations of Mach number and body 
shape which cannot be treated by either theory. Normally, these interme-
diate flows are encountered when the hypersonic similarity parameter based 
on nose fineness ratio is in the neighborhood of 1. Since this is a range 
of practical interest, additional theoretical methods are needed. 

Some of this need has been fulfilled recently by the. hypersonic small-
disturbance theory (ref S. 7 and 8). In its present state of development, 
however, this theory has application only to limited classes of noninclined 
bodies of revolution. For example, due to the series form used to repre-
sent the pressure distribution, it cannot be applied to the nose-cylinder 
combinations commonly employed for missile bodies. In large part, then, 
the need for a theory applicable at values of the hypersonic similarity 
parameter near 1 still remains. 

The present report develops a theory intended to fulfill this need. 
This theory is a second-order shock-expansion method. It is developed 
by an iteratipnprocedure whichmplthegeralized method of refer- 
encesihrough # as the first approximation. Expressions e derived 
whih define tI	 son—rion±nc-l-±ned--bodies of revolution. Expres-
sions are also obtained for the normal-force and pitching-moment deriva-
tives at zero angle of attack. Predictions of the method,arp compared 
with those of other theories and with experimental results. 

SYMBOLS 

A	 body cross-sectional area 

AB	 body base area
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B	 function defined by equation (6) 

characteristic coordinates 

CN	 normal-force coefficient, normal force 
iOAB 

Cm	 pitching-moment coefficient, moment about body vertex q0Ad. 

C	 pressure coefficient' 
p - p0 

d	 body diameter 

E	 entropy 

f	 fineness ratio 
(Fineness ratio of the nose section is fn.) 

H	 total pressure 

2	 body length 

M	 Mach number 

p	 static pressure 

dynamic pressure 

s,n	 rectangular coordinates (streamline direction and normal to 
streamline direction, respectively) 

x,r,cp	 cylindrical coordinates (x measured from vertex of body and 
cp from windward meridian) 

center-of-pressure position (measured from body vertex) 

a	 angle of attack 

function defined by equation (12) 

7	 ratio of specific heats (1.400 for air) 

6	 flow deflection angle 

TI	 function defined by equation (9) 

A	 loading (defined by eq. (il-i-)) 

function defined by equation (5)
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IL	 Mach angle (arc sine 1/M) 

V	 Prandtl-Meyer expansion angle 

a	 shock-wave angle 

'ill	 function defined by equation (13) 

ratio of cross-sectional area of streamtube to that at M = 1 
(see eq. (7))

Subscripts 

o	 free-stream conditions 

12 1 34	 conditions evaluated at various points in flow field 

a afterbody 

c quantities evaluated for cone tangent to the body 

s quantities evaluated by generalized shock-expansion method 
method 

v -. quantities evaluated at vertex of body 

a iantities evaluated along downstream face of shock wave 

tcv quantities evaluated for cones tangent to body vertex 

tcx quantities evaluated for cones tangent to body at station	 x

TBEORY 

In the present development of a second-order shock-expansion method, 
attention will be restricted to bodies of revolution. It is recognized, 
however, that the procedure used herein may, in the future, find applica-
tion to other three-dimensional shapes. 

The present method is a refinement of the generalized shock-expansion 
method of references 1 through 	 the surface of a body of revolution, 
immediately behind a corner, the generalized method represents a first-
order solution for the flow and the present method gives the second-order 
solution (see Appendix A). Before proceeding, therefore, it is well to 
orient the present analysis with a review of the approximations involved 
in the treatment of the flow about bodies of revolution with the gener-
alized method. These approximations may be listed as follows (see, e.g, 
ref. 4): (1) Disturbances incident on an oblique shock wave are largely 
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absorbed therein, and hence, reflected disturbances are negligible; (2) 
the flow appears locally' two-dimensional; (3) surface streamlines may be 
taken as meridian lines. In the intermediate range of supersonic speeds 
of interest here, the first approximation is particularly well justified 
(see, ref. 9), and it will not be considered further. As a consequence 
of the second approximation, a solution given by the generalized method 
satisfies the continuity equation only approximately.' Although the con-
tinuity equation does not appear explicitly in the following analysis, it 
is this approximation that is refined by the present method. The third 
approximation is one for bodies of revolution only when they are inclined. 
In the present investigation, only bodies near zero lift will be consid-
ered. Under this restriction to infinitesimal angles of attack, an anal-
ysis has shown that the deviation of true streamlines from meridian lines 
has negligible effect on surface pressures. In the following development, 
therefore, the use of meridian lines as streamlines will be retained. 

Nonlifting Bodies 

The generalized generalized shock-expansion method was developed for nonhifting 
bodies ofrevoIübion from the method of characteristics (ref. 2). This 
development may be summarized with the aid of the equation for the stream-
wise pressure gradient.2

	

ap	 2yp	 1	 P	 '	 (1) 

	

s	 sin 2iis 	 cos tCi 

In the 'generalized method the pressure is considered constant along first-
family MTies (rf s. 1 and )4). As a consequence, the right-hand 
member of equation (1) is approximated by zero, and the equation can be 
integrated to yield the well-known Prandtl-Meyer relation. The objective 
of the present analysis is to refine this approximation to the right-hand 
member of equation (1). To this end, consider the flow about a body of 
revolution which has a pointed nose and over which the flow is everywhere 
supersonic. The problem will be simplified by approximating the profile 

'In the treatment of two-dimensional flows, the first approximation is 
used but continuity is exactly satisfied. 

2This equation can be derived directly from the continuity, momentum, 
energy, and state equations with the aid of characteristics theory (see, 
e.g., refs. 2 and 9). In this form, the equation applies equally well 
for rotational and irrotational flows, requiring only that dE/ds not 
dE/dn be zero.
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of the body with a series of tangents to the original contour (see 
sketch (a)). It might be noted that Ferrari (ref. 10) suggested a similar 
scheme with a body whose profile was made up of chord lines joining points 

Sketch (a) 

on the original contour. While either approximation is permissible, the 
tangent body was selected here so that the conical flow at the vertex 
will be correct regardless of the degree of approximation used downstream 
of the vertex. 

The generalized method gives the exact change in surface pressure 
around the corners of the tangent body but predicts no change along the 

reduces	 hdtermination 
o±the_pressure VH1on aloiEe straight-line elements (teh)). 

I__L. •?___ 

Sketch (b)
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For simplification, the derivative, /c 1 , will be approximated with a 
difference equation; thus, along the straight-line element, equation (1) 
may be written (since	 /s = 0)

AP 2 .f tCicos 

where ip is the net change in pressure along Mach lines emanating fom 
the surface and AC, is the corresponding length. This equation will be 
solved by an iteration procedure based on the solution given by the gen-
eralized method. As previously noted, with the generliedmthod the 
flow is considered to-dimensional and, consequently, nopressure change 
is redicted along streamlines between the expansion fans at either end 
of the straight section. While this approximation may be appreciably in 
error for the surface streamline, it is apparent that the real flow will 
appear more nearly two-dimensional at large distances from the body axis. 
It is reasoned, therefore, that a streamline, well removed from the axis 
(line AB in sketch (b)), can be found along which the pressure will also 
be constant to the accuracy required here. 3 For all Mach lines (such as 
CD) emanating from the straight surface then, the pressures at the points 
of intersection with this streamline will be equal. The term, L.p, in 
equation (2) therefore can be written as k1 -p, where k1 is a constant 
and, of course, p is the y ryjng urac	 sure. The generalized 
method also prescribes that the length (from the surface to streamline ADB) 
and inclinations of all Mach lines will not change when the surface is 
straight. The term, LC 1cos p., therefore canbe represented by a second 
constant, 1/k2 . Equation (2) thus may be written 

= kk1 = p) 

which can be integrated to yield

	

V	 '\ -k2s 

	

= '3	 ---	 (3) 

where k3 is the constant of integration. This analysis serves to 
establish the form of the equation representing the pressure distribution 
on an element of the tangent body. 4 It remains now to evaluate the three 
unknown constants in equation (3). Three known conditions can be employed 

3Examination of characteristic solutions for the flow about cone-




cylinders indicates that the pressure variation along streamlines, a moder-




ate distance from the surface, is markedly less, than that along the surface. 
41t might be noted that Ebret, Rossow, and Stevens (ref. ii) found 

that pressures on ogives correlated according to the hypersonic similarity 
law could be represented approximately by an exponential function of' 
distance.
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for this purpose. First the pressure, just downstream of the corner, P2, 
can be calculated exactly from the Prandtl-Meyer equations if the pres-
sure, P1, and the Mach number, M 1 , upstream of the corner are known. 
Second, the pressure gradient just downstream of the corner may be cal-
culated from the results given in Appendix B. The expression defining 
this gradient is	 - 

	

sir	 + B2 ill[); Ai()] + A2(
	

(1i) 

where	
(o
	

j	
=
sin 2
	 (5) 

B-	
ypM2 

- 2(42 - 1) 

and a is the one-dimensional area ratio or.

7+1 

r	 -	 2(7-1) 
1, 
+ (_2 

M2 

OL	 6VO	 M	
Y + 

2 

For the third condition, it is apparent that the pressure on the element 
shown in sketch (b) would approach some limiting value if, rather than 
ending at point 3, the element were extended as indicated by the dashed 
line. If the element were considered to be infinitely long, so as to 
form an extended conical surface, then the only effect the region ahead 
of point 2 will have on the flow at infinity is to form an infinitesimally 
thin layer near the surface across which the entropy varies. It can be 
demonstrated, however, that there is no pressure change through this layer 
and that the flow outside the layer is conical. Consequently, the limiting 
pressure is simply, PC' the pressure on a cone tangent to the original 
body at the same point as the element shon in sketch (b) (and, of course, 
traveling at the same free-stream Mach number). With these three condi-
tions, the three unknowns in equation (3) may be evaluated and there is 
obtained

Pc - (p - p2 )e	 (8)

(6) 

(7)
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where

- 

	

(p\\ - X2 	 (9) 
-	 (Pc - p2 )&os	 2 

It is apparent that, in order to apply equation (8), the pressure 
(and Mach number) on the surface of	 These 
quantities may be determined from the results of reference 2 or reference 
12. For convenience, the curves shown in figure 1 have been plotted from 
the results of reference 12. 

By application of equation (8) on successive elements, the pressure 
distribution on the tangent body can be determined. In particular, the 
pressure at each of the points of tangency may be calculated and appfld 
to the original body.. The procedure is as follows: First, the elements 
of the tangent body are selected and the coordinates )—of each corner 
determined, The first element is tangent to the body at the vertex, and 
the flow over this element is thus conical. For the first corner, then, 
the pressure, Pi, and the Mach number, M1 (see, sketch (b)), are the same 
asfthevertex of the original body. The pressure,	 and the Mach 
number, M2, may then be determined with the Prandt1-Me	 equations The 
pressure gradient, (6p/6s)  may be determined from equation (14) since, 
for the first corner, op/g,  is zero. The tangent-'cone pressure, Pc, 
may be obtained from reference 12 or figure 1. With the various fac 
in equation (8) thus evaluated, the pressure at the tangent point and at 
point 3 (see sketch (b)) can be calculated. In like manner, the pressure 
gradient at point 3 can be determined by differentiation of equation (8), 
or

-

	

(PC - p\	 (10) 

	

- 
Pc -P2)	 '2 

With the pressure and pressure gradient at point 3 known (the Mach number 
may also be calculated from the pressure in the usual manner), the factors 
in equation (8) may be determined for the next element. This process is, 
of course, repeated for each element of the tangent body. 

The procedure just described is not difficult to apply; however, fur-
ther simplification can be obtained by the use of ao_rdp" tangent 

This body consists of a cone tangent to the original body at the 
vertex and a conical surface tangent to the body at the station where the 
pressure is to be calculated. With this two-step body, the second surface 
is a variable depending on the station in question on the original body. 
For this approximation, equation (8) becomes

1f 

P = Pc - (Pc - p 5 )e	 (U)
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where

xsin - rcos
(12) r Cos B-x sin 8 

B sin =
- (13) 

(	 - PS) k\95 sin, Ilv

The subscript, 5 denotes quantities at the station on the body as eval-
uated by the	 With equation (ii) it 
is possible to obtain, very rapidly, a first approximation to the pressure 
distribution. 

The second-order shock-expansion method has been developed to'Predict 
the pressures on a noninclined body of revolution. In the following séc-
tion this method will be extended to lifting bodies. 

Lifting Bodies 

For inclined bodies of revolution, a second-order shock-expansion 
method would involve not only a revised expression for the pressures, but, 
in addition, a revised approximation to the shape of the surface stream-
lines. It is recalled from the results of Eggers (ref. 1) that, according 
to the generalized method, surface streamlines may be approximated by 
goedesics. For bodies of revolution, Savin (ref. 3) noted that the per-
tinent geodesics are simply meridian lines. While this result is exact 
for noninclined bodies of revolution, it is only an approximation in the 
case of inclined bodies. A refined approximation corresponding to a 
second-order method undoubtedly could be obtained by graphical integration 
of the momentum equations employing the pressure distribution given by the 
generalized method. However, it seems at present that this procedure would 
involve extensive calculations. If attention is restricted to bodies near 
a. = 0, it can be demonstrated that the deviation of the true streamlines 
from the meridian lines will not influence surface pressures. The approx-
imation of meridian lines as streamlines can, in effect, be retained and 
relatively simple expressions can be obtained, therefore, for the initial 
slopes of the normal-force and pitching-moment curves. To this end, the 
expression for the normal-force derivative can be written5 

dCN 2v

---=_-j Ardx
	 (iii.) 

dm AB  

5The subscript, a = 0, has been omitted for simplicity of notation. 
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where A is the noñdimensional loading on a thin disk normal to the body 
axis and having unit radius. This loading A is given by the equation 

A 2	 '	
p d(p/po) cos	 dcp	 (is) - 72 f 

0 

The problem then is to evaluate d(p/p0)/da.. The development given pre-
viously which led to equation (3) also applies to bodies at infinitesimal 
angles of attack. Equation (8) also applies; however, the variables in 
thi s equation must be	 idèds dependent on angle of attack. By 
differentiation of equation (8), there is obtained 

d(p/p0) - (1 - e) d(p/p0) + eT d(p2/p0) + (p - 	 - dr 

	

p)e -	 (16) dct -	 dct	 dm	 C	 2	 dm 

This equation must satisfy the condition d(p/p0) d(p2/p0)d	 =	 at T = 0 
(i.e., x = x2 ). By the application of this condition to equation (16'), 
the last term (involving dT/d.1) is eliminated. 6 The term, d(p2/po)./dm 
may be evaluated with the aid of the Prandtl-Meyer equation 

d(p2/p0) - 7\2 d(p i/P0 )	 Pi 1 d ( Hi)1	 p2 1 d(H2) 
d.ct [ dm (11) 

Fern (ref. 13) has shown that the entropy (and hence the total pressure, 
H) on the surface of an inclined cone is constant (independent of cp). 
When equations (15), (16), and (17) are combined, then, the integrals of. 
the terms involving . d111/dm and d112/dcL will be zero (since fcos p dcp=0). 
Equation (15) may therefore be written 

e)  A	 d(P/p0) +	 d(p.1/p) ]cos p dcp	 (18) 

	

= yMO2 Jr 
[(1 -
	 dm	 i	 da. 

0 

The only terms in equation (18) that are functions of p are d(pc/po)/da. 
and d(pj./p0)/da.. These two terms may be evaluated in terms of the normal-

dCN 
force derivative of the tangent cone, - 	 tcx' and in terms of A1 . After 
performance of the necessary manipulations, there is obtained 

SThis result indicates that the lifting pressures at small angles of 
attack vary in a manner analogous to that of the pressures at a. = 0.
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dCNI	
eA1	 (i9) da 

A = (1 - el)(tan b)	
+ 

It is apparent from equation (19) that dCNjdm for cones must be 
known before the loading A can be evaluated. Fortunately, results for 

and have been plotted for convenience 
in figure 2. The loading, A, may thus be calculated in the same manner 
as the zero-lift pressures. In this case, A 1 , for the first corner is 

simply (tan v) dCN
 ltcv*

As before, a first approximation to A can be obtained with the 
two-step body. This approximation gives 

A = (1- e'V)(tan	 + !.eta	
dCNI

 dct Itcx	 7'v	
öv 
	

(20) 

In Appendix C, it is shown that equation (20) leads to very simple results 

With the loading, A, known, the normal-force derivative may be eval-
uated by integration of equation ( lii). In like 'manner, the pitching-
moment derivative can be determined from the equation7 

dCm-2it 

da
Arxdx	 (21) 'Bad 

0 

A second-order shock-expansion method for bodies of revolution has 
been developed to predict the pressure distribution and the normal-force 
and pitching-moment derivatives at a = 0. The results are relatively 
simple in form and may be applied to a given body with only a moderate 
amount of computations required. Simplified expressions based on an addi-
.tional approximation have also been presented which further reduce the 
amount of work required. It should be noted, however, that open-nosed 
bodies and pointed bodies which produce shock waves other than the one at 
the vertex require special forms of the method. 8 The necessary equations 

7The contribution to the pitching moment of the variation in local 
axial forces with angle of attack is small for slender bodies (see 
ref. 15) and will be neglected throughout the present analysis. 

81t may also be noted that boattailed bodies present a special problem 
dCN 

since neither Pc nor

	

	 tcx is defined in this case. In practice, how-
ever, it has been found by comparison with results given in reference 16 

dCN 
that the use of 	 = p0 and ----	 = 2 gives reasonable results for 

bodies having moderate amounts of boattail.
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for these cases are contained in Appendix B. In addition, there are 
several restrictions on the present method which should be mentioned. 
First, it is apparent that if the exponential variation of the pressures 
is to be valid, then the pressure gradient just downstream of the corner 
must have the same sign as the pressure difference, p - p 2 . This condi-
tion is given by	 ^: 0 in the general case and by i 2: Oför the simpli-
fied method. There is an additional restriction on the simplified method, 
and that is that the two-step bodies must be real bodies, (i.e., the 
intersection of the two tangent lines must not occur at negative values 
of x or r). This condition is given by 0 ^: 0.  
all equations reduce to those given by the generalized shock-expansion 

It remains, of course, to determine the accuracy of the second-order 
shock-expansion method and to define its range of applicability. There 
are sufficient data available, both from experiment and from character-
istic solutions, with which the predictions of the method for zero-lift 
pressure distributions can be compared. However, for the case of lifting 
bodies,sufficient data are not available, and for this reason, the exper-
iments next discussed were conducted. 

EXPERIMENT 

An experimental program was conducted to determine the initial slopes 
of the normal-force curves and the centers of pressure for a series of 
nose-cylinder combinations. The tests were designed, of course, to permit 
a check on the accuracy of the predictions of the second-order shock-
expansion method just developed. It is recalled that the method is 
intended for application at values of the hypersonic similarity parameter, 
MO/fn in the neighborhood of 1. The tests cover a range of M0/fn from 
0.3 to 2.09.

Apparatus and Tests 

The tests were conducted in the Ames 10- by 14-inch supersonic wind 
tunnel at Mach numbers of 3.00, 11.24, 5.05 and 6.28. For a detailed 
description of this wind tunnel and its aerodynamic characteristics, see 
reference 17. Normal forces and pitching moments for the test models 
were measured with a strain-gage balance. The balance consisted of a model 
support sting on which the moments were measured at four points. From 
these four measurements, the normal forces and centers of pressure were 
determined and checked. Measurements were made at nine angles of attack 
from -20 to +40 at each test Mach number. At each angle of attack, the 
values of /d and Cu/a were calculated. These values were plotted as 
a function of, angle of attack and the intercepts at a = 0 of the result-
ing curves gave the values of dCN/da and :c/d at c = 0.
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Wind-tunnel calibration data (see, ref. 17) were employed in com-
bination with stagnation-pressure measurements to obtain the stream 
dynamic pressures. Reynolds numbers based on the maximum diameter of the 
models were

Mach number	 Reynolds number, million 

	

3.00	 0.79 
.72 

	

5.05	 .35 

	

6.28	 .15 

Models 

Cones and circular-arc tangent ogives of fineness ratios 7, 5, and 
3 were tested alone and with cylindrical afterbodies having lengths of 
2, 4, 6, and 10 diameters. The models were made of polished steel and 
each had a base diameter of 1 inch. 

Accuracy of Test Results 

Stream Mach numbers in the region of the test bodies did not vary 
more than ±0.03 from the mean values at Mach numbers up to 5 .05 . A maxi-
mum variation of ±0.05 existed at the highest test Mach number of 6.28. 

The accuracy of the test results is influenced by uncertainties in 
the measurement of moments and in the determination of the stream dynamic 
pressure and angle of attack. These uncertainties resulted in estimated 
maximum errors in the normal-force derivatives and centers of pressure as 
shown in the following table: 

M0 dCN/da. /d 

3.00 ±0.15 ±0.10 
4.24 ±.15 ±.10 
5.05 ±.20 ±.15 
6.28 ±.25 1	 ±.20

It should be noted that, for the most part, the experimental results 
presented herein are in error by less than these estimates. 
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RESULTS AND DISCUSSION 

Nonlifting Bodies 

The second-order shock-expansion method has been developed primarily 
to treat flows characterized by values of Mo/fri near unity. Accordingly, 
the method has been employed to obtain 
tions at Mo/fn = 1 for several different body shapes. 9 The results are 
shown in figure 3 along with distributions obtained with the generalized 
shock-expansion method (ref. 2). Distributions obtained with the method 
of characteristics (refs. 11, 18, and 19), which are considered to be 
exact, are also shown. It is apparent in figure 3 that the	 method 
provides an improvement over the generalized method. The differences in -	 ---.-
the distributions obtained with the present method and those obtained 
with the method of characteristics are almost indiscernible. 

In figure 3(c), comparison is also made with the predictions of the 
hypersonic small-disturbance theory (ref. 8). The curve shown was cal-
culated by three terms of a power series representation of the pressure 
distribution. As noted in reference 8, additional terms will be required 
before this method will accurately predict the pressures on an ogive. 
Even when the additional terms are obtained, however, it seems unlikely 
that the small-disturbance theory will provide a more accurate estimate 
of the pressures than provided by the present method for the case shown. 
The small-disturbance theory does have a certain advantage in simplicity 
for, if the coefficients of the series expansion are known, the pressure 
d.istrib'ution can be calculated very easily. This advantage is partially 
offset by the restriction that the series method requires the body profile 
to have continuous derivatives up to the same order as the number of terms 
used in the series. With this restriction, the theory.cannot be applied 
beyond the nose-cylinder juncture of the body (fig. 3(c)). 

To investigate the accuracy of the present method at values of Mo/fn 
other than 1, the comparisons shown in figure 4 have been made. Here, 
the predictions of the present method and those of the generalized method 
are compared with experimental results for fineness ratio 3 and 5 tangent 
ogives at Mach numbers of 3.00, 4.24, and 5.05.10 The values of Mo/fn 
range from 0.60 to 1.68. The experimental results were taken from ref er-
ence 3 . For all cases shown, the predictions of the present method are 
within the accuracy of the experimental data. It is also apparent that 

91n all applications of the present method to curved bodies, the 
tangent bodies employed were formed by elements tangent	 G^uiginal 
bodies atations x/ln = 0,	 The tangent-body 
approximation is required only if the body profile is curved since for 
cone-cylinders, and for the cylindrical section of any nose-cylinder com-
bination, the present method yields results in closed form. 

1°For some of the cases shown in figure i-i-, the semiempirical methods 
of reference 20 maybe used.
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the predictions of the present method tend to approach those of the gen-
eralized method as M0/fn becomes appreciably greater than 1. At 
Mo/fn = 1.68 (fig. )#(f)), for example, the predictions of the two methods 
differ only slightly. 

In figure 4, comparison is also made with the second-order potential 
theory (ref. 5) for conditions where this theory is applicable (i.e., 

= 0.60 and 0.85) . It is somewhat surprising that the present method 
is as accurate as the second-order potential theory even at the relatively 
low value of Mo/fn of 0.60. 

The results presented in figures 3 and 4 indicate that the present 
method fulfills its intended purpose by providing an estimate of the 
pressures on noninclined bodies of revolution for values of Mo/fn near 1. 
At values of Mo/fn as low as 0.60 the present method provides results 
comparable in accuracy with those obtained with the second-order potential 
theory. . At values of Mo/fu approaching 2, the predictions of the present 
method and those of the generalized shock-expansion method differ only 
slightly. It remains now to investigate the applications of the method 
to inclined bodies.

Lifting Bodies 

The experimental results obtained in the present tests are given in 
tables I and II. Predictions of various theories are also tabulated. 
These include the predictions of the present method (with various approxi-
mations), the generalized shock-expansion method (ref. 3), first-order 
potential theory (refs. 6 and 21), Van Dyke t s hybrid potential theory 
(ref. 6), and Newtonian impact theory (see, e.g., ref. 22)." With the 
exception of the two potential theories, all theories have been applied 
throughout the entire range of test variables. The potential theories 
cannot be employed, of course, if the free-stream Mach angle is less than 
the body semivertex angle. 

Normal-force derivative. - The experimentally determined normal-force 
derivatives and the predictions of the various theories 12 for the bodies 
tested are shown in figures 5(a) through 5(f). In general, the present 
method predicts the normal-force derivatives at zero angle of attack 

11Solutions with the second-order potential theory employed in the 
application of the hybrid theory were obtained with the aid of refer-
ence 23. (Additional results obtained with the first-order and hybrid 
Potential theories and with Newtonian impact theory may be found in ref-
erence 24.) 

12 Curvesfor the first-order potential theory are not shown in fig-
ure 5 since, in all except a few cases, the predictions of this theory 
did not differ significantly from those of the hybrid potential theory 
(see tables I and II).
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essentially within the accuracy of the data (within about ±0.2) through-
out the entire range of test variables. In addition, the present method 
appears to provide the most consistently accurate results of all the 
theories presented in figure 5. The accuracy of the method at low values 
of Mo/f n can be explained partially by examination of the predictions 
of the method for the limiting case of very slender bodies. In this 
limit, it can be shown from equations ()#) and (9) that the term, i, 
approaches infinity. From equation (19), then, the loading, A, may be 
written

L

2 tan = 2	 (22) 

sincetcx = 2 (see, fig. 2). With the substitution of this equation 
cui  

in equation (ii-), there is obtained

2 P2dA dx	 (23) 
da.	 AJ \ dx 

0	 0 

This result is, of course, the well-known prediction of slender-body 
theory, which is known to be accurate for slender bodies at low supersonic 
speeds. Thus, the accuracy of the pr ent_mehod.aL1oyalues of 
can be attributed, in part, to the fact that it reduces to_sIiid'ërbody 
tii—thnit:  

From the results given in figure 5, several observations can be made 
concerning the accuracy of other theories. For example, it might be 
expected that the potential theories would be more accurate than the other 
theories when the parameter JMO2 - 1 tan 5v is appreciably less than 1. 
For the fn = 7 cone at Mo = 3 (fig. 5(a)), however, this parameter is 
only 0.20, and yet, for the longer a±terbodies, the hybrid potential theory 
is appreciably more in error than the present method. As found in ref-
erences 2 through 4, the generalized shock-expansion method, gives accurate 
results when M0/f is greater than about 1. Caution should be expressed 
here, however, for the significant parameter is truly M 0/f and not 
Mb/fn- The results shown in figure 5 indicate that although Mo/fn may 
be appreciably greater than 1, for cases where the afterbody is suffi-
ciently long to reduce Mo/f below 1, the predictions of the generalized 
method may depart appreciably from the experimental results. In general, 
impact theory gives acceptable results only for nose sections without 
afterbodies. 

Center of pressure.- The experimentally determined centers of pres-
sure and predictions of the various theories for the bodies tested are 
presented in figure 6. The present method predicts the location of the 
centers of pressure essentially within the accuracy of the data (within 
about ±0.2 body diameters) throughout the entire range of test variables.
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In addition, the present method again provides the most consistently 
accurate results of all the theories presented. In general, all observa-
tions made previously regarding the reliability with which the various 
theories predict the normal-force derivatives can also be made in the 
case of the centers of pressure. 

Ranges of applicability. - Several parameters are useful for defining 
the ranges of applicability of the various theories. The ranges of these 
parameters covered by the present tests are shown in the following table: 

Parameter Range 

MO 3.00 to 6.28 
f 3tol7 
fn 3to7 
fa 0 to 10 
M0/f 0.18 to 2.09 

o.43 to 2.09 

..,JMo2 _ltan 5v 0.20to2.12

The second-order shock-expansion methbd was found to be applicable 
throughout the ranges of variables shown, in the table. Both dCN/dcL and 

were predicted within ±0.2. The present tests did not reveal the 
limits of applicability, of the methoIt was indicatedflowever, that 
the method may apply to relatively low values of M0/f' (or NiMO2-1 tan ), 
since, in the limit of very slender bodies, the method reduces to the 
well-known slender-body theory. The upper limit of the method is dictated 
by the condition specified in the development - namely, i ^: 0 (see 
eq.' (8)). Calculations have revealed that this condition will be violated 

if .JMo2_i tan 6v is appreciably greater than 2.5. 

The present tests also reaffirmed the conclusion given in references 1 
through -l-, that the generalized shock-expansion method is applicable when 
M0/f is greater than about 1. At values of M0/f appreciably greater 
than 1,, no significant differences between the predictions of the general-
ized and second-order methods were found. The ranges of applicability of 
these two methods overlap and thus include most flows about pointed bodies 
of revolution throughout the intermediate- and high-supersonic speed 
ranges. 

Application of the potential theories is, of course, limited by the 
condition that ..[Mo2_l tan 6v must be less than 1. Even at the lowest 
values of JMçj2rl tan 5v covered by the present tests, however, neither 
the first-order nor the hybrid potential theory ws found to provide con-
sistently accurate predictions of dCN/dc or /d. The calculations per. 
formed also revealed no si gnificant differences in the predictions of the 
two theories at values of Jic 2_l tan 5v less than about 0.7. 
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Approximations of the Present Method 

As noted in the development of the present method, a simplified solu-
tion for bodies with curved profiles can be obtained by the use of a two-
step tangent body. This approximation has been applied to the ogive-
cylinders of the present tests. By the use of additional approximations 
to the loading, A, the simplified solutions for a,/and /d can be 
obta-inedin closed form as discussed in Appendix C. Examplesof the 
accuracy of the approximate solutions are shown in figure 7. While the 
approximate methods do not yield results so consistently accurate as those 
obtained with ,a more complete solution, the approximate methods may still 
be useful to obtain rapid estimates of dCN/da, and /d. In this connec-
tion, these quantities can be estimated for ogive-cylinders in a very 
few minutes with the aid of the results given in Appendix C. 

CONCLUSIONS 

A second-order shock-expansion method applicable to bodies of revolu-
tion near zero lift has been developed. For noninclined bodies, the pres-
sure distributions obtained with the method were, compared with existing 
experimental results and with the predictions of other theories. For 
inclined bodies, the normal-force derivatives and centers of pressure at 
zero angle of attack determined with the method were compared with the 
•predictions of other methods and with experimental results. Cone- and 
ogive-cylinders with fineness ratios from 3 to 17 were tested at Mach 
numbers from 3.00 to 6.28, corresponding to a range of values of the 
hypersonic similarity 'parameter based on nose fineness ratio (i.e., the 
ratio of free-stream Mach number to nose fineness ratio) from 0.43 to 
2.09 . These comparisons led to the following conclusions: 

1. For noninclined bodies, the present method predicts the pressure 
distributions within the accuracy of experimental results. At values of 
the hypersonic similarity parameter based on nose fineness ratio as low 
as 0.6, the present method is as accurate as , the second-order potential 
theory. At values of the parameter approaching 2, the predictions of 
the present method differ only slightly from those of the generalized 
shock-expansion method. 

2. For inclined bodies, the normal-force derivatives and the loca-
tions of the center of pressure at zero angle of attack predicted with 
the present method are in good agreement with the experimental results 
throughout the entire range of test variables. Within this range, the 
present method yields results more consistently accurate than those of 
other available theories. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Oct. 12, 1955
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APPENDIX A


POWER SERIES REPRESENTATION OF FLOW ABOUT BODY OF REVOLUTION 

The accuracy of the present method has been demonstrated by compar-
isons made over a wide range of flow parameters. It is also informative, 
however, to examine briefly the mathematical accuracy of the method. For 
this purpose, the model shown in sketch (c) is useful. From the vertex 

Sketch (c) 

to point 1, the body is conical. Between points 1 and 2, the surface is 
deflected by a small angle, e. At any point downstream of point 1, the 
physical deviation of the body from a conical surface may be given in 
terms of the angle, €, and the distance, As, measured from point 1. Simi-
larly, flow parameters at any point downstream of point 1 may be expressed 
in terms of € and As. Before developing such an expression, it should 
be noted that for this model (and within the restriction that the flow is - -.-----.-------------.----. -.- - 
ever hene personic.) the prë method provides an exact solution for 
tsurface flow in several limits. For example, the present method is 
exact for all values of As when € = P. For As = 0 and As -4co, the 
method is exact for all values of €. For arbitrar r values of As and e, 
of course, the present method is not exact. However, the general accuracy 
of the method can be demonstrated by expressing flow parameters in the 
form of a Taylor series in the two independent variables, € and s. The 
dependent- variable used to define the flow may be any one of several param-
eters. Pressure and velocity are among those most commonly used. In the 
present analysis, however, the Prandtl-Meyer angle, v, is considered the 
dependent variable. It should be recognized that the value of the Prandtl-
Meyer angle, at a point will define the Mach number, pressure, velocity, 
and other such parameters. We have then the series
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V = Vl+() (As) 

th- [v)()2 
+ 2()(As)(€) ^.)(€2)] + 

L (A)3 +3(2) (A)2() +3(2) ()(2) 
1 1

(Al) 
Each of the derivatives is evaluated at As = € = 0. When € = 0, it is 
apparent that the flow parameters are constant along the surface and 
independent of s. Therefore, all derivatives with respect to. s alone 
are zero. When As = 0, it is also apparent that (v/) j = -1 and that 
all higher derivatives with respect to 5 alone are zero. We have then 
the problem of 2evaluating the cross derivatives. The second-order cross 
derivative, (6 v/es ), may be evaluated with the aid of equation (Bill.), 
from which (v/s)2 may be determined namely, 

=	

-	 - 1	
sin	 - sin 2)	 (A2) 

It is also apparent that
___ 
s	 =	

(A3) 

in the limit as 62 	 Hence, by virtue of equation (A2), 

=	 -cos 5	 [(Ml2i tan i) - 1]	 (All.) 
5	 i 2rj M1 - 1 

As noted in Appendix B, equation (Bill-) is not an exact solution for the 
pressure gradient. It can be demonstrated, however, that equation (A2) 
is accurate to the first order in E7 and hence, equation (A ll. ) is exact.' 

11n the derivation of equation7B14a term, 

r5	 1	 (ds 

2 cos 2 J T cos \C1) b 

was neglected (see eq. (Bn)). In the present analysis, both3p/3c, 
and the interval of integration, (5 5 - s 4 )/b (see sketch (d.)), are of 
order €; hence, the neglected term is of order €2.
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With the substitution of equation (A I-) in equation (Al), and with the 
application of the other results previously noted, there is obtained 

cos 61	
[uMi2 V = Vi - € -	 - 1 tan o) _l]()(€) + ________ 

2r1 JM12 - i L 

0[(s) 2 (€) , ()()2]	 (A5) 

The generalized shock-expansion method of references 1 through 4 gives 
the IeJft v =v1 - e. The_generalized method giyesthe Prandtl-
Meyer angle_mathernaticafly accurate to the fist order of the independent 
variable,s € and Ls arid, therefore, immediately downstream of the corner, 
gives first-order solution for the surface flow. The present method 
addsthe coefficient of the term involving (s)(€) in equation (AD) arid, 
hence, gives the Prandtl-Meyer angle mathematically accurate to the second 
order of the independent variables € and.Ls. In general, therefore, 
immediately downstream of the corner the present method gives a second-
order solution for the surface flow, and therefore, it has been termed 
the second-order shock-expansion method. 

The foregoing analysis considered only expanding flows about the 
corner. If € is positive, then the shock wave emanating from the corner 
must becôiisidered. The result obtained is essentially the same, however. 
For positive € a term of Q(€3) must be added to equation (AS) to account 
for the difference between the Rankine-Hugoniot equations and the Prandtl-
Meyer equations. Alternately, the term, -€, in equation (A5) can be 
replaced with the change in Prandtl-Meyer angle between points 1 and 2 
as given by the Rankine-Hugoniot equations. The second-order term in 
either case is identical, however, as equation (A4) may also be obtained 
by differentiating equation (B21). (It may also be obtained by differenti-
ation of the exact pressure-gradient equation, eq. (B18).)
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APPENDIX B 

EVALUATION OF PRESSURE GRADIENT DOWNSTREAM OF CORNER OF BODY 


OF REVOLUTION 

Convex Corner 

Along a streamline in axially symmetric flow the following relation 
holds (see eq. (i)) 

Lp -	 = i	 P = 	 sin t sin 

	

cos	 cos i	 +	 r	 )	
(Bi) 

From this equation, we may also write

(B2) '( 5p
s	 S) 

- = cos 

and
= - sin i sin 6 - cos 

(E. -	 ( B3) 
r	 -	 7\	 s) 

Consider now the flow in the region of a convex corner on a body of 
revolution as shown in sketch (d). Between points 14 and 5, we may write, 

Sketch (d)
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from equation (Bi)

5 p P dp -
	 -	

= [5 -1	 (2J'\ ds	 (Bk) I T A CO5 11 	 61) 

If points 4 and 5 are near to the surface, equation (Bi-) may be approxi-
mated by

2fp 

dp P5 P2 P4 - Pi /	
1 A +	 A2 -______ --

	
= I

5 

A	
ds 

P1	 4

(B5) 

Since the flow between points 1 and 2 is strictly of the Pran&tl-Meyer. 
type,

P2 dp
V2 F)2 61 r T (B6) 

pi 

We may also write from equations (B2) and (B3) 

PS - P2 - J	
\.\ 
b 

= cos 2 

	

A2 	 - A2 c 1)2	 A2 L )2 - 
A2()1b	 (B7) 

P4 - Pi	 1fP'\a = cos 

A1 - A1 c 1)	 A1 [) - A
1(	 1a	 (B8) 

	

5 5 = 2 + (.)b	
sin i2sin 2	 CO5 F-2 '7'P'\

'3 b'^ ] b bT 
A2 

2	 ^76S)2	 ^OS)2

(B9) 

sin t,sin 6 1	 Cos 41 
54 = 1 + _a =	 -	 a - A1	

-

(Blo)



a - (sin I-'2"\ 

- \\sin i i) 922
(Bl3) 
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When equations (B6) through (BlO) are substituted into equations (B5), 
there is obtained 

r ,-.. 2 cos 2 (cip	 - A2('	
lb - 2 cos I'i [

	
-	 ) Ai- la + 7'2	 [s)2	 S)2] 

sin p2sin 52 	 sin Iiisin 61	

f5	 ds 
r	 r a=

7cosiCi) 
4	 (En) 

If it is assumed that a first approximation tO the flow is given by the 
generalized shock-expansion method, then the right-hand member of equa-
Lion Equation (Bil) may thus be writtez 

4 
- 2

2 

__ 
2r Cos	 2

^) [(a sin p.1sin 5 1 - sin p.2sin 
52

1
+

cos 41 (7\2'\ "a\r/p'\ 
2	 [ ) ))	

A1()]	 (Bl2) 

In the limit as the streamline between points 14 and 5 approaches the 
surface, the ratio, a/b, may be evaluated in terms of the one-dimensional 
area ratio

With the substitution of equation (B13) into (B12), there is obtained 
after combination of terms 	

S
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( )2 P6S)2
 

where

=	 (;1 sin ö	 sin 2)

 

B2 +I 	 [	 11 

(Bill)

LI 

B-	
7pM2 

2(M2 - 

and, of course

2yp 
sin 2

(B17) 

(B16) 

(7+1) 
0' - 1)	 2(7-1) 

1±
2	

M 

(7+1. 
2.

6^ 
U,
	

-

(B17) 

Equation (B1) represents only an approximate evaluation of the 
pressure gradient. More exact evaluations may be found in references 10 
and 27. These more exact results, of course, require numerical or graph-
ical integration.

Concave Corner 
------

In most cases, the tangent bodies used in the application of the 
present method will have convex corners. There is a possibility that 
concave corners may be enñItered. In the event that the original body 
does not have sharp concave corners, equation (Bl li-) will still suffice 
since the flow along the surface is still isentropic. However, if the 
original body does have sharp concave corners, then the pressure gradient 
for this case will also be required. This result can be obtained in the 
same way as equation (B14); however, the shock wave emanating from the 
cornermust be considered after the manner described in reference 9. The 
expression defining the pressure gradient in this case is
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In these equations, a is the shock-wave angle with respect to the body 
axis, and (H/n)u is the variation of the total pressure normal to the 
surface just upstream of the shock wave. The subscript, u, refers to 
conditions upstream of the shock wave, and the subscript, d, refers to 
conditions downstream. Equation (B18) represents the exact solution in 
the usual sense. All effects of the interaction between shock waves and 
Mach waves are therefore included. In order to be consistent with other 
parts of this analysis, these effects should be neglected. In addition, 
since equation (B18) is intended for application to a tangent body, the 
body curvatures, (/ s )u and (ö/s)d, will be zero. It may also be 
noted that the fii	 step-of the tangent body is aone tangent to the 
vertex of the original body. For this approximation then, there will be 
a small layer near the surface of the tangent body for which (H/n) = 0. 
With these approximations applied to equation (B18), a simplified result 
can be obtained which will suffice for the present purposes. 

tan 11d	 1	 2Bd rs 'n ( - 8u) in 5u 

()d[ - tan( - d)i = r [	 sin( - d)	
- Sin 5dl + 

/	 j 

f/p\\\ r

	
sin( - u) +	 - F) 

\ cos(a - 5u)tan -d 

sin( - d)	 Pu	 /	 sin(a - öd)	 I 
(B2l) 

For a body with a concave corner, a special form must also be used 
for the loading.	 Just downstream of the corner and before the first 
'convex) corner

dCN
Pd 

A	 (1 - e)tan 6
+(:F
	 eAu\ (B22) 

dcLtcx Pu	 I 

and, thereafter, 

A = (1 - e)tan	
Lcx

e1A1 +	 -	 GAu (B23)?
da 0	

0)

where

F [M2sin2( -	 - 1]2 
G = (B2) 

(Pd/Ps ) [(7 - l)Mu2sin2 ( - + 2 ] Mu2sin2 (	 -
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The corresponding equations for open-nosed bodies of revolution are 
similar. The pressure gradient at the leading edge may be determined 
from equation (B21) with Mu = M0 , bu = 0, and ( p/ s )u = 0. The loading 
on the exterior surface is given by

7p2 A P1\ 
A = (1 - e)tan

	

	 +	 e1A -	
- - ) JA
	 (B25)


da ttcx A1qP0

where Av is the loading at the leading edge, or 

Av	
4sin	 O\r

II "\ cos(av - öv)1 =	 r	 sin(v -	 )cos(v -	 +	
+ i) Mo2sin2av i 

(y + l)[l -
	 sin vc05 a

(B26) 

and J is defined by

(
2. 

Mo	
2 'v - 1)2


J =	 (B27)


( pv/ po)Mo3sin3 v[(7 - 1 )MO2sin2 o + 2] 

For bodies with concave corners, and for open-nosed bodies, the total 
pressure is not constant on the surface when.the bodies are inclined. 
This variation in surface total pressure leads to the term involving Au 
ineqionT(B23)-andtlie term in6Iring Av in equation (B25).
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APPENDIX C


EXTENSIONS OF THE APPROXIMATE METHOD 

This analysis is based on the approximate or 
viously mentioned. The basic equations of this method are equations (.11), 
(12), (13), and (20). Before proceeding with this analysis, it is con-
venient to write down the expressions for the function 13 (see eq. (12)) 
for several types of bodies. These expressions are presented in the 
following table:

Expressions for 0 

Body For nose section For cylindrical afterbod 

Any body
x sin ö- - r cos

2fnsin 8v()_cos5v r cos 8-xsin 

Cone-cylinder (Not required)

il+1fn2 

Tangent-ogive- 1
1 +4fn2(2	 - 

1) 

cylinder
1	 jf 2 +	 n 

fn(2Tangent-paraboloid
-cylinder

ffn
_

+1	 Jfn2+l

• In general, the equations for the normal-force and pitching-moment 
derivatives may be integrated in two parts - one part for the nose sec-
tion and one for the afterbody. Thus, with the loading defined by 
equation (20)

dCNdCNI	 + Gie G2(l - e_G2fa (ci) 

=	 'nose 

-e_G2fn[(l + G2fn) - (i + G2fn + G2fa) e ] (c2) da) dcL I nose G2 
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where

=	 2	 Psa Sin	 dCN	
e*acos 5 (c3) Vac05 Sv PV sin21iSa	 tcv 

	

G2 = 2 aS1 Sv	 •	 (cli-) 

The additional subscript, a, refers to functions evaluated for the after-
body (i.e., 5 = 0). Thus, from equation (13), 

	

7(Psa/Po 
)MS 

a2	 czv 
"Va =

	

2(1 - Psa/po)(Msa2 - 1)	
(c5) 

The terms G1 and G2 are functions of M0 and 5 alone. These 
functions have been evaluated and the results are shown in figure 8.' For 
the special case of cone-cylinders, equations (Cl) and (c2) represent a 
closed solution of the general method as well. 

By the use of an additional approximation to A, results in closed 
form can also be obtained for ogival nose sections. Such an approximation 
is

rdCNI 

	

GS ) 	 - G4 

A = G3tan S	 + G4tan

 

	

[(l -

	 dm Itcv	
](tan )2 

+ V\4a 
)tcv	 tan Sv

(c6) 

where

GPsa 51fl 2	
e'Va 

- ç sin 24sa	 (c') 

and

G4 = 2(1 - e")	 (c8) 

When equation (c6) is substituted in equations (ili-) and (21), equations 
are obtained in closed form for dCN/da, and dCm/dct. These equations 
involve constants which are complicated functions of the nose angle Sv 
(or nose fineness ratio fn) . These functions can be expanded in a series
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in terms of the leading terms of these series are constants independ-
ent of 5v. In view of the approximate nature of this analysis, the use of 
the leading terms will suffice. Thus there is obtained 

=	 G +	 (1 +	 (c9) 
d 'ogive l	 15	 tcv 

da ) 

- i dCmi	
--G - 

3 + 22G3) ZdCN\ 
dOJgjij = - 15 -	 is	

(do)

/tcv 

To the accuracy of this analysis, these equations also represent - the solu-
These equations have been evaluated for 

a range of Mach numbers and nose fineness ratios. The results are pre-
sented in figure 9. it is apparent, that with the aid of equations (ci), 
(C2), (c9), (cio), and figures ' 8 and 9, dCN/dcl and ddrpjdct for ogive-. 
cylinders can be evaluated approximately in a few minutes.
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TABLE I. -  NORMAL-FORCE DERIVATIVES AT ZERO ANGLE OF ATTACK 

VaDyke Second-order Generalized Netor,lan

 

7.1.1-

i,zpaCt Experinent potential potential
OIR

 
expansi theorytheory theory methed meth 

Cone, 3.00 0 1.97 1.98 1.91. 19]) 1.99 1.97 

= 7 2 2.49 2.k9 2.47 2.75 2.52 
4 2.50 2.50 2.70 3.59 2.69 
6 2.38 2.39 2.80 4.43 2.78 
8 2.30 2.29 2.84 5.28 

10 2.25 2.25 2.86 6.12 2.86 

4.24 0 1.94 1.96 1.89 1.89 1.99 1.83 
2 2.53 2.54 2.44 2.64 2.38 
4 2.74 2.74 2.73 3.39 2.68 
6 2,71 2.72 2.88 4.14 2.86 
8 2.62 2.62 2.96 4.88 

10 2.53 2.53 3.00 5.64 2.85 

5.05 0 1.92 1.95 1.88 1.88 1.99 1.91 
2 2.53 2.54 2.41 2.58 2.35 
4 2.81 2.82 2.72 3.33 2.65 
6 2.88 2.89 2.89 3.95 2.86 
8 2.84 2.84 2.99 4.67 

10 2.75 2.76 3.05 5.35 3.06 

6.28 0 1.88 1.94 1.88 1.88 1.99 1.92 
2 2.49 2.53 2.38 2.51 2.31 
4 2.86 2.88 2.69 3.14 2.58 
6 3.03 3.06 2.89 3.78 2.81 
8 3.07 3.10 3.00 4.41 

10 3.04 3.07 3.08 5.04 2.99 

Cone, 3.00 0 1.95 1.96 1.88 1.88 1.98 1.83 
5 2 2.65 2.66 2.59 2.93 2.60 

4 2.71 2.72 2.89 3.98 2.89 
6 2.58 2.59 3.02 5.02 2.90 
8 2.46 2.48 3.08 6.08 

10 2.41 2.42 3.10 7.12 3.01 

4.24 0 1.90 1.95 1.87 1.87 1.98 1.82 
2 2.68 2.70 2.54 2.77 2.46 
4 2.98 2.99 2.91 3.68 2.84 
6 3.00 3.02 3.11 4.58 3.01 
8 2.92 2.93 3.22 5.49 
10 2.81 -	 2.82 3.27 6.39 3.21 

5.05 0 1.86 1.95 1.87 1.87 1.98 1.91 
2 2.66 2.70 2.51 2.69 2.48 
4 3.06 3.09 2.90 3.52 2.80 
6 3.18 3.21 3.13 4.34 3.21 
8 3.16 3.19 3.27 5.16 

10 3.07 3.10 3.35 5.99 3.26 

6.28 0 1.80 1.96 1.88 1.88 1.98 1.83 
2 2.59 2.69 2.46 2.60 2.49 
4 3.09 3.16 2.84 3.32 2.72 
6 3.34 3.40 3.08 4.04 2.98 
8 3.44 3.50 3.24 4.77 

10 3.43 3.50 3.33 5.49 3.22 

Cone, 3.00 0 1.88 1.95 1.83 1.83 1.95 1.86 
= 3 2 2.97 2.99 2.74 3.18 2.72 

4 3.16 3.18 3.13 4.54 3.15 
6 3.03 3.05 3.29 5.89 3.25 
8 2.90 2.91 3.36 7.25 

10 2.82 2.84 3.40 8.60 3.37 

4.24 0 1.78 1.99 .1.85 1.85 1.95 1.83 
2 2.93 3.04 2.66 2.94 2.55 
4 3.45- 3.53 3.10 4.04 3.12 
6 3.57 3.65 3.33 5.14 3.28 
8 3.51 3.58 3.45 6.23 
10 3.40 3.47 3.52 .7.33 3.45 

5.05 0 1.71 -2.05 1.86 1.86 1.95 1.88 
2 2.86 3.06 2.61 2.82 2.55 
4 3.50 3.65 3.05 3.78 3.12 

.6 3.72 3.91 3.31 4.74 3.44 
8 3.82 3.96 3.46 5.70 

10 3.76 3.90 3.55 6.66 3.63 

6.28 0 1.88 1.88 1.95 1.88 
2 2.53 2.67 2.58 
4 2.95 3.46 2.87 
6 3.22 4.25 3.19 
8 3.40 5.o4 

- 10  3.52 5.83  3.37
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TABLE I. -  NORMAL-FORCE DERIVATIVES AT ZERO ANGLE OF ATTACK - Concluded. 

irst-order V	 ke Second-order shock-expansion Generalized
Newtonian 

Nose f potential hybrid 
potential

method ho k- 
expansion impact Experiment 

Ten-step Two-step Appendixxshape theory me theory 
theory solution approximation c 

Ogive 3.00 0 2.53 2,53 2.39 2.16 2.23 3.67 1.97 2.51 
f.	 7 2 2.65 2.65 2.72 2.35 2.42 14.914 2.72 

14 2.57 2.57 2.86 2)43 2.50 6.22 2.86 
6 2.48 2.146 2.91 2.146 2.53 7.49 2.86 
8 2.142 2.42 2.94 2)48 2.54 8.76 
10 2.140 2.140 2.94 2.48 2.55 10.03 2.85 

4.24 0 2.64 2.64 2.40 2.20 2.25 3.29 1.97 2.140 
2 2.96 2.97 2.77 2.45 2.51 4.34 2.64 
14 3.02 3.02 2.95 2.58 2.64 5.39 2.92 
6 2.95 2.95 3.04 2.65 2.71 6.44 3.11 
8 2.86 2.87 3.09 2.69 2.75 7.49 

10 2.79 2.80 3.11 2.71 2.77 8.4 3.11 

5.05 0 2.67 2.71 2.38 2.23 2.24 3.08 1.97 2.29 
2 3.06 3.07 2.77 2.52 2.53 4.01 2.68 
14 3.19 3.20 2.99 2.69 2.70 4.94 2.86 
6 3.18 3.19 3.11 2.79 2.81 5.87 2.94 
8 3.11 3.12 3.17 2.85 2.87 6.80 

10 3.02 3.02 3.21 2.88 2.90 7.73 3.02 

6.28 0 2.65 .	 2.65 2.35 2.24 2.18 2.81 1.97 2.23 
2 3.13 3.10 2.73 2.54 2.48 3.59 2.58 
14 3.4.1 3.34 2.95 2.73 2.67 4.37 2.83 
6 3.50 3.43 3.09 2.86 2.80 5.15 .2.96 
8 3.49 3.43 3.17 2.94 2.88 5.93 

10 3.143 3.38 3.21 2.99 2.93 6.71 3.24 

Ogive 3.00 0 2.66 2.65 2.35 2.15 2.22 3.22 1.95 2.147 
fn 	 5 2 2.98 2.97 2.814 2.148 2.55 14.68 2.75 

4 2.92 2.91 3.06 2.61 2.68 6.13 .2.95 
6 2.80 2.79 3.15 2.67 2.74 7.58 3.01 
8 2.72 2.71 3.19 2.69 2.76 9.03 

10 2.69 2.68 3.20 2.70 2.77 10.48 3.06 

4.24 0 2.69 2.69 2.30 2.16 2.16 2.84 1.95 2.35 
2 3.28 3.23 2.80 2.54 2.54 3.98 2.76 
4 3.44 3.38 3.06 2.714 2.74 5.12 2.96 
6 3.41 3.36 3.19 2.84 2.814 6.25 3.01 
8 3.32 3.26 3.25 2.90 2.90 7.38 
10 3.22 3.16 3.28 2.93 2.92 8.52 3.18 

5.05 0 2.27 2.15 2.10 2.63 1.95 2.18 
2 2.77 2.53	 . 2.148 3.61 2.66 
4 3.014 2.76 2.71 4.58 2.98 
6 3.19 2.89 2.84 5.56 . 3.24 
8 3.28 2.96 2.91 6.54 
10 3.32 3.01 2.96 7.51 3.29 

6.28 0 2.23 2.11 1.99 2.37 1.95 - 2.12 
2 2.70 2.147 2.36 3.16 2.57 
4 2.97 2.71 2.59 3.94 2.78 
6 3.13 2.86 2.74 4.73 3.01 
8 3.23 2.95 2.83 5.52 
10 . 3.28 3.01 2.89 6.30 3.31 

Ogive 3.00 0 2.19 2.06 1.99 2.50 1.86 
fn	 3 2 2.87 2.60 2.53 4.06 298 

14 3.13 2.82 2.75 5.63 3.25 
6 3.23 2.92 2.84 7.19 3.20 
8 3.27 2.96 2.88 8.76 
10 3.28 2.97 2.90 10.32 3.32 

4.24 0 2.10 1.98 1.83 2.16 1.86 2.09 
2 2.76 2.46 2.31 3.28 2.81 
14 3.08 2.70 2.56 4.40 3.11 
6 3.214 2.83 2.68 5.53 3.29 
8 3.32 2.89 2.74 6.65 
10 3.36 2.92 2.78 7.77 3.314 

5.05 0 1.98 1.88 1.74 1.97 1.86 2.01 
2 2.59 2.32 2.17 2.90 2.66 
14 2.90 2.55 2.41 3.82 2.98 
6 3.95 2.68 2.53 4.74 3.16 
8 . 3.13 2.75 2.60 5.67 
10 3.17 2.79 2.64 6.59 3.38 

6.28 0 1.79 1.72 1.65 1.77 1.86 1.83 
2 2.32 2.06 1.99 2.50 2.44 
14 2.58 2.26 2.18 3.22 2.61 
6 2.70 2.36 2.29 3.914 2.67 
8 2.77 2.142 2.35 4.67 
10 2.80 2.45 2.38 5.39 2.90
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TABLE II. - CENTERS OF PRESSURE AT ZERO ANGLE OF ATTACK

- - Van Dyke Second-order Generalized 
Nose First-order Newtonian 
shape M0 f5  potential potential erponon expansi

Impact Experiment
theory theory method method 

Cone, 3.00 0 4.67 4.67 5.67 4.67 4.67 4.75 
fn	 7 2 5.32 5.34 5.39 5.69 5.56 

4 5.35 5.32 5.78 6.70 5.63 
6 5.00 5.00 5.99 7.70 5.85 
8 4.63 4.63 6.11 8.71 
10 4.42 4.41 6.17 9.72 6.32 

4.24 0 4.67 4.67 4.67 4.67 4.67 4.61 
2 5.41 5.41 5.40 5.61 5.55 
4 5.72 5.72 5.88 6.59 6.00 
6 5.69 5.68 6.20 7.57 6.40 
8 5.38 5.38 6.40 
0 5.00 5.00 6.53 9.55 6.39 

5.05 0 4.67 4.67 5.67 4.67 4.67 5.71 
2 5.56 5.44 5.39 5.57 5.45 
4 5.92 5.89 5.89 6.50 5.86 
6 6.04 6.00 6.25 7.53 6.28 
8 5.91 5.87 6.51 8.4 
0 5.62 5.58 6.69 9.58 6.55 

6.28 0 4.67 4.67 4.67 5.67 4.67 5.74 
2 5.46 5.52 5.35 5.50 5.50 
5 6.04 5.98 5.88 6.41 5.80 
6 6.38 6.30 6.29 7.35 6.31 
8 6.58 6.50 6.59 8.30 
0 1	 6.50 6.32 6.81 9.27 6.74 

Cone, 3.00 0 3.33 3.33 3.33 3.33 3.33 3.35 
fn 	 5 2 5.02 3.98 5.02 5.29 5.05 

5 4.09 4.o5 5.53 5.27 5.46 
6 3.78 3.75 5.66 6.26 1.53 
8 3.41 3.37 5.79 7.25 
0 3.16 3.13 5.86 8.25 4.88 

5.25 0 3.33 3.33 3.33 3.33 3.33 3.26 
2 5.07 5.05 4.01 5.21 5.02 
5 5.46 5.51 5.50 5.14 4.47 
6 5.45 5.51 5.85 6.10 5.98 
8 4.20 5.16 5.08 7.07 
0 3.85 3.81 5.25 8.06 5.39 

5.05 0 3.33 3.33 3.33	 . 3.33 3.33 3.38 
2 5.10 5.05 5.00 4.1 3.99 
4 4.59 5.52 5.52 5.06 5.4 
6 4.80 4.72 4.92 6.00 5.08 
8 4.74 5.65 5.21 6.95 
0 4.48 4.42 5.53 7.92 5.25 

6.28 0 3.33 3.33 3.33 3.33 3.33 3.25 
2 4.13 5.04 3.95 5.07 4.12 
5 5.72 4.60 4.58 5.93 5.48 
6 5.15 5.00 5.91 5.83 5.95 
8 5.31 5.16 5.25 6.77 
0 5.29 5.14 5.52 7.73 5.32 

Cone, 3.00 0 2.00 2.00 2.00 2.00 2.00 2.08 
= 3 2 2.67 2.63 2.62 2.85 2.70 

5 2.85 2.80 3.02 3.79 3.10 
6 2.61 2.57 3.27 5.76 3.10 
8 2.25 2.20 3.50 5.75 
10 2.00 1.96 3.58 6.72 3.51 

4.25 0 2.00 2.00 2.00 2.00 2.00 2.19 
2 2.75 2.65 2.58 2.75 2.68 
4 3.20 3.08 .	 3.05 3.63 3.18 
6 3.34 3.26 3.38 4.6 3.35 
8 3.23 3.12 3.61 5.52 

10 2.95 2.84 3.77 6.59 3.82 

5.05 0 2.00 2.00 2.00 2.00 2.00 2.10 
2 2.77 2.65 2.55 2.68 2.52 
4 3.35 3.19 3.02 3.52 3.23 
6 3.67 .3.50 3.52 5.53 3.37 
8 3.75 3.56 3.71 5.37 
10 3.59 3.53 3.92 6.33 3.82 

6.28 0 2.00 2.00 2.00 2.03 
2 2.49 2.59 2.52 
5 2.98 3.37 3.16 
6 3.50 4.23 . 3.50 
8 3.75 513 

- 10 . 3.98 6.07 3.77

37 
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TABLE II. - CENTERS OF PRESSURE AT ZERO ANGLE OF ATTACK - Concluded. 

-
- irat-orde Van Dyke Second-order shock-expansion Generalized Newtonian Nose 

shape Mo £ te Us]. hybrid 
otential

shock- 
expansion

Experiment Ten-step io-stcp ppendix theory
theory solution approximatior. c method

theory 

Ogive 3.00 0 3.69 3.66 3.73 3.59 3.58 4.17 3.17 3.79 
fn

	
7 2 3.85 3.82 4.23 3.93 3.91 5.16 1.12 

4 3.62 3.59 1.50 4.12 4.10 6.15 4.32 
6 3.29 3.26 4.63 4.23 4.21 7.14 4.40 
8 3.04 3.00 4.70 4.28 4.26 8.14 
10 2.97 2.93 4.74 4.31 4.29 9.14 

4.24 0 3.80 3.76 3.75 3.66 3.63 4.11 3.17 3.70 
2 4.26 4.21 4.30 4.10 4.06 5.05 4.08 
4 4.34 4.29 4.65 4.40 4.35 6.02 4.76 
6 .	 4.20 4.15 4.87 4.60 4.55 6.99 4.98 
8 3.86 3.80 5.00 4.73 4.68 7.97 
10 3.53 3.48 5.08 4.81 4.76 8.96 5.16 

5.05 0 3.85 3.77 3.75 3.66 3.64 4.04 3.17 3.75 
2 4.40 4.31 4.34 4.15 4.13 4.96 4.32 
4 4.61 4.53 4.73 4.52 4.50 5.91 4.86 
6 4.57 4.48 5.01 4.79 4.76 6.87 5.10 
8 4.34 4.26 5.19 4.98	 - 4.96 7.85 
10 4.04 3.95 5.31 5.12 5.09 8.83 5.23 

6.28 0 3.88 3.74 3.72 3.64 3.62 3.97 3.17 3.65 
2 4.0 4.37 4.31 4.14 .4.14 4.85 4.20 
4 4.86 4.74 4.74 4.55 4.55 5.77 4.70 
6 5.05 4.94 5.05 4.88 4.89 6.71 5.10 
8 5.03 4.92 5.27 5.13 5.15 7.67 
10 4.88 4.74 5.42 5.32	 . 5.34 8.64 5.58 

Ogive 3.00 0 2.69 2.68 2.68 2.60 2.60 2.91 2.30 2.70 
= 5 2 3.00 3.00 3.22 3.03 3.01 3.87 3.02 

4 2.88 2.88 3.55 3.28 3.26 4.8 3.35 
6 2.56 2.56 3.73 3.42 3.39 5.84 3.50 
8 2.30 2.29 3.83 3.49 3.46 6.82 
10 2.16 2.15 3.88 3.53 3.50 7.82 3.75 

4.24 0 2.74 2.66 2.66 2.59 2.59 2:84 2.30 2.70 
2 3.28 3.21 3.24 3.08 308 3.74 3.15 
4 3.48 3.43 3.62 3.42 - 3.43 4.68 3.50 
6 3.39 3.34 - 3.87 3.66 3.67 5.65 3.75 
8 3.12 3.06 4.03 3.82 3.82 6.63 
10 2.76 2.70 4.13 3.92 3.92 7.61 4.09 

5.05 0 2.64 2.58 2.57 2.79 2.30 2.70 
2 . 3.23 3.08 3.09 3.66 3.20 
4 3.65 3.48 3.49 4.58 3.73 
6 -	 - 3.94 3.77 3.78 5.53 3.85 
8 -	 - 4.15 398 3.99 6.50 
10 4.28 4.12 4.14 7.47 4.06	 - 

6.28 0 2.62 2.55 2.54 2.72 2.30 2.62 
2 3.19 3.05 3.06 3.54 -	 3.13 
4 3.62 3.47 3.1+9 4.43 3.60 
6 3.94 3.80 3.85 5.36 4.00 
8 4.20 4.06 4.12 6.30 
10 4.34 4.26 4.33 7.26	 - 4.32 

Ogive 3.00 0 1.59 1.56 1.56 1.70 1.35 1.65 
= 3 2 2.12 2.03 2.04 2.59 2.12 

4 2.43 2.34 2.35 3.53 2.45 
6 2.60 2.52 2.54 4.1 2.49 
8 2.68 2.62 2.64 5.49 

- 10 2.73 2.67 2.69 6.47 2.60 

4.24 0 1.56 1.52 1.52 1.61 1.35 1.58 
2 2.11 1.98 2.01 2.43 2.17 
4 2.51 2.34 2.38 3.34 2.44 
6 2.76 2.58 2.64 4.28 2.75 
8 2.93 2.74 2.80 5.24 
10 3.03 2.84 2.91 6.22 . 3.12 

5.05 0 1.55 1.51 1.48 1.58 1.35 1.47 
2 2.26 1.96 1.97 2.35 2.25 
4 2.79 2.32 2.35 3.23 2.75 
6 3.19 2.59 2.63 4.16 3.15 
8 3.49 2.77 2.83 5.11 
10 3.73 2.90 2.96 -	 6.08 3.60 

6.28 0 1.52 1.50 1.4 1.53 1.35 1.53 
2 2.06 1.90 1.88 2.25 2.10 
4

-
2.45 2.24 2.23 3.09 - 2.45 

6 2.71 2.49 2.49 3.99 2.66 
8 2.87 2.67 2.67 4.92 
10 2.98 2.79 2.80 5.87 3.05
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