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NATIONAL ADVISORY COMMITTEE FOR “AERONAUTICS

A SECOND-ORDER SHOCK-EXPANSION METHOD APPLICABLE TO

BODIES OF REVOLUTION NEAR ZERO LIFT

By Clarence A. Syvertson and David H. Dennis
SUMMARY

A second-order shock-expansion method applicable to bodies of revolu-
tion near zero lift is developed. Expressions defining the pressures on
noninclined bodies are derived by the use of characteristics theory in
combination with properties of the flow predicted by the generalized
shock-expansion method. This result is extended to inclined bodies to
obtain expressions for the normal-force and pitching-moment derivatives
at zero angle of attack. The method is intended for application under
conditions between the ranges of applicability of the second-order poten-
tial theory and the generalized shock-expansion method - namely, when the
ratio of free-stream Mach number to nose fineness ratio is in the neighbor-
hood of 1. '

For noninclined bodies, the pressure distributions predicted by the
second-order shock-expansion method are compared with existing experimental
results and with predictions of other theories. For inclined bodies, the
normal-force derivatives and locations of the center of pressure at zero
angle of attack predicted by the method are compared with experimental
results for Mach numbers from 3.00 to 6.28. Fineness ratio 7, 5, and 3
cones and tangent ogives were tested alone and with cylindrical afterbodies
up to 10 diameters long. In general, the predictions of the present method

"are found to be in good agreement with the experimental results. For non-
inclined bodies, pressure distributions predicted with the method are in
good agreement with existing experimental results and with distributions
obtained with the method of characteristics. For inclined bodies, the
normal-force derivatives per radian (for normal-force coefficients refer-
enced to body base area) are predicted within #0.2 and the locations  of
the center of pressure are predicted within #0.2 body diameters. On the
basis of these results, the second-order shock-expansion method appears
applicable for values of the ratio of free- stream Mach number to nose
fineness ratio from O. h to 2. : :

INTRODUCTION

The flow about bodies traveling at high supersonic speeds was inves-
tigated by Eggers (ref. 1). He found that under specified conditions such
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flows could be considered as locally two-dimensional and that they could
be treated by a generalized shock-expansion method. The application of
this method to nonlifting bodies of revolution had been given previously
(ref. 2), and subsequently the method was applied to lifting bodies in
references 3 and 4. It was found that the generalized shock-expansion
method accurately predicted the flow about pointed bodies of revolution
when the hypersonic similarity parameter (ratio of Mach number to body
fineness ratio) was greater than about 1. This method is, therefore,
particularly useful in the treatment of flows about bodies traveling at
relatively large Mach numbers. At lower speeds, the second-order potential
theory of Van Dyke (ref. 5) has been widely used. (See, also, his hybrid
theory for slightly inclined bodies, ref. 6.) The application of this
theory to bodies traveling at large Mach numbers is often limited, however,
by the restriction that the maximum slope of the body must be somewhat less
than the slope of a free-stream Mach line.

The ranges of applicability of the generalized shock-expansion method
and the second-order potential theory do not always overlap, and there
remain, therefore, flows at certain combinations of Mach number and body
shape which cannot be treated by either theory. Normally, these interme-
diate flows are encountered when the hypersonic similarity parameter based
on nose fineness ratio is in the neighborhood of 1. Since this is a range
of practical interest, additional theoretical methods are needed.

Some of this need has been fulfilled recently by the hypersonic small-
disturbance theory (refs. 7 and 8). In its present state of development,
however, this theory has application only to limited classes of noninclined
bodies of revolution. For example, due to the series form used to repre-
sent the pressure distribution, it cannot be applied to the nose-cylinder
combinations commonly employed for missile bodies. In large part, then,
the need for a theory applicable at values of the hypersonic similarity
parameter near 1 still remains.

The present report develops a theory intended to fulfill this need.
This theory is a second-order shock-expansion method. It is developed
by an iteration procedure which employs the generslized method _of refer-
ences 1'through 4 as the first approximation. Expressions are “derived
which define the pressures-omnoninclined—bodies of revolution. Expres-
sions are also obtained for the normal-force and pitching-moment deriva-
tives at zero angle of attack. Predictions of the method.are compared
with those of other theories and with experimental results.

SYMBOLS

A body cross-sectional area

Ap body base area
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function defined by equation (6)

B
C1,C2 characteristic coordinates
Cy normal-force coefficient, norm:iA;orce
Cm bitching-moment coefficient,'moment abzzZBEOdy vertex
Cp pressure coefficient, ELLSEQ
d b6dy diameter
E entropy |
f fineness ratio
(Fineness ratio of the nose section is fp.)
H total pressure
1 body length
M Mach number
P static pressure
q dynamic pressure
s,n rectanguiar coordinates (streamline direction and normal to
streamline direction, respectively)
X,r,P cylindrical coordinates (x measured from vertex of body and
¢ from windward meridian)
X center-of -pressure position (measured from body vertex)
lo# - angle pf attack
B function defined by equation (12)
¥ ratio of specific heats (1.400 for air)
8 | flov deflection angle
function defined by equation (9)
A loading (defined by eq. (1k4))
A function defined by equation (5)
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v Mach angle (arc sine 1/M)

v Prandtl-Meyer expansion angle

o shock-wave angle

i function defined by equation (13)

Q ratio of cross-sectional area of streamtube to that at M = 1

(see eq. (7))

Subscripts
o] free-stream conditions
1,2,3,4 conditions evaluated at various points in flow field
a afterbody
c quantities evaluated for cone tangént to the body
s quantities‘evaluated b& generalized shock-exﬁansion method
method : :
v " quantities evaluated at vertex of body
o ‘quantities evaluated along downstream face of shock wave:
tev quantities evaluated for cones fangent to body vértex
tex . quantities evaluated for cones tangent to body at station x
THEORY

In the present development of a second-order shock-expansion method,
attention will be restricted to bodies of revolution. It is recognized,
however, that the procedure used herein may, in the future, find applica-
tion to other three-dimensional shapes.

The present method is a refinement of the generalized shock-expansion
method of references 1 through 4. On the surface of a body of revolution,
immediately behind a corner, the generalized method represents a first-
order solution for the flow and the present method gives the second-order
solution (see Appendix A). Before proceeding, therefore, it is well to
orient the present analysis with a review of the approximations involved
in the treatment of the flow about bodies of revolution with the gener-
alized method. These approximations may be listed as follows (see, e.g,
ref. 4): (1) Disturbances incident on an oblique shock wave are largely
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absorbed therein, and hence, reflected disturbances are negligible; (2)
the flow appears locally two-dimensional; (3) surface streamlines may be
taken as meridian lines. In the intermediate range of supersonic speeds
of interest here, the first approximation is particularly well justified
(see, ref. 9), and it will not be considered further. As a consequence

of the second approximation, a solution given by the generalized method
satisfies the continuity equation only approximately.l Although the con-
tinuity equation does not appear explicitly in the following analysis, it
is this approximation that is refined by the present method. The third
approximation is one for bodies of revolution only when they are inclined.
In the present investigation, only bodies near zero 1ift will be consid-
ered. Under this restriction to infinitesimal angles of attack, an anal-
ysis has shown that the deviation of true streamlines from meridian lines
has negligible effect on surface pressures. In the following development,
therefore, the use of meridian lines as streamlines will be retained.

Nonlifting Bodies

—

The generalized shock-expansion method was developed for nonlifting
bodies of*revolution from the method of characteristics (ref. 2). This
development may be summarized with the aid of the equation for the stream-
wise pressure gradient.®

dp 2yp 3% 1 Odp

s sin 2p Os  cos p OCy . | (1)

In the generallzed method the pressure is considered constant along first-
family Mach lines (refs. 1 and 4). As a consequence, the right-hand
member of equation (1) is approximated by zero, and the equation can be
integrated to yield the well-known Prandtl-Meyer relation. The objective
of the present analysis is to refine this approximation to the right-hand
member of equation (1). To this end, consider the flow about a body of
revolution which has a pointed nose and over which the flow is everywhere
supersonic. The problem will be simplified by approximating the profile

1In the treatment of two-dimensional flows, the flrst approximation is
used but continuity is exactly satisfied.

2This equation can be derived directly from the continuity, momentum,
energy, and state equations with the aid of characteristics theory (see,
e.g., refs. 2 and 9). In this form, the equation applies equally well
‘for rotational and irrotational flows, requiring only that dE/ds not
dE/dn be zero. T
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of the body with a series of tangents to the original contour (see
sketch (a)). It might be noted that Ferrari (ref. 10) suggested a similar
scheme with a body whose profile was made up of chord lines joining points

' Tangent body
. ;;/F:;{A<Qﬁ, _ -
e
Original body

- Sketeh (a)

on the original contour. While either approximation 'is permissible, the
tangent body was selected here so that the conical flow at the vertex
will be correct regardless of the degree of approximation used downstream
of the vertex.

The gggggaliZed method gives the exact change in surface pressure
around the corners of the tangent body but predicts no change along the
straight-Iine elements. The_pi€E§p;;bngggem'reduces €0 the determination

of the pressure variation alonggtﬁgégifaight—line elements Yﬁééﬁ§keteh (b}).
| : A
N"fﬁ o Mach lines—»
B
D
A
Streamline
3/ o ——-—-
il —
1f2 c

Sketch (b)
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For simplification, the derivative, 52/801, will be approximated with a
difference equation; thus, along the straight-line element, equation (1)
may be written (since 035/ds = O),

dp) &P _ | (2)
1\652_ Cicos p =

where Ap is the net change in pressure along Mach lines emanating from
the surface and AC; 1is the corresponding length. This equation will be
solved by an iteration procedure based on the solution given by the gen- .
eralized method. As previously noted, with the generalized method the
flow is considered two-dimensional and, consequently, no pressure change
is predicted along streamlines between the expansion fans at either end
of the straight section. While this approximation may be appreciably in
error for the surface streamline, it is apparent that the real flow will
appear more nearly two-dimensional at large distances from the body axis.
It is reasoned, therefore, that a streamline, well removed from the axis
(line AB in sketch (b)), can be found along which the pressure will also
be constant to the accuracy required here.,a For all Mach lines (such as
CD) emanating from the straight surface then, the pressures at the points
of intersection with this streamline will be equal. The term, Ap, in
equation (2) therefore can be written as k; - p, where k; 1is a constant
and, of course, p is the varying-surface pressure. The generalized
method also prescribes that the length (from the' surface to streamline ADB)
and inclinations of all Mach lines will not change when the surface is
straight. The term, AC;cos u, therefore can'be represented by a second
constant, 1/ko. Equation (2) thus may be written

%5 = ko(ky - p)

which can be integrated to yield

e ™
Cp = ky + k3§ikfs 2 (3)
S
where ks is the constant of integration. This analysis serves to
establish the form of the equation representing the pressure distribution
on an element of the tangent body.# It remains now to evaluate the three
unknown constants in equation (3). Three known conditions can be employed
SExamination of characteristic solutions for the flow about cone-
cylinders indicates that the pressure variation along streamlines, a moder-
ate distance from the surface, is markedly less than that along the surface.
4It might be noted that Ehret, Rossow, and Stevens (ref. 11) found
that pressures on ogives correlated according to the hypersonic similarity
law could be represented approximately by an exponential function of
distance. :
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for this purpose. First the pressure, just downstream of the corner, pso,
can be calculated exactly from the Prandtl-Meyer equations if the pres-
sure, pi, and the Mach number, M;, upstream of the corner are known.
Second, the pressure gradient just downstream of the corner may be cal-
culated from the results given in Appendix B. The expression defining
this “gradient is -

t

apz (_ o8- otn )+ 28 @_) M(a) e > a

o

where

{jo RIS o
rEE (5)
B=-—22 6
T (6)

and Q is the one-dimensional area ratio or.

1 +< ~ >M2 =) |
2 : | (7

gl
QQ«JOOM@ ’@W ToH
D

For the third condition, it is apparent that the pressure on the element
shown in sketch (b) would approach some limiting value if, rather than
ending at point 3, the element were extended as indicated by the dashed
line. .If the element were considered to be infinitely long, so as to
form an extended conical surface, then the only effect the region ahead

of point 2 will have on the flow at infinity is to form an infinitesimally
thin layer near the surface across which the entropy varies. It can be
demonstrated, however, that there is no pressure change through this layer
and that the flow outside the layer is conical. Consequently, the limiting
pressure is simply, p,., the pressure on a cone tangent to the original ~
body at the same point as the element shovm in sketch (b): (and, of course,
traveling at the same free-stream Mach number). With these three condi-
tions, the three unknowns in equation (3 may be evaluated and there is
obtained . -

~
N

b =D - (pg - pa)e - (®
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.

|\ o
i ap X.= X2
n= ) (oe (9)

- pg)cos Bo

where $

It is apparent that, in order to apply equation (8), the pressure
(and Mach number)on the surface of noninclined . —cones must_be known. These
quantities may be determined from the results of reference 2 or reference
12. For convenience, the curves shown in figure 1 have been plotted from
the results of reference 12.

By application of equation (8) on successive elements, the pressure
distribution on the tangent body can be determined. In particular, the
pressure at each of the points of tangency may be calculated and applied
to the original body. The procedure is as follows: First, the elements
of the tangent body are selected and the coordinates (x,r) of each corner
determined,, The first element is tangent to the body at the vertex, and
the flow over this element is thus conical. For the first corner, then,
the pressure, p;, and the Mach number, M; (see, sketch (b)), are the same
as_at tge\vertex of the,orlglnal body. The pressure, Dpo, and the Mach
number, Mz, may then be determined with the Prandtl-Meyer equatlons. The
pressure gradient, (dp/ds),, may be determined from equation (4) since,
for the first corner, (dp/ds)1 ds zero: The tangent-cone pressure, pc,
may'be obtained from reference 12 or figure 1. With the various factors
in equation (8) thus evaluated, the pressure at the tangent point and at
point 3 (see sketch (b)) can be calculated. In like manner, the pressure
gradient at point 3 can be determined by differentiation of equation (8), "'

@) -6, 1o

With the pressure and pressure gradient at point 3 known (the Mach number

may also be .calculated from the pressure in the usual manner), the factors
in equation (8) may be determined for the next element. This process is,

of course, repeated for each element of the tangent body.

The procedure Jjust described is not difficult to apply; however, fur-
ther simplification can be obtained by the use of a "two-step" tangent
body. This body consists of a cone tangent to the original body at the
vertex and a conical surface tangent to the body at the station where the
pressure is to be calculated. With this two-step body, the second surface
is a variable deperiding on the station in question on the original body.

_For this approximation, equation (8) becomes

-By

P =pe - (pe - pgle (11)
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&

where

x sin\By) - r cos &y

B = rcos © - X sin & (12)

_ Bs (0 _sin®
Ceem®ows) o

The subscfipt, s, denotes quantities at the station on the body as eval-

uated by the generalized shock-expansion.method. With equation (11) it
is possible to obtain, very rapidly, a first approximation to the pressure

distribution. :
The second-order shock-expansion method has been déveloped to ﬁredict

the pressures on a noninclined body of revolution.  In the following sec-
tion this method will be extended to lifting bodies.

Lifting Bodies

!
For inclined bodies of revolution, a second-order shock-expansion
method would involve not only a revised expression for the Pressures, but,
in addition, a revised approximation to the shape of the surface stream-
lines. It is recalled from the results of Eggers (ref. 1) that, according
to the generalized method, surface streamlines may be approximated by
goedesics. For bodies of revolution, Savin (ref. 3) noted that the per-
tinent geodesics are simply meridian lines. While this result is exact
for noninclined bodies of revolution, it is only an approximation in the
| case of inclined bodies. A refined approximation corresponding to a
| second-order method undoubtedly could be obtained by graphical integration
of the momentum equations employing the pressure distribution given by the
| generalized method. However, it seems at present that this procedure would
§ . involve extensive calculations. If attention is restricted to bodies near
; a = 0, it can be demonstrated that the deviation of the true streamlines
from the meridian lines will not influence surface pressures. The approx-
imation of meridian lines as streamlines can, in effect, be retained and
relatively simple expressions can be obtained, therefore, for the initial
slopes of the normal-force and pitching-moment curves. To this end, the
expression for the normal-force derivative can be written®

acy o N1

) « T“—_XI;O AI‘F}?{ . : (14)

SThe subseript, a = 0, has been omitted for simplicity of notation.

Ve
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where A 1is the nondimensional loading on a thin disk normal to the body
axis and having unit radius. This loading A is given by the equation

2 7 d(p/po)
- 7M02ﬂ\JF é@o cos @ 49 (15)
o

The problem then is to evaluate d(p/po)/da The development given pre-
viously which led to equation (3) also applies to bodies at infinitesimal
angles of attack. Equation (8) also applies; however, the variables in
this equation must be considered as dependent on angle of attack. By
differentiation of equation (8); there is obtained

d(p/po) -1, 4(pe/po) -n d(p2/py)

2707 (g - ey SPe/Po) o0 EAP2/Ro) R .

e (1-e)—7F—+e o * (pc - Pple o= (16
a

This equation must satisfy the condition (pépo = (pgépo) at n =0

(i.e., x = Xp). By the application of this condition to equation (16),
the last term (involving dn/da) is eliminated.® The term, d(pz/po)/da
may be evaluated with the aid of the Prandtl-Meyer equation '

dCL . Po Hl do

-d(Pz/PO) e a(p1/py) P11 d(ﬁl) p, 1 4(Hz) :
T da A | dx T Do Hy ]"'f%'ﬂ da, ) (17)-

Ferri (ref. 13) has shown that the entropy (and hence the total pressure,
H) on the surface of an inclined cone is constant (independent of o).
When equations (15), (16), and (17) are combined, then, the 1ntegrals of .
the terms involving - dH;/da and dHp/da. will be zero (since .f cos @ dg=0).
Equation (15) may therefore be written

/\ﬂ l:(:]_ - e M +e N Z‘E M]cos @ do (18)

A = 5
Mo~ ) do A1 da

The only terms in equation (18) that are functions of ¢ are d(pg/po)/da
and d(p1/py)/da. These two terms may be evaluated in terms of the normal-
, ac .
force derivative of the tangent cone, jig tox’ and in terms of A;. After
performance of the necessary manipulations, there is obtained
6This result indicates that the lifting pressures at small angles of
attack vary in a manner analogous to that of the pressures at a = O,
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dCy A - '
A= (1-eM(tan 8) —2 + 22 ¢7My 1
da, tox -)\1 1 ( 9)

It is apparent from equation (19) that dCy/da for cones must be
known before the loading A can be evaluated. Fortunately, results for
cones are available from reference 14 and have been plotted for convenience
in figure 2. The loading, A, may thus be calculated in the same manner
as the zero-1lift pressures.  In this case, A;, for the first corner is

dCy
simply (tan &v) rra tov”
cv

As before, a first approximation to A can be obtained with the
two-step body. This approximation gives -

- ac -BY, ac
R YO | S (20
. 4 do lgex % da ltey

In Appendix C, it is shown that equation (20) leads to very simple results
for_certain_common_body _shapes...— ,

‘With the loading, A, known, the normal-force derivative may be eval-
uated by integration of equation (14). In like ‘manner, the pitching-
moment derivative can be determined from the equation? : .

dCm  -2x lAr o : ‘
da ~ Apdy (21)

A second-order shock-expansion method for bodies of revolution has
been developed to predict the pressure distribution and the normal-force

_and pitching-moment derivatives at o = 0. The results are relatively

simple in form and may be applied to a given body with only a moderate
amount of computations required. Simplified expressions based on an addi-
tional approximation have also been presented which further reduce the
amount of work required. It should be noted, however, that open-nosed
bodies and pointed bodies which produce shock waves other than the one at
the vertex require special forms of the method.® The necessary equations

7The contribution to the pitching moment of the variation in local
axial forces with angle of attack is small for slender bodies (see
ref. 15) and will be neglected throughout the present analysis.

8It may also be noggd that boattailed bodies . present a special problem
since neither p. nor jig tox is defined in this case. In practice, how-
ever, it has been found by comparison with results given in reference 16

. : 4ac
that the use of p, = p, and 7§§lt = 2 gives reasonable results for
cX .

bodies having moderate amounts of boattail.
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for these cases are contained in Appendix B. In addition, there are
several restrictions on the present method which should be mentioned.
First, it is apparent that if the exponential variation of the pressures
is to be valid, then the pressure gradient just downstream of the corner
must have the same sign as the pressure difference, pe. - po. This condi-
tion is given by n > O in the general case and by V¥ > O for the simpli-
fied method. There is an additional restriction on the simplified method,
and that is that the two-step bodies must be real bodies, (i.e., the
intersection of the two tangent lines must not occur at negative values
of x orr). This condition is given by B > 0. When n.=0or By =0,
all equations reduce to those given by the generalized shock-expansion
ethod. e T TR ) : o
.

It remains, of course, to determine the accuracy of the second-order
shock-expansion method and to define its range of .applicability. There
are sufficient data available, both from experiment and from character-
istic solutions, with which the predictions of the method for zero-lift
pressure distributions can be compared. However, for the case of lifting
bodies, sufficient data are not available, and for this reason, the exper-
iments next discussed were conducted.

EXPERTMENT

An experimental program was conducted to determine the initial slopes
of the normal-force curves and the centers of pressure for a series of
nose-cylinder combinations. The tests were designed, of course, to permit
a check on the accuracy of the predictions of the second-order shock-
expansion method just developed. It is recalled that the method is
intended for application at values of the hypersonic similarity parameter,
My/fy, in the neighborhood of 1. The tests cover a range of Mo/fn from
0.43 to 2.09.

Apparatus and Tests

The tests were conducted in the Ames 10- by lh-inch supersonic wind
tunnel at Mach numbers of 3.00, 4.24, 5.05 and 6.28. For a detailed
description of .this wind tunpel and its aerodynamic characteristics, see
reference 17. Normal forces and pitching moments for the test models
were measured with a strain-gage balance. The balance consisted of a model
support sting on which the moments were measured at four points. From
these four measurements, the normal forces and centers of pressure were
determined and checked. Measurements were made at nine angles of attack
from -2° to +4° at each test Mach number. At each angle of attack, the
values of X/d and Cy/a were calculated. These values were plotted as
a function of angle of attack, and the intercepts at o = O of the result-
ing curves gave the values of dCy/da and X/d at « = 0.

f
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Wind-tunnel calibration data (see, ref. 17) were employed in com-
bination with stagnation-pressure measurements to obtain the stream
dynamic pressures. Reynolds numbers based on the maximum diameter of the
models were :

Mach number Reynolds number,

million
3.00 0.79
L. o4 .72
5.05 .35
6.28 .15

Models

Cones and circular-arc tangent ogives of fineness ratios 7, 5, and
3 were tested alone and with cylindrical afterbodies having lengths of
2, 4, 6, and 10 diameters. The models were made of polished steel and
each had a base diameter of 1 inch.

_ Accuracy of Test Results

Stream Mach numbers in the region of the test bodies did not vary
~more than *0.03 from the mean values at Mach numbers up to 5.05. A maxi-
mm variation of *0.05 existed at the highest test Mach number of 6.28.

The accuracy of the test results is influenced by uncertainties in
the measurement of moments and in the determination of the stream dynamic
pressure and angle of attack. These uncertainties resulted in estimated
maximum errors in the normal-force derlvatlves and centers of pressure as
shown in the following table:

3.00 | %0.15 | #0.10
4. o4 .15 | %.10
5.05 .20 ] *.15
6.28 .25 | +.20

It should be noted that, for the most part, the experimental results
presented herein are in error by less than these estimates.
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RESULTS AND DISCUSSION

Nonlifting Bodies

The second-order shock-expansion meéthod has been developed primarily
to treat flows characterized by _values of Mo/fn near unity. Accordingly,
the method has been employed to “obtain the.zero- ro-1itrt pressure distribu-
tions at Mo/fn 1 for several different body shapes.® The results are
shown in figure 3 along with distributions obtained with the generalized
shock-expansion method (ref. 2). Distributions obtained with the method
of characteristics (refs. 11, 18, and 19), which are considered to be
exact, are also shown. It is apparent in figure 3 that the present method
p{gXEQEEﬁgp improvement over the generalized method. The differences in
the distributions obtained with the present method and those obtained
with the method of characteristics are almost indiscernible.

In figure 3(c), comparison is also made with the predictions of the
hypersonic small-disturbance theory (ref. 8). The curve shown was cal-
culated by three terms of a power series representation of the pressure
distribution. As noted in reference 8, additional terms will be required
before this method will accurately predict the pressures on an ogive.

Even when the additional terms are obtained, however, it seems unlikely
that the small-disturbance theory will provide a more accurate estimate

of the pressures than provided by the present method for the case shown.
The small-disturbance theory does have a certain advantage in simplicity
for, if the coefficients of the series expansion are known, the pressure
distribution can be calculated very easily. This advantage is partially
offset by the restriction that the series method requires the body profile
to have continuous derivatives up to the same order as the number of terms
used in the series. With this restriction, the theory .cannot be applied
beyond the nose-cylinder juncture of the body (fig. 3(c))

To investigate the accuracy of the present method at values of Mo/fn
other than 1, the comparisons shown in figure U4 have been made. Here,
the predictions of the present method and those of the generalized method
are compared with experimental results for fineness ratio 3 and 5 tangent
ogives at Mach numbers of 3.00, 4.2k, and 5.05.° The values of Mo/fn
range from 0.60 to 1.68. The experimental results were taken from refer-
ence 3. For all cases shown, the predictions of the present method are
within the accuracy of the experimental data. It is also apparent that

SIn all applications of the present method to curved bodies, the
tangent bodies employed were formed by e1emenEE_Egggggg_Lg_the-onlg1nal
bodies &t stafions x/in = 0, 0.1, 0.2, ~T The tangent-body
approximation is required only if the body proflle is curved since for
cone-cylinders, and for the cylindrical section of any nose-cylinder com-
bination, the present method yields results in closed form.

10For some of the cases shown in figure 4, the semiempirical methods
of reference 20 may be used.
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the predictions of the present method tend to approach those of the gen-
eralized method as Mo/fn becomes appreciably greater than 1. At
Mg/fn = 1.68 (fig. 4(f)), for example, the predictions of the two methods
differ only slightly.

In figure 4, comparison is also made with the second-order potential
theory (ref. 5) for conditions where this theory is applicable (i.e.,
M /f = 0.60 and 0.85).. It is somewhat surprising that the present method
is as accurate as the second-order potential theory even at the relatively
low value of Mo/fn of 0.60.

The results presented in figures 3 and 4 indicate that the present
method fulfills its intended purpose by providing an estimate of the
pressures on noninclined bodies of revolution for values of Mo/fn near 1.
At values of Mo/fn as low as 0.60 the present method provides results
comparable in accuracy with those obtained with the second-order potential
theory. At values of Mo/fn approaching 2, the predictions of the present
method and those of the generalized shock-expansion method differ only
slightly. It remains now to investigate the applications of the method
to inclined bodies.

Lifting Bodies

The experimental results obtained in the present tests are given in
tables I and II. Predictions of various theories are also tabulated.
These include the predictions of the present method (with various approxi-
mations), the generalized shock-expansion method (ref. 3), first-order
potential theory (refs. 6 and 21), Van Dyke's hybrid potential theory
(ref. 6), and Newtonian impact theory (see, e.g., ref. 22).11 With the
exception of the two potential theories, all theories have been applied
throughout the entire range of test variables. The potential theories
cannot be employed, of course, if the free-stream Mach angle is less than
the body semivertex angle. '

Normal-force derivative.- The experimentally determined normal-force
derivatives and the predictions of the various theories®® for the bodies
tested are shown in figures 5(a) through 5(f). In general, the present
method predicts the normal-force derivatives at zero.angle of attack

1l301utions with the second-order potential theory employéd in the
application of the hybrid theory were obtained with the aid of refer-
ence 23. (Additional results obtained with the first-order and hybrid
potential theories and with Newtonian impact theory may be found in ref-
erence 2k4.)

12curves for the first-order potential theory are not shown in fig-
ure 5 sihce, in all except a few cases, the predictions of this theory
did not differ significantly from those of the hybrid potential theory
(see tables I and II).

-
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essentially within the accuracy of the data (within about #0.2) through-
out the entire range of test variables. 1In addition, the present method
appears to provide the most consistently accurate results of all the
theories presented in figure 5. The accuracy of the method at low values
of Mo/fpn can be explained partially by examination of the predictions
of the method for the limiting case of very slender bodies. In this
limit, it can be shown from equations (4) and (9) that the term, 7,
approaches infinity. From equation (19), then, the loading, A, may be
written :

P . -z

A=2tand =2z (_zg)

since ch = 2 (see, fig. 2). With the substitution of this equation
tex .

in éqilatlon (14), there is obtained

ch f( | =A_23.b[l%dx‘ ('23)

This result is, of course, the well-known prediction of slender-body
theory, which is known to be accurate for slender bodies at low supersonic
speeds. Thus, the accuracy of the present_method_at_ low values of Mo/f
can be attrlbuted, 1n part to the fact that it reduces £0 S slender-body
theory—in—the Iimit. LT e T

From the results given in figure 5, several observations can be made
concerning the accuracy of other theories. For example, it might be
expected that the potential theories would be more accurate than the other
theories when the parameter ~IM62 - 1 tan %y 1is appreciably less than 1.
For the fp = 7 cone at Mo = 3 (fig. 5(a)), however, this parameter is
only 0.20, and yet, for the longer afterbodies, the hybrid potential theory
is appreciably more in error than the present method. As found in ref- '
erences 2 through 4, the generalized shock-expansion method gives accurate
results when My/f is greater than about 1. Caution should be expressed
here, however, for the significant parameter is truly Mo/f and not

Mp/fn. The results shown in figure 5 indicate that although M,/fy, may
be appreciably greater than 1, for cases where the afterbody is suffi-
ciently long to reduce Mo/f below 1, the predictions of the generalized
method may depart appreciably from the experimental results. 1In general,
impact theory gives acceptable results only for nose sections without
afterbodies.

Center of pressure.- The experimentally determined centers of pres-
sure and predictions of the various theories for the bodies tested are
presented in figure 6. The present method predicts the location of the
centers of pressure essentially within the accuracy of the data (within
about #0.2 body diameters) throughout the entire range of test variables.
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In addition, the present method again provides the most consistently
accurate results of all the theories presented. In general, all observa-
tions made previously regarding the reliability with which the wvarious
theories predict the normal-force derivatives can also be made in the
case of the centers of pressure.

Ranges of applicability.- Several parameters are useful for defining
the ranges of applicability of the various theories. The ranges of these
parameters covered by the present tests are shown in the following table:

Parameter Range
Mo 3.00 to 6.28
f 3 to 17
fn 3to7
fq 0 to 10
My/t 0.18 to 2.09
Mo/Tn 0.43 to 2.09
JMoZ - 1 tan 8, | 0.20 to 2.12

The second-order shock-expansion method was found to be applicable
throughout the ranges of variables shown in the table. Both dCy/da and
x/d were predicted within #0.2. The present tests did not reveal the
limits of applicability of the methodoo. 1t was 1ndlcéf'3“"ﬁowever that
the method may apply to relatively low values of Mo/fn (orAJMo -1 tan &),
since, in the limit of very slender bodies, the method reduces to the
well-known slender-body theory. The upper limit of the method is dictated
by the condltlon specified in the development - nemely, 1 > O (see
eq. (8)). Calculations have revealed that this condition will be violated

if fMo2-1 tan By 1s appreciably greater than 2.5.

The present tests also reaffirmed the conclusion given in references 1
through 4, that the generalized shock-expansion method is applicable when
Mo/f is greater than about 1. At values of Mo/f appreciably greater
than 1, no significant differences between the predictions of the general-
ized and second-order methods were found. The ranges of applicability of
these two methods overlap and thus include most flows sbout pointed bodies
of revolution throughout the intermediate- and high-supersonic speed
ranges.

Application of the potential theories is, of course, limited by the
condition that yMo?-1 tan &y must be less than 1. Even at the lowest
values of NMgZ~1 tan 8y covered by the present tests, however, neither
the first-order nor the hybrid potential theory was found to provide con-
sistently accurate predictions of dCy/da or X/d. The calculations per-
formed also revealed no significant differences in the predictions of the
two theories at values of ~Mg®-1 tan &y less than about 0.7.

'
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Approximations of the Present Method

As noted in the development of the present method, a simplified solu-
tion for bodies with curved profiles can be obtained by the use of a two-
step tangent body. This approximation has been applied to the ogive-
cylinders of the present tests. By the use of additional approximations
to the loading, A, the simplified solutions for QQN[ggn@nd i/d can be
obtained in closed form as discussed in Appendix C. Examples of the
accuracy of the approximate solutions are shown in figure 7. While the
approximate methods do not yield results so consistently accurate as those
obtained with a more complete solution, the approximate methods may still
be useful to obtain rapid estimates of dCy/da and X/d. 1In this connec-
tion, these quéntltles can be estimated for ogive-cylinders in a very
. few minutes with the aid of the results given in Appendix C.

CONCLUSIONS

A second-order shock-expansion method applicable to bodies of revolu-
tion near zero 1ift has been developed. For noninclined bodies, the pres-
sure distributions obtained with the method were compared with existing
experimental results and with the predictions of other theories. For
inclined bodies, the normal-force derivatives and centers of pressure at
zero angle of attack determined with the method were compared with the
predictions of other methods and with experimental results. Cone- and
ogive-cylinders with fineness ratios from 3 to 17 were tested at Mach
numbers from 3.00 to 6.28, corresponding to a range of values of the
hypersonic similarity parameter based on nose fineness ratio (i.e., the
ratio of free-stream Mach number to nose fineness ratio) from 0.43 to
2.09. These comparisons led to the following conclusions:

1. PFor noninclined bodies, the present method predicts the pressure
distributions within the adccuracy of experimental results. At values of
the hypersonic similarity parameter based on nose fineness ratio as low
as 0.6, the present method is as accurate as the second-order potential
theory. At values of the parameter approachlng 2, the predictions of
the present method differ only slightly from those of the generalized
shock-expansion method. ‘

2. For inclined bodies, the normal-force derivatives and the loca-
tions of the center of pressure at zero angle of attack predicted with
the present method are in good agreement with the experimental results
throughout the entire range of test variables. Within this range, the
present method yields results more consistently accurate than those of
other available theories.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 12, 1955
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APPENDIX A
POWER SERIES REPRESENTATION OF FLOW ABOUT BODY OF REVOLUTION

The accuracy of the present method has been demonstrated by compar-
isons made over a wide range of flow parameters. It is also informative,
however, to examine briefly the mathematical accuracy of the method. For
this purpose, the model shown in sketch (c) is useful. From the vertex

) 3
= )
L —as

‘Sketeh (c)

to point 1, the body is conical. Between points 1 and 2, the surface is
deflected by a small angle, €. At any point downstream of point 1, the
physical deviation of the body from a conical surface may be given in
terms of the angle, €, and the distance, As, measured from point 1. Simi-
larly, flow parameters at any point downstream of point 1 may be expressed
in terms of € and As. Before developing such an expression, it should
be noted that for this model (and within the restriction that the flow is
everywhere_supersonic.).,. the present method provides an exact solution for
he surface flow in several limits. For example, the present method is
exact for all values of As when € = 0. For As = 0 and As =>w, the
method is exact for all values of e. For arbltrary values of As and €,
— of course, the present method is not exact. However the general accuracy ——
of the method can be demonstrated by expressing flow paraméters in the
form of a Taylor series in the two independent variables, € and As. The
dependent variable used to define the flow may be any one of several param-
eters. Pressure and velocity are among those most commonly used. In the
present dnaly51s, however, the Prandtl-Meyer angle, v, is considered the
dependent variable. It should be recognized that the Value of the Prandtl-
Meyer angle at a point will define the Mach number, pressure, velocity,
and other such parameters. We have then the series
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V=vy+ av (As)+ gg>e+

1 20\ 3v
-2—,[@?>I(As>2+eas ), @)+ (5) ()] +

3i {@ 3> (as)® +3<a > (8s)%(e) +3 m (AS)»(62)+ 553> (63)]

| (A1)

Each of the derivatives is evaluated at As = € = 0. When € = 0, it is
apparent that the flow parameters are constant along the surface and
independent of s. Therefore, all derivatives with respect to. s alone
are zero. When As = 0, it is also apparent that (J0v/d8); = -1 and that
all higher derivatives with respect to © alone are zero. We have then’
the problem -of evaluatlng the cross derivatives. The second-order cross
derivative, (90 v/Bs 03), may be evaluated with the aid of equation (B1lk4),
from which (dv/ds)2 may be determined; namely,

v _ -1 QB _ . o ad
5?)2 = 3 8s> < sin ®; - sin 6%) (A2)

2 21'1 M2

Fv ) (v
3 as>_l = % as>2 (43)

in the limit as &z > ®;. Hence, by virtue of equation (A2),

It is also apparent that

NED | -cos O3 [ JMZ - 1 tan 1]
\ . - - - )+
BSB;L NS ( 1 an ;) (Ak)

As noted in Appendix B, equation (Bll4) is not an exact solution for the

pressure gradient. It can be demonstrated, however, that equation (A2)

is accurate to the first order in € and hence, equation (Ah) is exact 1
1In the derivation of equation (Blhffa term,

] e @)%
2 cos pa J A cos p \oC

was neglected (see eq. (Bll)). In the present analysis, both Jp/dC;
and the interval of integration, (ss - s,)/b (see sketch (d)), are of
order €; hence, the neglected term is of order e-<.
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With the substitution of equation (Al) in equation (Al), and with the
application of the other results previously noted, there is obtained

V=vy - € - zrlc;;fz—l-_I [(N/Mlz - 1 tan %,) -l}(As)(e) +-

ol (as)®(e), (as)(e)?] (45)

The generalized shock-expansion method of references 1 through 4 gives

the result that The generalized method gives_the Prandtl-
Meyer angle mathematlcally accurate to the first order of the independent
variables € and As and, therefore, immediately downstream of the corner,
gives a first-order solutlon for the surface flow. The present method
adds_the coefficient of the term involving (As)(e) in equation (A5) and,
hence, glves _the Prandtl-Meyer angle mathematically accurate to the second
order of the independent variables € and As. In general, therefore,
immediately downstream of the corner the present method gives a second-
order solution for the surface flow, and therefore, it has been termed
the second-order shock-expansion method.

The foregoing analysis considered only expanding flows about the
corner. If € 1is positive, then the shock wave emanating from the corner
must be_considered. The result obtained is essentially the same, however.
For positive € a term of O0(e®) must be added to equation (A5) to account
for the difference between the Rankine-Hugoniot equations and the Prandtl-
Meyer equations. Alternately, the term, -e, in equation (A5) can be
replaced with the change in Prandtl-Meyer angle between points 1 and 2
as given by the Rankine-Hugoniot equations. The second-order term in
either case is identical, however, as equation (A4) may also be obtained
by differentiating equatlon (B21). (It may also be obtained by differenti-
ation of the exact pressure-gradient equation, eq. (B18).)
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APPENDIX B

EVALUATION OF PRESSURE GRADIENT DOWNSTREAM OF CORNER OF BODY
OF REVOLUTION

Convex Corner
P ————— e - .

Along a streamline in axially symmetric flow the following relation
holds (see eq. (1))

. N .
Op _ ,9% _ 1 Op _ -A (/08  sinp sin B
s )‘\S/ST/ T cos pCy  cos p <acl + T (1)

From this equation, we may also write

dp P Jd o
Y cos u<§g- A 8;; (B2)
-and
9% _ _sinp sin ® _cos p (Op _ 5 30 (B3)
3¢, r “~ A ds ds

Lo ¢
Consider now the flow in the region of a convex corner on a body of
revolution as shown in sketch (d). Between points 4 and 5, we may write,

Mach lines

Streamline

Sketch (d)
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from equation (B1)

pS s . .
dp _ _ : 1 dp
[ 5N (35 - d4) V[ N cos p aC]_> ds (B4)
4 4

If points 4 and 5 are near to the surface, equation (B4) may be approxi-
mated by '

bz - - . 5 )
/‘ dp  Bs “ P2 Pa - P15 5. /‘ 1 <ap ds
N A Ao A . A cos p \OC;
Pa 4

(B5)

Since the flow between points 1 and 2 is str%ctly of the Ergndtl-Mgzg;
type, - LT

| (EQ
We may also write from equations (B2) aﬁé’(B3)
by = 82 + (g%% AR sin %iéin % . CO;Z“Z [ §§>2 - % §§>2}b
| | (B9)

3% sin:plsin 01 cos W3 )
B4 = By + . a = 8; - = a - X Py - M=) l&
ACy N RS 1 ds 1 Jds 1

(Blb)
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When equations (B6) through (BlO) are substituted into equations (BS),
there is obtained

2 cos o dp 2 cos 2 cos pi @ o)
A2 [ 5s> > ]b as> X1<%S>1}a *

sin sin © sin sin 8 . =
Mo 2y - K1 1a:f 1 Bp>ds

T _ r A cos p \OCi
(B11)

If it is assumed that a first approximation td the flow is given by the
generalized shock-expansion method, then the right-hand member of equa-

s

tion_(Bll)_may.be-negleeteds Equatlon (B11) may thus be written =™~

<§g> _‘x2<é§> = _———53—-— [(i) sin pysin 8; - sin ppsin SZJ +
s/s s/, ©2r cos pp |\P

‘;EZt;()()K) ®] s

In the limit as the streamline between points 4 and 5 approaches the
surface, the ratio, a/b, may be evaluated in terms of the one-dimensional
area ratio

- (——Sin h2) (B13)

a
b sin g1/ Qo

With the substitution of equation (B13) into (B12), there is obtained
after combination of terms i



26 NACA TN 3527

A

'/' .
(2, as> - B2 <Ql sin 8, - sin 5> B2 iy KB—p\' - (2 }
<) - Nl <o -— \== 1 2| + T
<§s>L Js A r \Qs . o .B; f2 _Bs/i Os L
0 : ' - S (B1k)
where .
oM (B15)
B = —f———
~ 2(M® - 1)
and, of course
2 :
A= sin 2u (B16)

(7+1)

| | ) R I B |
ﬁﬁ)ﬂ . o1 ' 2 ,
C&ﬁo(f Yo 2 =5 <,+l_> | | (B17)
2 ’

Equation (Bl4) represents only an approximate evaluation of the
pressure gradient. More exact evaluations may be found in references 10
and 25. These more exact results, of course, require numerical or graph-
ical integration.

Concave Corner
m

In most cases, the tangent bodies used in the application of the
present method will have convex corners. There is a possibility that
concave corners may be enéBﬁﬁ%ered, In the event that the original body
does not have sharp concave corners, equation (BLlL) will still suffice
since the flow along the surface is still isentropic. However, if the
original body does have sharp concave corners, then the pressure gradient
for this case will also be required. This result can be obtained in the
same way as equation (Bll4); however, the shock wave emanating from the
corner must be considered after the manner described in reference 9. The
expression defining the pressure gradient in this case is
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In these equations, ¢ 1s the shock-wave angle with respect to the body
axis, and (OH/dn), 1is the variation of the total pressure normal to the
surface just upstream of the shock wave. The subscript, u, refers to
conditions upstream of the shock wave, and the subscript, d, refers to
conditions downstream. Equation (Bl8) represents the exact solution in
the usual sense. All effects of the interaction between shock waves and
Mach waves are therefore included. In order to be consistent with other
parts of this analysis, these effects should be neglected. 1In addition,
since equation (B18) is intended for application to a tangent body, the
body curvatures, (BB/Bs)u and (3%5/ds)g, will be zero. It may also be
noted that the first step-of the tangent body is a’ ‘cone tangent to the
vertex of the original body. For this approximation then, there will be
a small layer near the surface of the tangent body for which (O0H/dn) = O.
With these approximations applied to equation (B18), a simplified result
can be obtained which will suffice for the present purposes.

- sin Sd] +

7

3\ tan pg 2By sin(o - ®y)sin du’
6;)dt tan(o - dg)] T sin(o - 83)

<§ (Ba s1n(c - Bu) L (P g cos(o - dy)tan pg
BS Bu sin(o - Sd) pu sin(c - Sd)
(B21)

For a body with a concave corner, a special form must also be used
for the loading. dJust downstream of the corner and before the first
COﬁvex>corner
f .

B s e - ISR

dac
N <?d (B22)
tex Pu

1 - e Mtan & —
= (1 - e Mten & —

and, thereafter,
- . LTI 7%

ac

N o - ,

= (1 -eMtan 8 7| + e Ay <—p2 _ 22 —p1> ary  (B23)!
1 N '

tex

where .

. [My?sin?(0 - u) - 1]°
~ (pg/ro) | (¥ - 1)My®sin®(o - &y) + 2]My®sin®(o - By)
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The corresponding equations for open-nosed bodies of revolution are
similar. The pressure gradient at the leading edge may be determined
from equation (B21) with My = Mo, &y = 0, and (Jdp/ds)y = O. The loading
on the exterior surface is given by

where A, 1is the loading at the leading edge, or

4 sin oycos oy

(y + l)[l i sin(oy - &y)cos(oy - dy) . (7 i l> cos®(ay - Bv)}

sin oycos oy Mp®sin®oy

(B26)
and J 1s defined by
(MoZsin®oy - 1)2

J = : (B27)
(pv/PoMo®sinday[(y - 1)MBsin®oy + 2]

For bodies with concave corners, and for open-nosed bodies, the total
pressure is not constant on the surface when. the bodies are inclined.
This variation in surface total pressure leads to the term involving Ay
in equatlon (B23)-and“the term involving Ay in equation (B25).
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APPENDIX C
EXTENSIONS OF THE APPROXIMATE METHOD

This analysis is based on the approximate or two-sten method pre-

- viously mentioned. The basic equations of this method are equations (11),
(12), (13), and (20). Before proceeding with this analysis, it is con-
venient to write down the expressions for the function B (see eq. (12))
for several types of bodies. These expressions are presented in the
following table: :

Expressions for B

Body For nose section [For cylindrical afterbodyj
x sin dy - r cos By ' x O
Any bod 2fnsi =) -
Y Y r cos ® - x sin ® nsin 8V<én) cos By
2fn<%§ - >
Cone-cylinder (Not required) .
: \ll+h~fn2
2 x
Tangent-ogive~ 1 ’ 1+ by <2 o l>
cylinder -
v 1+ brp®
- 2 o X
Tangent-paraboloid 7 + (} - £E> -\ = T T
cylinder , ln _
o+ 1 Nfn® o+ 1

In general, the equations for the normal-force and pitching-moment
derivatives may be integrated in two parts - one part for the nose sec-
tion and one for the afterbody. Thus, with the loading defined by
equation (20)

é

dcy oy ‘e e-Ggfn<l ) e‘sza> (c1)
do = da |pose *
@) ax - g eEn - -Gafg B
da /Ao lpoge G2 € [(1 + Gofp) - (1 + Gofn + Gofg)e ™ ] (c2)
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where
2 Ps sin 2“ dCN cos -
Gy = a 51 v Va By (c3)
Vgcos &y Py sin 2ugs, da ltey
and
Gz = 2y sin dy . ' (ch)

The additional subscript, a, refers to functions evaluated for the after-
body (i.e., ® = 0). Thus, from equation (13), '

7(Psa/Po)Msa2 Qv

" 2(1 - by fpo)(Msg? - 1) Pea @

The terms G; and G> are functions of My and d, alone. These
functions have been evaluated and the results are shown in figure 8. For
the special case of cone-cylinders, equations (Cl) and (C2) represent a -
closed solution of the general method as well.

By the use of an additional approximation to A, results in closed
form can also be obtained for ogival nose sections. Such an approximation
is

r dc
(@-o) 3| - G4}<tan 5)
aCy do ley
A = Gatan & —. + Gatan & + _
. Q& Jtev tan dv ‘
(c6)
where
Ps, sin 2uy -‘W
_ a
G3 - pv sin 2“’83 € : (07)
and
Gy = 2(1 - e Vo) (c8)

When equation (C6) is substituted in equations (14) and (21), equations
are obtained in closed form for dCy/da and dCp/da. These equations
involve constants which are complicated functions of the nose angle Oy
(or nose fineness ratio \fh). These functions can be expanded in a series
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in terms of ®y; the leading terms of these series are constants independ-

ent of Oy. In view of the approximate nature of this analysis, the use of
the 1ead1ng terms will suffice. Thus there is obtained

OB tes)( > (co)
da Iogive 15 tov
dCp! (3 + 22G3) /ACH
- X, - ( — < N (c10)
n 4o logive 15 > do Ji oy

To the accuracy of this analysis, these _equations also represent the solu-
/‘\ S —_— =

tions for..a.tangent. paraboloid.. These equatlons have been evaluated for

a range of Mach numbers and nose fineness ratios. The results are pre-

sented in figure 9. It is apparent that with the aid of equations (Cl)

(c2), (c9), (C10), and figures 8 and 9, dCy/da and dCp/de for ogive-"

cylinders can be evaluated approximately in a few minutes.
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Figure 2.— Normal-force derivative (—dds—” at a =0) for cones tref. 14).




NACA TN 3527
20
15 -
/.0 : . - 1)
7-‘#*,/ — .
5 = '
o
(a) Cone-cylinder, My =300, fp =3
4
o R Second-order
g: _\ shock-expansion method
N ——=—-= Generalized
.g ' shock-expansion merhod
e ——-— Method of characteristics
WL
§ 2
3 . | o
o N Method of characteristics, also
b p \\L ‘
o :
(b) Sears—Haack body, M= 300, f,<3
3
2 \\
X | —— Hypersonic small-disturbance
\\\ L / i theory
~ e ——
/ S
A T =~ —
; Tj———-___--’___-___
Method of characteristics, also-
], L ]

o 2 4 .6 8 [0 2 14 6 I8 20
Station, x/1, ‘
(c) Ogive-cy//hder, M=300, =3

Figure 3.— Surface-pressure distributions for various bodies at |
Mo/fh =1 and a = 0° '

L1



NACA TN 3527

Lo

'SONIDO JUSBUD POUNIUIIOU 10 SUOHNGIISIP 94Nssa4d-32044ns -t 3inbil4
101=YNE=9 2t =W

891=%°w ¢ -Y% ‘¢o¢ -

z

w ()

o/ & g vy 2 0

w (2

AN

NI
Q

/
<
N
N
Y

Y
A103y4 /
101jud40d 48p40 -pU0IFG — —

POYJoWw uoISuUDdX9-Y20yS

POZIDIIUSY -~ — —

PoYsdw uoisupdxa-yooys
48p40-pu02ss

(€ #94) yuswpsddxy ©

o/

Yux ‘vonois

z

/

g 9 4

o

—
-~
~
Y

N
Ry

001+ Yomw e =% ‘ooc =% (p)

o & 9 ¥ 2 0,
[~
~
//
< o
™ )
N
~N
N
NS
)
// 74
., e
090=-bw ‘c=% 0ogs =W (1)
Mv < pO-
~
) ~N
AN
/u N
Ny < Q
N
N
AN
///
_ NS b0

er

/ 80

99 qu19144909 94nssaiy



NACA TN 3527 : 43

4

hs)
N M, = 300 M, = 4.24
N M/, = 43 M,/t, = .6/
QL
Q /
LN
N
O
3P
AN )
-
2
.
S 4 y 7
0 7/ b
3 / /
/ Mo = 628 /7
§ . / M,/ = .90 , /
& 3 PR ) ',‘ — et T
3 D O A==
§ ‘/l ' //9)
RN
< Z .
2 - + - - + — - -
M, = 505 o Experiment
M. /f, = Second-order shock-
Lenn 72 expansion method
/ . - ——=—~Generalized shock-
expansion method
~—— —— Hybrid potential theory
— - — Newtonian impact theory
o

0 2 4 6 & 1o 0 2 4 6 & 1o
Afterbody fineness ratio, Iy
(o) Cone, f,=7
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