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NATIONAL ADVI SORY COMMITTEE FOR AERONAUTICS 

TECHNI CAL NOTE 3528 

A THEORETICAL STUDY OF THE AERODYNAMICS OF SLENDER 

CRUCIFORM-WI NG ARRANGEMENTS AND THEIR WAKES 

By John R. Spreiter and Alvin H. Sacks 

SUMMARY 

A theoretical study is made of some cruciform-wing arrangements and 
their wakes by means of slender -body theory . The basic ideas of this 
theory are reviewed and e~uations are developed for the pressures) load
ings) and forces on slender cruciform wings and wing-body combinations. 
The rolling-up of the vortex sheet behind a slender cruciform wing is 
considered at length and a numerical analysis is carried out using 
40 vortices to calculate the wake shape at various distances behind an 
e~ual- span cruciform wing at 450 bank . Analytical expressions are 
developed for the corresponding positions of the rolled-up vortex sheets 
using a 4 -vortex approximation to the wake) and these positions are com
pared with the positions of the centroids of vorticity resulting from 
the numerical analysis. The agreement is found to be remarkably good 
at all distances behind the wing . 

Photographs of the wake as observed in a water tank are presented 
for various distances behind a cruciform wing at 00 and 450 bank. For 
450 bank) the distance behind the wing at which the upper two vortices 
pass between the lower two is measured experimentally and is found to 
agree well with the 4 -vortex analysis . 

The calculation of loads on cruciform tails is considered in some 
detail by the method of reverse flow) and e~uations are developed for the 
tail loads in terms of the vortex positions calculated in the earlier 
analyses . 

INTRODUCTION 

The importance of the rolling-up of the vortex sheet in determining 
the dOWllvlash behind slender wings is now generally recognized and has 
been discussed at some length in reference 1 . The current use of cruci 
form wings has caused the missile designer further concern regarding the 
dOWllwash field in the vicinity of the tail . Such calculations are gen
erally considerably more complicated than those for planar wings . However) 
since the wings on missiles of this type are generally of low aspect ratio 
and the tail lengths are long) it is often assumed that the vortex sheet 
shed from each panel of a cruciform wing is completely rolled up into a 
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single vortex line at the tail position. One of the purposes of this 
paper is to investigate the usefulness of such an approximation at various 
distances behind the wing . This will be accomplished by comparing the 
results of an analytic study of the behavior of a 4- vortex model with the 
results of a numerical computation for a corresponding 40- vortex system 
and with observations of experiments conducted in a water tank . 

The calculation of the pressures, loadings, and forces on cruciform 
wing-body combinations without regard to the wake will be treated early 
in the analysis, and a later section will be devoted t o the calculation 
of the loads on a cruciform tail in the presence of the vortex wake . 
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Cy 
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c 

d 

E 

PRINCIPAL SYMBOLS 

aspect ratio 

body radius 

span of equal- span cruciform, 2so 

p - Po 
pressure coefficient, q 

Y' 
qSV 

wing chord 

distance behind wing trailing edge 

distance behind trailing edge of cruciform wing (¢ = 450
) 

at which upper two vortices pass between lower two 

distance behind trailing edge at which vortices are essentially 
r olled up 

elliptic integral of the second kind 
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F 

f 

incomplete elliptic integral of the first kind 

lateral distance between centroids of vorticity of the two 
halves of the vortex wake for ¢ 450 

(f = Yl ' + Y2 ' ) 

g (x ) difference between ~ and ~2 

K 

L 

L' 

n 

p 

Po 

r 

s 

t 

u,v,w 

x,Y,z 

complete elliptic integral of the first kind 

force component in the z direction 

force component in the z ' direction 

length of the airplane 

free - stream Mach number 

outward normal from surface of airplane or wake 

static pressure 

free - stream static pressure 
2 

PoUo 
free - stream dynamic pressure, 2 

cross - sectional area 

plan form area of wing H 

plan form area of wing V 

local semispan of component wing H 

maximum value of s 

local semispan of component wing V 

maximum. value of t 

free - stream speed 

fluid velocity components in the x,Y,z directions 

Cartesian coordinates fixed in the body and illustrated in 
sketch (a ) 

3 
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Cartesian coordinates obtained by rotating the xyz system 
an angle ¢ about the x axis as illustrated in sketch (f ) 

l ' l ' 1 d 1 Y 1 Z I} 
1 1 Y an z coordinates of vortices 1 and 2 of 4-vortex analysis 

Y2 ,z2 

y 

yl 

0,1 

e 

cp 

force component in the y direction 

force component in the yl direction 

y and z coordinates of centroid of vorticity 

angle of attack in the xyz coordinate system as illustrated 
in sketch (a) 

angle of attack in the xylZ I coordinate system as illustrated 
in sketch (f) 

angle of sideslip in the xyz coordinate system as illustrated 
in sketch (a ) 

maximum circulation round a wing panel 

angle from the positive y axis to a point on the airplane 
surface, positive counterclockwise, as illustrated in 
sketch (c) 

curve describing the cross section of the vortex wake in planes 
x = const . 

fluid mass density 

curve bounding the cross section of the airplane or wake in 
planes x = const. as illustrated in sketch (b ) 

total velocity potential 

angle of bank illustrated in sketch (f ) 

perturbation velocity potential satisfying Prandtl- Glauert 
equation 

perturbation velocity potential satisfying two- dimensional 
Laplace equation in planes x = const . 
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Subscripts 

H component wing lying in the xy plane 

TE wing trailing edge 

u,2 two sides of the wake 

v component wing lying in the xz plane 

FUNDAMENTAL RELATI ONS 

The theory for inviscid compressible flow about slender bodies of 
arbitrary cross section has become well formulated in recent years and ~ 
is now described in detail in many papers ( see ref . 2 or 3 for a resume) . 
These methods can be applied to the study of flow about cruciform wings 
and wing -body combinations and will be used throughout the present 
analysis . 

The Coordinate System 

Most of the analysis will be 
referred to a Cartesian coordinate 
system fixed in the body , as shown in 
sketch (a) . The free - stream direc 
tion may be inclined, small angles 
~ and ~ with the x axis , as pro
jected onto the xz and xy planes, 
respectively . 

The Potential 

A perturbation velocity potential 
~ is introduced related to the total 
velocity potential ~ according to 

z 

z , 
.• y 

y 

Sketch (a) 

(1) 

and it is assumed that the perturbation velocities are sufficiently small 
that the e~uations for compressible flow can be satisfactorily approxi 
mated by the Prandtl- Glauert equation . Thus ~ is a solution of 

(1 - Mo2 ) ~XX + ~yy + ~zz 0 (2 ) 
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If it is assumed, furthermore , that the airplane is sufficiently slender 
that the longitudinal perturbation veloc i ties and their gradients are 
small compared with the lateral perturbation velocities and their gradi 
ents , Ward (ref . 4) has shown that the e~uation for the perturbation 
velocity' potential cP in the vicinity of the airplane is 

x 

cP CP2 -
Uo d J dSc 2 (x - s) ~ - - --7,n d~ 
2rc dX 0 ds .JMe2 - 1 

for supersonic flow (Me > 1); and Heaslet and Lomax (ref . 5) have shown 
that 

7, 

cP Uo d J dSc -- --
4rc dX ds 

o 

x - s 
Ix - s I 

(4) 

for subsonic flow (Me < 1). In these e~uations, 7, represents the length 
of the airplane and Sc = Sc (x) represents cross - sectional area in planes 
normal to the x axis . The symbol CP2 in these e~uations represents 
the solution of the two - dimensional Laplace e~uation 

for the specified boundary conditions , and can be written explicitly as 

1 J (dCP d) CP2 = 2rc dn - cP dn 7,n r dcr (6) 
cr 

where cr is the line bounding the cross - sectional area of the airplane 
and its wake in the yz plane , and n is the surface normal in the yz 
plane, as indicated in sketch (b) . Thus, the three - dimensional velocity 

z 
, , , 

~ 2:--+--L _--t---l;._,_ t;-- m h_ --- Y 

Sketch (b) 

field induced by slender airplanes f lying at 
either subsonic or supersonic speeds is approxi 
mated in the vicinity of the airplane and the 
wake by a velocity field that satisfies the two 
dimensional Laplace e~uation and the boundary 
conditions in transverse planes plus a longitu
dinal velocity field that depends on the longi 
tudinal rate of change of cross - sectional area 

and is independent of y and z . Conse~uently , e~uations ( 3) and (4) are 
often written in the following more abbreviated form 

cP = CP2 + g(x ) 
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which is a general solution of equation (5)) but where knowledge of 
equation (2) must be introduced to permit the determination of g (x ). 
As is apparent from comparison of equation (7) and equations (3) and (4)) 
the function g (x ) contains all of the dependence on Mach number) but 
the only feature of the airplane geometry which enters is the cross 
sectional area. Thus) as shown by Keune (ref . 6) and Heaslet and Lomax 
(ref . 7)) g(x ) for any slender airplane can be thought of as the limit 
for small r = ~y2 + Z2 of the difference between ~ and ~2 for a body 
of revolution having the same Sc (x ) as the airplane) that is) 

g(x) 

for Mo < 1 and 

g (x ) lim 
r~o 

(8) 

Uo dSc J - - -- l n r 
2T( dx 

(9) 

for Mo > 1. It is indicated in references 8 and 9 that a corresponding 
relationship occurs for Mo = 1 in transonic theory ) although there is 
at present no explicit formula for computing- ~ for a body of revolution 
in transonic flow . 

Once ~ is determined ) the pressure can be calculated directly using 
the r elationship 

(10) 

The Boundary Conditions 

The boundary conditions require that the gradient of the total veloc 
ity potential ¢ is consistent with the free -stream conditions at infin
ity) and is zero when evaluated normal to and on the surface of the air 
plane. Consequently ) ~ is a constant ) say zero, infinitely far ahead of 
and to the side of the airplane and 

o (11) 
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on the surface of the airplane . In equation (11), n' represents the 
normal to the surface, and nl,n2' and n3 represent the direction cosines 
of n ' with respect to the. x, y, and z axes, respectively . By the 
assumptions basic to slender -airplane theory , this equation reduces to 

(12) 

where d/ dn = n2(d/dy ) + n3 (d/dz ) and is the surface normal in a yz 
plane . Having equation (12) expressing the boundary conditions at the 
surface of an arbitrary slender airplane, one can easily write the corre 
sponding relations for specific shapes . For example, the boundary con
dition for a body of revolution is 

Z 
I 

, / y 

Z 
I 
I 
I 

Sketch (c ) 

:c== 
-5 

Sketch (d ) 

z 

Sketch (e) 

Z 

I 

~- - -C~~:-'?y 
I 

+5 

where r = a (x ) is the body radius 
and e is measured in the counter 
clockwise direct i on from the positive 
y axis , as shown in sketch (c ). The 
boundary condition for a thin wing 
situated near the xy plane, as shown 
in sketch (d ), is 

U dhz 
+ 0 dX (14) 

where hz = hz (x,y) is t he z ordi
nate of the wing surface . I f the 
wing is situated near the xz plane , 
as shown in sketch (e ), the boundary 
condition is 

where 
the y 

hy = hy (x,z ) now r epresents 
ordinate of the wing surface . 
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The above statements (and similar ones for other configurations ) 
permit the determination of ~ for all points in the vicinity of slender 
nonlifting airplanes, but only for pOints forward of all trailing edges 
for lifting airplanes . The insufficiency in the latter instance stems 
from the fact that the line integral in the definition of ~2 must be 
carried around the trailing vortex wake and that additional relations are 
necessary to determine the location of the wake and the conditions existing 
thereon. 

The vortex wake is idealized in wing theory to an infinitely thin 
vortex sheet extending downstream from the trailing edge of the wing. 
The vortex sheet can be thought of as being composed of vortex lines hav
ing constant circulation r, or strength, along their length. The funda 
mental properties are that the velocity must be purely tangential on 
either side of the wake , and that the pressures are e~ual on opposite 
sides of the wake . The first of these properties corresponds to the 
statement that d~ /dn' is zero on both sides of the wake, and leads, in 
the present approximation, to e~uation (12). Since the direction cosines 
nl,n2, and n3 of the normal to the wake are e~ual and opposite on the 
two sides of the wake, one concludes that d~2/dn is equal and opposite 
on the two sides of the wake . These two properties, when combined with 
the pressure -velocity relation of e~uation (10) , lead to the conclusion 
that the vortex lines are parallel to the average of the velocity vectors 
on opposite sides of the wake, again evaluated to an order consistent 
with the remainder of the analysis. In other words, r or ~~ is constant 
along lines extending downstream from the trailing edge according to the 
relation 

dy dz dx 

Uo 
(16) 

where the subscripts u and 1 refer to the values on opposite sides of 
the wake. It is interesting to note in closing thi s discussion that the 
inclusion of nonlinear terms in the pressure-velocity relation of slender 
wing theory re~uires consideration of the deformation and rolling-up of 
the vortex wake , and that the flat wake commonly assumed in linear theory 
is'inconsistent with the use of e~uation (10) for the pressure. Additional 
discussion of these points can be found in reference 3. 

A Second Coordinate System 

In order to take advantage of certain symmetry properties, part of 
the results will be given in terms of a second coordinate system xy ' z '. 
This coordinate system is related to the xyz system by such a rotation 
about the x axis that the xz ' plane cont ains both the x axis and 
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the free - stream direction . With this system, the airplane is banked an 
angle ¢ with respect to the y ' axis, and the free - stream direction 

z· 

z· , 
: .~z 

)i(---,----y' 
)I> 
-- y 

Sketch (f ) 

makes an angle a ' with the x axis 
as shown in sketch (f ). Since a and ~ 
are small angles, we have the following 
relations : 

¢ 
j3 

tan- 1 
(i' 

(17) 
a ' = 

This coordinate system will be used 
from time to time during the discussion 
and for the presentation of the specific 
results for ¢ = 450

• 

FORCES ON SLENDER CRUCIFORM WINGS 

The relationships outlined in 
bodies of arbitrary cross section . 

the preceding section apply to slender 
Inasmuch as the vortex calculations, 

which are the principal subject of this 
study, are confined to cases involving 
either plane or cruciform arrangements 
of thin wings , attention will be 
devoted in this section to the deter 
mination of the aerodynamic forces on 
flat -plate wings of zero thickness . 
(The corresponding results for 'slender 
wing-body combinations are included in 
the appendix .) These results supersede 
those of reference 10 in which proper 
account is not taken of the nonlinear 
terms in the pressure coefficient . 
Thus, consider the cruciform wing 
illustrated in sketch (g ) and designate 
the component wing which extends along 
the y axis as H and that which 
extends along the z axis as V. Bot h 
components are symmetrical about the 

z 

V 

Sketch (g) 

z z 
: + , 4 , + 

'Po + 

Sketch (h ) 

H 

z 

+ ..- -

C) 

--- y 
x axis, the plan form of wing H 
being given by y = ±s(x) and that of 
wing V by z = ±t (x ). Since the 
wings have no thickness, g (x ) = 0, the 
flow is unaffected by Mach number, and 
~ = ~2 . The solution for this case 
can be considered to be the sum of the 
solutions for the flows about each 
component alone as shown in sketch (h ), 
since wing H lies in a plane of 
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symmetry of the perturbation flow ~ about wing V, and wing V lies 
in a plane of symmetry of the perturbation flow ~a about wing H. The 
expression for ~a can be found in many sources (e.g., ref. 11) and is 

~~J I ~ ± -- S2 _ y2 + Z2 + '" (s2 _ y2 + Z2) + 4y2z2 - uo~z 
ff 

(18) 

where the sign is positive in the upper half - plane and negative in the 
lower half -plane. The expression for ~ is 

where the sign is positive in the left half -plane and negative in the 
right half-plane . The perturbation velocity potential for the flow about 
the cruciform wing is thus 

~ = ~a + ~ (20) 

Through application of equations (10) and (18) through (20), expres 
sions for the differential pressures or loadings on the two component 
wings are found to be 

(6;)H 
% dS/dx 4~f3 y/s 1 

+ 
.Jl - y2/S2 Jl - y2/S2 Jl + t 2 /y2 

(21) 

(6~)V 4[3 dt/dx 4~f3 zit 1 
+ 

~Z2/t2 J l - Z2 /t2 Jl + S2/Z2 

The sign convention is such that the loadings are positive when they are 
associated with forces in the direction of the positive y and z axes, 
and hence with positive lift and side force as indicated by the sub 
scripts on the symbol 6p. 

Of the two terms in the loading expressions, the symmetric first 
terms contribute to lift and side force and the anti symmetric second 
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terms contribute to rolling moment. To illustrate this point further, 
sketch (i) shows the load distribution on a cruciform wing having trian
gular components. The loading on the vertical component is shown by the 

Sketch (i) 

two top sketches , and that on the 
horizontal component is shown by t he 
lower sketches . The sketches on the 
left represent the contribution of 
the symmetric first terms of equa
tion (21)j those on the right, the 
contribution of the antisymmetric 
second terms . As has been pointed 
out in many discussions of slender 
wing theory, equation (21 ) for the 
loading applies only to those por 
tions of wings for which dS / dx and 
dt/dx are positive. Consequently, 
the present analysis will be confined 
to wings having their maximum span 

at the trailing edge. The permissible ranges for ~ and ~ are also 
restricted inasmuch as equation (21) becomes invalid when either the angle 
of pitch or yaw becomes so large that the leading edge rotates beyond the 
free - stream direction and becomes, effectively, a trailing edge . Mathe 
matically, this limit occurs when I~I = dS/dx and when I~I= dt/dx . If it 
is desired to investigate wings inclined at large angles , consideration 
must be given to the influence of the trailing vortices lying outboard of 
the sides of the wing. 

The total forces on the cruciform wing can be determined by inte 
grating the loading over the entire surface area . Thus, the lift ( i . e . , 
the total force in the direction of the positive z axis) is given by 

L = J J ~PL dx dy 

H 

(22 ) 

where So is the maximum semispan of wing H. Likewise, the total side 
force in the direction of the positive y axis is 

y = J J 6.Py dx dz = -2JtQJ3to 
2 

V 

where to is the maximum semispan of wing V. The same results, 
expressed in coefficient form, are 

11 
= - AH~ 

2 
(24 ) 



NACA TN 3528 13 

Cy l = - 21 Ayf3 
qSy 2 

(25) 

It may be noted that these latter integrated results can be obtained 
more easily by momentum methods (e.g ., refs . 2 and 3) if details of the 
loadings are not required . For example , the lift of any plane or cruci 
form wing is given simply by 

where l:!.CPTE 
potential cp 
edge . 

L 

+so 

PoUo J l:!.CPTE dy 

- so 

(26 ) 

refers to the di fference in the values of the perturbation 
on t he two sides of the wing, evaluated at the trailing 

WAKE MID DOWNWASH 

The determination of the shape of the trailing vortex sheet and the 
associated velocity field behind a wing customarily involves considera
tions of classical vortex laws together with the known vorticity distri 
bution at the trailing edge . For slender wings , these relations are all 
imbedded in the equations given in the first section of the present 
analysis . Thus, since Sc = 0 behind the wing and ccp/ cn is equal and 
opposite on the two s i des of the vortex wake , it follows from equa
tions (3) , (4), and (6) that the perturbation potential for the flow in 
any lateral plane behind the wing is given by 

cP CP2 = - 2
1
rc J cp c~ ln r dO' 

0' 

A direct consequence of the zero thickness of the vortex wake is that the 
normal derivative in equation (27 ) is equal and opposite on the two sides 
of the wake . This means that the contour integral around the wake indi 
cated by 0' in equation (27 ) can be replaced with a line integral along 
only one side A of the vortex sheet . The integrand then involveG not 
cP, but the difference in potential l:!.cp on the two sides of the wake . 
Since, furthermore 

and 

c 1n r en 

r (28) 

c z - z l _ '-.. tan- 1 
0/\ y - Y1 
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equation (27) becomes, on performing an integration by parts 

cp 
"d Z - zl 

r - tan- l d" 
"d" y - Yl 

since r is zero at the lateral extremities of the vortex sheet . The 
corresponding relations for the velocity components v and w in the 
direction of the positive y and Z axes can be found by using equa
tion (30) in conjunction with equation (1), thus 

v= 
"dy (31 ) 

w ( 32) 

The relation for the path of each vortex line given by equation (16 ) 
can be expressed in terms of v and w, thus 

dz 

where the subscripts u and I again refer to the values on the two sides 
of the vortex wake . 

The principal difficulty in the calculation of v and w stems from 
the fact that the shape " and the vorticity distribution "dr / "d" of the 
wake are not immediately known at all stations behind the wing, but only 
at the trailing edge . At this station, the circulation distribution can 
be determined directly from equations (18) through (20) by setting z = 0 
for the vortex sheet behind wing H and y = 0 for that behind wing V 
and replacing s and t with So and to (the maximum values for s and t, 
occurring at the trailing edge) . The resulting expressions 
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indicate that the circulation distribution is elliptic immediately behind 
each wing . This case illustrates the fact that the circulation distribu
tion and span loa ding are not always proportional . This conclusion is 
immediately apparent when it is observed that the circulation distribution 
for the present case is symmetric about the x axis, whereas the span 
loading is asymmetric, as can be seen by examining sketch (i ). If atten
tion is confined to stations immediately behind the trailing edge and to 
cases where the wing is at very low lift, so that x - xTE and fare 
small, it may be assumed for certain purposes that the distortion and 
rolling -up of the wake is so slight that they can be disregarded. With 
this assumption, the induced flow field behind a lifting wing can be com
puted directly. Thus, the perturbation potential for th~ flow behind the 
triangular cruciform wing treated in the preceding section can be obtained 
from equations (18) through (20) by again substituting So for sand 
to for t, and the associated velocity field can be found therefrom by dif
ferentiation . Although the error incurred in the induced velocities by 
the use of this assumption can be continually diminished as the lift and 
distance from the wing is reduced, the condition of zero force on the 
wake is always violated at the edges of the wake . The elimination of 
these forces demands that the vortices be free to roll up. Inasmuch as 
these effects become of increasing importance as the aspect ratio is 
decreased, attention here will be focused more on determining the behavior 
of the trailing vortex system than on performing calculations assuming a 
simplified wake form . 

Similarity Considerations 

The rate at which distortion of the wake progresses with increasing 
distance from the wing will first be investigated by means of similarity 
considerations. Consider two geometrically similar cruciform wings 
traveling at either subsonic or supersonic speeds, but differing in span 
and angles of pitch and yaw. I t is desired to relate the distances behind 
the two wings at which the wake patterns are similar . Let the symbols 
referring to the reference wing be denoted by asterisks and those refer
ring to the second wing be plain . Inasmuch as a first requirement is that 
the vorticity distributions must be similar at the trailing edge, it is 
necessary that the ratio of angle of attack to angle of sideslip ~/~ be 
the same for both wings . (If the problem is stated in the alternative 
manner by specifying the angle of attack ~ J and angle of bank 0, this 
condition corresponds to requiring that both wings have the same angle 
of bank . ) From equations (31) and (32) , it is evident that the perturba
tion velocity components ~ and ~z behind the wing are directly propor
tional to the circulation and inversely proportional to the scale. Inas
much as the former is measured by, say, the maximum value of the circula
tion fo, and the latter by the semispan so' the ratio of the lateral 
induced velocities at corresponding stations behind the wings is equal to 
the ratio of the circulation loading of the two wings . 
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Since the ratio of the longitudinal distances, in terms of wing 
semispans , from the trailing edge to stations having similar wake patterns 
is inversely proportional to the ratio of the induced velocities, in terms 
of the free - stream veloc i ty , we have 

This relation reduces to the following when the circulation f unction r o 
is replaced by the lift L through the introduction of e~uation (26) 

(38) 

or in dimensionless for m 

where A refers to the aspect ratio and CL to the lift coefficient . 
In many cases , it is preferred to express the distance d i n terms of 
the wing chord rather than the semispan , whence 

(40) 

From this result, it can be concluded that the express i on for the distance 
re~uired for the trailing vortex sheets to assume any particular configu
ration is of the form 

d 
c k (ti) (2~o) (41) 
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where k is, as yet, an unspecified constant . This formula is directly 
applicable to both the rolling-up of the vortex sheets and the relative 
motions of the rolled-up vortices . Thus , for instance , one set of values 
for k will give the distance reQuired for the vortex sheets to become 
rolled up to any given degree as a function of the angle of bank ¢; 
whereas another set of values will give the di stance for the rolled-up 
vortices to a?sume some particular orientation with respect to one another . 

The foregoing analysis gives no information regarding the relative 
rates of rolling-up of the individual vortex sheets trailing from each 
panel of a cruciform wing . If the angle of sideslip ~ is zero and the 
angle of attack is different from zero (or the angle of bank ¢ is zero), 
a vortex sheet exists at the trailing edge of only the horizontal wing 
and it rolls up in exactly the same manner as it does behind a single 
plane wing . If , on the other hand, the angles of attack and sideslip are 
eQual (or the angle of bank is 450

) and the cruciform wing is composed of 
four identical panels , the vorticity distribution at the trailing edge of 
each panel is the same and the wake rolls up into four eQual vortices at 
nearly eQual rates . Other cases are more complicated . 

Attention has been called in reference 1 and elsewhere to the value 
of k = 0 .28 given by Kaden in reference 12 for the constant in eQua-
tion (41 ) for the distance reQuired for the vortex sheet trailing from a 
plane wing having elliptic circulation distribution to become " essentially 
rolled up ." Although the accuracy, as well as the precise meaning of 
Kaden ' s result is impaired by the numerous and somewhat arbitrary assump
tions introduced in the course of the analysis , the result is useful for 
predicting the order of magnitude of the distance involved . The problem 
actually attacked by Kaden is that of the rolling up of a vortex sheet 
of semi - infinite width , having parabolic circulation distribution. The 
result is applied to the case of a vortex sheet of finite width having 
elliptic circulation distribution by selecting the strength of the para
bolic distribution to match the known elliptic distribution at the wing 
tip, and assuming that the rolling up of the finite vortex sheet and the 
semi - infinite sheet proceed identically . 

If the same ideas together with Kaden ' s result for the plane wing 
are applied to the cruciform wing , the distance from the trailing edge 
to the station where the vortices are essentially rolled up is 

(~R) 
H 

for the horizontal wing and 

(d~) 
V 

for the vertical wing . 

8 A ~ 
0 .2 CL c 

A 2t o 
0. 28 Cy - c-

(42) 
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Numerical Results (20 and 40 Vortices) 

A detailed analysis of the form of the vortex system behind lifting 
wings can be made on the basis of equations (31) through (33 ) by replacing 
the continuous sheet of vortices with a finite number of discrete vortices 
and determining their positions at each longitudinal station by a step-by
step calculation procedure. Such a calculation was carried out long ago 
by Westwater (ref . 13) for the plane wing with elliptic circulation dis 
tribution . In this particular treatment, the vortex sheet was replaced 
by 20 vortices of equal strength and the results were presented by giving , 
both numerically and graphically, the positions of each of the vortices 
at several different distances behind the wing . These results , which of 
course apply equally to cruciform wings at zero sideslip, are summarized 
in graphical form in sketch (j). Although these results are presented 
here in terms of body axes , rather than wind axes as previously given in 

z 

I 
d Ct: o~---
bT= .014 +--

.059 

x 
Sketch (j) 

reference 1 , additional reference lines are included which extend down
stream from the trailing edge in the free - stream direction . This sketch 
clearly illustrates how the center of the vortex sheet behind low-aspect 
ratio wings extends downstream in nearly the direction of the extended 
chord plane, while the vortex cores extend downstream in nearly the 
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direction of the free stream. Similar calculations have been made 
recently for wing-body combinations and are reported in reference 14 
by Rogers . 

A numerical calculationl has been carried out for the case of a 
cruciform wing having four identical panels at equal angles of attack 

19 

and sideslip (¢ = 450 ). In this calculation, the vortex sheet trailing 
from each of the four panels is replaced by 10 discrete vortices of equal 
strength distributed in such a fashion that the area under each step of 
the approximate circulation distribution is equal to that under the corre 
sponding portion of the elliptic curve representing the given circulation 
distribution . With the strengths and positions of the vortices thus 
determined, the velocity components at the position of each vortex are 
computed using equations ( 31) and (32) and the change in the position of 
the vortices with a small increase of the distance from the wing is deter 
mined using equation ( 33) . This process is then repeated using the new 
vortex positions . Since the entire trailing vortex system is symmetrical 
about a line inclined at 450 to the xyz coordinate system, the results 
are expressed in terms of the xy ' z ' coordinate system described earlier 
with the angle of bank ¢ set equal to 450 . With the positions of the 
vortices given in this system, it is necessary to specify the coordinates 
of only half the vortices, since the strengths and locations of the 
remainder are just those of mirror images about y ' = 0; that is, with 
the vortices numbered from 1 through 40 as indicated in sketch (k), 
vortex 20+i is the ;image of vortex i and the following relations hold 
between the two vortices 

, 
z 20+i Y' 20+i - Yi'; 

Since the force component in the 
direction of the y ' axis , or the 
side force y ', vanishes with this 
choice of coordinate system, the 
force component in the direction of 
the z ' axis , or the lift L', is 
equal to the resultant lateral force, 
thus 

or, in coefficient form 

L ' 
CL ' = - = j2CL 

qSH 
(46 ) 

z· 

lThe actual computations were done under the supervision of 

(44 ) 

Mr . Stewart M. Crandall of the Electronic Machine Computing Branch of the 
Ames Aeronautical Laboratory . 
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Since it follows, furthermore , from equation (17 ) that 

we have 

CL ' = ~ AHU ' = ~ Ava- ' ; 

for cruciform wings of equal span . 

Cy ' o 

NACA TN 3528 

(47 ) 

(48) 

The results of t~e calculations are given in three forms . A highly 
abridged illustration of the results is given in sketch (1), a 

z· 

47-------

~~- 430---~--+-~__.~---

+---+ ,L---- 570-------------

Sketch (1) 



NACA TN 3528 21 

complete series of illustrations is provided in figure 1, and a complete 
listing of the numerical results is given in table I. In order to facili 
tate the fairing near the plane of symmetry of the curves representing 
the vortex wake, the position of the point lying in the plane of symmetry 
was calculated at each downstream station . In keeping with the remainder 
of the present analysis, the above results are given in terms of body axes. 
Additional reference marks are shown on the graphical presentations, how
ever, to indicate the position of a line in the free - stream direction 
passing through the trailing edge of the wing root . In sketch ( I), this 
line is shown as a solid line lighter in weight than the axes . In fig 
ure 1, its position is indicated by a small circle on the Z l axis . As 
can be seen from examination of the results, these calculations were 
carried forth for distances behind the wing up to approximately an 
(A/CL ' )(b/c ) of unity . The rolling up of the vortex sheets is clearly 
evident and has progressed to a substantial extent at the most rearward 
station . Attention is called to the fact that this di stance is much 
greater than that indicated by Kaden's formulas for the distance to roll 
up and that the rolling up of the vortex sheets proceeds at a much slower 
rate than indicated by these relations. The same conclusions follow from 
an examination of the planar case . 

A second prominent feature of the vortex wake of cruciform wings at 
450 bank concerns the tendency of the vortices from the upper wing panels 
to incline downward toward those from the lower wing panels, and eventu
ally to pass between them . Although the present calculations were not 
carried on to sufficiently large distances f r om the wing to display this 
phenomenon fully , the results do confirm the con clusions of reference 15 
that this 111eapfrog l1 distance is much gr eater than the distance indicated 
by Kaden ' s for mula for rolling up of the vortex sheets . An important 
conse~uence of the difference in rates is that the full details of the 
rolling up need not be considered in t he analysis of the slower leapfrog 
phenomenon . Thus , if the properties of a continuous vortex system are 
to be ascertained by considering the properties of a system compri sed of 
a f inite number of discrete vortices, a great many vortices are necessary 
to trace the course of the rolling up, whereas a satisfactory model for 
studying the leapfrog characteristics may often be had by using only one 
vortex per wing panel. 

Analytical Results (4 Vortices ) 

It is apparent from the preceding discus sion that a very large 
number of discrete vort i ces must be included to give an ade~uate repre 
sentation of the vortex system near the wing . At greater distances from 
the wing where the vortex shee ts are substantially rolled up , it appears 
plausible that the analysis can be simplified, while still retaining the 
essential features, by assuming that the vortex sheets are fully rolled 
up into four vortex lines (one from each wing panel ). This simplif i cat i on 
is analogous to the use of a vortex pair for cal culating the induced flow 
field at great distances behind a lif ting planar wing . 
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In contrast to the case of the plane wing for which the vortex sheet 
rolls up into two vortex lines that , at great distance behind the wing, 
are simply straight lines inclined at a small angle from the free -stream 
direction, the analogous problem for cruciform wings is necessarily more 
complicated . Instead of two rolled-up vortices, there are now four and 
their induced effects upon one another are such that the curves described 
by the vortex lines are ~uite intricate. The simplification introduced 
by diminishing the number of vortices from 40, say, to 4, however, is 
particularly important since it permits the use of analytical methods 
instead of the numerical procedures described in the preceding sections . 

The first step in the development of this analysis is to select the 
strengths and locations of the four vortices used to represent the actual 
vortex sheet at the wing trailing edge . Since it is assumed that all of 
the vorticity from each wing panel rolls up into a single vortex, it 
appears natural to consider that each vortex is of strength e~ual to the 
circulation around the corresponding wing panel and is situated laterally, 
at the trailing- edge station, at the position of the centroid of vorticity 
of the vortex sheet it replaces . It is further assumed that the strength 
of each vortex is constant along its length, but that its lateral position 
changes with x in accordance with the velocities induced by the other 
three vortices . Although coincidence of the lateral position of each of 
the four discrete vortices of the simplified model and the centroid of 
vorticity of each of the actual vortex sheets is assured at only the 
trailing edge of the wing, it is tacitly assumed that the .two sets of 
locations are sufficiently near to be interchangeable for most practical 
purposes. The accuracy of this assumption , which has already been demon

z· strated for planar wings in refer-
ence 1 , will be discussed at the end 
of the present section. 

Determination of vortex paths for 
450 bank .- In reference 15 an analysis 
was carried out in which e~uations were 
developed for the paths of four recti-

---------------4---------------- y' linear vortices which start in a sym

4~ 

plane 
of 

symmetry 

Sketch (m) 

metrical arrangement as shown in 
sketch (m).2 In that paper, the analysis 
was applied to the calculation of the 
paths of four vortices representing the 
wake behind an e~ual- span cruciform wing 
at 450 bank . It is necessary to rein
vestigate this application, however, 
because the vortex positions at the 
trailing edge were calculated from the 
span loading, since it was not recog
nized that the circulation distribution 

2The motions of 2n vortices were treated by Grobli (Vierteljahr
schrift der naturforschenden Gesellschaft in Zurich, vol. 22 (1877), 
37-81,129-167) . However, his result for the case of interest here is 
incorrect. 
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and span loading were different . The present analysis supersedes the 
part of reference 15 dealing with the application to the cruciform wing. 
The results will be given her e in terms of the body axes xy ' z ' defined 
earlier. From the analysis of reference 15 it is found that if the 4 
vortices are of eQual strength , the projection of the path of vortex 1 
on the y ' z ' plane is given by ( if G < 4) 

f 

where 

f G 
1 - 2 

, value of , at k G d distance behind Yo Yl 4 wing trailing edge wing trailing edge 

R2 - (Yo ' - ~)2 R2 _ (Yl' - ~)2 
R2 

f 2G 
sin2cpo sin2 cpl 

R2 R2 4(G+ 4) 

and the subscripts 1 and 2 refer to the vortex numbers indicated in 
sketch (m) . The symbol ~' represents the angle of attack in the xy'z' 
coordinate system and is the angle between the x axis and the free 
stream direction . 

The values of Yo', f, and G are to be determined from the spanwise 
distribution of circulation r . For the case of an eQual- span triangular 
cruciform wing banked 450

, the r distribution is identical on both com
ponent wings and, as shown in eQuations (34 ) and (35), is elliptic. 
Hence, the four vortex lines replacing the vortex sheets are all of eQual 
strength and must be placed at the corners of a sQuare in the plane of 
the trailing edge. Thus the initial values of Yl' and Y2' must be 
eQual and the lateral position of the centroid of vortices 1 and 2 is 
given by the average of their y ' coordinates. That is, 

Y , 
c 

f 
-= Y ' 2 0 

(50) 
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and therefore G = 2 . Furthermore, since the four vortices are to be 
placed at the centroids of vorticity from each of the four equal- span 
panels, one can immediately write, for the elliptic circulation distribu
tion and 450 bank, 

(51) 

Now, since the impulse in the z ' direction of the four vortices trailing 
behind the cruciform wing must be equal to the resultant force in the z ' 
direction, one can write 

2pOUO
f Of ~PoUo 2 SCL ' (52 ) 

so that 

~ CL'/A CL ' /A 2.J2. CL 
, 

--- ----
Uos o f/so 2yo ' Iso rr A 

where S and A are the area and aspect ratio of one component wing . 
Thus, all the necessary constants have been obtained for equation (49 ) 
so that, upon evaluation of the required elliptic functions, it becomes 

f 
g [1. 4675 - E (~ , cP 1) ] + --;;::::::=s 1=· n==cp:::1 === 3 4J 1 1 . 2cp - 4" sln 1 

0 0s CP1 +./3) + a;d 

(54 ) 

and it is noted that CP1 increases pos itively from its initial value 
CPo = rr / 2 at the wing trailing edge . 

In reference 15 it was shown that the path of vortex 2 can be 
obtained from that of vortex 1 by the use of the expression for the 
relative paths 

1 - G 
f 

(55) 
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so that ( s ince G 2) 

y , (')2 

Z2,)2 
6 ; - 6 y~ - 1 

(Zl' 
f 

(y:,)2 
Y I 

2 2 _1_ + 1 
f 

Similarly, with t he use of e Quations (50) to (53 ), the expression given in 
reference 15 for distance behind the wing 

d 
f 

reduces to 

d rr3 A [ 
- = - -- -1. 0834_ 
f 8 CL' 

16 
+-E 

3 
(~, ~1) - 4F (~, ~1) - -;:Js1=-n =:1=co=S =~1 ] 

1- 4" sin2~1 

, (58) 

so that the paths of vortices 1 and 2 are completely defined-by eQua 
tions (50), (54 ) , (56 ), and (58) and the paths of vortices 3 and 4 are 
found by symmetry . The leapfrog distance , which is defined by the con
dition z l' = Z2 " is obtained by setting ~1 = rr . The last term in the 
bracketed expression above then vanishes and the distance dL can be 
expressed, after evaluation of the necessary elliptic functions, as 
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or 

4 . 664 
110, ' 

Note that this relation has exactly the form of eQuation (41) and is 
independent of plan form . 

(60) 

Comparison with results of 40- vortex calculation. - It is evident 
that at very large distances behind the wing the centroids of the vortic 
ity shed from each panel must lie within the rolled-up vortex cores . 
Hence, the problem of determining the positions of the rolled-up vortices 
is essentially that of determining the positions of the centroids of vor 
ticity at distances greater than the rolling-up distance behind the wing . 
If this is to be done by using four vortex lines leaving the trailing 
edge at the centroid- of - vorticity positions, then the assumption must be 
made that the positions of the four vortices as determined by eQua-
tions (50), ( 54), (56), and (58) coincide with the positions of the cen
troids of vorticity at all distances behind the wing. This assumption 
has therefore been made in the above analysis . In order to investigate 
the validity of this assumption for 450 bank, comparisons have been made 
at various distances behind the wing between the vortex positions given 
by the present 4-vortex analysis and the centroid- of -vorticity positions 
obtained from the 40- vortex numerical calculations of the preceding 
section. The latter positions were calculated according to the relations 

Yc ' 

for the vortex sheet from each wing panel, and these positions are tabu
lated in table II and indicated on the plots of figure 1 by the symbol 
customarily used for the center - of - gravity position . The fact that the 
centroid- of-vorticity positions become indicative of the vortex- core 
positions only after the vortex cores are well developed is clearly 
illustrated by the centroid- of -vorticity positions of figure 1 . On the 
other hand, the comparison shown in figure 2 of the centroid- of -vorticity 
positions for the 4- and the 40-vortex approximations indicates that the 
agreement is remarkably good for all distances behind the wing . It can 
therefore be concluded that the vortex positions obtained in the present 
4-vortex analysis furnish good approximations to the positions of the 
vortex cores at distances behind the wing at which the rolling-up process 
is essentially completed . 

Determination of initial slopes of vortex paths for all bank angles .
The analytical method of the present section is restricted to an angle of 
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bank of 450 inasmuch as a solution was obtained by making use of symmetry 
cons'iderations . For other angles of bank, it is doubtful that a closed 
analytical solution could be obtained for the paths of even the simple 
4-vortex model . It is a simple matter, however , to write analytical 
expressions for the initial slopes of the 4 vortex lines at the wing 
trailing edge; and it is possible to write corresponding expressions for 
the initial slopes of the paths described by the centroids of vorticity 
of the flat vortex sheets leaving the trailing edge . In this way, one 
can gain some idea of whether the 4- vortex approximation might be a good 
one for other angles of bank. I t will be convenient here to return to 
the xyz body axes lying in the planes of the wing panels. In this 
coordinate system it becomes clear that the y and Z components of the 
slopes of the vortices from opposing panels are equal . Thus, equa-
tions (31 ) through (33 ) reduce for the 4-vortex model to 

(~l) (d
Y4) -13 + 

foV 

d=o dx d=o rc2Uot o 

4foRso 
a, -( dZl) = ( dZ4) 

dx d=o dx d=o rc2U ( s 2 o 0 + t o
2) 

(~2) (~3) 
4fo t o 

V - 13 + 
d=o d=o 2 ( 2 rc Uo So 

( dZ2) ( dZ3) 
dx d=o = dx d=o 

a, -
fOR 2 rr Uoso 

where the subscripts 1 through 4 refer 
to the vortices numbered as shown in 
sketch (n), and fOR and foV refer to 
the maximum circulations of the 
horizontal - and vertical -wing components, 
respectively . Since the latter quan
tities are related to the angle of 
attack, and the angle of sideslip 3 

+ t 02) 

z 

(62) 

2 according ' to --~--------;-------~~-----y 

4 

Sketch (n) 
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the expressions of e~uation (62) can be rewritten as follows: 

( dY1) 

dx d=o 
( dY4 ) 

dx d=o 

(
dZ 1) = (dZ 4\ 
dx d=o dx ) d=o ~ [1 -'2(1 : ~) J 

~ [_1 + .20 : ~) J 

C:
2
)d=0 = C:3)d=0 = ct (1 - ;2) 

(64) 

Determination of initial slopes of centroids of vorticity of the 
vortex sheets for all bank angles .- For comparison with the above 4-vortex 
approximation, consider now the initial slopes of the paths described by 
the centroids of the vorticity trailing from each panel of the cruciform 
wing. Inasmuch as the singularities at the edges of the wake contribute 
substantially to the slopes of these paths, and conditions in the imme 
diate vicinity of such singularities are difficult to investigate directly, 
a control-surface type of analysis will be used . As will become evident 
on reading, the analysis bears many features of resemblance to that 
employed in the calculation of forces on the leading edges of thin wings. 
To start, consider that portion of the trailing- vortex system contained 
between two parallel planes normal to the x axis and dx apart, and 
inside an arbitrary cylindrical surface C having generators parallel to 

x 

Sketch (0) 

the x axis, as illustrated in sketch (0) . 
The y and Z coordinates of the centroid 
of vorticity of the enclosed portion of 
the vortex system are given by 

Yc 

where Yi and zi are the coordinates of 
a vortex having strength fi' and the 
summations are extended over all vortices 
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extending through the planar ends of the control surface . Since the 
slopes of each vortex filament are given , according to equations (31 ) 
through (33), by 

29 

(66) 

the slopes of the path of the centroid of vorticity are 

dyc = I: vir i 
d.x Uo L: f i 

dz c I: wif i 

d.x Uo L:f i 

Now , an important consequence of the fact that the flow in the vicinity 
of the wake is governed by Laplace ' s equation, that is, by equation (5), 
is that the velocities at any station are the same whether the vortices 
at that station are free or fixed . This means that 

v · lfr ee v· 
lfixed 

v · . l J w· lfree (68) 

In contrast to the force -free state of the actual trailing- vortex system, 
the fixed-vortex system sustains forces given by 

on each vortex filament, or 

dY 

dL 

- p L: w·f · dx o l l 

I: dL l· = P I: v· f . dx o l l 
} 

i n total . Combining equations (67 ) and (70 ) yiel ds the following 
relations : 

dL dY 
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Hence, the slopes of the lines connecting the centroid-of -vorticity posi 
tions of the free -vortex system can be determined from the forces on the 
fixed-vortex system . 

The total forces dY and dL on the fixed system can be determined 
by applying momentum methods to the control surface shown in sketch (0). 
This calculation is simplified by the fact that the pressures and flow of 
momentum through the plane faces exactly counterbalance, leaving only the 
contributions from the contour C. Thus 

dY 
dx -J p dz - Po J v(v dz - w dy) 

C C 

~ = J p dy + Po J w (IV dy - v dz) 
C C 

where the integrals are to be taken in the counterclockwise sense and the 
pressure p is related to the velocity components according to eQua 
tions (10), ( 31 ) , and (32), that is 

P P U cp + Po U 2 ( 0,2 + (2 ) _ Po (V2 + W2) 
0 - oox 20 I-' 2 

Now, Po' 0" and 13 are constants and contribute nothing to the integral 
of eQuation (72) when integrated around the contour, and CPx is zero 
because the vortices are fixed . Hence, eQuation (72) can be rewritten 
as follows: 

dY Po 1; [(w2 - v2 )dz + 2vw dy] -
dx 2 

(74) 
dL Po J [(w2 - y2)dy - 2vw dz ] 
dx 2 

C 

Finally, on substitution of eQuation (74) into eQuation (71), we have 
the following relations between the slopes of the path of the centroid 
of vorticity and the velocity components v and w which exist at the 
location of the cylindrical control surface C. 



,-' 

~R 
NACA TN 3528 31 

...., 

dyc 1 J [-vw dz + 
( _v2 + w2 ) 

dy ] =: 

ax Uo Efi 2 
C 

(75 ) 

dzc 1 J[ ( -v2+w2) 
dZ] ax vw dy + 

2 Uo Ef i 
C 

.-

where 

Ef i -J (v dy + w dz ) (76) 

C 

The above results will now be applied to the calculation of the 
initial slopes of the path of the centroid of the vorticity trailing from 
the wing panel which extends along the positive y axis. In keeping 
with the notation of sketch (n ) , this panel will be designated with the 
number 2 . I f the control surface C is selected as shown in sketch (p), 
the integrals of equations (75) and (76 ) can be divi ded into three parts. 

f 

3 ................... [\:. ... ~,r:: ~- . , 
/ So 

c-f a 

4 

Sketch (p) Sketch (q) 

The contributions of part a can be written directly, and that of part b 
can be evaluated by considering the asymptotic form of the velocities in 
the vicinity of the edge of the wake to be the same as that of the veloci 
ties around the edge of a flat platej that is, 

v sin W "2 j 

I.l W 
W =: JP cos 2 

where p and Ware polar coordinates, with origin at t he edge of the wake 
as indicated in sket ch (q), and I.l is a constant. The contribution of 
part c is zero because dy is zero, dz approache s zero} and the 
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velocities are nonsingular there . Upon carrying out the necessary opera
tions, the slopes of the path of the centroid of vorticity immediately 
behind the wing are 

(d:2
) 

d=o 

1 

- dT d v - Y 
dy 

dT 
dy dy + 

The velocity components v and w can in turn be expressed in terms of 
the circulation distribution at the trailing edge by employing equa-
tions (31) and (32) . The circulation distributions on both the horizontal 
and vertical -wing components are elliptic, according to equations (34 ) 
and (35). Hence, 

It also follows from equations (76) and (77 ) that 

(So ) 

and therefore 

(d~2) 
d=o 

rc 4" 0, 

(Sl) 

For cruciform wings having horizontal and vertical components of equal 
span, that is, So = to' the relations of equation (Sl) reduce to 

(d~2)d=O = - 0 . 59913 (S2) 
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These r esults also apply to the initial slopes of the path of the centroid 
of the vorticity trailing from panel 3. The corr esponding expressions for 
panel 1 , and likewise panel 4, can be found by the proper interchange of 
quant i ties and are . 

C
dZc l ) 

dx d=o 
0·5990, (83 ) 

These results may be compared >vi th the corresponding values for the 
initial slopes of the vortex lines of the 4 - vortex approximation to the 
wake of an equal - span cruciform wing by substituting So = to into the 
relations of equation (64 ). 

( dYl ) dx = - 0 . 797 13 
d=o 

(: l) 
d=o 

0·5950, (84) 

( dY2 ) dx = - 0 · 59513 j 

d=o 
(:2) 

d=o 
0·7970, 

It can be seen by comparing the results of the immediately preceding equa
tions that the initial slopes of the individual vortex lines of the 
4-vortex model are very nearly the same as the initial slopes of the paths 
of the centroids of vorticity of the corresponding portions of the con
tinuous vortex sheet . This conclusion serves as a first indication that 
the 4- vortex model may be as satisfactory for determining the positions 
of the rolled-up vortex cores at great distances from the wing for all 
angles of bank as was demonstrated for 450 bank i n figures 1 and 2 . 

WATER- TANK EXPERIMENTS 

Experiments were conducted in a water tank for the purpose of observ
ing visually the vortex paths calculated in the foregoing analysis . Photo 
graphs were obtained of the wake at various distances behind a cruciform 
wing by plunging a model vertically into the water at uniform speed and 
photographing the water surface from above with a moving -picture camera . 
The traces of the wake were made visible by applying fine aluminum powder 
to the wing trailing edges . The models tested were triangular flat -plate 
wings of aspect ratio 2 . 
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o Abridged series of photographs are presented for angles of bank of 0 
(plane wing.) and 450 in figures 3 and 4, respectively. The la tter results 
are shown for distances up to the leapfrog distance dL behind the wing, 
and measurements of this distance were obtained by means of a tape which 
moved with the model and recorded on the film the distance between the 
wing trailing edge and the water surface . The results of such observa 
tions at various angles of attack are presented in sketch (r) and compared 
with the 4-vortex calculation of equation (60) . The agreement is seen to 
be quite satisfactory except possibly at the very high lift coefficients . 
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Sketch (r) 

4 

/ 
The lift coefficients for the experi 
mental points were calculated f rom 
equation (48) . 

Because of the persistence of the 
vortex sheets connecting the vortex 
cores (see figs . 1 and 3), the 4-vortex 
approximation may not yield accurate 
vortex paths at distances behind the 
wing greater than about dL since the 
sheets may upset the periodic nature of 
the predicted paths . The 4-vortex 
approximation likewise cannot be expected 
to give the vortex core positions accu
rately at distances behind the wing at 
which the vortex sheets are only par 
tially rolled up since there the posi -

5 tions of the centroids of vorticity do 
not correspond t o the vortex cores, as 
discussed previ ously in connection with 
figure 1. 

LIFT ON A TAIL IN A NONUNIFORM DOWNWASH FIELD 

Once the vortex positions at the tail station are known through 
calculations similar to those described in the preceding sections, or by 
other means, the associated downwash and sidewash fields and the lift 
and side force on the tail can be determined by direct calculation . The 
determination of the lateral velocities can be accomplished by substitut 
ing the known strengths and positions of the vortices into equations (31) 
and (32) and integrating (or summing in the case of a discrete vortex 
approximation) . This problem is exactly the same as the classical prob 
lem of determining the incompressible flow field associated with a dis 
tribution of rectilinear vortices, and several alternative methods are 
available for obtaining the solution . 

The determination of the lift and side force on a tail in a non
uniform downwash field of known structure is the remaining task necessary 
t o complete the calculation of such quantities as the lift and center of 
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pressure of a wing- tail system . Although the solution of this problem is 
often approximated by the introduction of additional assumptions such as 
strip theory, etc., the exact linear - theory solution can be obtained by 
use of reciprocal theorems. This has already been demonstrated in refer
ence 16 and elsewhere for the case where the tail is a planar surface of 
sufficiently high aspect ratio that the linear pressure -velocity relation 
can be used . The following discussion will be concerned with the deriva
tion of the corresponding relationship that is consistent with the formula
tion of slender -body theory summarized in the first section of the present 
analysis for the lift of a low-aspect- ratio cruciform wing having flat
plate wing panels . This aim will be accomplished by considering certain 
properties associated with a second cruciform wing identical to the first, 
but immersed in a uniform flow field streaming in the opposite direction 
to that about the first wing, as illustrated in sketch ( s). Inasmuch as 

--

Sketch ( s) 

~--=~.-
- ' , 

-"--- Xl 

wing 1 is immersed i n a nonuniform flow field , the local or effective 
angles of attack and sideslip ~ and ~ are variabl e, that is 

0.1 (x,y) 
w1 (cpz ) 1 

Uo 
0,1 + 

Uo 
(86) 

(cpy ) 1 
[31 (x, z) 

v 1 
13 1 -= - -

Uo Uo 

where a~ and 13 1 represent the geometric angl es of att ack and sideslip, 
and (~ )1 and (CPZ )l represent the additional lateral velocity components 
i nduced, say, by the vortex system trailing from a wing somewhere upstream. 
In or der to express the lift on wing 1 in terms of simple properties of 
the flow about wing 2 , it is necessary that wing 2 be at zero sideslip, 
thus 

'" 
132 = 0 
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The proper reciprocal relation for use with multiplanar systems is given 
in reference 16 and is 

(88 ) 

where the area of the integration ~ extends over both sides of all wing 
surfaces} Vn is the component of the perturbation velocity normal to and 
directed away from the surface } and the subscripts 1 and 2 refer to condi 
tions on wings 1 and 2 . Since } for wings having no thickness} Vn is 
equal and opposite on the two sides of its surface , and is furthermore 
proportional to ~ on wing component H and to ~ on wing component V} 
equation (88 ) can be rewritten as follows : 

J J 6u1 ~dx dy + J J 6ulr32dx 

H V 

Here 6u refers to the difference·in u on the two sides of any surface 
and the subscripts H and V indicate that the integrals are to be carried 
over wings H and V} respectively . In the present case} simplification 
occurs not only because ~2 const . } and ~2 = O} but also because it 
follows therefrom that 6U2 = 0 on wing V. Thus equation (89) reduces to 

~ J j '6u1dS = J J 6U~ldS (90 ) 

H H 

Now if the integral on the left side of equation (90) is rewritten in 
terms of ~ and integrated with respect to x } that is } 

where the subscript TE refers to the values of 6~1 a t the trailing 
edge ; and if equation (26) is recalled for the lift including the ef~ects 
of the nonlinear terms in the pressure -velocity relation of equation (10) ) 

L 

+so 

PoUo J 6~TEdy 
- so 

(26 ) 
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eQuation (90) becomes 

In many problems &1 varies only s l owly with x . If it is assumed 
that Q1 is actually independent of x , eQuation (92 ) can be simplified 
in the following manner: 

Inasmuch a s wing 2 in reverse flow is composed of flat -plate elements and 
is at zero sideslip, t he circulation distribution at the trailing edge 
6~ is proportional t o the span loading L and eQuation (93) can be 

TE 
rewritten as 

I t is interesting to observe that this expression is identical in form 
with that obtained in reference 16 for planar systems of sufficiently 
high aspect ratio that the linear pressure -velocity relation can be used . 
I t is important to remember, however , that the present application 
reQuires the wing in reverse flow to be at zero sideslip , whereas the 
analysis of reference 16 reQuires the wing in reverse flow to be at the 
same angle of sideslip as the wing in forward flow . 

I t is evident that eQua tion ( 94) can be appljed in several different 
ways . One can compute the total cx'1 induced by the vortices at the ·cail 
station , multiply by L2/~' and integrate by either analytical, numeri 
cal , or graphical meansj or one can determine a general formula for the 
lift due to a single vortex and superpose the lift contributions of all 
the vortices . The latter method is of particular utility where the L2 
distribution is of a common form , such as elliptic . This case , which 
includes all low-aspect - ratio flat -plate wings having plan forms such 
that no part of the trailing edge lies forward of the station of maximum 
span , has already been treated in reference 16 but will be included here 
for the sake of completeness . Thus, consider the problem of determining 
the lift on a low-aspect - ratio cruciform wing at zero geometric angle of 
a ttack resulting from the presence of an infinite line vortex of strength 
r passing through the point y = ~ and z = ~ and extending parallel 



to the x axis 
sidered to have 

r O 

z, 
: , , 
: , 
i7]r 

-4 
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as shown in sketch (t) . The wing panels will be con
such plan forms that the span loading is elliptic when 

the wing is i n flight in the rever se 
direction at zero s i deslip . Thus, 
equation (34) yiel ds for the wing in 
reverse flow 

The effective angle of attack of the 
wing in forward flow is 

Sketch (t) 2nUo [ (Yl _ ~)2 + S2 ] 

(96 ) 

Substitution of equations (95) and (96) into equation (93) or (94) yields 
the following formula for the lift : 

The lift on a wing in the vicinity of a number of such vortices can be 
found by superposition . The result so calculated applies to the wing 
when the geometric angle of attack ~l is zero . If ~l is not zero, 
an additional contribution must be included which is just the lift on 
the wing in the absence of all adjacent vortices . For the present class 
of plan forms, this contribution ~l can be calculated by direct appli 
cation of equation (22), that is, 

The above result may be contrasted with that of strip theory in which 
each section of the wing is assumed to act as though it were in two 
dimensional flow at an angle of attack al ' The latter assumption results 
in a relation for lift of a wing in a nonuniform flow field which resembles 
equation (94 ) , except that the span loading 12/~ is replaced with a 
function proportional to the local chord . Inasmuch as L2 is not propor 
tional, in general, t o the local chord, it is evident that the use of strip 
theory will usually result in error . 
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CONCLUDI NG REMARKS 

Several facets of the aerodynamics of slender cru iform-wing and 
taiJ interferen e problems have been investigated in the foregoing dis 
cussions . Formulas are given for the computation of the loading and 
integrated forces on cruciform wings and for the determination of the 
lift on a tail in an arbitrary , but known, downwash field . The principal 
difficulty in wing - tail interference problems resides in the determina
tion of the flow field at the tail station and stems from the fact that 
the trailing vortex sheet rolls up and deforms very rapidly behind low
aspect -ratio wings . One can always compute the behavior of the vortex 
system within the framework of inviscid theory , but the labor is great 
when a sufficient number of vortices is used to give adequate repre 
sentation of the actual vortex sheets . In the present study , results 
are given of a calculation using 40 vortices, but even this number proves 
insufficient to study the nature of the vortex spirals at large distances 
behind the wing . On the other hand , the calculations show that at suf -
fi ient distances from the wing most of the vorticity from each wing panel 
is concentrated within a single restricted region , and these results bear 
out the assumption often made that the vortex system can be represented 
by a much simpler model having only four vortices . I f each vortex is 
assigned a strength equal to the total circulation around the associated 
wing panel, and is located , at the trailing edge , at the lateral position 
of the centroid of the vorticity it represents , it is shown that the 
lateral positions of the four vortices change with distance in such a 
manner that they are in close accord with the positions of the centroids 
of vorticity of the actual vortex system at all distances from the wing . 
Consequently, the lateral position of each of the four vortices is in 
reasonably good agreement with the lateral position of the corresponding 
vortex core at large distances from the wing, in spite of the fact that 
the 4- vortex model is learly inadequate for representing the details of 
the flow at small distances from the wing. 

Several aspects of the analysis of the behavior of vortex wakes 
remain to be investigated in future studies . In the first place, both 
the numerical study of the 40- vortex model and the analytical study of 
the 4- vortex model are conf ined to the case of 450 bank . Although the 
numerical method can be used for other bank angles and , of course, for 
simpler models, it does not appear possible to extend the present analyti -
al method to other bank angles . The numerical method is slow and cum

bersome , however, and there is need for other more rapid ways for calcu
lating the form of the vortex system at the tail station . Also needed 
is a method for estimating the form of the vortex system in the interme 
diate stages of r olling up. In this range ) only a part of the vorticity 
can logically be assumed rolled up into the vortex cores, the remainder 
being in the relatively undeformed sheet . A related problem exists even 
at great distances behind the wing where nearly all of the vorticity is 
concentrated i n the vortex cores . Replacement of the vortex cores having 
finite lateral extent with line vortices of zero diameter leads to very 
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large errors in the induced velocities at points in the immediate vicinity 
of the vortices . Inasmuch as the energy method used for planar wings and 
described in reference 1 cannot be applied directly t o cases involving 
banked cruciform wings, there exists a need for a method for estimating 
the size and velocity distribution of the vortex cores so that a correc 
tion can be applied to the 4- vortex results . This need is diminished 
somewhat by the fact that, in many cases , the forces on the tail are not 
affected by the finite size of the vortex cores . This situation prevails 
whenever the vortex cores do not touch the tail surfaces . 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Fiel d , Calif . , Oct. 25 ,1955 
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APPENDIX A 

FORCES ON SLENDER PLANE- AND CRUCIFORM-

WING AND BODY COMBI NATIONS 

Formulas are presented in the t ext of this r eport for the pressures 
and integrated forces on slender cruciform wings . These results are 
obtained following the procedures of reference 10 , but d i ffer in that 
the effects of nonlinear terms in the pressure - vel oc ity relation are now 
properly accounted for . Inasmuch as the inclusion of these terms also 
alters the pressures on cruciform-wing -body combinations , and the cor 
rected formulas have not been given elsewhere , they will be given briefly 
in this appendi x . 

The precise problem to be discussed i s that of determining the load 
distribution and aerodynamic properties of slender cruciform-wing and 
body combinations inclined at small angles of pitch, ~, and yaw , ~ . The 
wing -body combination is considered to consist of a slender body of revo 
lution and flat , pointed, low-aspect - ratio wings extending along the 
continuat i on of the horizontal and vertical meridiru1 planes of the body 
as shown in sketch (a ) . The component wings are designated wing Hand 
wing v, as in the case of the wing alone discussed in the text. The 
plan form of wing H is given by y = ±s (x) and that of wing V by 
z = ±t (x ) . The radius of the body i s, in general, a function of x and 
is designated by r = ~y2 + z2 = a (x) . The analysis is confined further 
to wing -body combinations having wings whose edges are leading edges 
everywhere upstream from the base section . To extend the solutions to 
other configurations, further consideration must be given to the influence 
of the vortex wake extending downstream from the trailing edge of the 
wing . A brief discussion of this problem can be found in reference 17. 

As described in the text, the perturbation velocity potential ~ 

is related to the total velocity potential according to equation (1), 
and satisfies the Prandtl -Glauert equation given in equation (2 ) . The 
general solution for slender bodies of arbitrary ross section is given 
in equations (3) through (6) . For the present cruciform -wing and body 
combination , the solution must satisfy the boundary conditions given by 
equation (13 ) on the surface of the body of revolution and. by equa-
tions (14) and (15) on the horizontal and vertical wings . Inasmuch as 
attention is confined to wings of zero thickness , the boundary conditions 
on the wing simplify somewhat because h is zero . Once ~ is determined 
in this way , the pressure can be calculated directly by using the rela 
tionship given in equation (10) . 
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Following equat ion (7), the solution for ~ i n the vicinity of the 
wing -body combination can be written as 

~ = ~2 + g (x ) (Al ) 

where ~2 represents the solution of the two - dimensional Laplace equa 
tion for the specified boundary conditions and g (x) is a function of x 
alone defined by equations (3) and (4) , or explicitly by equations (8) 
and (9) . The function ~2 is independent of Mach number, all of the 
influence being confined to the function g (x ). As in the case of the 
wing alone , ~2 can be divided into components each representing ~2 

for a simpler problem . These components are illustrated schematically 
in sketch (Al ) . Component ~a represents the potential for two -

z 

8--- y = 

= 

Z 
I 
I 
I 
I 

Z 
I 

+ 

Sketch (Al ) 

z , 
! 

---- y + --- - y 

<Pb + <Pc 

dimensional incompressible flow about the wing-body cross section under 
going uniform translation in the direction of the negative z axis, 
and is 

where the s ign i s pos itive in the upper half -plane 0 < 8 < n 
tive in the lower half -plane n < 8 < 2n . The expression for 

and nega
% is 

2e + t2(1 + ~:)J + [r4(1 _ ~~)2 + 
1/2 1 /2 

28] } + Uof3y 
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where the sign is positive in the left half -plane n/2 < e < 3n/2 and 
negative in the right half -plane (- n/ 2 < e < n/2 ). Component ~c 
represents the potential for two -dimensional incompressible flow asso 
ciated with a source situated at the origin and is 

~c 
Uo dSc --In r 
2n d.x 

(A4) 

where r = ~y2 + z2 . The perturbation velocity potential for the flow 
field about a cruciform-wing-body combination inclined in both pitch and 
yaw is 

~ (A5 ) 

Through application of the above equations to the pressure-velocity 
relationship of equation (10)) the following expressions are found for 
the lifting differential pressures (lower minus upper) on the horizontal 
wing and body 

4" { [ :: (1 -::) ] + % : [ 2 (:: -1)+ 0 -~:n} 
--------~=================---------------+ 

j (1 + a 4) _ y2 (1 + a 4) 
s 4 S2 y 4 

(A6 ) 

a 4
) y2 ( + -- - - 1 + s 4 S2 

4a [~0 - a
4
) + 2 ~ da (a

2 + 1 - 2 ~~) ] 
(6~L)B 

S4 s d.x s2 

J (1 + ::)2 

+ 
y2 

- 4 s2 

64ap (~) (1 - ~) 
(A7 ) 

} ( l 
2)2 y2 J t 2 

( 2)2 - ?- +4 + ~ - 4 - - 1 s2 S2 y2 
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Simil arly , the lateral differential pressure (port minus star board ) on 
the vertical wing and body are given by 

a
4

) + -
Z 4 

40,13 ~ (1 _ a 4) 
t Z4 

-413 [ ~ ( 1 - ~) + 2 ~ ~ (~ + 1 - 2 ~) ] 

J (1 + ~:) 
2 

- 4 ~: 

640,13 ~ (1 _ Z2) 
t a2 

2)2 - ~ + 4 
S2 

(A8) 

+ 

The total lift and side force exerted on a complete cruciform-wing 
and body combination can be determined by integrating the loading over 
the entire surface area . I t is often convenient to carry out the inte 
gration by first evaluating the lift and side force on one spanwise strip 
and then integrating these elemental forces over the length of the wing
body combination , thus 

d 211:0, -
dx 

(AlO ) 
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(All) 

and 

! (~) dx 

(Al2) 

+ ::) ] } 
o 

(A13) 

where the subscripts 0 and 2 in the integrated results refer to the 
values of the bracketed ~uantities at x = 0 and x = 2) respectively. 
If the wing-body combination is pointed at the nose) the bracketed ~uan

tities vanish at x = 0) and the expressions for lift and side force 
reduce to 

L 
~ 

y 

~ 

2rca. [ s 
2 

( 1 - ::) ] 
2 

+ ::) ] 

(A14) 

(A15) 
2 

The above expressions for the loadings and forces indicate that 
there is a complete correspondence of the expressions for lift and side 
force) and that the lift is independent of the angle of yaw and the side 
force is independent of the angle of attack . Inasmuch as the pitching 
and yawing moments M and N about an arbitrary moment center Xo are 
obtained by performing the following integrations 
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(A16) 

d (Y) . - x )- - dx o dx q 

it is evident that the above statements have corresponding counterparts 
for these moments . Although the details of the calculati on will not be 
given here , it can be shown further for cruciform- wing -body combinations 
having identical horizontal - and vertical -wing panels that the resultant 
lateral force ~L2 + y2 is independent of the angle of bank, and that 
the total rolling moment is zero for all angles of bank . 

Equations (Al4) and (Al5) show that the lift and side for ce on a 
slender pointed wing-body combination depend on the geometry of only the 
base section and not of the plan form . This result is i n conformity with 
the more general integral relation of equation (26 ) obtained using momen
tum methods , but not with the result obtained in reference 10 using the 
linear pressure - velocity relation . The latter anal ysis (here being super 
seded) indicates that equation (Al4 ) is the proper expression for the 
lift of a wing-body combination consisting of a low- aspect - ratio tr i an
gular wing mounted on a slender pointed body that is cylindrical along 
the wing root, but not , for instance , for a conical wing -body combination . 
The conical configuration is of particular interest because of the exist 
ence of a supersonic conical - flow solution (ref . 18), and because it has 
recently been suggested (e .g . , ref . 19 ) that that result be used to check 
the applicability of approximate solutions . Comparison reveals, however, 
that the results of reference 18 do not agree with equation (A14 ) , but 
check the slender -body results of reference 10 . The explanation is that 
the linear pressure - velocity relation is used in the supersonic conical 
flow solution, and that the latter results agree with those given here if 
the effects of the additional terms in the pressure -velocity relation are 
included in the analysis . 
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TABLE I. - CALCULATED LATERAL POSITIONS OF 40 VORTICES AT VARIOUS DI STANCES BEHIND A SLENDER 
CRUCIFORM WI NG AT 45° BANK 

d CL' Vortex numbers Vortex numbers 

<ooJ2 b A 1 2 3 \ 5 6 7 8 9 10 II 12 13 1\ 15 16 17 18 19 20 

o y ' 0.2076 0.'704 0.\667 0· 5367 0· 5899 0.6, ,2 0.6616 0.6828 0.7006 0.7060 0.2076 0. '704 0.4667 0. 5367 0. 5899 0. 6312 0.6616 0. 6828 0.7006 0 .7060 
z' 0.2076 0.3704 0. \667 0· 5367 0· 5899 0. 6312 0.6616 0.6828 0.7006 0 .7060 -0.2076 -<1 .3704 -<1. 4667 -<1.5367 -0. 5899 -<1 .6312 -0. 6616 -<1 . 6828 -<1 .7006 -<1.7060 

1 y ' 0.2078 0.'708 0.4672 0. 5373 0·5905 0 .6318 0. 6622 0. 6828 0.7021 0.6985 0.2074 0. }699 0. 4661 0. 5360 0.5892 0.6}o5 0. 6609 0.68<8 0.6990 0.71}4 
z ' 0.2080 0 · 3709 0.467} 0. 5374 0.5907 0 .6}20 0.6625 0.6843 0.7006 0.7150 -<1 .2071 -<1 .3698 -<1.4660 -<1 .5359 -<1 . 5890 -0.6}o3 -<1.6606 -<1.68 12 -<1 . 7005 -0.6969 

3 y ' 0.2082 0.3718 0.4684 0. 5}85 0·5918 0.6}}3 0.6636 0.6828 0.7027 0.6857 0.2070 0.3689 0.4650 0.5}48 0.5880 0.6292 0. 6600 0. 683} 0.7073 0.7160 
z ' 0.2088 0.3721 0.4687 0. 5389 0· 5923 0. 6}}7 0.6646 0.6880 0.7 121 0.7207 -0.2063 -<1.}686 -<1 . 4647 -o.5}45 -<1.5875 -0 .6288 -<1 . 6590 -<1 . 6781 -<1 . 6979 -0.6809 

5 y' 0.2086 0.3727 0.4695 0. 5398 0·59}2 0.6}48 0. 6654 0.6831 0.6991 0.6762 0.2065 0.3680 0.46}8 0. 5}}6 0.5868 0.6282 0.6598 0.6857 0. 7173 0 .7140 
. ' 0· 2096 0· 37}2 0.4700 0· 5404 0· 5940 0. 6357 0.6675 0 ·6935 0.7252 0.7219 -<1 .2055 -0.3675 -o. 46}4 -o. 53}o -0. 5860 -0.6274 -0.6577 -<1 .6753 -<1 . 6911 -0.6682 

7 y' 0.2089 0.3736 0.4707 0.54 11 0· 5946 0. 6365 0.6675 0.6837 0· 6924 0 . 6(,91 0. 2061 0.3671 0.4627 0. 5}24 0. 5857 0 .6214 0. 6604 0. 6895 0.7255 0.711 0 
.' 0.2105 0. 3744 0.4114 0·5420 0 ·5958 0. 6379 0. 6711 0.7004 0.7}&; 0 ·7= -0.2047 -0. 3664 -<1.4621 -<1.53 11 -<1 . 5845 -0.6261 -<1 . 6568 -<1 .6727 -0. 6812 -0.6578 

" y ' o.,!'»r 0 ·375, ~ .4 r30 0. 54}8 0·5975 0. 64<>2 0. 6724 0.6846 0.6159 0.6570 0.2053 0.3652 0. 4605 0. 5}02 0. 5837 0 .6265 0. 66}2 0.7003 0.1316 0.70'.0 
. ' 0 .2122 0·3767 0. 4742 0.5452 0 .5996 0.6429 0.6600 0.1173 0 .7549 0.7212 -0. 2031 -0.3642 -<1 .4595 -<1 . 5290 -<1 . 5818 -o.62}8 -0.6556 -<1 . 6672 -0 . 6581 -<1 .6394 

15 y ' 0.2105 0. 3774 0.4154 0. Wi5 0.6006 0.644 1 0.6774 0.6805 0.6587 0.6500 0.2045 0.36}4 0. 4584 0.5281 0. 5822 0.6268 0. 6697 0.7143 0. 7418 0.6958 
. ' 0 .21'9 0. 3192 0. 4771 0. 5486 0.6039 0. 6492 0.6924 0.7'76 0.7655 0.7192 -0.2015 -0. 3621 -0.\571 -0. 5263 -0. 5191 -0.6218 -0. 6544 -<1.6566 -0.6}4, -0 .6260 

21 y' 0.2"'; " .}803 0.4190 0.5507 0.6054 0.6505 0.6836 0.6683 0.6}4 1 0.6450 0.2032 0.3607 0.4554 0. 5253 0. 5807 0. 629' 0.6848 o. n24 0. 7400 0. 6659 
. ' 0.2165 0.}829 0 .4817 0 · 554 1 0. 611 0 0.6605 0.7 164 0.7'51 0.77" 0 .7186 -0.1991 -0.3589 -<1.4535 -<l . 5226 -<l . 5755 -<l . 6193 -<l . 6510 -<l .6,4\ -<l . 5998 -<l .611 5 

27 y ' 0 .2127 0 ·}831 0 .4826 0.5551 0.6104 0.6575 0.68}4 0. 65 15 0 .6158 0.6435 0.2019 0.3580 0.4525 0. 5231 0. 5804 0 .6350 0.7041 0.7452 0. 7}O1 0. 6801 
.' 0.2192 0.}867 0 .4865 0.5601 0 .0193 0.6148 0.7450 0.7875 0.7725 0.7218 -0.1968 -<l.3559 -<l.4500 -<1.519 1 -0.5121 -<1.6174 -<1.6409 -0 . 6075 -0. 5718 -<1 .6006 

3} y' 0.21}8 0.}859 0 .486, 0.5595 0. 6156 0.6652 0. 6772 0.6316 0.604\ 0.64}4 0.2006 0. '554 0.4\99 0.5214 0. 5813 0.6440 0. 7225 0.7520 0.1177 0.6184 
. ' 0.= 0.}907 0 .4915 0. 5666 0·6287 0.6921 0·7727 0.80}8 0.1693 0·7293 -0. 1946 -<l .3529 -<l .4467 -0. 5157 -<1.5690 -0.6160 -0. 6246 -0. 5776 -<l . 5506 -0.5908 

59 y' 0.2148 0.}888 0 .4900 0.564 1 0. 62 10 0. 6728 0. 6669 0.6115 0.5916 0.6426 0 . 199' 0·'529 0.4\76 0 ·520, 0.5835 0.6568 0.7}84 0 .7525 0.7055 0.6792 
.' 0.2248 0 .}948 0.4969 0.57}8 0. 6592 0.7129 0. 7981 0.8137 0.7662 0. 7391 -<l .1924 -<l . 3501 -<l .4435 -0· 5125 -0.5660 -0.6139 -<l.6040 -<l .5415 -<l . 5}42 -0. 5805 

41 y' 0.216:> 0.5925 0.4950 0.570, 0.6283 0.6807 0.6492 0. 587, 0.5926 0.6411 0. 1915 0·}491 0. 4\49 0.5197 0. 5881 0.6785 0. 7556 0.7\66 0.6905 0 .6818 
. ' 0.2287 0.4005 0. }04, 0. 5840 0. 6547 0.1456 0.8282 0.8202 0.76" 0.7552 -<l. I896 -<1 .}464 -0.439' -<l . 5085 -<l . 5621 -0· 6079 -<l.5725 -<l.5099 -<l.5167 -0. 5661 

55 y' 0 .2174 0.}96, 0. 5001 0.5766 0.6358 0. 6820 0.6284 0. 5681 0.5917 0.6398 0.1957 0.}461 0.4\26 0.5202 0. 5950 O.70}4 0.1667 0.7'54 0. 6777 0 .6866 
. ' 0.2}26 0.4065 0.512, 0.5952 0. 6722 0.1824 0.8522 0.8212 0.1618 0.1724 -0.1 8(.8 -0.,428 -<l .4354 -o. }046 -0. 5582 -0. 5942 -<l.5'79 -0 .4176 -<l . 50}2 -<1.55'" 

6, y ' 0.2187 0 .4000 0.5052 0. 5831 0.64'5 0.6756 0. 6066 0.5540 0.5944 0.6}8, 0. 19'9 0.,4'9 0 . \4 10 0· 5219 0.604, 0.7272 0.1718 0.7215 0.6674 0. 6939 
z ' 0.2367 0.4127 0.5208 0.607} 0. 69 18 0.8191 0.810, 0.8194 0.76" 0 .7917 -<l . 1842 -<l .3}95 -<l .4317 -0. 5010 -0. 5542 -<l . 5121 -<l . 5Q24 -0.4505 -o. 49}o -0.5400 

1 1 y ' 0 .2198 0.4037 0. 510, 0.5897 0.651, 0.663} 0. 5852 0. 544, 0. 5990 0.6356 0. 1921 0.,41, 0.4399 ~.5241 0.6159 0 .74"(1 0.1718 0.7069 0. 6605 0 .70,2 
z ' 0.2409 0. 4191 0. 5291 0.620, 0.71'7 0.85" 0.88" 0.8165 0.7682 0.8124 -<l .1816 -<1 . 3}62 -0.4280 -0.4974 -<l . 5496 -<1 .5454 -0.4675 -<1 . 428 1 -0. 4848 -0 . 5250 

79 y ' 0·2209 0.4073 0.5154 0. 5965 0.6589 0.6468 0. 565' 0.5}8, 0.6041 0.6'17 0. 1904 0. ,}8<I 0. \394 0· 5286 0. 6}OO 0.76'9 0.1675 0.6922 0. 6567 0 .71,4 
z' 0.2451 0.4258 0. 5591 0.6342 0.7}80 0.88,2 0.891, 0.813} 0. 7710 0.8}}9 -<1 . 1791 -<1 . 3}' 1 -<l.4245 -0.49'9 -<1 . 5439 -0.51'9 -<l.4}42 -0.4091 -<l.4774 -0 . 5082 

81 y ' 0 .2220 0. 4109 0.5206 0.60" 0. 6656 0. 6215 0.5416 0.5'51 0.6086 0.626, 0. 1886 0.,,68 0.4'94 0·5336 0.6464 0 .7756 0. 7591 0.6782 0. 6557 0 .7240 
z' 0.2495 0 . 4}27 0.5489 0.6489 0.1649 0.9090 0.8959 0.8107 0.1884 0.8558 -0.1761 -<l . , }O1 -<1.4211 -0.490' -0. 5,64 -0 .4800 -<l . 4O}2 -<1 .'948 -<l . 4699 -0 .4896 

95 y ' 0·2229 0. 4145 0.5257 0. 6102 0.6706 0. 6066 0.5326 0.5'57 0 .6125 0.6197 0.1868 0·3}50 0. 4\01 0.5391 0.6645 0.7026 0.749' 0 .6655 0. 6568 0 .·r}46 
. ' 0.2559 0.4,98 0.5592 0. 6645 0.194, 0.9}04 0.8976 0.8091 0.8016 0.8778 -<l . 1744 -o.}2j2 -<1 .4117 -0.4865 -<1 . 5264 -0.4448 -<l .3751 -<1 .}827 -<l.462O -<l .4692 

110 y' 0.2247 0.42 11 0.5'5' 0.6232 0. 6149 0. 5661 0. 5099 0,5400 0.619' 0. 6041 0. 1836 0.'}21 0.4\24 0·55,2 0.7OCF7 0.1816 0.1264 0 .0441 0.6624 0 .7540 
z ' 0.2624 0.45'1 0 . 5792 0.6954 0.8529 0.9624 0.8972 0.8090 0.B290 0.9187 -0·1702 -o.}220 -0. \11, -<: .\190 -0. 5017 -0 . '78, -0. ,284 -<1 .364\ -<l .4\£5 -0. \24 

l}O y ' 0.2267 0.4296 0.5482 0.640, 0.6650 0. 5162 0.49}2 0.5518 0. 6271 0. 5782 0. 1795 0.}291 0.4482 0.5761 0.7469 0.1771 0.69'9 0.6260 0. 6778 0 .77"5 
z' 0.2740 0. 47}o 0.6078 0. 7411 0.9}21 0. 9858 0.8940 0.8177 0.8725 0.9698 -<1 . 16109 -0."52 -<1 .10024 -<1.\667 -0.4536 -0.2962 -<1 .2808 -<1 .}465 -<l .4221 -0 . 36'9 

I-

j 150 . y ' 0. 2283 0.4'78 0.5610 0.656, 0.6405 0.4794 0.4888 0.5657 0.6297 0. 5458 0. 1758 0. 5291 0.4576 0. 6048 0.78" 0 .75}4 0. 6659 0.618, O. 7<'X) 0 .1844 
,_ _ " 0. 2861 0.4936 0.6}86 0.7929 _'_.0026 0 .9926 0.8936 0.8}80 0.9247 1.0 119 -0. 1600 -o.}086 -<1 .3929 -0·4\98 -<1.5919 -0.2219 -<1 .2414 -<1 .3}15 -<l.}895 -0 .2948 
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TABLE I.- CALCULATED LATEPAL POSITIONS OF 40 VORTICES AT VARIOUS ~ISTANCES BEHI~m A SLE~mER 
CRUCIF ORM WING AT 450 BANK - Concluded 

C ' Vortu numbers Vortex numbers 

400Jii ~ + 1 2 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

170 y ' 0·2296 0·""56 0· 5138 0. 6696 0 . 6081 0. 4564 0.4919 0. 5784 0. 6264 0 ·5114 0 . 1725 0·'305 0.4701 0.6'78 0·8094 0.724, 0. 6440 0. 6194 0 .7240 0.78,s .' 0.2984 0·515' 0.6716 0.8508 1.06,c 0·9920 0.8978 0.8669 1.0816 1.04'7 .(). 1555 .().,c18 -0.}821 .().4266 .(). }227 .().17'" -0.2225 '()·"59 -0.}487 -0 . 2252 

190 y ' 0.2,c5 0.45,c 0. 5866 0.6778 0. 5715 0. 4446 0. 4998 0. 5894 0.6148 0 .4788 0 .1697 0. '''7 0. 4856 0.67" 0.8254 0.6949 0.628, 0.6275 0.7467 0.7741 .' O.}111 0·5}79 0.7068 0·9142 1.1129 0. 990' 0.9067 0.9022 1.0' 70 1.065} .().1 511 .().\!946 .() .}698 .().'959 -0.2501 '() .I }C9 '() ·2025 .().29Bl -0.,c12 .(). 1586 

210 y ' 0.2,, 1 0.4599 0· 599' 0. 679' 0.5"7 0.4"05 0. 511 5 0· 5984 0·5987 0. 4510 0 .1676 0.,}86 0.50'7 0.7094 0.8,., 0. 6681 0. 6182 0 . 64 11 0.7662 0 .7575 .' 0.,2,s 0. 5614 0.74"0 0.9B07 1.1525 0.9904 0.9205 0·94,c 1. 0917 1.0789 .(). 1469 .(). 2B66 .()·}555 .(). }575 .().1768 .().Q980 .().1854 .().2768 -0.2486 .(). 0976 

2,c y' 0.2", 0.4665 0.6121 0.67}5 0.4971 0."" ,6 0.5257 0. 6045 0· 5779 0. 4291 0. 1660 0."'5} 0.5242 0.7""2 0.8,'2 0.645} 0.61,. 0.6589 0. 7818 0.7564 .' 0.,}66 0. 5857 0.78}5 1.0478 1.1826 0.99,c 0·940' 0.9881 1.14,. 1.0871 '() .1426 .().2777 .(). ,:590 .(). , 11 6 -0. 1049 -0.0721 .(). 1699 -0 . 2512 .().192' .().04", 

250 y ' 0.2", 0.4727 0.6248 0.66 12 0.46,s 0.4"69 0. 54oB 0.6072 0. 5556 0.4", 0 . 1652 0.}5}5 0·5468 0.776, 0.82,2 0.6270 0 .61,c 0. 6794 0 .79" C.71} 1 .' 0·"'95 0.6106 0.825} 1.11'" 1.204, 0.998, 0.9666 1.0564 1.1906 1.0922 .() .I}B2 .().2677 .()." 99 '().2590 .().0'59 -0 . 0510 .(). 1549 .(). 2207 .() .I,,s 0 . 00}2 

270 y ' 0.2509 0.4786 0.6'74 0.64", 0.4'50 0.4557 0. 5548 0. 606, 0 . 5264 0.4024 0. 1650 0.5650 0· 57 ' 2 0.8046 0.8097 0.61,c 0. 6177 0.7012 0 .8000 0 ·6897 .' 0.}62, 0.6}62 0.8695 1.1760 1.219' 1.0068 0·9996 1.086, 1.2,,. 1.0957 .(). ,,", .().2564 .().29BO .().2007 0.02B9 '() .O,,' .(). 1595 .().1852 .().0742 0.0428 

290 y ' 0.2,c, 0.4840 0.6497 0.62 14 0 .4116 0.4674 0. 5660 0. 6020 0 . 4975 0. 5964 0. 1655 0.'7,s 0. 597 1 0.828, 0.7919 0 .6o,c 0. 6270 0.7250 0.8028 0.6675 .' 0.'749 0. 662, 0.9162 1.2}119 1·2295 1.0189 1.0}B2 1. 1}69 1. 270, 1.0986 .() . 1281 '() .24,s .().27,. .().1}80 0.08B9 '() .0176 -0. 1224 .().145O .().0146 0.0761 

" 0 y ' 0.2294 0·4891 0.66 12 0. 5960 0.'9'5 0. 481, 0·57}5 0·5946 0.4680 0.'948 0.1 667 0. ,s56 0. 62'" 0.8470 0.7710 0· 5968 0. 6404 0.7456 0.8018 0 .6476 i .' 0.}874 0.6889 0.9654 1. 2895 1.2}66 1.0}52 1·0809 1.1875 1.5015 1.1016 -0 . 122, .() ·2297 '().245} -0 .0722 0.14}5 '() .00}5 -0 . 1024 -0 .1007 0.0441 0 .1 04 1 

,,c y' 0.2282 0 .49,s 0.6716 0· 5679 0.,a04 0.4965 0.5769 0. 5846 0.4'92 0. '970 0.1 684 0.}9B4 0.6529 0.8606 0.7482 0· 5944 0.6567 0·7625 0.7975 0 .6,c5 .' 0· 5997 0.71 59 1. 011 1 1."97 1 .2420 1.0}62 1.1261 1. 2'75 1.,268 1.1055 .() . 1157 -0 . 2 142 .().2142 .().0040 0. 192' 0.0097 .().0785 .().05,. 0.1014 0.1279 

'50 y' 0.2269 0.4982 0. 6802 0. 5}78 0.'71 5 0 · 5 12 1 0· 5768 0. 5720 0 .4124 0.4027 0 .1708 0.4 120 0.6822 0.869, 0.7246 0·5957 0. 6748 0.7794 0.790' 0 .6164 

" 0.411 7 0. 74", 1. 071, 1.}848 1.2469 1.0820 1.1722 1.2867 1.}465 1.1108 .(). 108, '() .197} .() .1798 0. 064, 0.2}51 0.0226 ,() .0502 ,().OO,c 0 .1 568 0 .1484 

'70 y ' 0.2255 0.5024 0. 6866 0· 5065 0. }662 0.5271 0. 57}6 0. 5572 0.,a84 0.4115 0. 17,s 0.4264 0. 711 9 0.87" 0 . 1012 0.6006 0· 69}5 0·7942 0·7807 0.6055 .' 0.42}5 0.17 12 1. 1277 1.4248 1.2518 1.1124 1.2184 1.''''7 1· 56 15 1.118, -0.1001 '().1790 -0 .1420 0. ,,,, 0.272, 0.0'59 '() .0174 0·0491 0 . 2100 0 .1 664 

}90 y ' 0.2240 0· 506, 0. 6902 0.4748 0. 5641 0.5409 0. 5679 0· 540, 0. 5677 0. 4229 0.1772 0."" ' , 0·7418 0.8729 0. 6790 0· 6090 0. 7118 0.8070 1.7691 0·5978 .' 0.4}48 0.799' 1.1860 1. 459' 1.2572 1.1469 1.26,s 1. ,s14 1. '726 1.1286 .().0909 .() .1 59' .().1 007 0 . 2014 O. ,c,s 0 . 0501 0. 0194 0. 10" 0.2606 0 .1828 

410 y' 0.2224 0· 5099 0. 6909 0.""}5 0. }646 0. 55}2 0. 5602 0· 5216 0.,506 0 .4564 0 .18 11 0.4569 0.7712 0.8685 0. 6588 0.6209 0.7288 0.8176 0.7560 0.59,c 
" 0·""59 0 .8277 1.2456 1.4881 1.26}5 1.1848 1.,ca l 1.4265 1.}808 1.142, .() .0807 .(). I,s, '() . 0~57 0.2684 0. ,,c4 0.0658 0. 0598 0.1584 0. ,c86 0.1980 

4,c y' 0.2208 0. 51}4 0.688, 0.41}5 0. 5674 0. 56,s 0. 5508 0 . 50 11 0. ,}69 0.45 12 0.1855 0.47,c 0.7996 0 .860, 0.6415 0.6,62 0. 74"0 0.8260 0.74 16 0 . 5912 .' 0.4}66 0.8564 1. ,c61 1. 511, 1.2708 1.2256 1.}512 1. 4698 1.,a69 1.1 599 .().0696 -0 .11 6 1 .().0072 0.3"7 0. }526 0.08'7 0 .10}O 0.2148 0. 35,6 0.2127 

450 y ' 0.219' 0. 5166 0. 682, 0·,s59 0. '72' 0·5726 0·5401 0.4789 0.,266 0. 4666 0. 1902 0. 4896 0.8265 0.8487 0.6274 0. 6545 0. 7571 0.8,., 0 ·726, 0 . 5921 
" 0.4669 0.8854 1.}667 1.5292 1.2796 1.2689 1.}926 1.5112 1.'915 1.1816 '() . 0574 .().0927 0. 0446 0. ,966 0. 37 18 0.1044 0.1480 0 . 2721 0. 3955 0 . 227 1 

470 y ' 0.2179 0.5197 0. 67,c 0. 5615 0 .'788 0.5797 0·5282 0.4551 0." 9' 0.482 1 0 . 195} 0· 5066 0. 8515 0.8}42 0. 6168 0.6755 0. 7682 0.8564 0.7 106 0· 5957 .' 0.4770 0.9145 1.4269 1.542, 1· 2900 ,.,,4, 1.4,., 1. 5502 1. '952 1. 2076 '() .044, .().0681 0. 0999 0. 4565 0. ,a86 0.1285 0.1942 0.}299 0. 4}40 0. 24, 6 

490 y ' 0.2167 0. 5227 0. 6605 0.}412 0. ,a68 0· 5849 0· 5156 0.4295 0 .""" 0 .4970 0.2007 0·52'9 0.8740 0. 817' 0. 6096 0. 6987 0.7774 0.8,s, 0· 6950 0 . 6021 

" 0.4868 0· 94'7 1.4861 1. 5515 1.,co, 1·5615 1. 4702 1.586, 1· ,984 1.2'77 ,() .O,c, '() .0425 0.1 580 0.5'" 0 .4042 0.1 56, 0.24 10 O. ,eal 0· 4692 0 . 2}66 

510 y ' 0.2156 0 · 5254 0. 6449 0.,252 0. '958 0. 5882 0·5025 0. 4025 0 .}121 0. 5108 0.2064 0.5416 0.89,s 0.7986 0. 605} 0. 72}4 0.7848 0.8}80 0.6801 0 . 6 110 .' 0.4964 0.97,c 1.54'7 1.558, 1.,,66 1.4104 1· 5062 1. 6185 1.401, 1.21 18 -0 . 0 152 '() .0157 0.2187 0. 5659 0.4192 0.1882 0.2881 0.4"62 0. 5011 0.2724 

5,c y ' C.2149 0. 5278 0.6266 O.",c 0.4058 0· 5894 0. 4891 0.'750 0 .}12 1 0· 52" 0.212, 0.5595 0·9106 0.7789 0. 6056 0. 7490 0. 7906 0.8,56 0. 666, 0 . 6226 .' 0.5058 1.0024 1· 599' 1.56,s 1.'3,2 1.4607 1. 54O} 1.6462 1. 4Q4, 1.}C97 0.0006 0.0120 0.2814 0.6147 0.4}40 0.2241 0·3'52 0, 5040 0.5,cl 0·2894 
550 y ' 0.2 14.4 0.5,co 0.6058 0.,c41 0.4164 0. 5885 0. 4757 0. }481 0 .,,42 0.5}'9 0 . 2184 0· 5778 0·9241 0. 7586 0 . 6041 0. 7750 0.7951 0.8, ,2 0 .65'9 0. 6}68 .' 0. 5151 1.0}20 1.6524 1· 5689 1·'522 1. 5 120 1.5726 1.6691 1.4074 1.}511 0.0174 0.0409 0."'57 0. 6594 0.""91 0. 264 1 0.,s19 0. 5612 0.5565 0 . ,ca2 

570 y ' 0.214, 0 · 5}20 0· 5829 0 ·2978 0 .4274 0· 5852 0.4625 0.}227 0 . , ,8, 0· 5421 0 .2248 0. 596, 0. 9}42 0·7}85 0. 6068 0 .8007 0. 79B4 0.8249 0.64,c 0.65" .' 0. 52"" 1.0616 1.7026 1·5740 1.'7,s 1·5640 1.60,6 1.6875 1.4110 1·'954 0.0'50 0.0708 0 .4110 0. 7002 0. 464" O.,cal 0.4281 0.6175 0. 5807 0 . }292 
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NACA TN 3528 

TABLE 11.- CALCULATED LATERAL POSITIONS OF CENTROIDS OF VORTICITY OF 
40 VORTICES BEHIND A SLENDER CRUCIFORM WING AT 45° BANK 

c ' Vortex numbers 
400-./2 ~ ~ 1 to 10 11 to 20 b A 

400-/2 ~ CL' Vortex numbers 
b A 1 to 10 11 to 20 

0 Yc ' 0.5554 0.5554 
zc ' 0.5554 -0 .5554 

170 Yc ' 0.5191 0.5916 
zc' 0.8180 -0.2874 

1 Yc ' 0. 5551 0 .5556 
zc ' 0 .5569 -0·5537 

190 Yc ' 0.5147 0.5960 
z • 0.8484 -0 .2553 c 

3 Yc ' 0. 5547 0.5560 
zc ' 0.5600 -0.5506 

210 Yc ' 0.5104 0.6003 
z I 0.8787 -0.2230 c 

5 Yc ' 0.5543 0.5564 
zc ' 0.563 1 -0.5475 

230 Yc ' 0.5060 0.6047 
z • 0 ·9088 -0 .1 905 c 

7 Yc ' 0. 5539 0.5568 
Zc ' 0. 5662 -0.5444 

250 Yc ' 0.5016 0.6091 
z • 0·9387 -0. 1578 c 

11 Yc ' 0.5530 0.5577 
z • 0.5724 -0 .5382 c 

270 Yc .' 0.4971 0.6136 
z • 0.9685 -0 . 1248 c 

15 Y • 0· 5522 0 .5585 c , 
0.5787 -0·5319 Zc 

290 Yc ' 0.4927 0.6180 
z ' 0 .9981 -0 .0917 c 

21 Yc ' 0·5509 0.5598 
z ' 0 .5880 -0.5226 c 

310 YC ' 0.4882 0.6225 
z ' 1. 0275 -0.0584 c 

27 Yc ' 0.5496 0.5611 
zc ' 0·5973 -0·51 32 

330 Yc • 0.4836 0.6270 
z • 1. 0566 -0.0249 c 

33 Yc ' 0.5483 0·5624 
z • 0. 6067 -0·5039 c 

350 Yc • 0.4791 0.6316 
Zc ' 1.0856 0.0088 

39 Yc ' 0.5471 0.5636 
z ' 0.6160 -0 .4945 c 

370 Yc I 0.4745 0.6362 
Zc ' 1. 1144 0.0428 

47 Yc ' 0.5454 0·5653 
z • 0.6284 -0.4820 c 

390 Yc ' 0.4700 0.6407 
zc ' 1.1430 0.0771 

55 Yc • 0.5437 0.5670 
zc ' 0.6408 -0.4695 

41 0 Yc I 0.4654 0.6453 
Zc ' 1.1714 0. 1115 

63 Yc ' 0. 5420 0.5687 
z • 0.6532 -0.4570 c 

430 Yc ' 0.4608 0 .6499 
Zc I 1.1 995 0.1461 

71 Yc ' 0. 5403 0·5704 
zc ' 0.6657 -0.4443 

450 Yc I 0.4562 0.6545 
Zc ' 1.2274 0.1 810 

79 Yc ' 0· 5386 0·5721 
z • 0.6781 -0 .4317 c 

470 YC ' 0.4516 0.6591 
z I 1.2550 0.2160 c 

87 Yc ' 0.5369 0.5738 
zc ' 0.6905 -0.4192 

490 YC ' 0.4470 0 .6637 
zc ' 1.2824 0.2513 

95 Yc ' 0·5352 0·5756 
zc ' 0.7029 -0.4066 

510 YC ' 0.4424 0.6683 
zc ' 1·3097 0.2869 

11 0 Yc ' 0 .5320 0 ·5788 
z ' 0. 7260 -0·3830 c 

530 Yc ' 0.4378 0.6729 
Zc • 1. 3366 0.3226 

130 Y • 0.5277 0.5830 c 
zc ' 0·7568 -0·3512 

550 Yc ' 0 .4332 0.6775 
Zc • 1. 3633 0.3585 

150 Yc ' 0. 5234 0.5873 
zc ' 0.7875 -0.3194 

570 Yc ' 0.4286 0.6821 
Zc • 1· 3898 0.3945 
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Figure 3. - Photographs of the wake at various distances behind a trian
gular plane wing (or cruciform wing at ¢ =0) of aspect ratio 2 j 0,= 20°. 
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